HirosHIMA MATH. J.
41 (2011), 367-388

Stability of travelling wave solutions for the
Landau-Lifshitz equation

Keisuke TAKASAO

(Received September 27, 2010)
(Revised January 27, 2011)

ABSTRACT. We prove that the one dimensional travelling wave solutions corresponding
to the Walker wall for the Landau-Lifshitz equation are asymptotically stable for small
external magnetic field.

1. Introduction

The Landau-Lifshitz equation was introduced by Landau and Lifshitz in
1935 [8] to describe the motion of the magnetization vectors in ferromagnetic
bodies. As the particularly interesting object of study, thin ferromagnetic films
have been studied by a number of physicists and engineers and have found
various applications in ubiquitous magnetic storage media.

It is well known that a variety of patterns of magnetization vectors appears
on thin ferromagnetic films [6]. Generally, the magnetization vector pattern
has a line called domain wall. The magnetization vectors change sharply on
the neighborhood of the domain wall, and the vectors face to almost opposite
directions on the two side of the wall. When there is no external magnetic
field, a pattern called the Bloch wall on the thin ferromagnetic film arises which
corresponds to the one-dimensional stationary solution of the Landau-Lifshitz
equation.

When some external magnetic field /4 is present, the Landau-Lifshitz
equation has a travelling wave solution, which moves at a constant velocity,
called the Walker wall. It is well-known [6] that /& cannot be arbitrary for the
existence of such travelling wave; there is a finite limit (denoted by /4, in this
paper) called the Walker limit for the existence of the Walker wall. The
explicit formula for the relation of / and velocity is recalled in Section 2.
While the velocity of the Walker wall is a monotone increasing function of /
for small /4, there exists a saturation point of velocity beyond which the velocity
is monotone decreasing function of 4 until the Walker limit. Since stronger
external field should produce faster wall motion, the Walker walls beyond
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saturation point are expected to be ‘unstable’ in some appropriate sense. In
physics literature Magyari and Thomas [10] studied the linear stability of the
Walker wall and suggested that it is stable for small / while it is unstable for a
range of & close to the value corresponding to the maximum velocity. Later,
however, the numerical study in [12] indicates that the instability appear to set
in even with much smaller A.

Under this circum-stance, we find it worthwhile to rigorously prove the
stability of the Walker wall. In this paper we show that the Walker wall is
asymptotically stable for any Gilbert loss parameter # > 0 (see Theorem 1 for
the precise statement) when the external magnetic field is sufficiently small.

Regarding the known results with close relevance, Guo and Fengqiu
proved the existence of the periodic global solution for the Landau-Lifshitz
equation [4, 5]. Tsutsumi studied the Cauchy problem for the noncompact
Landau-Lifshitz equation [11]. Carbou and Labbé proved the stability of the
Bloch wall with @ = & = 0 [1] (where these constants are defined in Section 2).
They used the semigroup theory for the proof. Furthermore Carbou, Labbé
and Trélat proved that the Walker wall can be controlled by some time
dependent external field [2]. Our result is closely related to [1], while we point
out that our proof is solely based on the energy method and we require the
initial data is close in H' norm instead of H? in [1].

The organization of the paper is as follows. In Section 2 we discuss the
derivation of the Walker wall solution from the Landau-Lifshitz equation and
state our main stability theorem. In Section 3 we linearize the Landau-Lifshitz
equation around the Walker wall solution by using a moving frame. We
derive the second order differential operator ¥ and study the basic properties.
In Section 4 we give a proof of our main theorem.

2. Walker wall and its stability result

We regard R? as a thin ferromagnetic film. Below the Curie temperature
the length of the magnetization vectors are constant which we normalize as 1.
Let m = (my,my,m3) : R* x [0, 0) — S2, where S? is the unit sphere in R°.
We assume m(x,y, 1) =m(x,t) for any (x,p,7)eR*>x[0,00). Let H =
(0,7,0) e R? be a constant vector corresponding to the external magnetic
field. The micromagnetic energy E(m) is given by the following [7]:

1

1
J |(')xm|2dx+gj mlzdx+—J (1 —m3)dx — J m - H dx,
R 2 Jr 2 )r R
where ¢ > 0 is a constant. The first term is called the exchange energy which
prefers the constant vectors. The magnetization vector m causes a magnetic
field called the stray field or demagnetizing field. The second term is the
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contribution from the stray field. The third term is caused by the crystalline
anisotropies of the ferromagnetic material. The fourth term is due to the
external magnetic field H. With & =0 note that m = (0, +1,0) achieve mini-
mum energy and E has the bi-stable structure.

Recall the Landau-Lifshitz equation:

0m =m X V2 E(m) + nm x 0,m, (1)

where # > 0 is a constant called the Gilbert loss parameter. V;.E(m) is the
L?-gradient of E(-) at m. The standard functional variation yields

Vi2E(m) = —ﬁim + amie; —mye; — H,

here {ej,er,e3} are the standard basis in R3. Let m be smooth and
|m(x,0)] =1 for any x e R. Taking the scalar product between m and (1),
we obtain m-d,m = 0. Hence

Im(x, 1)] =1

for any (x,f)eRx[0,00). From |m|=1 and m-9dm=0, we have
mx (mx 0ym) = —0;m. Thus by substituting dsm to its own right-hand
side of (1) we obtain

(1 +52)0m =m x V2 E(m) +nm x (m x V2E(m)). (2)

The two equations (2) and (1) are equivalent.
Suppose & = 0, that is, there is no external magnetic field. We first find
a heteroclinic solution which connects the two energy minima m = (0, +1,0).

To do so, assume that m; = 0. Then from m3 =1 —m3 we have (0ym3)* =

m3(0,m;)’ 2 (0um)? . . :
————— and [0ym|" =-——5. From Young’s inequality we obtain
1 —mj 1 —mj
E(m) = lj |0ym|* + (1 — m3)dx > J |0um|y/1 — m3 dx
2 Jr R
|03 2
= l—msdx=| |0maldx =2. (3)
R

R,/l—m%
2

The equality holds if and only if |0um| = /1 —m? which is |0yma| =1 —m3.
The inequality (3) shows that 2 is the least energy with the boundary condi-
tions my(+o0) = F1. Such minima is achieved by my(x) = —tanh(x — o) for

. S . Oxim
arbitrary o € R, which is the solution of 0| _ 1 —m3.

1- m%
function m(x) = (0, —tanh(x — o), sech(x —'z)) is called the Bloch wall. It is a
stationary solution for the Landau-Lifshitz equation.

The resulting
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When the external magnetic field is switched on (4 > 0), then m = (0, 1,0)
has the lower energy than that of m = (0, —1,0) even though they remain local
energy minima. Due to the energy difference, one expects that the domain
occupied by state close to (0,1,0) should expand, resulting in the motion of
wall towards the positive direction. One also expects that there should be a
travelling wave solution for such phenomena. One of such travelling waves is
the Walker wall. For the notational convenience denote

1 1
Ey(m) = EJR |0xm|2dx —|—ij m% dx _|_5JR(1 _ Wl%)dx.

With this notation we have
VLzE(m> = VLon(m) — hez.

Take the cross product between m and (1). Utilizing the formula m x (m x b)
=—(1—-m®m)b and 0;m-m =0 (both due to |m| =1), we obtain another
equivalent form of the Landau-Lifshitz equation:

nom+mxdm~+ (1 —m@m)Vy:Ey(m) = (1 —m® m)he,. 4)

For some My = (mg1,mo2,mo3) which is a function depending only on x,
assume that the solution of (4) is expressed as m(x,t) = My(x — vt), thus we
have

—un0 My — vMo x 0, Mo + (1 — Mo @ Mo)V 2 Eo(Mo)
= (1 — My ® My)hes. (5)

Furthermore assume that M, has the particular form of

My(x) = (sech (g) sin #, —tanh <§> ,sech <§> cos 0), (6)

where 6 > 0 and |0| < 5. Note that the particular choice of 6 =0 and 6 = 1
corresponds to the Bloch wall solution. As a vector, note that each term of
(5) is orthogonal to M,. Note also that M,, .M, and My x 0.M, form
a system of orthogonal basis of R®. We project the equation to the latter
two linear spaces. Take the scalar product between 0,M, and (5). Then we
obtain

—uon|0xMo|* + V 12 Eo(My) - 0xMy = hdmos. (7)

The direct calculation shows

V,2Eo(My) - 0xMy =0 sinh (g) sech’ <§) 02 —1-asin®0).  (8)
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Since we are seeking a travelling wave solution, we may assume that
Vi2Ey(My) - 0xMy =0. Hence this assumption with (8) leads us to

02 —1—asin?0=0. (9)
Again by direct calculation one can check that |6XM0|2 = —0'0,mp. Sub-
stituting this into (7) we obtain
vn = ho. (10)
Next by taking the scalar product between M, x d,M, and (5) we obtain
V12Eo(My) - My x 0. My = v]0,Mo|*. (11)

Here |My x 0.My| = |0xMy| and e, - My x d,My =0 are used. The second
identity can be deduced intuitively since the image of M, lies in a tilted plane
which includes e, axis. With the direct calculations

V2 Eo(My) - My x 8, My = ad~" sin 0 cos 0 sech? <;>,

|6xM0|2 =672 sech? <;>,

and (11) we derive

ad sin 20 = 2v. (12)

By re-arranging (9), (10) and (12), we obtain

sin20—2" s—(l4asnio) s 2M20 g5
an

2V 1 +asin’ @

Note that 0, 6 and v are determined when %, a and # are given. It is clear that
M, with these choices is a solution of (4). The resulting travelling wave
solution is called the Walker wall. One point to note is that we need to have
|h| < 5! for making a proper choice of § in (13). The constant /, =% is called
the Walker limit (see [10]).

Throughout the rest of the paper we denote the Walker wall solution
above by M,. We denote

X = {me H}.(R;S?); (m — My) € H*(R;R?),m(+0) = (0, F1,0)}.
DEFINITION 1. m =m(x, ) is called a solution of (2) with initial data

mo € X if (m — My) e C([0, 0); H*(R;R*)) N C'((0, 0); L*(R;R?)) and m sat-
isfies (2) and m(0) = my.
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DEerINITION 2. M, is called asymptotically stable if there exist ¢ =
e(a,n,h) >0 and o = a(a,n,h,my) € R such that

sup [lm(t) — Mo(- — o, 6)|| g1 — O as t — oo, (14)

[lrmo—Mol| ;1 <&
where m is a solution of (2) with initial data mg € X.
Our main result is the following:

THEOREM 1. For any a >0 and n > 0, there exists K = K(a,n) > 0 with
the following property: Assume |h| < K. Then there exists ¢ = ¢(a,n,h) >0
of Definition 2 and My is asymptotically stable. Moreover there exist C =
C(a,n,h) >0 and y = y(a,n,h) >0 such that

sup  |lm(t) — Mo(- — o, 0)|| 0 < Ce™,  for t >0,

[lmo—Mol| ;1 <&
where m is a solution of (2) with initial data m € X.

The result shows that m converges exponentially to a shifted Walker wall
(by o) as t — oo if it is close to My at + =0. The result is in the same spirit
as [1] where they studied @ = 4 =0, the case of the Bloch wall. We remark
that K is in principle a computable number. It is expected that K is much
smaller, on the other hand, than the Walker limit 4, = %

In the following we collect notations we use for the readers’ conve-
nience.

a,n > 0: material constants, s5(x) = sech(2) = cosh ™ (2),
H = (0,/,0): external magnetic field, 75(x) = tanh(%),

v =v(a,n,h): velocity of Walker wall, L: operator defined by (20),

0 =0(a,n,h): angle of Walker wall, p=2+4a— 2072 = a cos 20 > 0,

0 =d(a,n,h): ~ thickness of Walker &, ¥, %, ./ operators defined by
wall, (21) and (22),

My = My(v,0,0): Walker wall, p= \/Lz_& ’(0,s5): normalized base

{M,, My, M>}: orthonormal basis in vector of ker &,
R® defined by (15), Q: orthogonal projection onto

R(a): function defined by (29), (ker &),

Ar) =1 —rH"2, {-,->: L? inner product.

3. Linearized Landau-Lifshitz equation

In this section we linearize the Landau-Lifshitz equation (2) around the
Walker wall solution. The similar computation has been carried out by
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Carbou and Labbé [1]. First we set

{Ml = (cos 0,0, —sin 0), (15)

My(x,t) = (—ts5(x — vt) sin 0, —s5(x — vt), —t5(x — vt) cos 6),

where we use the notations s5(x) =sech(}) and 7;(x) =tanh(3). With M,
defined as in (6), the set {M;, My, M,} forms a positively oriented orthonormal
basis in R® for each xeR. The direct computations show that

0xMy =65, M,

aiMo = —5_2I5S5M2 — 5_2S52M0,
0xMy = —6" s, My,

aiMz = —5725§Mz +572I5S5M0.

In the following we write all the relevant quantities in terms of this frame.
For a solution m of (2), define r;, r, and 1 as

m=r M +V2M2—|—/1M(), (16)
where 4= (1 —r} — r%)l/ 2. Furthermore define fi, f» and f3 as
Vi2E(m) = fiMy + faM> + foMo.

The direct computations show that

fi= _ai”l + a cos O(ry cos 0 — rats sin 0 + Ass sin 0),
= _a,%”Z + 07 2rps3 — 207 0 Ass + 0 Atsss + (—ra85 — tsA + h)ss
— ats sin O(r; cos O — ryts sin 0 + As; sin 0), (17)

fo= 25_10x1’255 — 5‘2r21555 — ail + 5_215'&2 + (—rps5 — tsA + h)t,;
+ ass sin 0(ry cos 0 — ryts sin 0 + Ass sin 0).

We also compute that
oim = 0,(riMy 4+ ryM, + M)
= 0,11 My + 0,y My + 12 (00~ 55 M) + 8,4 My + J(—vd ' s5M)
=0y My + (02 — v&‘l}vs(;)Mz + (A + U5_1r2S5)M0.
Now, rewriting (2) in terms of r; and rp, we obtain

(14 72)0r1 = 2fs — rafo + n(Arifo — 22fi — r2fi + rimfa),
(1+ 3202 =11 fo — M +n(rirafi — i fo — 22fr+ o fo) + (1 +n?)vd " dss.

Since it is natural to adopt the coordinate which moves with the travelling
wave, we define z = x — vf and replace the parameter (x,f) by (z,¢). This
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results in the replacements
0y — 0., 0; — 0y — 00-.
With this we obtain
(L+ 070y = ifs = rafo + n(arfo = 22f = 13 fi + ninafa)
+ (L +7*)vo.r,

(L+n2)iry = rifo = My + n(rirafi = rifo = 22 + A fo)
+ (1 +72)00:r2 + (1 + 5?)00 ™ Lss.

(18)

We linearize (18) around (rj,ry,2) = (0,0,1). The direct computations show
that we have the following system of equations,

asman=(1 )57 2)*(:@]‘;;5) Gy e 09

where p=2+a—20"%=acos 20 and

L=0>-062(1-2s3), Mi=0(0""t5+0.). (20)
We denote
- L- 0 2 —
3:(’7 1) P </%:<’7M+ M- 0 ) 1)
L 7 0 L n(My+M-) (14+n°)M,
and
_(n(L—=p) O B 0 —L
31—< 0 L) L = L-p 0 ) (22)

Observe that (1 +#2)0,r = Lr+ Mr and &L = £ + %, with the above nota-
tions.

The next Lemma follows from [3] and gives precise information on the
eigenvalues of —L.

LemMA 1. For —L = —0? +07%(1 — 2s3), we have the following properties.

(1) The first eigenvalue 41 of —L equals 0 and Ay is simple. Furthermore
ker(—L) = span{ss}.

(i) a(=L)={0}U[0% o).

(iii) For ue H'(R) with {u,s;» =0, {—Lu,uy > 572”1/{”%‘2.

Proor. We only need to see the case 6 = 1. Since —L is self-adjoint,
o(—L) is the union of the discrete and essential spectrum. We have
f(z) =sech z in the kernel of —L. Since f > 0, (i) follows from the standard
argument ([9]). It is known that the discrete spectrum of —L is only {0} (see

[3])-
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For (ii), since g(—0%) = [0, 0), we have gu(—02 + 1) = [1,0). Define
the operator B: H?(R) — L*(R) by Bu(z) = (sech z)u(z) (ue H*(R)). B is
compact for the graph norm of —d>+ 1, |julls = ||ull;> + (=02 + Dul|,..

Hence, by Weyl’s theorem we have o.,(—L) = [1,00). From (ii), (iii) follows.

Next, since p =acos20 >0, we may conclude from Lemma 1 the
following

LEMMmA 2.
0
ker ¥ = span{ ( ) }
S5
We denote ¢ = I (0) which is normalized as ||¢||;. =1
"=\ ) Pl =1

LEMMA 3.  On the closed subspace H*(R;R?) N (ker )" of H*(R;R?), the
norms || - ||y2 and || 4 - || ;2 are equivalent.
Furthermore, there exists C >0 such that

lull2 < Cr (1 + p~) | A, (23)
for any ue H*(R;R*)N (ker ). Here C depends only on a > 0.
Proor. From the definition of % there exists a constant C > 0 such that
| Ll 2 < Cllull e,

for any ue H2(R;R?*)N (ker £)*. We only need to establish (23). By ue
(ker #)*, Lemma 1 and Holder’s inequality, we have

2
a2 < 07| =Lun |l 2

Hence, by 6 = (1 +asin )"/

<1 we get
Jual 2 < | =Laia| 2

We denote —L=-02+4g;. By using d *=1+asinf<1+a, we have
llgsll, <1+ a. Hence

02| 2 = || 0212 + gsta — gsua |2
< |[=Luall > + |95l o w2l 2

< (2+a)|—Lu

L2

By

2 22
(a2 + [l0Zu2]l12),

N —

0102|372 = —<uz, O2uny <
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we have a constant C; = Cj(a) > 0 such that
leall 2 < 7" Coll = Laca]| . (24)

Since p=acos20 >0 and {—Luj,u;y >0, we get

2 2 2
(=L + p)uillz> = | —Lur |72 + 2p<{=Luy, 1> + p* ]|
2
> p*lu |72
Hence
el 2 < p7 (=L + plunl 2
Furthermore

1021 2 = [|=02ur + (95 + p)ur = (95 + P | 2
< =L+ phullz + llgs + pllos llenl 2
<=L+ purll2 + (L +a+ p)p~ (L + phll»
< {1+ +a+p)p  H(=L+ purl.
From p =acos 20 < a, we get the constant C, = C3(a) > 0 such that
il <07 Co(1+ p ) In(—L + pl (25)
By (24) and (25), we obtain (23).
We can also prove the following lemma.

LEMMA 4. On the closed subspace H'(R;R?) N (ker £)" of H'(R;R?), the
norms || - ||, and (=L, D2 are equivalent.
Furthermore, there exists C > 0 such that

lullr < o214 p) =Ly, (26)
for any ue H'(R;R*)N (ker ). Here C depends only on a > 0.

REMARK 1. We fix a >0 and n > 0. From p = acos 20, we have p — 0
as 0 —% By (13) we have 0 —% as |h| — h,=%. Hence we obtain
p~' — oo as |h| — hy,. Remark that the equivalence of these norms deteriorates

as |h| — hy,.

4. Stability analysis

In this section we estimate the perturbation of the Walker wall and work
with the Landau-Lifshitz equation in the form of (18). We remark that m is a
solution of (2) in the sense of Definition 1 if and only if there exists a solution
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re C([0,400); H*(R;R?)) N C'((0,+0); L*(R;R?)) of (18). Here

m=r My +r,M, + A(V)M().
We express (18) by
(l—l—nz)ar:gr—i—%r—i—ﬂr, (27)

where A7 is the nonlinear term of (18). We denote
Vm:(@ﬁ.
Nor
The direct computations show that
Nir = —207"0.55 + 02 ( — D)tgss — (A — V)tsss — a(2 — 1)tzs5 sin” 0
+ (A=) fo+ (—=ra +nr1) {207 0rys5 — 0 2ratsss — 204072 (A — 1)s?
+ (—rass — (A — 1)t5)ts + ass sin O(ry cos 0 — rats sin @+ (A — 1)ss sin 0)}
+ (A — Drifo —na(A — 1)ss cos Osin 0 — y(A* = 1) f;
— 3 fi + i, (28)
Nor =1y {2571621*2&; — 0 2 atsss — 622/1 +672(}v — l)sg + (=rss — (A= Dts)ts
+ ass sin O(r; cos O — ryts sin 0 4 (A — 1)s5 sin 0) }
—a(A—=1)sscosOsin 0 — (A —1)fi +nrirafi —;7r12f2
—{=20""8. 255 + 0 2(A — D)tgsy — (A — D)tgss — a(Z — 1)tss5 sin® 0}
—n(2 =)o+ (= Drafo
+ {207 0ras5 — 0 ratsss — 024 + 02 (A — 1)s?
+ (—rass — (A — 1)t5)ts + ass sin O(ry cos O — rats sin 0+ (A — 1)ss sin 0) },
where f), fi and f, are given by (17).

DerinITION 3. For any o € R, we define

Mo(z — oc)-Ml(z)>

R“”:<Mmmw@@

0
= . (29
(e oot oo @)
Since ss and #5 are smooth and bounded we can check that there exists C > 0
such that
[R(o1) = R(o2)|[ g2 < Cloug — 012, (30)
for any oy,0; € R.
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LeMMA 5. There exists gy > 0 such that the following holds. For any r e
B(0,&)) = L2(R;R?) there exists a unique (x, W) € R x (ker £)* such that

r(z) = R(o, z) + W(z).
Here, B(0,e) = {ue L>(R;R?)||jul|;> < &}. Furthermore, there exist open
sets U< H¥(R;R?) and V < R x ((ker )" N H*(R;R?)) such that the map
Fir— (a, W) is a homeomorphism from U to V for k=1,2. Moreover
F(0) = (0,0).
Proor. For any o € R, we define
SU(O() = <R(O€), 9.

We remark that ¥(0) = <0,¢> =0 and ¥’(0) < 0. From the inverse function
theorem, there exist neighborhoods A4,B < R of 0 € R such that

Y:4— B

is a homeomorphism. Let & > 0 satisfy (—&,&) < B and fix re B(0,&) <
L*(R;R?). From |||, < &, we get

[<rs ool < Il il 2 = lirll 2 < o

Hence from {r,p> € B we have a unique o€ 4 such that <{r,¢)= ¥(a).
Denoting W =r — R(), we have

<W7§9> = <V7¢> - EU(OC) =0.
Thus for any r € B(0, &) there exists a unique (a, W) € R x (ker #)" such that

r= R(x) + W. Furthermore, we can check that the map F :r— (o, W) is a
homeomorphism from U = H2(R;R?) to F(U) = R x ((ker £)" N H*(R;R?)).

Lemma 6. Let re C([0,0); H*(R;R*))NC'((0, 0); L*(R;R?))  satisfy
l7(0)|| 2 < €0, where & is given by Lemma 5. Then there exists T >0 and
the following holds. There exist unique «e C([0,T))NCY((0,T)) and W e
C([0, T); (ker &)™ N H2(R;R?)) N C((0, T); (ker £)") such that

{r(t) = R(a(t))+ W(t), te[0,T),
0 (1) = 0,R(a(2))o' () + 0, W (1), te(0,T).

ProoF. Since ||#(¢)||;» is continuous, there exists 7 >0 such that
lr()]]» <& for any t€[0,7). By Lemma 5, for any 7€ [0,T), there exists
a unique (a(z), W (1)) e R x ((ker #)" N H*(R;R?)) such that r(r) = R(a(7)) +
W (1), ae C([0,T)) and W e C([0, T); ((ker £)" N H*(R;R?)).

On the other hand, from <r(f),¢) = <R(a(t)),p) = ¥(a(t)) for any
te0,7)), we get

d

L (a() = 2 <r(0). 0> = <@rle) 0>
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Then we obtain

= (Y”l)’(‘l’(a(t)))%(‘P(fx(t)))

= (YN '(<r(1), p2)<0r (1), 9.

Hence there exists o/(¢) for any z € [0, T). Furthermore, since (¥ '), <r(t), p>
and <0,r(t),p) are continuous, we have «e€ C!((0,T)). Hence there exists
d(R(a(1))) € L*(R;R?) with

0(R(a(1))) = 02 R(au(1))e'(1).

From W(t) = r(t) — R(a(t)) and r,R(a(-)) € C'((0, T); L>(R;R?)) we obtain
W e C'Y((0,T); L*(R;R?)). Since {(W(t),p> =0 for any te[0,T), we get
oW e (ker ). Therefore W e CY((0,T); (ker £)5).

LemMA 7. The travelling wave My is asymptotically stable in the sense of
Definition 2 if and only if there exist ¢ = ¢(a,n,h) >0 and o = o(a,n,h,ry) € R
such that

sup ||r(t) — R(a)||;n — 0 as t— oo, (31)

lIroll ;1 <e

where re C([0,00); H*(R;R*)) N C'((0,0); L*(R;R?)) and r is a solution of
(18) with initial value ry and

m=riM +rM,+ A(r) My
Proof. If o is a constant and W =0, then we have
m(z) = (Mo(z — 2) - My(2)) M (2) + (Mo(z — ) - Ma(2)) Ma(2) + A(R (2, 2)) Mo 2).
Hence m(z) = My(z — ). Therefore (14) and (31) are equivalent.

THEOREM 2. For any a >0 and n > 0, there exists K = K(a,n) > 0 such
that My is asymptotically stable if |h| < K. Furthermore there exist C =
C(a,n,h) >0 and y =y(a,n,h) >0 such that

sup ||[r(t) — R(2)]| ;1 < Ce™", for t >0,

lIroll ;1 <e

where re C([0,00); H*(R;R*)) N C'((0, 0); L*(R;R?)) and r is a solution of
(18) with initial value ry.

REMARK 2. Theorem 1 and 2 are equivalent.
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To prove Theorem 2 we prepare some notations and lemmas. First let Q
be the orthogonal projection onto (ker #)* = L2(R*R) and we calculate (27)
to estimate |a(z)| and ||W ()|l -

Lemma 8. Let re C([0,00); H*(R;R?)NC'((0,0); L*(R;R?)) be a so-
lution of (27) and assume that there exists T > 0 such that ||r(t)| ;> < & for any
te[0,T), where ¢ >0 is given by Lemma 5. Then there exists (a, W) of
Lemma 6 such that

W (1) = (1+n2) " {QLW (1) + QMW (1) + QN (a(t), W (1))}
— o/(1)00,R(x(1)),

o (1) = %2—50 +12) T R (@(1)), 9> H{—plwi (2), 555 + 20w (£), 5515

+ 2L (1 4 72) (1), 55> 4+ V20N (L), W (1)), 9D},

(32)

for any te(0,T). Here we denote W ="'wy,wy) and N (o, W)=
N (R(a) + W) — N(R()).

ProoF. By the assumption and Lemma 5, there exists a unique (o, W)
with
r(z,1) = R((1),2) + W(z,1),

for any t€[0,7). Fix any t€[0,7). Since R(x(¢),z) is a solution of (27), we
get
PR(x(1),2) + MR(x(1),2) + N R(a(1),z) = 0.

Hence (27) is expressed as follows:
(1 +7%)0u(R(x(t), 2) + W (z,1))
= PW(z,0) + MW (z,1)
+ (N (R(a(1),2) + W(z,1)) — NR(a(1), 2))
= LW (z,t) + MW (z,t) + N (1), W(z,1)). (33)
We operate Q on (33), then we have
(1+ 0o W = QLW + QUW + QN (o, W) — (1 + n*)o' Q0,R(x).

Next, the direct computations show that

(LW, 9> = (W, %) +¢%<(L ~ Py = A lnd, (4
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here we remark that %9 =0 and Ls; =0. From (10), M s; =0 and M_s; =
206 1555 we obtain

1
CMW 9y = \/—§3<f7(M+ + M_)wi + (1 +n*) Myws, s5)

= \/Lz—&{fﬂwla (M_ 4+ M )ss> + (1 +5>){wa, M_s5)}

= = (20t 2o (1 7)o ) (35)

Take the L? inner product between ¢ and (33). From <d,W,¢)» =0, (34) and
(35) we obtain

V26(1+ 1) C0uR(), 9> = —p<wn, 55 + 2h<wi, 55t )
+ 207 (14 n%) < wa, sstsy + V20{N (o, W), 9.
LeEMMA 9. There exist C >0 and oy > 0 such that
A7 (ot W2 < C(A+a+n+an) (Al + o] + [ W] )W | 225

for any (o, W) eR x ((ker )" NH*(R;R?)) with |o| <oao, |W|, <1 and
Wl < 1.

Proor. From the mean-value theorem, there exists a constant C > 0 such
that

10X R(@)]. < Clal, (36)
for k=0,1,2. Let « satisfy Cla| < 1. By (36), we have

lOfR@), < €'l < Clof < (37)

Bl—

for/=1,2,3...,and k=0,1,2. From (37) and a,  which are coefficients of
A" we obtain

| A (o, W)| < C(1 +a+n+ an)
AW+ (W] + [0-W | + |02 W) + W2 W | + 0. W|*}. (38)
For example, we will estimate the following term
2070 {A(R() + W) — A(R(2))}s5.

Here, this is one of the terms of A"(a, W). We remark that A (a, W) =
N (R(x) + W) — N/ (R()).
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First, we note that ' < (1+4)"/? and |ss| < 1. From (36) and (37), we

get
2 1
(1= IR+ W) > 5,
1
(1= R@)P) > 5,
0.2(r) = (1 = 1)V - o.r,
Therefore

|0=(A(R(2) + W) = A(R(2)))]
= |(1 = [R() + WI*)""*(R(2) + W) - 0(R(2) + W)
— (1= |R@)]) ™ *(R(2)) - %:(R()|

< (1= |R(2) + W) ""?|(R(2) + W) - 0-(R() + W) — (R()) - 9=(R(x))]
+ (1= [R(@) + W)™ = (1 = [R@)[)
J(R(2) + W) - 0-(R(2) + W)
< C(laf W]+ |a] |0-W| + [W]|6-W]) + CI(R() + W)* = R(x)*|
< Cllaf [ W]+ W) + [al |0-W| + W] |6- W)
Hence
=267 0 {A(R(x) + W) = A(R(2)) }s5|
< C(1+a)(|a| |W|+ W) + o] |0-W| + |W||0-W]).

As above we can obtain (38) by similar estimates. On the other hand, we have
Iwewii = | wPleiwia < Wik | leiw)e:
R R

2 2
< CIW I W 2

@) = | owPiowiae < 0wl | 1o a:

2 2 2 2
< Clo-W W[ < CIUW 2 | W -

Therefore we obtain

A7 (o, W2 < C(A+a+n+an) (A + |of + [ W] ) W] 72
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LemMa 10. Fix a > 0 and n > 0. Let |h| be sufficiently small. Then there
exists € > 0 such that for the solution (a0, W) of (32) with ||R((0)) + W (0)|| g
< ¢ the following hold:

(1) There exists o€ R such that

a(t) — o exponentially as t — 0.
(ii) There exist C,y >0 depending only on a and n such that
WOl < Ce ™| WOy, for t>0.
(iii) For any tel0,0), we have
[R((2)) + W (D)l 1 < o,
where &y > 0 is given by Lemma 5.

Proor. First, we fix ¢ >0 and # > 0. From (23) and (26), there exists
d =d(a,n, p) > 0 such that

1 < dl=Lru,uy' 2, ull g < dl| L1l o, (39)

for any u e (ker #)" NH*(R;R?). We remark that p depends only on a, 7
and 4. From (13), (23), (26) and Remark 1 there exists a constant C =
C(a,n) >0 such that d(h) < C for any he(—%,%). Let \h|<%. We
assume that there exist 7 >0, o€ C([0,00))NC!((0,00)) and W e C([0, 0);
(ker )" N H2(R;R?)) N C'((0, 0); (ker £)*) such that « and W satisfy (32)
for any te (0,7). Take the L? inner product between —% W and the first
equation of (32). Since & is a self adjoint operator, we have

L LW Wy = oW, (40)

By %19 =0 and (22), we obtain Q. = % and <% W, £ W) =0. Then we
get

QLW,—AW) =% + QL)W , —AW)
= (O~ LW + LW~ QAW = —| AW |1 (41)
From (10) we have |v| <|hlp~'. By (21) there exists C = C(y) > such that
QW — B < AW | 2V 2 < CIIW |2 s (42)

If || W]| 1 is sufficiently small, then from Lemma 9 there exists C = C(a,#) > 0
such that
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[KQN (o, W), =AW D] < (| A (o0, W) 2| AW 12
< C(L+a+n+an)(|hl+ lof + [ W[z W | z=ll 21| 2
< C(lAl+ el + 1) IW = | W] 2 (43)

The direct calculation shows that

O, R(a(t),z) = =07 0 ) (44)

( o(z = () {15(2)15(2 — (1)) + 5(2)s85(z — (1))}
From (44) we obtain

sup <2, R(2), )| = [€0:R(0). 3| = V20 1.

Hence if |«| is sufficiently small, we have

1 < |<0,R(x), pD|. (45)

Here we remark that d <1. We denote ¢ =—v26""2p. From (44) we
obtain
|0xR(ct) — @l — O as o — 0. (46)

From (32) and (45), there exists C = C(a,#) > 0 such that
2] < (1+7) " KOuR(2), 9| ' (20) 12
Aallssll MW 1l 2 + 2[R sl 2111 2
+ 20l (1) ol 2| W 2+ V2O A (o, W12}
< Cla+20Al(1+ 77 A+ ) HIW Il + 47 (o, W)l 2]
< (W2 + A7 (e W)l 12), (47)

here p<a, (1+a)"?<d<1 and |h| <h, =4 are used. Hence, by (32),
(43), (47), Q%1 = &% and L1 =0 we get

( |OC/<Q89€R(OC)7—$1W>|

I/\\"

+ )| KL1(0.R (@) = 9), WH| = (1 +1°)[o'| [<0R () — 6, L1W))]

7)o | 102 R () — ¢

< C(W Iz + A7 (o W)l 0R() = 9l 2| L1 | 2
= Cl|0R(2) = oll | W 2| LW 2

%)
(L+ )| KR (@), ZiW | = (1 +n?)|o!'| KL 0:R(e), W
(1
(1+

IA

LW 2

+ ClloR (@) = @l 2 [ (o, W)l 2 1T [ 2 (48)
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here C > 0 depends only on a and 7. Therefore, from (26), (39), (40), (41),
(42), (43) and (48), there exist Cj, Cs, C3 > 0 depending only on a,# > 0 such
that

%(1 +772)%<W,—$1W>
< LW |72 + Clhl [ W] | W || 2
+ (14 ClR(@) = @]l )| (ot W) 2|4 || 12
+ CllOuR(@) = Gll 2| Wl 2 W | 2
< — | LWL + Gl W || | W2
+ C(1+ Cl10R(2) = @l ) (1] + lol + W)W g2 | LW || 2
+ Cl0R@) = @l 2| Wl 2| LW || 12
< -|L@wW|i: + Clhl | 4w |7
+ C(1+ Cll6xR () = ¢l ) (1] + [l + Wl ) | 20 72
+ CllouR(@) = ¢l 2| 27|72
< —| LW + Q| LW
+ Co(1 4 [102R(2) = @ll .2) (|h] + | + <=L, WHP) | 21w |7
+ Cs]| 0 R () = Gl 2| AW |72
From (46), if |#| and 4 > 0 are sufficiently small, we obtain
Cilh| < 1,
4

Co(1 4 (10, R () = @l z2) (] + |ed]) < %7 (49)

. 1
CallauR(3) — .2 < 5.

for any o with || < 4. By (49) there exists Cy = C4(a,n) > 0 such that

1 d 1
5(1 +172)E<W, — LWy < <_Z+ Ci(W, —$1W>1/2) | L W3, (50)

From Lemma 4, if |||, is sufficiently small, then

1 1
<_Z+ C4<W,—££1W>1/2> <-3 (51)
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Hence from Lemma 3, Lemma 4, (50) and (51), there exists Cs = Cs(a,7) > 0
such that

1
%<W, — AWy < Cs(—z-i- Ci W, —$1W>1/2)<W, ~ AW,

On the other hand, by (32) we have
(14 7%)o/ <0, R (), )
= —plwy, S5 + 2771)571<w1,s(;t(;> + 2175’1<wz,s,;t5> + AN (o, W), 0. (52)

From (28), (36) and integration by parts, there exists Cs = Cg(a,7) > 0 such
that

<A (o, W), 03] < Co(L+ )Wl + W5 + W 1[30), (53)
here we remark that

|or|* +r- a2 (r- a.r)?
— g -

2A(r) =

Let |W |1 <1 then from (45), (52) and (53) we have
|| < Cg(1+ D)W,

here C{ >0 depends only on a and #. Therefore, if |h| and |W(?)| are
sufficiently small and |«(?)] < 4 for any 7€ (0,7T), then we have

%(W(t), — LW ()Y < Cs (—%Jr CLW (1), - W(z)>1/2>

% (W (1), — AW (1)), (54)

o' ()] < Cs(1+ D)W (D)l 115

for any 1€ [0, 7). From (51) there exist C; > 0 and Cg > 0 depending only on
a and 7 such that

W (@)l < Cre™ W (O) 1, (55)
for any r€[0,7). Then by (54) and (55), there exists Cy > 0 such that
()] < Joo] + Co(1+A)(1 = e~ )W (0)]| 1, (56)
for any 1€(0,7T). Let W(0) and «(0) satisfy

A A
m7 l2(0)] < -

IW(©0)] < -
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Then we have
()] < 4, (57)

for any 1€ [0, T). Therefore from (55), (56) and (57) we get T = +oc0. Hence
|W(t)||;1 has an exponential decay, and there exists « € R such that

o(t) — « exponentially as ¢ — oo.
Furthermore we replace 4 >0 and W(0) to satisfy
sup [R(A)lin <52 IW(O) i < 585 (58)
1Bl<A o oG

Hence we obtain
[R(ex(2)) + W ()l g < ROl + W (D) 1 < 20,

for any € [0,00). From Lemma 5 there exists ¢ > 0 such that if ||R(«(0))+
W (0)|| ;1 <& then (58) holds. Therefore (i), (ii) and (iii) are satisfied.

ProoF oF THEOREM 2. Let || and ||ro||; be sufficiently small. Then
from (iii) of Lemma 10 we have

lr@lle> < lr@ g < @,

for any 7€ [0,00). Here ¢ > 0 is given by Lemma 5. Hence Lemma 6 holds
for any ¢ € [0,00). Furthermore by (i) and (ii) of Lemma 10 and (30), there
exists o € R such that

r(f) = R(2x)  exponentially as 1 — oo in H!.
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