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Abstract. We show the correspondence between left invariant flat projective structures

on Lie groups and certain prehomogeneous vector spaces. Moreover by using the

classification theory of prehomogeneous vector spaces, we classify complex Lie groups

admitting irreducible left invariant flat complex projective structures. As a result, direct

sums of special linear Lie algebras slð2Þl slðm1Þl � � �l slðmkÞ admit left invariant flat

complex projective structures if the equality 4þm2
1 þ � � � þm2

k � k � 4m1m2 . . .mk ¼ 0

holds. These contain slð2Þ, slð2Þl slð3Þ, slð2Þl slð3Þl slð11Þ for example.

1. Introduction

A flat real projective structure on a real manifold is a maximal atlas whose

charts take values in the real projective space and coordinate changes are

projective transformations (cf. [7]). This definition exactly agrees with the

familiar one using projective equivalence classes of connections, which is ex-

plained in § 2 of this paper. A flat real projective structure on a real Lie group

is said to be left invariant if coordinate expressions of left translations are

projective transformations (see § 2). Likewise on complex Lie groups we can

consider left invariant flat complex projective structures by taking the complex

projective space as a model space. In this paper on real (resp. complex) Lie

groups we always consider left invariant flat real (resp. complex) projective

structures, and we abbreviate each geometric structure to real (resp. complex)

IFPS.

Then there arises a natural question; on a given Lie group, is there an

IFPS or not? Concerning this problem, Agaoka [1], Urakawa [20], Elduque [4]

proved that a real simple Lie group admits a real IFPS if and only if its Lie

algebra is slðnþ 1;RÞ or su�ð2nÞ (nb 1). However concerning real and com-

plex semisimple Lie groups, the classification problem is open.

In this paper by using the theory of prehomogeneous vector spaces, we

give an answer to this classification problem under one restriction on geometric
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structures called irreducibility (cf. Definition 4.5). Note that IFPSs are divided

into two groups, that is, irreducible IFPSs and reducible ones. Our main

theorem is stated in the following form:

Theorem 1.1. A complex Lie group admits an irreducible complex IFPS if

and only if its Lie algebra is of the form

slðaÞl slðm1Þl � � �l slðmkÞ

where a ¼ 2, 3, or 5 ðkb 1;mi b 1Þ and satisfies the equality

a2 þm2
1 þ � � � þm2

k � k � 2am1m2 . . .mk ¼ 0:ð**Þ

These Lie algebras include an infinite number of Lie algebras: slð2Þ,
slð2Þl slð3Þ, slð2Þl slð3Þl slð11Þ, slð2Þl slð41Þl slð11Þ, etc. (cf. Remark 1

in § 7).

To prove Theorem 1.1, we establish a one-to-one correspondence between

IFPSs and prehomogeneous vector spaces, the latter being a purely algebraic

object introduced by M. Sato [16]. He called a triplet ðG; r;VÞ a prehomoge-

neous vector space (abbrev. PV) if G is a connected linear algebraic group over

algebraically closed field K and r is a rational representation of G on a finite

dimensional K-vector space V such that V admits a Zariski-open G-orbit. In

this paper we consider only PVs over the complex number field.

For a PV ðG; r;VÞ, its infinitesimal form ðg; dr;VÞ satisfies the condition

that there exists v A V such that drðgÞv ¼ V (cf. [10]). We can show that a

complex IFPS induces a Lie algebra representation satisfying the same condi-

tion as that of infinitesimal PVs. In this context we prove that IFPSs corre-

spond to infinitesimal PVs.

The paper is organized as follows. The first half of the paper, which

consists of § 2–§ 4, is a geometric preliminary for proving the correspondence

between IFPSs and infinitesimal PVs. In § 5 we introduce the notion of PV,

and prove this correspondence. In § 6 we prepare some important notions on

PV concerning classifications of PVs. Finally in § 7 we prove Theorem 1.1 by

using a classification of certain irreducible PVs by Sato and Kimura [17].

2. ðG;XÞ-structures and flat Cartan structures

A flat complex projective structure on a complex manifold M is a special

case of ðG;XÞ-structures, which will be defined in the following. Let G be a

complex Lie group, and let X be a connected complex homogeneous space of

G. Then by the Liouville theorem (cf. [3, Proposition 1.5.2]), the action of G

on X is locally determined. Namely, for g A G if there exists a nonempty open

subset U of X such that g gives the identity transformation of U , then g gives
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the global identity transformation of X . From now on we assume that G acts

on X e¤ectively. Thus if g gives a local identity transformation of X , then g

is equal to the unit element of G. Accordingly we identify an element g of G

with the transformation on some open set of X induced by g. We assume that

dim M ¼ dim X .

Definition 2.1 ([7]). A ðG;XÞ-structure on M is a maximal atlas

fðUa; jaÞga AA of M such that

(1) ja maps Ua biholomorphically onto an open subset of X.

(2) For every pair ða; bÞ with Ua VUb 0q and each connected component

C of Ua VUb , there exists tðC; b; aÞ A G such that jb � j�1
a jjaðCÞ equals

the restriction of tðC; b; aÞ to jaðCÞ.

Two atlases are said to be equivalent if they are compatible. Then note

that a maximal atlas corresponds to an equivalence class of an atlas.

In the following we fix a point x A X , and denote the isotropy subgroup at

x by G 0. Then we can identify X with the quotient space G=G 0. In order to

prove the correspondence between IFPSs and PVs, in this section we generally

show that ðG;X Þ-structures on M correspond to flat Cartan structures of type

G=G 0 on M, which will be defined as follows: We denote the Lie algebra of G

by g, and the Lie algebra of G 0 by g 0.

Definition 2.2 ([11]). Let pP : P ! M be a principal G 0 bundle, and let o

be a g-valued 1-form on P. We say that ðP;oÞ is a Cartan structure of type

G=G 0 on M if

(1) R�
ao ¼ Adða�1Þo for a A G 0,

(2) oðA�Þ ¼ A for A A g 0, where A� is the fundamental vector field corre-

sponding to A.

(3) For u A P, ou : TuP ! g gives a linear isomorphism.

A 1-form o of a Cartan structure ðP;oÞ is called a Cartan connection. A

Cartan structure ðP;oÞ is said to be flat if the equality doþ 1
2 ½o;o� ¼ 0

holds. Cartan structures ðP;oÞ and ðP 0;o 0Þ on M are said to be isomorphic

(via identity transformation of M) if there exists a bundle isomorphism

f : P ! P 0 such that f�o 0 ¼ o, and f induces the identity transformation

of M. We call f an isomorphism of Cartan structures. We denote this

equivalence relation by ðP;oÞ@ ðP 0;o 0Þ.
Now ðG;X Þ-structures correspond to isomorphism classes of flat Cartan

structures ðP;oÞ as follows:

Theorem 2.3. There is a one-to-one correspondence between the set of

ðG;X Þ-structures on M and the set of isomorphism classes of flat Cartan

structures of type G=G 0 on M.
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Proof. We shall construct a map

F : fðG;X Þ-structure on Mg

! fflat Cartan structure of type G=G 0 on Mg=@:

Let fðUa; jaÞga AA be a ðG;XÞ-structure on M. First we construct a principal

fiber bundle P. As a chart of M let us choose ja : Ua ! jaðUaÞHX . Then

the principal fiber bundle p : G ! X ¼ G=G 0 induces a principal fiber bundle

p : p�1ðjaðUaÞÞ ! jaðUaÞ. We denote p�1ðjaðUaÞÞ by ~UUa. Through ja we

obtain a principal fiber bundle pa : ~UUa ! Ua. Let o be the Maurer-Cartan

form of G. Then o induces a Cartan connection oa on ~UUa by setting

oa :¼ oj ~UUa
. Hence we obtain a family of Cartan structures fð ~UUa;oaÞga AA.

We denote by tðC; b; aÞ a coordinate change jb � j�1
a on a connected

component C of Ua VUb. Let Ug be another coordinate neighborhood, and let

D and E be connected components of Ub VUg and Ug VUa respectively. If

C VDVE0q, then we have tðD; g; bÞtðC; b; aÞ ¼ tðE; g; aÞ. This follows

from the fact that the action of G on X is locally determined (see the

beginning of this section). Let g A ~UUa, and h A ~UUb. We express g@ h if

paðgÞ ¼ pbðhÞ and h ¼ tðC; b; aÞg on a connected component C of Ua VUb

containing paðgÞ. Then this is an equivalence relation in the set
F

a AA
~UUa.

Hence we obtain a quotient space P :¼
F

a AA
~UUa=@. Then note that we have

the natural inclusion { : ~UUa ! P.

We show that P is a principal G 0 bundle over M. Let us define a

projection pP : P ! M by pPð{ðgÞÞ ¼ paðgÞ for g A ~UUa, and define a group

action of G 0 on P by {ðgÞa :¼ {ðgaÞ for a A G 0. A local trivialization of P is

derived from that of ~UUa with its complex structure. These are well defined and

satisfy the conditions of principal fiber bundles.

Secondly we construct a flat Cartan connection oP on P. Here note that

any tangent vector at {ðgÞ of P is given by d{ðX Þ for some X A Tg
~UUa. Now

we define a 1-form oP on P by oPðd{ðX ÞÞ :¼ oaðX Þ for X A Tg
~UUa. Then oP

is well defined. Since oa is a flat Cartan connection on ~UUa, oP gives a flat

Cartan connection on P. As a result we have obtained a flat Cartan structure

ðP;oPÞ of type G=G 0 on M.

Finally we show that equivalent atlases of ðG;XÞ-structure induce iso-

morphic Cartan structures. Let two atlases fðUa; jaÞga AA and fðVl;clÞgl AL
belong to the same ðG;X Þ-structure. Then each atlas on M induces a Cartan

structures ðP;oPÞ and ðP 0;oP 0 Þ respectively. We define a bundle map

f : P ! P 0 by f ð{ðgÞÞ ¼ {ðtðC; l; aÞ � gÞ for g A ~UUa and paðgÞ A Vl such that

paðgÞ A CHUa VVl. Then f is well defined, and moreover f is a holomor-

phic bundle isomorphism. We can easily verify that f �o 0
P ¼ oP, and that f

induces the identity transformation of M. Hence ðP;oPÞ is isomorphic to
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ðP 0;oP 0 Þ, and consequently we obtain a map F : fðG;XÞ-structure on Mg !
fflat Cartan structure of type G=G 0 on Mg=@.

Next we shall construct a map

C : fflat Cartan structure of type G=G 0 on Mg=@

! fðG;XÞ-structure on Mg:

Let ðP;oPÞ be a flat Cartan structure of type G=G 0 on M. Let pP : P ! M be

its projection. The Maurer-Cartan form o of G is a g-valued 1-form satisfying

the structure equation doþ 1
2 ½o;o� ¼ 0, which oP also satisfies. Hence for

any u A P, there exists a neighborhood U of pPðuÞ and a bundle isomorphism
~ff : p�1

P ðUÞ ! V , where V is an open subset of G, such that ~ff �o ¼ oP (cf.

[3], p. 74). Therefore ~ff induces a biholomorphic mapping of base spaces

f : U ! pðVÞ. Suppose that ~ff 0 is another bundle isomorphism ~ff 0 : pP
�1ðU 0Þ

! V 0 such that pPðuÞ A U 0, and ~ff 0�o ¼ oP. Let f 0 : U 0 ! pðV 0Þ be its

inducing map. For an element g of G, we denote its left translation by

Lg. Then for a connected component C of U VU 0, there exists a unique

element g A G such that ~ff 0 ¼ Lg � ~ff on p�1
P ðCÞ (cf. [3], p. 74). Hence by

setting tðC;U 0;UÞ :¼ g, the equality f 0 � f �1 ¼ tðC;U 0;UÞ holds on f ðCÞ.
Consequently we obtain an atlas fðU ; f Þg of ðG;XÞ-structure on M.

Next we suppose that flat Cartan structures ðP;oPÞ and ðP 0;oP 0 Þ are

isomorphic. Then we can verify that two atlases of ðG;XÞ-structure on M

induced by ðP;oPÞ and ðP 0;oP 0 Þ are equivalent. Hence we obtain a map

C : fflat Cartan structure of type G=G 0 on Mg=@! fðG;X Þ-structure on Mg.
Two maps F and C obtained above satisfy F �C ¼ C �F ¼ id. Hence

Theorem 2.3 has been proved. r

Let M be a complex manifold, and let c be a biholomorphic map of M.

Let ðP;oÞ and ðP 0;o 0Þ be flat Cartan structures of type G=G 0 on M, and

let fðUa; jaÞga AA and fðU 0
l; j

0
lÞgl AL be the induced ðG;XÞ-structures on M

respectively. We say that ðP;oÞ and ðP 0;o 0Þ are isomorphic via c if there

exists a bundle isomorphism ~cc : P ! P 0 such that ~cc�o 0 ¼ o which induces c.

On the other hand we say that fðUa; jaÞga AA and fðU 0
l; j

0
lÞgl AL are equivalent

via c if c : M ! M satisfies the following condition: for each connected

component C of Ua Vc�1ðU 0
lÞ there exists an element g of G such that the

composite j 0
l � c � j�1

a equals g on jaðCÞ. Then we can verify that ðP;oÞ and

ðP 0;o 0Þ are isomorphic via c if and only if fðUa; jaÞga AA and fðU 0
l; j

0
lÞgl AL are

equivalent via c.

Next we shall consider left invariant ðG;XÞ-structures on a complex

Lie group L. For an element a of L we denote the left translation of L

by La.
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Definition 2.4. A ðG;X Þ-structure fðUa; jaÞga AA on L is said to be left

invariant if for any a A L and each connected component C of Ua VL�1
a ðUbÞ,

there exists an element g of G such that the composite jb � La � j�1
a jjaðCÞ equals

the restriction of g to jaðCÞ.

In terms of Cartan structures, left invariance is described by the fol-

lowing:

Definition 2.5 ([15]). Let ðP;oÞ be a Cartan structure of type G=G 0 on L.

Then ðP;oÞ is said to be left invariant if there exists a left action L� P C
ða; uÞ ! L 0

aðuÞ A P satisfying the following conditions: For any a A L, L 0
a is a

bundle isomorphism such that pP � L 0
a ¼ La � pP and L 0�

a o ¼ o.

Let ðP;oÞ and ðP 0;o 0Þ be left invariant Cartan structures on L. We

suppose that they are isomorphic as Cartan structures, thus there exists an

isomorphism of Cartan structures f : ðP;oÞ ! ðP 0;o 0Þ. Then note that we

have f � L 0
a ¼ L 0

a � f for a A L.

Theorem 2.6. There is a one-to-one correspondence between the set of left

invariant ðG;XÞ-structures on L and the set of isomorphism classes of left

invariant flat Cartan structures of type G=G 0 on L.

Proof. We show that the maps F and C in the proof of Theorem 2.3

preserve left invariance.

Let fðUa; jaÞga AA be an atlas of a left invariant ðG;X Þ-structure on L. We

suppose that in Theorem 2.3, FðfðUa; jaÞgÞ is given by an isomorphism class of

ðP;oPÞ, where P ¼
F

a AA
~UUa=@ and oPðd{ðXÞÞ ¼ oaðXÞ for X A Tg

~UUa. Then

for a A L, the left translation La induces a bundle isomorphism L 0
a : P ! P

defined by L 0
að{ðgÞÞ ¼ {ððjb � La � j�1

a Þ � gÞ for g A ~UUa and b A A such that

apaðgÞ A Ub. Indeed this definition is well defined. Furthermore we can

verify that pP � L 0
a ¼ La � pP, and L 0�

a o ¼ o. Consequently F preserves left

invariance.

Next we show that C preserves left invariance. Let ðP;oPÞ be a left

invariant flat Cartan structure of type G=G 0 on L. Recall that in the proof of

Theorem 2.3, ðP;oPÞ induces a set f ~ffa : p
�1
P ðUaÞ ! Gga AA such that 6

a AA Ua ¼
L. Then this set induces an atlas fðUa; faÞga AA of ðG;X Þ-structure on L. For

any a A L there is a bundle isomorphism L 0
a : P ! P such that L 0�

a oP ¼ oP,

therefore ~ffb � L 0
a � ~ff �1

a preserves the Maurer-Cartan form o of G. Hence for

each connected component C of Ua VL�1
a ðUbÞ, the left translation ~ffb � L 0

a � ~ff �1
a

is given by a unique element g of G on ~ffaðp�1
P ðCÞÞ. From this fact, we can

verify that the induced map fb � La � f �1
a is given by g on faðCÞ.
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Therefore the atlas fðUa; faÞga AA is left invariant. Since left invariance is

preserved in the equivalence relation of atlases, we can conclude that C

preserves left invariance.

We have proved that two maps F and C preserve left invariance. Since

C is an inverse map of F, Theorem 2.6 has been proved. r

Theorems 2.3 and 2.6 are valid also in the real Cy category. Let N be a

real manifold. Then we can consider ðG;X Þ-structures and Cartan structures

similarly to the complex case. Concerning Theorem 2.3, in [3, p. 75] it has

been stated that a ðG;X Þ-structure exists on N if and only if there exists a flat

Cartan structure of type G=G 0 on N.

Here let us consider the real projective geometry ðPGLðRnþ1Þ;PðRnþ1ÞÞ
for example. Then PðRnþ1Þ is connected and PGLðRnþ1Þ acts on PðRnþ1Þ
e¤ectively. Thus we can apply these theorems to ðPGLðRnþ1Þ;PðRnþ1ÞÞ-
structures on a real manifold N. Let us fix the point o ¼ ½0; . . . ; 0; 1� A
PðRnþ1Þ, and denote the isotropy subgroup at o by PGLðRnþ1Þo. Then the

real projective space PðRnþ1Þ is expressed as PGLðRnþ1Þ=PGLðRnþ1Þo.
In our definition a flat real projective structure on N is a ðPGLðRnþ1Þ;

PðRnþ1ÞÞ-structure on N, which corresponds to an isomorphism class of a flat

Cartan structure ðP;oÞ of type PGLðRnþ1Þ=PGLðRnþ1Þo on N.

On the other hand there is a more familiar definition of flat real projective

structures, which is defined to be a projective equivalence class of a projectively

flat torsionfree a‰ne connection. In this case we can see that there is a one-

to-one correspondence between the set of projective equivalence classes of

projectively flat torsionfree a‰ne connections on N and the set of isomorphism

classes of flat Cartan structures of type PGLðRnþ1Þ=PGLðRnþ1Þo on N by using

the results of Tanaka [19] which is quoted in [1, p. 131]. Hence there is also a

one-to-one correspondence between the set of ðPGLðRnþ1Þ;PðRnþ1ÞÞ-structures
on N and the set of projective equivalence classes of projectively flat torsion-

free a‰ne connections on N. That is the reason why we call a ðPGLðRnþ1Þ;
PðRnþ1ÞÞ-structure a flat real projective structure.

3. Left invariant flat Cartan structures and transversal embeddings

Let L be a complex Lie group, and let l be its Lie algebra. In this sec-

tion we prove that left invariant flat Cartan structures of type G=G 0 on L cor-

respond to certain injective Lie algebra homomorphisms of l to g, which we call

transversal embeddings (cf. Theorem 2.3 in [15]). Recall that dim l¼ dim g=g 0.

Definition 3.1. Let f : l ! g be a complex Lie algebra homomorphism.

Then we call f a transversal embedding (of l into g) if the induced linear map

f : l ! g=g 0 is a linear isomorphism.
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Let g�1 be a complementary subspace of g 0 in g. We denote by f�1 the

g�1-component of f . Let f : l ! g be a complex Lie algebra homomor-

phism. Then f is a transversal embedding if and only if f�1ðlÞ ¼ g�1.

For a real Lie group L with its Lie algebra l, it was shown in Theorem 2.2

of [15] that a left invariant flat real Cartan structure ðP;oÞ of type G=G 0 on L

induces a real Lie algebra homomorphism f : l ! g. The construction of the

homomorphism f is essentially taken from [1]. We have the same assertion

for a complex Lie group L, as we briefly outline its proof. Let ðP;oÞ be a flat

complex Cartan structure of type G=G 0 on the complex Lie group L. Since

ðP;oÞ is left invariant, there is a left action of L on P, i.e. L� P C ða; uÞ 7!
L 0
aðuÞ A P. We fix an element ôo of P such that pPðôoÞ is equal to the unit

element e of L. We define a map j : L ! P by jðaÞ ¼ L 0
aðôoÞ. Now let us

consider the g-valued 1-form j �o on L. The 1-form j �o is left invariant, since

j is compatible with the left action of L and L 0�
a o ¼ o. Thus we obtain a

linear map j �o : l ! g. We denote this linear map by f . Then f is a Lie

algebra homomorphism if and only if ðP;oÞ is flat.

Furthermore we can show that f is a transversal embedding.

Proposition 3.2. Any left invariant flat Cartan structure ðP;oÞ of type

G=G 0 on L induces a transversal embedding f : l ! g.

Proof. As we have seen above ðP;oÞ induces a Lie algebra homomor-

phism f ¼ j �o : l ! g by Theorem 2.2 in [15]. Since the map j : L ! P

satisfies p � j ¼ id, we have j�ðTeLÞlTôop
�1ðôoÞ ¼ TôoP. Since the Cartan con-

nection o gives a linear isomorphism oôo : TôoP ! g, we have oð j�ðTeLÞÞl g 0

¼ g. Hence f ðlÞ is isomorphic to g=g 0, which implies that the induced linear

map f : l ! g=g 0 is an isomorphism. Consequently f is a transversal embed-

ding. r

Definition 3.3. We say that transversal embeddings f1 and f2 are equiv-

alent if there exists g A G 0 such that f2 ¼ AdðgÞ f1. We denote this equivalence

relation by f1 @ f2.

We denote the equivalence class of a simply transitive embedding f by ½ f �.

Lemma 3.4. Isomorphic left invariant flat Cartan structures of type G=G 0

on L induce equivalent transversal embeddings.

Proof. Let ðPi;oiÞ be a left invariant flat Cartan structure of type G=G 0

on L (i ¼ 1; 2). Then by Proposition 3.2 each ðPi;oiÞ induces a transversal

embedding fi. Now we assume that ðP1;o1Þ is isomorphic to ðP2;o2Þ. Then

there exists a bundle isomorphism f : P1 ! P2 such that f�o2 ¼ o1, and

f � L 0
a ¼ L 0

a � f. Let ôoi be a fixed element of Pi such that pðôoiÞ ¼ e. Then

there exists g A G 0 such that fðôo1Þ ¼ ôo2 � g. The left action of L on Pi induces
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a map ji : L ! Pi by jiðaÞ ¼ L 0
aðôoiÞ. Then we have f � j1 ¼ Rg � j2. Hence

we have f1 ¼ j �1o1 ¼ j �1 f
�o2 ¼ ðRg � j2Þ�o2 ¼ Adðg�1Þ j �2o2 ¼ Adðg�1Þ f2. r

By combining Proposition 3.2 and Lemma 3.4 we obtain a map

Y : fleft invariant flat Cartan structure of type G=G 0 on Lg=@

! ftransversal embedding f : l ! gg=@:

We denote the equivalence class of a Cartan structure ðP;oÞ by ½ðP;oÞ�.

Proposition 3.5. Y is bijective.

Proof. First we show that Y is injective. Let ðPi;oiÞ be a left in-

variant flat Cartan structure of type G=G 0 on L (i ¼ 1; 2). We suppose that

Yð½ðP1;o1Þ�Þ ¼ Yð½ðP2;o2Þ�Þ. Then by the definition of Y there exists g A G 0

such that j �2o2 ¼ AdðgÞ j �1o1. We define a map f : P1 ! P2 by fð j1ðaÞhÞ ¼
j2ðaÞgh for h A G 0. We prove that f gives an isomorphism between ðP1;o1Þ
and ðP2;o2Þ. We can easily verify that f � j1 ¼ Rg � j2, and f � L 0

a ¼
L 0
a � f for a A L. Next we show that f preserves Cartan connections. Any

tangent vector of P1 can be uniquely expressed in the form Rh�ð j1�X þ Z �Þ
where X A TaL, Z A g 0 and h A G 0. Then f�o2ð j1�X Þ ¼ o2ðRg� j2�X Þ ¼
Adðg�1Þ j �2o2ðX Þ ¼ Adðg�1Þ AdðgÞ j �1o1ðX Þ ¼ o1ð j1�XÞ. Moreover for u A P,

f�o2ðZ �
u Þ ¼ o2ðf�Z �

u Þ ¼ o2ðZ �
fðuÞÞ ¼ Z ¼ o1ðZ �

u Þ. Hence

f�o2ðRh�ð j1�X þ Z �ÞÞ ¼ Adðh�1Þf�o2ð j1�X þ Z �Þ

¼ Adðh�1Þo1ð j1�X þ Z �Þ

¼ o1ðRh�ð j�X þ Z �ÞÞ:

It follows that f�o2 ¼ o1, which implies that ðP1;o1Þ is isomorphic to ðP2;o2Þ.
Secondly we show that Y is surjective. Let f : l ! g be a transversal

embedding. We shall construct a map j : L ! P. Fix a linear frame ~oo at the

unit element e of L. Then a left invariant frame field fLa�~ooga AL gives

a complete parallelism on L. Hence L has an feg-structure ~LL, i.e. an feg-
reduction of the frame bundle of L. Let h : ~LL ! P be an extension of ~LL by

the injective homomorphism feg ! G 0. We define a map ~jj : L ! ~LL by ~jjðaÞ ¼
La�ð~ooÞ. We denote a composite h � ~jj by j. Then for the natural projection

p we have p � j ¼ id. By using the map j, we construct a left invariant flat

Cartan connection o on P such that j �o ¼ f , following the proof of Theorem

2.12 in [1]. For a A L any tangent vector at jðaÞ can be uniquely written in

the form j�X þ A� where X A TaL, and A A g 0. We set ojðaÞð j�X þ A�Þ :¼
f ðXÞ þ A, and extend it to any point of P by ojðaÞg :¼ Adðg�1ÞR�

g�1ojðaÞ for

a A L and g A G 0. Then ðP;oÞ gives a flat Cartan structure of type G=G 0, and

obviously j �o ¼ f .
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Next we show that ðP;oÞ is left invariant. Any point u A P is uniquely

expressed in the form u ¼ jðbÞg ðb A L; g A G 0Þ. We define a map L 0
a : P ! P

by L 0
að jðbÞgÞ ¼ jðabÞg. Then L 0

a gives a bundle isomorphism of P. L 0
a defines

a left action of L on P and satisfies p � L 0
a ¼ La � p. We can easily verify that

L 0�
a o ¼ o for a A L. Hence ðP;oÞ is left invariant. If we set hð~ooÞ ¼ ôo, then

ðP;oÞ induces f . Therefore Y is surjective. r

Remark 3.6. Let G be a connected and simply connected real Lie

group. Then for a real homogeneous space G=G 0 Martin Mendez and Torres

Lopera [15, Theorem 2.3] proved the following result: Let A=B a real homo-

geneous space satisfying dim G=H ¼ dim A=B with its tangent space a=b.

Then they proved that there exists an invariant flat Cartan structure of

type A=B on the homogeneous space G=H if and only if there exists a Lie

algebra homomorphism f : g ! a such that f ðhÞH b and the induced map

f̂f : g=h ! a=b is an isomorphism.

By combining Theorem 2.6 and Proposition 3.5 we obtain the following

Theorem:

Theorem 3.7. There is a one-to-one correspondence between the set of left

invariant ðG;XÞ-structures on L and the set of equivalence classes of transversal

embeddings of l into g.

Remark 3.8. Kim [9, Theorem 2.4] proved a similar result: A connected

and simply connected real Lie group L admits a ðG;XÞ-structure if and only

if there exists a Lie algebra homomorphism f : l ! g satisfying the following

condition: for the isotropy subalgebra gx at some x A X , we have f ðlÞV gx ¼
0. This condition is equivalent to the one that f is a Lie algebra homo-

morphism of l such that f : l ! g=gx is a linear isomorphism for some x A X .

On a real manifold we can consider ðG;XÞ-structures similarly to the

complex case. Let G be a real Lie group, and X be its connected homo-

geneous space. As in the complex case we suppose that G acts on X

e¤ectively. Then all the assertions we have proved are true in the real Cy

category. Here we explain the relationship between complex geometric struc-

tures and real geometric structures.

Let G be a complex Lie group, and let G 0 be its closed complex sub-

group. We assume that G=G 0 admits a real form Gr=G
0
r. Namely, Gr (resp.

G 0
r) is a real Lie group whose Lie algebra is a real form gr (resp. g

0
r) of g (resp.

g 0). Moreover we suppose that Gr=G
0
r is connected, and Gr acts on Gr=G

0
r

e¤ectively.

Firstly, we consider a left invariant ðG;G=G 0Þ-structure on a complex Lie

group L. By Theorem 3.7 we have the corresponding transversal embedding
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f : l ! g. Assume that l has a real form lr, and let Lr be a real Lie group

whose Lie algebra is lr. Furthermore we suppose that f has a real form

fr : lr ! gr. Then fr gives a transversal embedding, and therefore Lr admits a

left invariant ðGr;Gr=G
0
rÞ-structure.

Conversely we suppose that a left invariant ðGr;Gr=G
0
rÞ-structure is given

on a real Lie group L. Let f : l ! gr be its corresponding transversal embed-

ding. We denote by lC the complexification of l. Let LC be a complex Lie

group having lC as its Lie algebra. Then the complexification f C : lC ! g

gives a transversal embedding. Hence LC admits a left invariant ðG;G=G 0Þ-
structure.

4. IFPSs and corresponding Lie algebra homomorphisms

From now on we consider left invariant flat complex projective structures

on a complex Lie group L of dimension n. We assume that G is the complex

projective transformation group PGLðC nþ1Þ ¼ GLðC nþ1Þ=C�I , and G 0 is the

isotropy subgroup at the point o ¼ ½0; . . . ; 0; 1� of the complex projective space

PðC nþ1Þ. Note that G=G 0 is connected and G acts on G=G 0 e¤ectively. A

ðPGLðC nþ1Þ;PðC nþ1ÞÞ-structure on a complex manifold is called a flat complex

projective structure. We rewrite Theorem 3.7 for left invariant flat complex

projective structures.

The Lie algebra g of G is isomorphic to slðC nþ1Þ, which is decomposed

into g�1 l g 0 as follows:

g�1 ¼
0 u

0 0

� ����� u A C n

� �
;

g 0 ¼ B 0

x �tr B

� �����B A glðC nÞ; x A C n�
� �

:

A Lie algebra homomorphism f : l ! g is a transversal embedding if and only

if f satisfies f ðlÞenþ1 lhenþ1i ¼ C nþ1 where enþ1 is the ðnþ 1Þ-th vector of

the standard basis. From Theorem 3.7, therefore, we obtain a one-to-one

correspondence between the set fcomplex IFPS on Lg and the set fcomplex

Lie algebra homomorphism f : l ! g j f ðlÞenþ1 lhenþ1i ¼ C nþ1g=@: Agaoka

proved almost the same result in the real case ([1], Theorem 2.12). He defined

a flat real projective structure not by atlases but by linear connections. In [1]

a real Lie algebra homomorphism f : l ! g corresponding to a real IFPS is

called a (P)-homomorphism. The condition of (P)-homomorphism is equiv-

alent to the condition f ðlÞenþ1 lhenþ1i ¼ Rnþ1. In the following we shall

describe this condition in a slightly generalized form. We denote by p the

natural projection p : glðC nþ1Þ ! glðC nþ1Þ=CInþ1. For an element P of

11Flat projective structures and prehomogeneous vector spaces



GLðC nþ1Þ (resp. v of C nþ1) we denote by P (resp. v) its projection onto

PGLðC nþ1Þ (resp. PðC nþ1Þ).

Definition 4.1. Let f , g be Lie algebra homomorphisms from l to

glðC nþ1Þ, and let v, w be vectors of C nþ1. We say that ð f ; vÞ and ðg;wÞ
are equivalent if there exists P A GLðC nþ1Þ such that p � g ¼ AdðPÞðp � f Þ and

w ¼ Pv. We denote this equivalence relation by ð f ; vÞ@ ðg;wÞ.

We denote the equivalence class of ð f ; vÞ by ½ð f ; vÞ�. In the following

lemma an equivalence relation in the latter set is the one given in Definition

3.3.

Lemma 4.2. There is a one-to-one correspondence between the set

fð f ; vÞ j f : l ! glðC nþ1Þ is a Lie algebra homomorphism of l; v A C nþ1

such that f ðlÞvlhvi ¼ C nþ1g=@

and the set f f 0 : l ! slðC nþ1Þ j f 0 is a transversal embeddingg=@:

Proof. Let f : l ! glðC nþ1Þ be a Lie algebra homomorphism and let v

be a vector of C nþ1 such that f ðlÞvlhvi ¼ C nþ1. There exists an element

P A GLðC nþ1Þ such that Pv ¼ enþ1. Then the map f 0 :¼ AdðPÞðp � f Þ : l !
slðC nþ1Þ is a Lie algebra homomorphism and satisfies f 0ðlÞenþ1 lhenþ1i ¼
C nþ1. Hence by setting sð½ f ; v�Þ ¼ ½ f 0� ¼ ½AdðPÞðp � f Þ�, we obtain the map

s : fð f ; vÞ j f is a Lie algebra homomorphism l ! glðC nþ1Þ; v A C nþ1

such that f ðlÞvlhvi ¼ C nþ1g=@

! fhomomorphism f 0 : l ! slðC nþ1Þ j f 0ðlÞenþ1 lhenþ1i ¼ C nþ1g=@:

This map s is well defined, and clearly surjective. To show that s is injective,

suppose that sð½ f ; v�Þ ¼ sð½g;w�Þ. By definition there exist P;Q A GLðC nþ1Þ
such that sð½ f ; v�Þ ¼ ½AdðPÞðp � f Þ� and sð½g;w�Þ ¼ ½AdðQÞðp � gÞ�. From the

assumption we have A A G 0 such that AdðQÞðp � gÞ ¼ AdðAÞ AdðPÞðp � f Þ.
Hence we have p � g ¼ AdðQ�1APÞðp � f Þ. We can easily check that

Q�1APv ¼ w, and therefore ðg;wÞ is equivalent to ð f ; vÞ. Hence s is injective.

r

From Theorem 3.7 and Lemma 4.2, we obtain the following:

Theorem 4.3. There is a one-to-one correspondence between the set

fcomplex IFPS on Lg and the set

fð f ; vÞ j f : l ! glðC nþ1Þ is a Lie algebra homomorphism and v A C nþ1

such that f ðlÞvlhvi ¼ C nþ1g=@:
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Remark 4.4. In the real case we have the same assertion. The corre-

sponding condition f ðlÞvlhvi ¼ Rnþ1 has been obtained by Urakawa [20,

p. 348].

Definition 4.5. Let fðUa; faÞga AA be a complex IFPS on L. We suppose

that fðUa; faÞga AA corresponds to an equivalence class ½ð f ; vÞ� in Theorem 4:3.

We say that the complex IFPS fðUa; faÞga AA is irreducible (resp. reducible) if f

is irreducible (resp. reducible).

5. Prehomogeneous vector spaces and IFPSs

In this section, we explain that complex IFPSs on a complex Lie group

correspond to certain prehomogeneous vector spaces. The notion of pre-

homogeneous vector space is originally introduced by Sato [16] in an algebraic

setting as follows: Let G be a connected linear algebraic group over an

algebraically closed field K , and let r : G ! GLðVÞ be its finite dimensional

rational representation on a K-vector space V . In this paper we call this

triplet ðG; r;VÞ an algebraic triplet over K . In [16] the algebraic triplet

ðG; r;VÞ is called a prehomogeneous vector space if V has a Zariski-open

G-orbit. In this paper we assume that an algebraic triplet always means an

algebraic triplet over C .

In [17] the prehomogeneity of algebraic triplets has been rephrased using a

terminology of Lie algebras as follows: Let ðG; r;VÞ be an algebraic triplet,

and let ðg; dr;VÞ be its infinitesimal form. Then rðGÞv is Zariski-open if and

only if drðgÞv ¼ V (cf. [17, p. 35]). A point v is said to be generic if v belongs

to a Zariski-open orbit. For a generic point v A V , the isotropy subgroup Gv

at v is called a generic isotropy subgroup, and its Lie algebra is denoted by gv,

i.e. gv ¼ LieðGvÞ ¼ fX A g j drðXÞv ¼ 0g. Note that drðgÞv ¼ V if and only if

dim g� dim gv ¼ dim V .

From now on we consider prehomogeneous vector spaces in the infin-

itesimal category, and unless otherwise stated we always assume that Lie

algebars and their representations are defined over the complex number field

C . Let ðg; f ;VÞ be a triplet composed of a Lie algebra g and its represen-

tation f on V . In this paper we say that ðg; f ;VÞ is an (infinitesimal) PV if

there exists v A V such that f ðgÞv ¼ V . This condition is the infinitesimal

expression of prehomogeneity of the PVs. We also call such an element v a

generic point. Note that all generic elements form a Zariski-open dense subset

of V . We say that ðg; f ;VÞ is algebraic if it is a di¤erential of some algebraic

triplet ðG;F ;VÞ over C . Then note that an algebraic triplet ðg; f ;VÞ is an

(infinitesimal) PV in our sense if and only if ðG;F ;VÞ is a PV. A triplet

ðg; f ;VÞ is said to be irreducible if f is irreducible, and said to be faithful if
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f is faithful. In the following we denote the general linear Lie algebra by

glðnÞ instead of glðC nÞ. When h is a subalgebra of glðnÞ, we denote the

identity representation h ! glðnÞ of h by L1, and denote its dual representation

by L�
1 .

In Theorem 4.3 we showed that a complex IFPS on L corresponds to

an equivalence class ½ð f ; vÞ�, where f : l ! glðnþ 1Þ is a Lie algebra represen-

tation and satisfies f ðlÞvlhvi ¼ C nþ1. Let L1 be the identity representa-

tion of glð1Þ, and extend the representation f to the tensor product f nL1.

Since the tensor product C nþ1 nC is linearly isomorphic to C nþ1, we obtain

the extended representation f nL1 : ll glð1Þ ! glðnþ 1Þ. Then we have

f nL1ðll glð1ÞÞv ¼ C nþ1 and therefore ðll glð1Þ; f nL1;C
nþ1Þ is a PV.

Note that for any non-trivial representation a : glð1Þ ! glð1Þ, the tensor

product f n a also gives a PV. Here we introduce the following notion:

Definition 5.1. Let a be a non-trivial representation glð1Þ ! glð1Þ, and

ðll glð1Þ; f n a;VÞ a PV. Then we say that ðll glð1Þ; f n a;VÞ is a PV of

type IFPS if it satisfies dim lþ 1 ¼ dim V.

Remark 5.2. Let a and b be non-trivial representations glð1Þ ! glð1Þ.
Then note that the triplet ðll glð1Þ; f n a;VÞ is a PV of type IFPS if and only

if ðll glð1Þ; f n b;VÞ is a PV of type IFPS. In the following we frequently

use the identity representation L1 as a non-trivial representation of glð1Þ. By

the definition if a PV ðll glð1Þ; f n a;VÞ is of type IFPS, then f n a is

faithful.

By the above consideration, if ð f ; vÞ satisfies f ðlÞvlhvi ¼ C nþ1, then

ðll glð1Þ; f nL1;VÞ is a PV of type IFPS and v is a generic point. Con-

versely if ðll glð1Þ; f nL1;VÞ is a PV of type IFPS and v is its generic point,

then ð f ; vÞ satisfies f ðlÞvlhvi ¼ C nþ1. Therefore from Theorem 4.3 we have

the following corollary: Let L be a complex Lie group, and let l be its Lie

algebra.

Corollary 5.3. There is a one-to-one correspondence between the set

fcomplex IFPS on Lg and the set fð f nL1; vÞ j ðll glð1Þ; f nL1;VÞ is a PV of

type IFPS; v is a generic point of Vg=@.

A representation f nL1 is irreducible if and only if f is irreducible.

Hence an irreducible complex IFPS corresponds to an equivalence class

½ð f nL1; vÞ� such that f nL1 is irreducible.

Example 5.4. Let us consider a triplet (a): ðglð2Þ; 3L1;VÞ, where 3L1

is the 3-symmetric product of L1, and therefore we have dim V ¼ 4 (see [17,

p. 47] about this example). Then 3L1 is expressed by matrices as follows:
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3L1ð
a b

g d

� �
Þ ¼

3a b 0 0

3g 2aþ d 2b 0

0 2g aþ 2d 3b

0 0 g 3d

0
BBB@

1
CCCA:

By taking ð1; 0; 0; 1Þ as a generic point, it is easily seen that the triplet (a) is

a PV. Moreover both glð2Þ and 3L1 are decomposed into slð2Þl glð1Þ and

3L1 nL1, and dim glð2Þ ¼ 4 ¼ dim V . Therefore the triplet (a): ðslð2Þl
glð1Þ; 3L1 nL1;Vð4ÞÞ is of type IFPS. This fact implies that SLð2;CÞ admits

an (irreducible) complex IFPS.

6. Some notions on Prehomogeneous vector space

In Theorem 1.1 we classify complex Lie groups admitting an irreducible

complex IFPS. To prove Theorem 1.1 it is su‰cient to classify irreducible

infinitesimal PVs of type IFPS from Corollary 5.3. In this section we prepare

some notions on PV useful for classifications of PVs. Especially we introduce

two notions of castling transform and isomorphism, which were already con-

sidered in [17] by using the terminology of algebraic groups. We prove some

properties on these concepts needed later for our classification.

Sato and Kimura ([17, p. 37]) proved the following proposition in the

algebraic setting. We denote by VðnÞ an n-dimensional vector space, and

denote by L1 the identity representation of glðnÞ.

Proposition 6.1. Let f be a representation of a complex Lie algebra h on

VðmÞ. For any n satisfying m > nb 1, the following conditions are equivalent.

(1) ðhl glðnÞ; f nL1;VðmÞnVðnÞÞ is a PV.

(2) ðhl glðm� nÞ; f � nL1;VðmÞ� nVðm� nÞÞ is a PV, where f � is the

dual representation of f .

Generic isotropy subalgebras of these PVs have the same dimensions.

Proof. The idea of the proof is based on that of Proposition 7 in [17].

First we deduce (2) from (1). Suppose that ðhl glðnÞ; f nL1;VðmÞnVðnÞÞ
is a PV. Then there exists w A VðmÞnVðnÞ such that

f nL1ðhl glðnÞÞw ¼ VðmÞnVðnÞ:

We identify VðmÞnVðnÞ with VðmÞl � � �lVðmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

, and note that

f nL1ðH;AÞx ¼ f ðHÞxþ x tA

for x ¼ ðv1; . . . ; vnÞ A VðmÞnVðnÞ, H A h, A A glðnÞ. We fix a basis fe1; . . . ;
en; enþ1; . . . ; emg of VðmÞ such that w ¼ ðe1; . . . ; enÞ. We denote its dual basis

by fe�1 ; . . . ; e�n ; e�nþ1; . . . ; e
�
mg. When we set w? :¼ ðe�nþ1; . . . ; e

�
mÞ, w? gives a
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vector of VðmÞ� nVðm� nÞ. From the assumption we have

f nL1ðhl glðnÞÞw ¼ f ðhÞ
In

0

 !
þ

In

0

 !
glðnÞ ¼

glðnÞ
Mðm� n; nÞ

 !
;

where Mðm� n; nÞ denotes the set of ðm� nÞ � n matrices. Hence f ðhÞ ¼
� �

Mðm� n; nÞ �

 !
, which implies that f �ðhÞ ¼

� Mðn;m� nÞ

� �

 !
.

Therefore we have

f � nL1ðhl glðm� nÞÞw?

¼
� Mðn;m� nÞ

� �

 !
0

Im�n

 !
þ

0

Im�n

 !
glðm� nÞ

¼
Mðn;m� nÞ

�

� �
þ

0

glðm� nÞ

 !

¼ VðmÞ� nVðm� nÞ:
Secondly to deduce (1) from (2), it su‰ces to apply the result we have just

obtained to this case.

Next we show that ðhl glðnÞÞw is isomorphic to ðhl glðm� nÞÞw? . Let

ðH;AÞ be an element of hl glðnÞ such that f ðHÞ is of the form f ðHÞ ¼
B C

D E

 !
: Then f nL1ðH;AÞw ¼ f ðHÞwþ w tA ¼

B

D

 !
þ

tA

0

 !
: Hence

ðH;AÞ A ðhl glðnÞÞw if and only if D ¼ 0, Bþ tA ¼ 0. Thus we have

ðhl glðnÞÞw ¼ fðH;AÞ A hl glðnÞ j f ðHÞ ¼
� tA �

0 �

 !
g

G fH A h j f ðHÞ ¼
� �

0 �

 !
g:

Likewise, it follows that

ðhl glðm� nÞÞw? ¼ fðH;A 0Þ A hl glðm� nÞ j f �ðHÞ ¼
� 0

� � tA 0

 !
g

¼ fðH;A 0Þ A hl glðm� nÞ j f ðHÞ ¼
� �

0 A 0

 !
g

G fH A h j f ðHÞ ¼
� �

0 �

 !
g:

Therefore ðhl glðnÞÞw G ðhl glðm� nÞÞw? . r
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We call the correspondence ð1Þ $ ð2Þ a c-transformation in this paper.

We can easily verify that c-transformations preserve irreducibility, by using the

following fact: Let ðg1; f1;V1Þ and ðg2; f2;V2Þ be irreducible triplets. Then

the tensor product f1 n f2 is irreducible if and only if both f1 and f2 are

irreducible.

Now we consider the triplet ðhl glðnÞ; f nL1;VðmÞnVðnÞÞ which sat-

isfies dim hþ n2 ¼ mn. This triplet is equal to the triplet ðhl slðnÞl glð1Þ;
f nL1 nL1;VðmÞnVðnÞnVð1ÞÞ. In this context if this triplet is of type

IFPS, then the c-transformation of this triplet gives again a PV of type IFPS.

Indeed

ðhl glðnÞ; f nL1;VðmÞnVðnÞÞ

is c-transformed into the triplet

ðhl glðm� nÞ; f � nL1;VðmÞ� nVðm� nÞÞ;

which is equal to

ðhl slðm� nÞl glð1Þ; f � nL1 nL1;VðmÞ� nVðm� nÞnVð1ÞÞ:

Since we have dim hþ ðm� nÞ2 ¼ mðm� nÞ, it follows that the last triplet is of

type IFPS.

Example 6.2. Let us illustrate the c-transformations by using the

Example 5.4. The triplet (a): ðglð2Þ; 3L1;Vð4ÞÞ is naturally identified with

ðslð2Þl glð1Þ; 3L1 nL1;Vð4ÞnVð1ÞÞ. Hence by a c-transformation of the

triplet (a) we obtain the triplet ðslð2Þl glð3Þ; 3L�
1 nL1;Vð4Þ� nVð3ÞÞ. This

triplet is equal to ðslð2Þl slð3Þl glð1Þ; 3L�
1 nL1 nL1;Vð4Þ� nVð3ÞnVð1ÞÞ,

which is of type IFPS.

Definition 6.3 ([10, p. 245]). Two triplets ðg; r;VÞ and ðg 0; r 0;V 0Þ (not

necessarily PVs) are said to be isomorphic if there exists a Lie algebra

isomorphism s : rðgÞ ! r 0ðg 0Þ and a linear isomorphism t : V ! V 0 satisfying

s � rðXÞ ¼ trðXÞt�1 for any X A g. This relation is denoted by ðg; r;VÞ G
ðg 0; r 0;V 0Þ.

Note that when ðg; r;VÞ and ðg 0; r 0;V 0Þ are isomorphic, they are said to

be strongly equivalent in [17, p. 36]. Moreover in [17, p. 36], the isomorphism

of triplets is defined by using the terminology of algebraic groups as follows:

Let ðG; r;VÞ and ðG 0; r 0;V 0Þ be algebraic triplets. Then we denote ðG; r;VÞ
G ðG 0; r 0;V 0Þ if there exists a rational isomorphism s : rðGÞ ! r 0ðG 0Þ and a

linear isomorphism t : V ! V 0 satisfying s � rðgÞ ¼ trðgÞt�1 for any g A G.

Clearly by di¤erentiating s, we obtain the isomorphism ds : ðLieðGÞ; dr;VÞ
! ðLieðG 0Þ; dr 0;V 0Þ, and we have ðLieðGÞ; dr;VÞG ðLieðG 0Þ; dr 0;V 0Þ in the

above sense.
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For example, let ðg; r;VÞ be an arbitrary triplet. We denote the natural

inclusion rðgÞ ,! glðVÞ by {. Then obviously we have ðg; r;VÞG ðrðgÞ; {;VÞ.
Note that the isomorphism G is an equivalence relation. We call the

equivalence class of ðg; r;VÞ an isomorphism class of ðg; r;VÞ, and denote it by

½ðg; r;VÞ�. Let h and h 0 be subalgebras of g and g 0 respectively. We say that

rðhÞ corresponds to r 0ðh 0Þ (via s) if sðrðhÞÞ ¼ r 0ðh 0Þ.

Remark 6.4. Consider two isomorphic triplets ðg; r;VÞG ðg 0; r 0;V 0Þ.
Then we have the following:

(1) If ðg; r;VÞ is a PV, then ðg 0; r 0;V 0Þ is also a PV.

(2) If ðg; r;VÞ is irreducible, then ðg 0; r 0;V 0Þ is also irreducible.

However note that g and g 0 are not necessarily isomorphic as Lie algebras.

We use the following proposition in § 7.

Proposition 6.5. Let ðG; r;VÞ and ðG 0; r 0;V 0Þ be algebraic triplets, and

let ðg; dr;VÞ and ðg 0; dr 0;V 0Þ be the induced triplets respectively. If ðg; dr;VÞ
G ðg 0; dr 0;V 0Þ, then we have ðG; r;VÞG ðG 0; r 0;V 0Þ.

Proof. Since r is a rational representation and G is a connected algebraic

group, its image rðGÞ is also a connected linear algebraic subgroup of GLðVÞ
(cf. [6, p. 102]). Thus r 0ðG 0Þ is also one of GLðV 0Þ. From the assumption,

there exists a Lie algebra isomorphism s : drðgÞ ! dr 0ðg 0Þ and a linear iso-

morphism t : V ! V 0 such that sðdrðXÞÞ ¼ t drðXÞt�1 for X A g.

Now we define the map ~ss : rðGÞ ! GLðV 0Þ by ~ssðrðgÞÞ ¼ trðgÞt�1 for

g A G. Then ~ss is a rational isomorphism, and its di¤erential d~ss is equal

to s. Thus the image ~ssðrðGÞÞ is a connected linear algebraic subgroup

of GLðV 0Þ. Moreover its Lie algebra is sðdrðgÞÞ ¼ dr 0ðg 0Þ, it follows that

~ssðrðGÞÞ ¼ r 0ðG 0Þ. Hence ðG; r;VÞG ðG 0; r 0;V 0Þ. r

Here we prove some elementary properties on isomorphism of triplets we

shall use later.

Proposition 6.6.

(1) Suppose that ðg; f ;VÞG ðg 0; f 0;V 0Þ and ðh; g;WÞG ðh 0; g 0;W 0Þ.
Then ðgl h; f n g;V nWÞG ðg 0 l h 0; f 0 n g 0;V 0 nW 0Þ.

(2) Let ðgl h; f n g;V nWÞ and ðg 0 l h 0; f 0 n g 0;V 0 nW 0Þ be irreduc-

ible triplets. Suppose that these triplets are isomorphic and f n gðgÞ
corresponds to f 0 n g 0ðg 0Þ. Then ðg; f ;VÞG ðg 0; f 0;V 0Þ.

(3) Consider faithful triplets ðg; r;VÞ and ðg 0; r 0;V 0Þ. If these triplets are

isomorphic, then g is isomorphic to g 0 as a Lie algebra.

(4) Let a and b be non-trivial representations glð1Þ ! glð1Þ. Then ðglð1Þ;
a;Vð1ÞÞ is isomorphic to ðglð1Þ; b;Vð1ÞÞ.
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(5) Let h be a semisimple Lie algebra. Then any triplet ðh; r;VÞ is

isomorphic to its dual ðh; r�;V �Þ.

Proof. (1) From the assumption there exist isomorphisms f : f ðgÞ !
f 0ðg 0Þ, c : gðhÞ ! g 0ðh 0Þ, and linear isomorphisms t : V ! V 0, u : W ! W 0

such that f � f ðX Þ ¼ tf ðXÞt�1 and c � gðYÞ ¼ ugðY Þu�1 for X A g and Y A h.

We define a map

fnc : f n gðgl hÞ ! f 0 n g 0ðg 0 l h 0Þ

by f ðXÞn IW þ IV n gðYÞ 7! f � f ðX Þn IW 0 þ IV 0 nc � gðY Þ. Then this

mapping is well defined, and we can easily check that this is a Lie algebra

isomorphism. Moreover for X ;Y A gl h,

fnc � f n gðX ;YÞ ¼ f � f ðXÞn IW 0 þ IV 0 nc � gðYÞ

¼ tn uð f n gðX ;YÞÞðtn uÞ�1:

Hence we obtain our claim.

(2) From the assumption, we have ðgl h; f n g;V nWÞG ðg 0 l h 0;

f 0 n g 0;V 0 nW 0Þ. Hence there exist an isomorphism s : f n gðgl hÞ !
f 0 n g 0ðg 0 l h 0Þ and a linear isomorphism t : V nW ! V 0 nW 0 such that

sð f ðXÞn IW þ IV n gðYÞÞtðxÞ ¼ tðð f ðX Þn IW þ IV n gðYÞÞðxÞÞ

for ðX ;Y Þ A gl h and x A V nW . Since f n gðgÞ corresponds to f 0 n g 0ðg 0Þ,
s is restricted to the isomorphism f ðgÞn IW ! f 0ðg 0Þn IW 0 . Let { be the

natural isomorphism f ðgÞ ! f ðgÞn IW defined by f ðX Þ 7! f ðX Þn IW for

X A g, and let { 0 be the natural isomorphism f 0ðg 0Þ ! f 0ðg 0Þn IW 0 defined

by the same way. We denote by the same symbol s the composite of iso-

morphisms

f ðgÞ ! f ðgÞn IW ! f 0ðg 0Þn IW 0 ! f 0ðg 0Þ;

which is equal to { 0�1 � s � {.
Let fe1; . . . ; eng be a basis of W . Since ðg; f ;VÞ is irreducible, ðg; f n IW ;

V n e1Þ is an irreducible g-submodule of V nW . Then we have the natural

g-isomorphism f : V ! V n e1 defined by fðvÞ ¼ vn e1. Since f ðgÞn IW is

isomorphic to f 0ðg 0Þn IW 0 via s and we have sð f ðXÞn IW Þtðvn e1Þ ¼
tð f ðX Þn IW ðvn e1ÞÞ for X A g and v A V , it follows that ðg 0; f 0 n IW 0 ;

tðV n e1ÞÞ is also an irreducible g 0-submodule of V 0 nW 0. Let fe 01; . . . ; e 0n 0 g
be a basis of W 0. Then V 0 nW 0 is decomposed into the direct sum of

equivalent irreducible g 0-submodules V 0 n e 01 l � � �lV 0 n e 0n 0 . We note that

f 0ðg 0Þ is reductive with at most one-dimensional center flIV 0 j l A Cg because

f 0 is irreducible (cf. [17, p. 2]). Thus concerning the triplet ðg 0; f 0 n IW 0 ;

V 0 nW 0Þ, its image f 0 n IW 0 ðg 0Þ ¼ f 0ðg 0Þn IW 0 is reductive whose center
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is contained in flIV 0nW 0 j l A Cg. It follows that ðg 0; f 0 n IW 0 ;V 0 nW 0Þ is

completely reducible. Since ðg 0; f 0 n IW 0 ; tðV n e1ÞÞ is an irreducible g 0-

submodule of V 0 nW 0, there exists a g 0-isomorphism tðV n e1Þ ! V 0 n e 01
since V 0 nW 0 is the direct sum of equivalent irreducible g 0-submodules

V 0 n e 01 l � � �lV 0 n e 0n 0 as stated before.

This gives the sequence of g 0-isomorphisms

tðV n e1Þ ! V 0 n e 01 ! V 0;

and we denote the composite of these by c. By using c let us consider the

composite c � t � f, which gives a linear isomorphism V ! V 0. Then for

X A g and v A V , we have

sð f ðXÞÞc � t � fðvÞ ¼ cðsð f ðXÞn IW Þt � fðvÞÞ

¼ c � tð f ðXÞn IW ðfðvÞÞÞ

¼ c � t � fð f ðXÞvÞ:

Hence ðg; f ;VÞG ðg 0; f 0;V 0Þ.
(3) From the assumption there exists a Lie algebra isomorphism s : rðgÞ

! r 0ðg 0Þ. We set f :¼ r 0�1 � s � r, then f gives a Lie algebra isomorphism

from g to g 0.

(4) Since aðglð1ÞÞ ¼ bðglð1ÞÞ ¼ glð1Þ, we immediately obtain our claim.

(5) The triplet ðh; r;VÞ is isomorphic to the algebraic triplet ðrðhÞ; {;VÞ.
We will prove this fact in Proposition 7.1. Thus there exists an algebraic

triplet ð ~HH;~{{;VÞ such that its infinitesimal form is ðrðhÞ; {;VÞ. Then it has been

proved that ð ~HH;~{{;VÞ is isomorphic to its dual ð ~HH;~{{�;V �Þ (cf. [10, p. 245]). Since

the infinitesimal form of ð ~HH;~{{�;V �Þ is equal to ðrðhÞ; {�;V �Þ, by di¤erentiation

we have ðrðhÞ; {;VÞG ðrðhÞ; {�;V �Þ. Moreover this triplet ðrðhÞ; {�;V �Þ is

isomorphic to ðh; r�;V �Þ. Hence we have ðh; r;VÞG ðh; r�;V �Þ. r

By combining two notions isomorphism and c-transformation, a castling

transform is defined in [17]. This is an important tool for classification of

irreducible PVs.

Definition 6.7 ([17, p. 39]). Two triplets ðg; r;VÞ and ðg 0; r 0;V 0Þ (not

necessarily PVs) are said to be castling transforms of each other when there exist

a triplet ð~gg; ~rr;VðmÞÞ and a positive number n with m > nb 1 such that

ðg; r;VÞG ð~ggl slðnÞ; ~rrnL1;VðmÞnVðnÞÞ

and

ðg 0; r 0;V 0ÞG ð~ggl slðm� nÞ; ~rr� nL1;VðmÞ� nVðm� nÞÞ:
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A triplet ðg; r;VÞ is said to be reduced if there is no castling transform

ðg 0; r 0;V 0Þ of ðg; r;VÞ with dim V 0 < dim V.

Note that if two triplets ðg; r;VÞ and ðg 0; r 0;V 0Þ are isomorphic, then

ðg; r;VÞ is reduced if and only if ðg 0; r 0;V 0Þ is reduced.

Similarly to the case of isomorphism G, castling transform is originally

defined by using the terminology of algebraic groups (see [17, p. 39]). Con-

cerning Definition 6.7, let us consider the transformations:

ð1Þ ð~ggl slðnÞ; ~rrnL1;VðmÞnVðnÞÞ

ð2Þ ð~ggl slðm� nÞ; ~rr� nL1;VðmÞ� nVðm� nÞÞ;

and

ð1Þ� ð~ggl slðnÞ; ~rrnL�
1 ;VðmÞnVðnÞ�Þ

ð2Þ� ð~ggl slðm� nÞ; ~rr� nL�
1 ;VðmÞ� nVðm� nÞ�Þ:

We call each correspondence ð1Þ $ ð2Þ, ð1Þ� $ ð2Þ� an sc-transformation.

Now concerning a triplet ð~ggl slðnÞ; ~rrnL1;VðmÞnVðnÞÞ, suppose that there

exist a Lie algebra l and its representation f : l ! glðVðmÞÞ such that ~gg ¼
ll glð1Þ and ~rr ¼ f n a, where a is a non-trivial representation glð1Þ ! glð1Þ.
We suppose that this triplet is a PV. Then from (1) and (4) of Proposition 6.6,

ðll glð1Þl slðnÞ; f n anL1;VðmÞnVð1ÞnVðnÞÞ

is isomorphic to

ðll glð1Þl slðnÞ; f nL1 nL1;VðmÞnVð1ÞnVðnÞÞ:

It follows that by Proposition 6.1

ð1Þ ð~ggl slðnÞ; ~rrnL1;VðmÞnVðnÞÞ is a PV if and only if

ð2Þ ð~ggl slðm� nÞ; ~rr� nL1;VðmÞ� nVðm� nÞÞ is a PV:

Moreover by the same way we can show that ð1Þ� : ~rrnL�
1 is a PV if and only

if ð2Þ� : ~rr� nL�
1 is a PV. Hence as before we see that a PV of type IFPS is

transformed into another PV of type IFPS by any sc-transformation.

Definition 6.8 ([17, p. 39]). Two triplets ðg; r;VÞ and ðg 0; r 0;V 0Þ are said

to be castling equivalent when one is obtained from the other by a finite number

of castling transforms. We call this equivalence class a castling class.

For any triplet ðg; r;VÞ, since dim V is finite, its castling class has at least

one reduced triplet. Furthermore we can prove that the castling class of an

irreducible triplet contains only one reduced triplet up to isomorphism. For
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the proof see [17, p. 39]. By applying the same argument of [17, p. 39] to the

infinitesimal version, we obtain the assertion. Actually we do not use this

result, and we omit its proof here.

We use the following assertions in § 7 to determine all triplets that are

castling equivalent to reduced ones.

Proposition 6.9. Let ðg; r;VÞ be a faithful irreducible triplet. Then for

any castling transform ðg 0; r 0;V 0Þ of ðg; r;VÞ, there exists an sc-transformation

of ðg; r;VÞ isomorphic to ðg 0; r 0;V 0Þ.

Proof. From the assumption there exists a triplet ð~gg; ~rr;VðmÞÞ such that

ðg; r;VÞG ð~ggl slðnÞ; ~rrnL1;VðmÞnVðnÞÞ and

ðg 0; r 0;V 0ÞG ð~ggl slðm� nÞ; ~rr� nL1;VðmÞ� nVðm� nÞÞ:

Then by the definition of isomorphism of triplets, there exist an isomorphism

s : ~rrnL1ð~ggl slðnÞÞ ! rðgÞ and t : VðmÞnVðnÞ ! V such that

sð~rrðXÞn In þ Im nY ÞtðvÞ ¼ tðð ~rrðXÞn In þ Im nYÞðvÞÞ

for ðX ;YÞ A ~ggl slðnÞ and v A VðmÞnVðnÞ. Now we claim that there exists

a (reductive) ideal h of g such that g ¼ hl slðnÞ and sð~rrnL1ð~ggÞÞ ¼ rðhÞ and

sð~rrnL1ðslðnÞÞÞ ¼ rðslðnÞÞ. First since r is faithful, we have the sequence of

isomorphisms of Lie algebras

g ! rðgÞ ! ~rrnL1ð~ggl slðnÞÞ

given by s�1 � r. Next we observe that ~rrnL1ð~ggl slðnÞÞ is equal to the

direct sum of Lie algebras ~rrð~ggÞn In l Im n slðnÞ. Therefore by putting h ¼
ðs�1 � rÞ�1ð ~rrð~ggÞn InÞ, we obtain a decomposition g ¼ hl slðnÞ. Moreover

we can easily see that sð~rrnL1ð~ggÞÞ ¼ rðhÞ and sð~rrnL1ðslðnÞÞÞ ¼ rðslðnÞÞ.
Then there exist irreducible representations f : h ! glðVðkÞÞ and g : slðnÞ !
glðVðlÞÞ such that r ¼ f n g (cf. [10, p. 236]). Hence ðg; r;VÞ ¼ ðhl slðnÞ;
f n g;VðkÞnVðlÞÞ. Note that s is restricted to the isomorphisms ~rrnL1ð~ggÞ
! f n gðhÞ and ~rrnL1ðslðnÞÞ ! f n gðslðnÞÞ. Then by (2) in Proposition

6.6, we have ð~gg; ~rr;VðmÞÞG ðh; f ;VðkÞÞ and ðslðnÞ;L1;VðnÞÞG ðslðnÞ; g;VðlÞÞ,
thus especially m ¼ k and n ¼ l. Since g is an irreducible representation of

slðnÞ with degree n, g is equivalent to the identity representation L1 or its

dual L�
1 . Therefore ðg; r;VÞ ¼ ðhl slðnÞ; f nL

ð�Þ
1 ;VðmÞnVðnÞð�ÞÞ. Thus

ðg; r;VÞ can be sc-transformed into the triplet:

ðhl slðm� nÞ; f � nL
ð�Þ
1 ;VðmÞ� nVðm� nÞð�ÞÞ:ð6:1Þ

Since ðh; f ;VðmÞÞG ð~gg; ~rr;VðmÞÞ, we have ðh; f �;VðmÞ�ÞG ð~gg; ~rr�;VðmÞ�Þ.
On the other hand ðslðm� nÞ;L�

1 ;Vðm� nÞ�ÞG ðslðm� nÞ;L1;Vðm� nÞÞ
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from (5) of Proposition 6.6. Hence the triplet ð6:1Þ is isomorphic to ðg 0; r 0;V 0Þ
by (1) of Proposition 6.6. Therefore the proposition follows. r

Since sc-transformations preserve faithfulness of triplets, we have the

following:

Corollary 6.10. Let ðg; r;VÞ be a faithful irreducible triplet. Suppose

that a triplet ðg 0; r 0;V 0Þ is castling equivalent to ðg; r;VÞ. Then there exists a

triplet obtained by a finite number of sc-transformations from ðg; r;VÞ which is

isomorphic to ðg 0; r 0;V 0Þ.

7. Classification of irreducible PVs of type IFPS

In this section we shall prove Theorem 1.1. For this purpose it is suf-

ficient to classify isomorphism classes of irreducible infinitesimal PVs of type

IFPS ðg; f ;VÞ by Corollary 5.3 and (3) in Proposition 6.6. Here Sato and

Kimura [17] have classified isomorphism classes of reduced irreducible PVs

ðG;F ;VÞ. In the following we show that by di¤erentiating isomorphism

classes of reduced irreducible PVs ðG;F ;VÞ, we can directly obtain a classi-

fication of isomorphism classes of reduced irreducible infinitesimal PVs. First

we show the following proposition:

Proposition 7.1.

(1) Let h be a semisimple Lie algebra. Then for any triplet ðh; r;VÞ, the
triplet ðrðhÞ; {;VÞ is algebraic.

(2) Let g be a Lie algebra, and let f : g ! glðVÞ be an irreducible

representation. Then the triplet ð f ðgÞ; {;VÞ is algebraic.

Proof. (1) First we show that rðhÞ is algebraic, i.e., there exists a con-

nected linear algebraic group ~HHHGLðVÞ such that Lieð ~HHÞ ¼ rðhÞ. To see this,

let H be a simply connected complex Lie group with Lie algebra h, and let ~rr be

the representation H ! GLðVÞ such that d ~rr ¼ r. Then H is algebraic and ~rr is

a rational representation (cf. [5, p. 30–31]). Therefore ~rrðHÞ is a connected

linear algebraic group (cf. [6, p. 102]), and its Lie algebra is rðhÞ. Then the

inclusion ~{{ : ~rrðHÞ ,! GLðVÞ is a rational representation of ~rrðHÞ, and d~{{ is

equal to the inclusion { : rðhÞ ,! glðVÞ. Hence ð~rrðHÞ;~{{;VÞ is an algebraic

triplet whose infinitesimal form is ðrðhÞ; {;VÞ.
(2) From the assumption f ðgÞ is a reductive Lie algebra with at most

one-dimensional center. First we consider the case that f ðgÞ is semisimple.

Then from the claim (1), the triplet ð f ðgÞ; {;VÞ itself is algebraic.

Next we consider the case that f ðgÞ has a one dimensional center hIVi.
We denote the semisimple part of f ðgÞ by h, then we have f ðgÞ ¼
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hlhIVi. From the claim (1) there exists a connected linear algebraic

group H whose Lie algebra is h. Concerning the connected algebraic group

H �GLð1Þ, we define the map L1nL1 :H �GLð1Þ ! GLðVÞ by L1nL1ða; lÞ
¼ la. This is an algebraic group homomorphism, therefore its image

L1 nL1ðH � GLð1ÞÞ is a connected linear algebraic group of GLðVÞ (cf.

[6, p. 102]). By di¤erentiating L1 nL1, we obtain a Lie algebra representation

L1 nL1 : hl glð1Þ ! glðVÞ. Hence the image L1 nL1ðH � GLð1ÞÞ has the

Lie algebra L1 nL1ðhl glð1ÞÞ, and this is equal to f ðgÞ. Consequently we

obtain the algebraic triplet ðL1 nL1ðH � GLð1ÞÞ; {;VÞ whose infinitesimal form

is equal to ð f ðgÞ; {;VÞ. r

Now we claim that the set of isomorphism classes of reduced irreducible

infinitesimal PVs is given from the set of isomorphism classes of reduced

irreducible PVs. To see this we define the map

D : freduced irreducible PV ðG;F ;VÞg=G
! freduced irreducible infinitesimal PV ðg; f ;VÞg=G

by di¤erentiation, i.e., Dð½ðG;F ;VÞ�Þ ¼ ½ðLieðGÞ; dF ;VÞ�. Then we can verify

that this map is well defined. Here we show that a reduced triplet is mapped

into a reduced triplet: Let ðG;F ;VÞ be a reduced irreducible triplet, and we

put ðg; f ;VÞ :¼ ðLieðGÞ; dF ;VÞ. We assume that ðg; f ;VÞ is not reduced, thus
there exists a triplet ð~gg; ~rr;VðmÞÞ and a positive number n with m > nb 1 such

that

ðg; f ;VÞG ð~ggl slðnÞ; ~rrnL1;VðmÞnVðnÞÞ

and mn > mðm� nÞ. The last triplet is isomorphic to the triplet

ð~rrð~ggÞl slðnÞ; {nL1;VðmÞnVðnÞÞ:ð7:1aÞ

Since ~rr is irreducible, by (2) of Proposition 7.1 ð~rrð~ggÞ; {;VðmÞÞ is algebraic,

i.e., there exists an algebraic triplet ð ~GG;~{{;VÞ whose infinitesimal form is

ð~rrð~ggÞ; {;VðmÞÞ. Now let L1 : SLðnÞ ! GLðnÞ be the identity representation

of SLðnÞ, and we consider the triplet

ð ~GG � SLðnÞ;~{{nL1;VðmÞnVðnÞÞ:ð7:1AÞ

Then this is algebraic because ~GG � SLðnÞ is naturally regarded as a connected

linear algebraic subgroup of GLðmþ nÞ, and ~{{nL1 is a rational represen-

tation of ~GG � SLðnÞ. Moreover by di¤erentiating the triplet ð7:1AÞ, we obtain

the triplet ð7:1aÞ. Since the triplet ð7:1aÞ is isomorphic to ðg; f ;VÞ, by Prop-

osition 6.5 we have ðG;F ;VÞG ð ~GG � SLðnÞ;~{{nL1;VðmÞnVðnÞÞ. Hence

ð ~GG � SLðm� nÞ;~{{� nL1;VðmÞ� nVðm� nÞÞ is a castling transform of

ðG;F ;VÞ. From the hypothesis we have mn > mðm� nÞ, and therefore
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ðG;F ;VÞ is not reduced. This is a contradiction. Hence we conclude that

ðg; f ;VÞ is reduced.

Now we show that D is injective. Suppose that Dð½ðG;F ;VÞ�Þ ¼
Dð½ðG 0;F 0;V 0Þ�Þ. Then their infinitesimal forms ðLieðGÞ; dF ;VÞ and

ðLieðG 0Þ; dF 0;V 0Þ are isomorphic. Hence by Proposition 6.5, we have

ðG;F ;VÞG ðG 0;F 0;V 0Þ. Therefore D is injective.

Next we show that D is surjective. Let ðg; f ;VÞ be a reduced irreducible

infinitesimal PV. Then the triplet ðg; f ;VÞ is isomorphic to ð f ðgÞ; {;VÞ, and
this triplet is algebraic by (2) in Proposition 7.1. Hence there exists an

algebraic triplet ð ~GG;~{{;VÞ whose infinitesimal form is ð f ðgÞ; {;VÞ. Now sup-

pose that ð ~GG;~{{;VÞ is not reduced, thus there exists a castling transform

ð ~GG 0;~{{ 0;V 0Þ of ð ~GG;~{{;VÞ such that dim V 0 < dim V . Then by di¤erentiating

these triplets, we obtain a castling transform ðLieð ~GG 0Þ; d~{{ 0;V 0Þ of ðg; f ;VÞ.
This is a contradiction. Hence ð ~GG;~{{;VÞ is a reduced irreducible algebraic

triplet whose infinitesimal form is ð f ðgÞ; {;VÞ. Since ð ~GG;~{{;VÞ is a PV, D is

surjective. Hence we conclude that D is bijective.

Now we begin our classification. Note that any irreducible PV of type

IFPS is isomorphic to a PV of type IFPS of the form ðll glð1Þ; rnL1;VÞ
because ðglð1Þ; a;Vð1ÞÞ is isomorphic to ðglð1Þ;L1;Vð1ÞÞ and we have (1) of

Proposition 6.6. Furthermore its image rnL1ðll glð1ÞÞ is a reductive Lie

algebra with one dimensional center because rnL1 is faithful (cf. Remark

5.2). Hence we shall investigate only such PVs. Here we note that isomor-

phism classes of reduced irreducible PVs ðG; r;VÞ with one-dimensional center

are classified in [17, p. 141]. By di¤erentiating the triplets in the classification

[17, p. 141], we obtain a classification of isomorphism classes of reduced

irreducible infinitesimal PVs. From this classification we choose all reduced

irreducible PVs of type IFPS, then we can obtain a classification of isomor-

phism classes of reduced irreducible PVs of type IFPS. The result is the

following:

(a) ðglð1Þl slð2Þ;L1 n 3L1;Vð1ÞnVð4ÞÞ
(b) ðglð1Þl slð3Þl slð2Þ;L1 n 2L1 nL1;Vð1ÞnVð6ÞnVð2ÞÞ
(c) ðglð1Þl slð5Þl slð4Þ;L1 nL2 nL1;Vð1ÞnVð10ÞnVð4ÞÞ

Here nL1 is the n-th symmetric product of L1, and L2 is the second exterior

product of L1.

Now let us consider the triplet of the form

ðglð1Þl slðaÞl slða� 1Þ;L1 nLnL1;Vð1ÞnVð2aÞnVða� 1ÞÞ;ð7:2Þ

where a is a positive integer and L is an irreducible representation of slðaÞ with
degree 2a. Then the triplets (a)–(c) are equal to the triplets ð7:2Þ for a ¼ 2; 3,
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or 5 where L is the corresponding irreducible representation. Note that

slð1Þ ¼ 0.

In order to complete our classification, it is su‰cient to determine all

triplets that are castling equivalent to the triplets (a)–(c). For this purpose we

shall prove Proposition 7.2. In the following we assume that mi is a positive

natural number.

Proposition 7.2. Let a be 2, 3, or 5. Let ðg; r;VÞ be an arbitrary

triplet. Then ðg; r;VÞ is castling equivalent to the triplet ð7:2Þ if and only if

ðg; r;VÞ is isomorphic to a triplet of the form

ðglð1Þl slðaÞl slðm1Þl � � �l slðmkÞ;L1 nLn L1 n � � �nL1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
k

;ða7:3Þ

Vð1ÞnVð2aÞnVðm1Þn � � �nVðmkÞÞ ðkb 1Þ

which satisfies

a2 þm2
1 þ � � � þm2

k � k � 2am1m2 . . .mk ¼ 0:ð**7:4Þ

Proof. We denote by ðh; t;WÞ the triplet ð7:2Þ. Then we have

dim h � dim W ¼ dim glð1Þ l slðaÞ l slða� 1Þ � dim Vð1Þ n Vð2aÞ n
Vða� 1Þ ¼ 0. By replacing a� 1 with m1, we obtain the equality ð**7:4Þ
a2 þm2

1 � 1� 2am1 ¼ 0. We claim that any triplet castling equivalent to

ðh; t;WÞ is isomorphic to a triplet of the form ða7:3Þ satisfying ð**7:4Þ.
Then first note that ðh; t;WÞ itself satisfies the condition ða7:3Þ and ð**7:4Þ.
In the following we prove our claim by induction on the number of sc-

transformations.

Now from the hypothesis of induction, we consider a triplet ðg; r;VÞ
satisfying the condition ða7:3Þ and ð**7:4Þ, i.e., ðg; r;VÞ is isomorphic to the

triplet

ðh 0; t 0;W 0Þ ¼ ðglð1Þl slðaÞl slðm1Þl � � �l slðmkÞ;

L1 nLnL1 n � � �nL1;Vð1ÞnVð2aÞnVðm1Þn � � �VðmkÞÞ

and satisfies ð**7:4Þ. Let ðg 0; r 0;V 0Þ be a castling transform of ðg; r;VÞ.
Then it su‰ces to prove that ðg 0; r 0;V 0Þ is isomorphic to a triplet satisfying

ða7:3Þ and ð**7:4Þ again. Note that ðg 0; r 0;V 0Þ is also a castling transform

of ðh 0; t 0;W 0Þ. Then by Proposition 6.9, there exists an sc-transformation

ð~hh 0; ~tt 0; ~WW 0Þ of ðh 0; t 0;W 0Þ such that ð~hh 0; ~tt 0; ~WW 0ÞG ðg 0; r 0;V 0Þ. Concerning

ðh 0; t 0;W 0Þ there are at most k ways of sc-transformations, however by the

symmetry of m1; . . . ;mk we may assume that ð~hh 0; ~tt 0; ~WW 0Þ is given by the

triplet
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ðglð1Þl slðaÞl slðm1Þl � � �l slðmk�1Þl slð2am1 . . .mk�1 �mkÞ;

L�
1 nL� nL�

1 n � � �nL�
1 nL1;

Vð1Þ� nVð2aÞ� nVðm1Þ� n � � �nVðmk�1Þ� nVð2am1 . . .mk�1 �mkÞÞ:

Then we have

a2 þm2
1 þ � � � þm2

k�1 þ ð2am1 . . .mk�1 �mkÞ2 � k

� 2am1m2 . . .mk�1ð2am1 . . .mk�1 �mkÞ

¼ a2 þm2
1 þ � � � þm2

k � k � 2am1m2 . . .mk

¼ 0:

Hence ð~hh 0; ~tt 0; ~WW 0Þ satisfies the equality ð**7:4Þ. Moreover from the claims (1),

(4), (5) of Proposition 6.6, ð~hh 0; ~tt 0; ~WW 0Þ is isomorphic to a triplet of the form

ða7:3Þ. Since ðh; t;WÞ satisfies the conditions ða7:3Þ and ð**7:4Þ, by induc-

tion any triplet castling equivalent to ðh; t;WÞ satisfies the conditions ða7:3Þ
and ð**7:4Þ again.

Next we prove the converse. Let ðg; r;VÞ be a triplet isomorphic to the

following triplet

ðg 0; r 0;V 0Þ ¼ ðglð1Þl slðaÞl slðm1Þl � � �l slðmkÞ;L1 nLnL1 n � � �nL1;

Vð1ÞnVð2aÞnVðm1Þn � � �nVðmkÞÞ

satisfying the equality ð**7:4Þ. We may assume 2am1 am2 a � � �amk

without loss of generality. We show that this triplet ðg 0; r 0;V 0Þ is castling

equivalent to ðh; t;WÞ.
If k ¼ 1, the equality ð**7:4Þ becomes a2 þm2

1 � 1� 2am1 ¼ 0. The left

side of the equality is equal to ða�m1Þ2 � 1. Hence the solution of the

equality ð**7:4Þ is m1 ¼ aG 1. The corresponding triplets are given by

ðglð1Þ l slðaÞ l slða� 1Þ; L1 n L n L1; Vð1Þ n Vð2aÞ n Vða� 1ÞÞ and
ðglð1Þl slðaÞl slðaþ 1Þ;L1 nLnL1;Vð1ÞnVð2aÞnVðaþ 1ÞÞ. The for-

mer is equal to ðh; t;WÞ, and the latter is a castling transform of ðh; t;WÞ
by claims (1), (4), (5) of Proposition 6.6. Hence ðg 0; r 0;V 0Þ is castling equiv-

alent to ðh; t;WÞ.
Next we investigate the case kb 2. The following lemma plays a crucial

role. The proof of this lemma will be given below.

Lemma 7.3. Let k be a natural number such that kb 2, and let a and mi

ð1a ia kÞ be integers satisfying 2a aa 5 and 2am1 am2 a � � �amk. Sup-

pose that the equality ð**7:4Þ a2 þm2
1 þ � � � þm2

k � k � 2am1m2 . . .mk ¼ 0 holds.

Then we have 0 < 2am1m2 . . .mk�1 �mk < mk.
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Now by an sc-transformation of the given triplet ðg 0; r 0;V 0Þ, we can obtain

the triplet

ðg 00; r 00;V 00Þ ¼ ðglð1Þl slðaÞl slðm1Þl � � � slðmk�1Þl slð2am1 . . .mk�1 �mkÞ;

L�
1 nL� nL�

1 n � � �nL�
1 nL1;

Vð1Þ� nVð2aÞ� nVðm1Þ� n � � �nVðmk�1Þ�

nVð2am1 . . .mk�1 �mkÞÞ:

Then by Lemma 7.3, we have dim V 00 < dim V 0. Since dim V 0 < y, by a

finite number of sc-transformations, we can arrive at a triplet of the same form

as that of ðg 0; r 0;V 0Þ with some mi ¼ 1, i.e.

ðglð1Þl slðaÞl slðm1Þl � � �l slð1Þl � � �l slðmkÞ;

L
ð�Þ
1 nLð�Þ nL

ð�Þ
1 n � � �nL

ð�Þ
1 n � � �nL

ð�Þ
1 ;

Vð1Þð�Þ nVð2aÞð�Þ nVðm1Þð�Þ n � � �nVð1Þð�Þ n � � �nVðmkÞð�ÞÞ:

Thus the number of slðmiÞ-components decreases to k � 1. Since k is finite,

by a finite number of sc-transformations we arrive at a triplet isomorphic

to ðglð1Þl slðaÞl slðm1Þ;L1 nLnL1;Vð1ÞnVð2aÞnVðm1ÞÞ. Since sc-

transformations and a last isomorphism of triplets keep the equality

ð**7:4Þ, this triplet also satisfies ð**7:4Þ. Hence by the consideration in the

case k ¼ 1, ðg 0; r 0;V 0Þ is castling equivalent to ðh; t;WÞ. Therefore ðg; r;VÞ is

also castling equivalent to ðh; t;WÞ, which proves Proposition 7.2. r

Proof of Lemma 7.3. Let k be a natural number satisfying kb 2, and let

a and mi ð1a ia kÞ be arbitrary integers satisfying the inequalities 2a aa 5,

2am1 am2 a � � �amk, and the equality

a2 þm2
1 þ � � � þm2

k � k � 2am1m2 . . .mk ¼ 0:ð**7:4Þ

First we show that 0 < 2am1 . . .mk�1 �mk. We assume that 2am1 . . .

mk�1 amk. Then 2am1 . . .mk�1mk am2
k . Hence

a2 � k þm2
1 þ � � � þm2

k am2
k :

Therefore

0b a2 � k þm2
1 þ � � � þm2

k�1 b a2 � k þ 4ðk � 1Þ > 0:

This is a contradiction. Hence we have 0 < 2am1 . . .mk�1 �mk.

Secondly we show that 2am1m2 . . .mk�1 �mk < mk. Now assume that

mk a 3a. Then since kb 2 and ab 2, we have mi a 2a2k�1 � 2. Thus we
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can use Lemma 2 in [17, p. 42], and we have

m2
1 þ � � � þm2

k � 2am1m2 . . .mk a 22k � 2a2k:

Substituting this inequality into ð**7:4Þ we have

0 ¼ a2 þm2
1 þ � � � þm2

k � k � 2am1m2 . . .mk

a a2 � k þ 22k � 2a2k

¼ a2 � 2kþ1aþ 3k:

The last expression is negative if kb 2 and 4�
ffiffiffiffiffi
10

p
< a < 4þ

ffiffiffiffiffi
10

p
, thus

especially for 2a aa 5. This is a contradiction. It follows that mk > 3a.

To prove the inequality 2am1m2 . . .mk�1 �mk < mk we consider two cases: (i)

k ¼ 2 and (ii) kb 3.

(i) First we show that m2 > m1 þ a. Now suppose that m2 am1 þ a.

Then by ð**7:4Þ
0 ¼ a2 þm2

1 þm2
2 � 2� 2am1m2

a a2 þm2
1 þm2

2 � 2� 2aðm2 � aÞm2

a a2 � 2þ ð�2aþ 2Þm2
2 þ 2a2m2

a a2 � 2� am2
2 þ 2a2m2

¼ a2 � 2� am2ðm2 � 2aÞ:

Since m2 � 2a > a, this expression is less than

a2 � 2� a2m2 < �a2 � 2 < 0:

This is a contradiction, and therefore m2 > m1 þ a. Next we show the

inequality 2am1 �m2 < m2, which is equivalent to am1 < m2. Now suppose

that am1 bm2. Then by ð**7:4Þ we have

0 ¼ a2 þm2
1 þm2

2 � 2� 2am1m2

a a2 � 2þm2
1 þm2

2 � 2m2
2

¼ a2 � 2þm2
1 �m2

2 :

Since m2 > m1 þ a, this expression is less than

a2 � 2þm2
1 � ðm1 þ aÞ2 ¼ �2� 2am1 < 0:

This is a contradiction, and therefore we have 2am1 �m2 < m2.
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(ii) Consider the case kb 3. First we prove mk > a
2 ðk � 1Þmk�1. Now

suppose that mk a
a
2 ðk � 1Þmk�1. Then by ð**7:4Þ

0 ¼ a2 þm2
1 þ � � � þm2

k � k � 2am1m2 . . .mk

a a2 � k þm2
1 þ � � � þm2

k �
4

k � 1
m1 . . .mk�2m

2
k :

Here
4

k � 1
m1 . . .mk�2 b

4

k � 1
2k�2 ¼ 2k

k � 1
b k þ 1. Hence

a2 � k þm2
1 þ � � � þm2

k �
4

k � 1
m1 . . .mk�2m

2
k

a a2 � k þm2
1 þ � � � þm2

k � ðk þ 1Þm2
k

a a2 � k �m2
k :

Since mk > 3a > a, we have a2 � k �m2
k < a2 � k � a2 < 0. This is a contra-

diction. Hence mk >
a
2 ðk � 1Þmk�1.

Next assume that 2am1 . . .mk�1 �mk bmk, then 2am1 . . .mk b 2m2
k . By

applying this inequality to ð**7:4Þ, we have

0 ¼ a2 þm2
1 þ � � � þm2

k � k � 2am1m2 . . .mk

a a2 � k þm2
1 þ � � �m2

k�1 �m2
k :

By mk >
a
2 ðk � 1Þmk�1, the last expression is less than

a2 � k þm2
1 þ � � �m2

k�1 �
a2

4
ðk � 1Þ2m2

k�1

a a2 � k � ðk � 1Þ a2

4
ðk � 1Þ � 1

� �
m2

k�1

a a2 � k � ððk � 1Þða2ðk � 1Þ � 4Þ:

Finally by kb 3, we have

0a a2 � k � 2ð2a2 � 4Þ ¼ �3a2 � k þ 8 < 0:

This is a contradiction, and therefore 2am1m2 . . .mk�1 �mk < mk. r

Remark 7.4. Even if a and mi are real numbers satisfying 2a aa 5 and

2am1 am2 a � � �amk, we have the same assertion as that of Lemma 7.3.

Now we claim that a triplet ðg; r;VÞ is isomorphic to an irreducible PV of

type IFPS if and only if ðg; r;VÞ is castling equivalent to one of the triplets

(a)–(c). To see this, first note that a triplet ðg; r;VÞ is isomorphic to an
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irreducible PV of type IFPS if and only if ðg; r;VÞ is castling equivalent to

a reduced irreducible PV of type IFPS. This follows from the fact that

an irreducible PV of type IFPS can be sc-transformed into one again and

Corollary 6.10. Furthermore any reduced irreducible PV of type IFPS is

isomorphic to one of the triplets (a)–(c). Therefore we obtain our claim.

Thus by applying Proposition 7.2 to the case that the triplet ð7:2Þ is equal

to one of the triplets (a)–(c), we have the following:

Corollary 7.5. Let k and mi be positive natural numbers. A triplet

ðg; r;VÞ is isomorphic to an irreducible PV of type IFPS if and only if it is

isomorphic to a triplet of the form

ðglð1Þl slðaÞl slðm1Þl � � �l slðmkÞ;

L1 nLn L1 n � � �nL1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
k

;

Vð1ÞnVð2aÞnVðm1Þn � � �nVðmkÞÞ

which satisfies the equality

a2 þm2
1 þ � � � þm2

k � k � 2am1m2 . . .mk ¼ 0;ð**7:4Þ

where a ¼ 2, 3, or 5, and

L ¼
3L1 ða ¼ 2Þ
2L1 ða ¼ 3Þ
L2 ða ¼ 5Þ

8><
>: :

In this corollary, ð**7:4Þ is equal to the relation dim rðgÞ ¼ dim V .

Indeed

dim glð1Þl slðaÞl slðm1Þl � � �l slðmkÞ ¼ a2 þm2
1 þ � � � þm2

k � k;

and

dim Vð1ÞnVð2aÞnVðm1Þn � � �nVðmkÞ ¼ 2am1m2 . . .mk:

By combining Corollaries 5.3, 7.5 and the claim (3) in Proposition 6.6, we

complete the proof of Theorem 1.1.

Remark 7.6. Let a be a natural number such that ab 2. We denote

a solution of ð**7:4Þ by ða;m1; . . . ;mkÞ, which geometrically corresponds to a

complex IFPS on a Lie group SLðaÞ � SLðm1Þ � � � � � SLðmkÞ. We say that

a solution ða;m1; . . . ;mkÞ is essential if mi 0 1 for all i. Then for any k we

can see that the equation ð**7:4Þ has an essential solution by induction. First

if k ¼ 1, the equation ð**7:4Þ has the solutions ða; aG 1Þ. Next we suppose
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that the equation ð**7:4Þ has an essential solution ða;m1; . . . ;mkÞ. We may

assume that it satisfies 2am1 a � � �amk. When we add slð1Þ to the tail of

the Lie algebra slðaÞl slðm1Þl � � �l slðmkÞ, there are ðk þ 1Þ-ways of sc-

transformations of this Lie algebra. Namely an sc-transformation of

ða;m1; . . . ;mkÞ at the i-th position for 1a ia k is given by

ða;m1; . . . ;mi�1; 2am1 . . .mi�1miþ1 . . .mk �mi;miþ1; . . . ;mkÞ;

and for i ¼ k þ 1 is given by

ða;m1; . . . ;mk; 2am1 . . .mk � 1Þ:

We note that castling transformation of ða;m1Þ at the first position is given by

ða; 2a�m1Þ. We have already seen that any sc-transformation of ða;m1; . . . ;

mkÞ gives again a solution of ð**7:4Þ. Since we can easily verify that 2am1 . . .

mk � 1 > mk b 2 for the case i ¼ k þ 1, there exists an essential solution for

any kb 1.

For example let us consider the solution ða;m1Þ ¼ ð2; 3Þ, which corre-

sponds to a complex IFPS on SLð2Þ � SLð3Þ. If we castling transform ð2; 3Þ
at the second position, we obtain ð2; 3; 11Þ. Likewise from ð2; 3; 11Þ we obtain

ð2; 3; 11; 131Þ.
Furthermore even if we fix the number of sl-components k (b 2), the

equation ð**7:4Þ has an infinite number of solutions as follows: As we have

already showed that there exists at least one non-trivial solution ða;m1; . . . ;mkÞ.
Then by an sc-transformation of ða;m1; . . . ;mkÞ at the i-th position ð1a i < kÞ,
we obtain

ða;m1; . . . ;mi�1; 2am1 . . .mi�1miþ1 . . .mk �mi;miþ1; . . . ;mkÞ:

Then this gives a new solution of ð**7:4Þ since 2am1 . . .mi�1miþ1 . . .mk �mi >

mk. For example if we castling transform ð2; 3; 11Þ at the first position, we

obtain ð2; 41; 11Þ. Likewise from ð2; 11; 41Þ we obtain ð2; 153; 41Þ.

Remark 7.7. In Theorem 1.1 we have repetition of Lie algebras admitting

a complex IFPS between the cases a ¼ 2 and a ¼ 3. For example slð2Þl slð3Þ
and slð3Þl slð2Þ, slð2Þl slð3Þl slð11Þ and slð3Þl slð2Þl slð11Þ, etc. To ex-

clude the repetition, we need the following extra condition: Any Lie algebra

slð3Þl slðm1Þl � � �l slðmkÞ with the equality ð**7:4Þ satisfies mi 0 2 for all i.

To see this, we denote by LðaÞ the set of whole Lie algebras slðaÞl slðm1Þ
l � � �l slðmkÞ corresponding to solutions ða;m1; . . . ;mkÞ for ð**7:4Þ (k A Z).

We put Lð3Þ0 ¼ fslð3Þl slðm1Þl � � �l slðmkÞ A Lð3Þ jmi 0 2g. Then we

have Lð2ÞVLð3Þ0 ¼ q, Lð2ÞVLð5Þ ¼ q, Lð3Þ0 VLð5Þ ¼ q. First obvi-

ously Lð2ÞVLð3Þ0 ¼ q. Next we verify that Lð2ÞVLð5Þ ¼ q in the

following.
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By the proof of Proposition 7.2, any solution ð2;m1; . . . ;mkÞ of ð**7:4Þ is

castling equivalent to ð2; 1Þ. Let us express a solution obtained by a castling

transformation from ð2;m1; . . . ;mkÞ at the i-th position as ð2;m1; . . . ;mi�1;m
0
i ;

miþ1; . . . ;mkÞ. Then for the case i ¼ k we obtain a solution ð2;m1; . . . ;mk�1;

m 0
kÞ such that m 0

k < mk by Lemma 7.3. On the other hand for other cases

i0 k, we have mk < m 0
i by a consideration in Remark 7.6. Here we note that

all solutions obtained by castling transformations from ð2; 1Þ is ð2; 3Þ, and those

from ð2; 3Þ are ð2; 1Þ and ð2; 3; 11Þ. Thus any new solution ð2;m1; . . . ;mkÞ
castling equivalent to ð2; 3; 11Þ satisfies mi > 11 for all i. Hence any solution

ð2;m1; . . . ;mkÞ castling equivalent to ð2; 1Þ satisfies mi 0 5 for all i. Therefore

we have Lð2ÞVLð5Þ ¼ q. We can verify Lð3Þ0 VLð5Þ ¼ q in the same

way.

Moreover we can see that Lð3ÞHLð2ÞULð3Þ0. Indeed we can verify

that any Lie algebra slð3Þl slðm1Þl � � �l slðmkÞ A Lð3Þ contains at most one

component mi such as mi ¼ 2. In this case changing positions of mi ð¼ 2Þ and
3 gives us again the Lie algebra slð2Þl slðm1Þl � � � slðmi�1Þl slð3Þl slðmiþ1Þ
l � � �l slðmkÞ A Lð2Þ. It follows that Lð2ÞULð3ÞULð5Þ ¼ Lð2Þ tLð3Þ0 t
Lð5Þ.

Remark 7.8. Concerning Theorem 1.1 we can also obtain an infinite

number of real semisimple Lie groups admitting an irreducible real IFPS.

Indeed the triplets obtained in Corollary 7.5 have real forms

ðglð1;RÞl slða;RÞl slðm1;RÞl � � �l slðmk;RÞ;

L1 nLnL1 n � � �nL1;

Vð1ÞnVð2aÞnVðm1Þn � � �nVðmkÞÞ:

Hence by the consideration after Theorem 3.7, a real form SLða;RÞ �
SLðm1;RÞ � � � � � SLðmk;RÞ admits an irreducible real IFPS if it satisfies

ð**7:4Þ a2 þm2
1 þ � � � þm2

k � k � 2am1m2 . . .mk ¼ 0. Here recall that in [1],

[20], [4], real simple Lie groups admitting a real IFPS have been classified, and

as a result only slðnþ 1;RÞ and su�ð2nÞ (nb 1) admit a real IFPS. To obtain

this result, Aagoka [1] constructed a reducible real IFPS on slðnþ 1;RÞ and

su�ð2nÞ (nb 1), moreover an irreducible real IFPS on slð2;RÞ. That is why in

Theorem 1.1 the complexification of slðnþ 1;RÞ (nb 2) does not appear.
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