HirosHIMA MATH. J.
41 (2011), 153-165

Characterizations of BMO by A4, weights and p-convexity

Kwok-Pun Ho

(Received March 12, 2010)
(Revised July 30, 2010)

ABSTRACT. We show that the Lebesgue spaces for defining BMO can be replaced
by p-convex rearrangement-invariant quasi-Banach function spaces associated with
A,-weighted measures.

1. Introduction

In this paper, we apply the notion of p-convexity to study the char-
acterizations of BMO by rearrangement-invariant quasi-Banach function spaces
(r-i.g-B.f.s) on (R" w) where we A.

The notion of p-convexity 1 < p < oo for Banach lattices was introduced
in [2, 4, 10]. For the extension of the notion of p-convexity to quasi-Banach
space, the reader is referred to [3] p. 156.

The notion of p-convexity was used to study the isomorphic properties of
Banach lattices (see [11] Volume II, Section 1.d). In this paper, we find that
BMO can be characterized by an r.-i.q-B.f.s. on (R",w), @ € 4,, if it is p-convex.

On one hand, this paper shows that p-convexity is not only an abstract
notion arising from the Banach space geometry, it also has applications on
the study of some concrete function spaces. On the other hand, this paper
generalizes the characterizations of BMO by replacing the Lebesgue spaces L7,
1 < p < o0, by rearrangement-invariant quasi-Banach function spaces.

We recall some results on the characterizations of BMO. Let % =
{B(x¢,r) : xo € R",r > 0} where B(xo,r) ={xeR":|x—xo| <r}. Let us de-
note the center and the radius of B e # by cp and rp, respectively. Let .#( be
the set of locally integrable function on R”.

Recall that a locally integrable function f belongs to BMO if

I/ = fB)xsll

1/ lgmo = sup ——————— <
Be# XB |L1

where fp = ﬁ [ 5 f(x)dx.
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More generally, BMO can be defined via the L” norm. That is,

BMO:{fe//O : supw< OO}.
Be# ||XB|L17

Thus, the characterization of BMO can be generalized by examining whether
we have the following identification

(1.1)

BMO = {f € .My : sup I/ = fo)2allre < oo}

Be# [V Lr(w)

where we 4,,.

As Lemma 2 shows, one inclusion is easily obtained. One of the main
result of this paper is that the identity (1.1) is true provided that w € 4,, see
Theorem 3.1.

We further extend our result by considering the r.-i.g-B.f:s. Y, on (R", w)
where w e A,,. That is, we investigate whether the characterization

BMO = {fe%o : sup—'l(f_fB)XB”Y‘” < oo}

(1.2)
Be# ”XBHYm

is valid. This result is presented in Theorem 3.5.
For any r.-i.q-B.f.s Y, on (R",w), we introduce BMOy,. It is defined by

I = fotslly, _ OO}_

BMOy, =< f e . sup
XB

Be#

| Y,

Wiite | /llioy, = supyes 220l
”/(B”Ym
To prove the embedding BMO — BMOy,, we establish the John-
Nirenberg inequality for r.-i.q-B.f.s on (R”, w), see Proposition 3.2. In fact,
with that proposition, the embedding

BMO < BMOy, (1.3)

holds for r.-i.q-B.f.s Y, on (R",w), w € A.

The unweighted version of the characterization (1.2) is presented in [7].
For the unweighted case, an expected condition on the Boyd indices of the
rearrangement-invariant Banach function space (r.-i.B.f.s.) X on (R”,|-|) where
|-| is the Lebesgue measure is enough to guarantee the characterization of
BMO by X. However, when Y,, is an r.-i.q-B.f.s. on (R",®) and w € 4,, we
need the notion of p-convexity to establish the reverse inclusion of (1.3).

Moreover, for a general r.-i.q-B.f.s. Y, on (R",w), it is not necessarily a
subset of .#y. That is, fp is not necessarily well defined for any B e % and
feY,.
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In Theorem 3.5, we figure out a condition imposed on an r.-i.q-B.f.s. so
that on one hand, it is a subset of .#;, and on the other hand, the charac-
terization (1.2) is valid. More precisely, we find that if Y,, is p-convex and its
Boyd’s indices satisfying p < py, < gy, < oo, then Y, < .#, and we have the
characterization (1.2).

2. Background materials

We present the notations and terminologies used in this paper.
Even though the A, class is well-known, for completeness, we offer the
definition of A4, weight functions.

DerINITION 2.1. For 1 < p < oo, a locally integrable function w: R" —
[0, 00) is said to be an A, weight if

1 1 oip r/p’
sup —J coxdx)(—J o(x)” dx) < o0
sup (1], o) (1] o0
»

where p’ = A locally integrable function  : R" — [0, 00) is said to be
an A; weight if

1

—J w(y)dy < Co(x), ae. xeB
Bl )

for some constant C > 0. We define 4, = Upzl Ap.

For any we A, and any Lebesgue measurable set E, write w(E) =
Jpo(x)dx. We have the following characterization of A, weight (see [6]
Theorem 9.3.3 (d)).

THEOREM 2.1. A locally integrable function @ : R" — [0, o0) belongs to A,
if and only if there exist an ¢ > 0 and a constant Cy > 0 such that for any Be %
and all measurable subsets E of B, we have

w(E) (IEI)S

— <G| |- (2.1

w8 = “\|B :
We recall the John-Nirenberg inequality in the next theorem (see [6],

Theorem 7.1.6).

THEOREM 2.2. There exist constants Cy, C, > 0 such that for any y > 0 and
any Be %4,

(re B [f(x) — fal > 7} < C exp [— H ﬁ” Bl feBMO\®

where € denotes the set of constant functions.
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We state some background materials for rearrangement-invariant quasi-
Banach function spaces.

Let w € A,,. For any Lebesgue measurable function f, denote its decreas-
ing rearrangement with respect to (R",w) by f*®.

We recall the definition of rearrangement-invariant Banach function space
from [1, Chapter 1, Definitions 1.1 and 1.3, and Chapter 2, Definition 4.1].
For any w € A, let .#, denote the class of w-measurable functions.

DeriNITION 2.2, Let we A,,. A mapping p: M, — [0,00] is said to
be a rearrangement-invariant Banach function norm if for all w-measurable
functions f, g, {f»},—; on R" and a >0, we have

(1) p(f)=0 & [f=0w-ae, plaf)=ap(f), p(f +9) <p(f)+pr(9)
) 0<g<f wae = plg) <p(f)

) 0</ful f w-ae. = p(fa) 1 p(f)
) w(E) <o = plrg) <o
) wE)<w = [ f(x)o(x)dx < Cep(f) for some Cg > 0.

(6) p(f) =p(g) for every pair of equimeasurable functions f, g.

The collection Y,, of all functions f in .#, for which p(|f|) < oo is called a
rearrangement-invariant Banach function space (r.-i.B.f.s.). The norm of Y, is

given by |- [y =p(]-]).

For any r.-i.B.f.s. Y,,, according to the Luxemburg representation theorem
(see [1] Chapter 2, Theorem 4.10), we have a norm py :.Z([0,0)) — [0, 0]
where ([0, 0)) is the set of Lebesgue measurable functions on [0, c0) such
that

/1

v, = P, (/7).

We find that this property is crucial on the definition of Boyd’s indices. On
the other hand, the validity of the Luxemburg representation theorem relies
on the fact that the associated space of an r.-i.B.f:s. is not trivial. But for a
general quasi-Banach function space, the associated space may be trivial. That
is, item (5) of Definition 2.2 does not necessarily hold for a general quasi-
Banach function space. For instance, when 0 < p < 1, the associated space of
L’(R") is equal to {0}.

Therefore, we use the subsequent definition for rearrangement-invariant
quasi-Banach function spaces.

DeriNiTION 2.3, Let we A,,. A quasi-Banach function space Y, on
(R", w) is rearrangement-invariant (r.-i.) if

(1) |-y, is a quasi-norm;

(2) |-y, satisfy item (2)—(4) in Definition 2.2;
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(3) there exists a quasi-norm py :.#([0,0)) — [0, c0] such that

Iy, = Py, (/7).

We combine the definition of Boyd indices for r.-i.B.f:s. from [1], Chapter
3, Definition 5.10 and the definition of Boyd indices for r.-i.q-B.f.s. from [12] to
give the following definition.

DerINITION 2.4.  For each ¢t > 0 and any Lebesgue measurable function f
n [0,00), let E, denote the dilation operator defined by

(Ef)(x) = f(ix),  x=0.

The Boyd indices of an r.-i.q-B.f.s. Y, are the numbers defined by

py, =sup{p:3C >0Vt < L,py (Ef) < Ct7'py ()},

gy, = inf{g:3C >0,Yt > 1,py (E.f) < Cr'Vipy (f)}.

We have 0 < py, < gy, < . For any quasi-Banach function space Y,
let Y! be the associated space (the Kothe dual) of Y, (see [13] p. 35).

LemmA 1. Let Y, be an r.-i.Bfs. on (R",w). For any Lebesgue mea-
surable set E with w(E) < oo, we have

lxelly, |l xel Yy, = w(E). (2.2)

The above lemma is crucial to establish the main result in [7]. The proof
of the above lemma is given in [1] Chapter 2, Theorem 5.2.

The identification BMOy,(,,) = BMO is valid provided that w € 4,. To
apply this result to r.-i.q-B.f.s. on (R” ), we introduce the notion of p-th
power (1/p-convexification). For any 0 < p < o0 and any quasi-Banach func-
tion space Y, on (R",w), define the p-th power of Y,, Y by

feYts|f|""eY,,

and the quasi-norm of Y/ is defined by || f1ly, = || |f|1/”||1,’,m. The reader is
referred to [13] Section 2.2 for a complete discussion on the notion of p-th
power of quasi-Banach function space. For 0 < p <1, Y2 is a Banach space
(see [5] Proposition 1.11) while for 1 < p < co, it is a quasi-Banach space (see
[13] Chapter 2, Proposition 2.22).

As claimed on the introduction, conditions on the Boyd indices are not
sufficient to assert the characterization of BMO by A, weights. We need
another notion from the geometry of quasi-Banach space. Let 0 < p < c0. A
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quasi-Banach function space X is said to be p-convex if there exists a constant

C > 0 such that
n 1/p
(z ﬁl"’)
i=1
for any {f}/_, < X.

Any p-convex quasi-Banach function space is also r-convex provided that
0<r<p (see [3] Lemma 4).

The following proposition gives a procedure to obtain an equivalent norm
for a p-convex quasi-Banach function space. That procedure was already
presented in [4, 10] for Banach lattices.

n 1/p
< C(Z ||fz'||§(>
i=1

X

ProprosITION 2.3. Let | < p < oo. If the quasi-Banach function space Y.,
is p-convex, then

n n
W[p](f):mf{2|f1|yjj|f|3 Z|ﬁ|?ﬁ€Y£71217277n7neN} (23)
i=1 i=1
is a lattice norm and is equivalent to || - ||y».  Hence, Y, is normable and admits
1) = G (117D

as an equivalent lattice norm.

The proof of the above proposition is given by [13, Proposition 2.23].

3. The characterizations of BMO

We present several embedding and characterizations of BMO in this
section. We first pay our attention to the weighted Lebesgue space L”(w),
l<p<oo, wedy.

LemMA 2. Let 0 < p< oo and we A,,. We have
BMO — BMOp, (). (3.1)
ProOOF. According to the John-Nirenberg inequality, we have

1/ lmo

{xeB:1f(x) — fol > 7}l < G exp[—

Applying inequality (2.1), we find that

w({xeB:|f(x) - f5l >7}) < CC? exp {— ”;if:;()}w(B) (3.2)
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for some Cp > 0. Hence, there exists constant C; >0 so that for any
Be A,

1 P
m”(f — /8)28l|70 ()
P s B:|f(x)—
b | ety B 1100 - sol >
& OC p—1 Czé‘y 1P
< GCip| ¥ exp|— dy < G| f l[gmo-
0 1/ im0
Therefore, the embedding (3.1) is valid. O

LemMA 3. If 1 <p< 0 and we A,, then
BMOy,(, — BMO. (3.3)

Proor. When 1 < p, by the Hoélder inequality, we obtain

[, o= sala < ([ 170 - fBI”w(X)dX>l/p (Lw(x)f”/f’dxj/”f

Therefore, the 4, condition concludes that

|B|

JB 1103) = foldx < CI = oltalliro) o i

Similarly, the proof of the embedding (3.3) for p=1 follows from the
definition of A4; weight functions. O

The above lemmas offer a new characterization for BMO by L?(w),
we A,. We will generalize this characterization of BMO to r.-i.q-B.f.s. on the
rest of this section. Even though the characterization of BMO by L”(w) is a
special case of the following results, the proof for the general case is, in fact,
based on this special case.

THEOREM 3.1. Let 1 < p < oo and we A,. We have
BMO = BMOp»(u).
The norms are mutually equivalent.

We now turn our attention to the r.-i.q-B.f.s. on (R",w), w € 4.

We prove the embedding BMO — BMOy, by using the John-Nirenberg
inequality. We have a supporting lemma for establishing the John-Nirenberg
inequality on Y.
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LEMMA 4. Let we€ Ao, If Yy, is an r.-i.g-B.f.s. on (R", w) with qy, < o0,
then for any q > qv,, there exists a constant C > 0 such that for any xo € R" and
R >r >0, we have

lzsunlly, _ o (w(B(Xo,V)) )“‘{ (3.4
a0 lly, —  \@(Blxo, R))

The proof of Lemma 4 follows from the definition of Boyd’s indices and
the facts that

HXB(xo,r) Yo _ pr(X[O,w(B(xo,r))])
Iy, Py, (Lo,0B00. 1))
_ _ o(B(xo,R)
and Ejo o(8(x,, k)] = X[0,0(B(xp,r))) Where = TZru00

We have the following John-Nirenberg inequality for r.-i.q-B.fis..

PropPOSITION 3.2. Let we Ay, If Y, is an r.-i.q-B.f.s. on (R",®) with
qv, < o, then there exist K\,K> >0 such that for any y >0 and any Be A,

] lslly.. W e BMO\G.

< K exp {—
Yo 1/ 8ao

I ixe -]
ProOF. As we A, =) _,., 4y, we have Cy, 6> 0 (see [6] Corollary
9.3.4 and Proposition 9.1.5.(9)) such that for any 4> 1,

(B(x0, ir)) < C42’w(B(xo,7)), Vxo € R".

It suffices to consider the‘case when y is large, so, without loss of generality,
we assume that (C4C0)1/"C18/5 exp[ Coey 1

3l /Tsmo

According to the John-Nirenberg inequality for w (see (3.2)), we find that

o({xeB:|f(x)— f5| > 7}) < o(B)
where Be % with

5 Chre
cp=cpg and  ry=(CCo)'PCI exp {_ﬁ] "
BM

As Y, is r.-i. with respect to w (see [1] Chapter 2, Definition 5.1 and
Corollary 5.3), we assert that

%xvemiroo- sy, < lxslly, -

In view of gy, < co, (2.1) and Lemma 4 guarantee that for any ¢ > gy,

KQ’})
||X{x€B:\f(x)—fB\>y} Y, < K] exp |:— :| ||XBH Y,
1/ lBmo
Where Kl — (C4C0)lln/q(5cli132/q§ and K2 _ Czq’glz . D
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THEOREM 3.3. Let w € A,. Suppose that Yy, is an r.-i.g-B.f.s. on (R",w)
with gy, < co. Then, we have the embedding
BMO — BMOy,. (3.5)

Proof. Let x be the Aoki-Rolewicz index for the quasi-Banach function
space Y,, (see [9] Theorem 1.3). That is, x is a number such that || - ||}, is sub-
additive on Y,. For any je N, Proposition 3.2 gives

X KKQZj -
Kixe2ic 10—l <2y lly, < K exp {_ ] 125115,
1/ lgmo

because gy, < co. Multiplying 2U*D% on both sides and summing over j, we
find that

I/ = fB)xs Y, (3.6)

for some constant C > 0. More precisely, we have the above inequality
because

i K2/ © o K ]
22/’» exp {— i } < CJ sl exp {— H} ds < C||fllgmo
jeN ”fHBMO 0 ”f”BMO

for some constant C > 0 independent of /' € BMO and Be 4. The embedding
(3.5) follows from inequality (3.6). O

v, < Cllflmollxs

The condition gy, < oo is the best condition for the embedding (3.5) in
term of Boyd’s indices. For instance, when Y, = L™, the upper Boyd indices
of Y, is infinity. We see that the embedding (3.5) does not hold because
BMO,» = L* (see [7]).

COROLLARY 34. Let weAy. If Y, is an r.-iq-B.fs. on (R" o) with
qyv, < oo, then for any f € BMO and for all u < Hflll{iz:m (K, is given in Proposi-
tion 3.2), we have '

lexplulf = fsllxslly, < C(u, Nllxslly,,

Jor some constant C(u, f) independent of B e 4.

To obtain the embedding of BMOy, — BMO, we encounter a technical
obstacle. Any p-convex r.-i.q-B.f.s. Y, on (R",®) possesses two quasi-norms.
The first one |[-[|y is not a norm but it is rearrangement-invariant. The
second one #(-) is a norm but it is not necessarily rearrangement-invariant.

On one hand, the merit of having an rearrangement-invariant quasi-norm
is that the Boyd type interpolation theorem can be applied to Y, (see [12]).
On the other hand, the advantage of possessing a norm is that the associate
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space (Kothe dual) of Y,, is non-trivial. Even though Y,, does not necessarily
have an rearrangement-invariant norm, the following lemma shows how to
incorporate these two separated properties to obtain a generalization of Lemma
1 for Y,.

LEMMA 5. Let w € Ao,. Suppose that Yy, is an r.-i.g-B.f.s. on (R", w) with
Il < py, <qy, <o and Y, is 1-convex. Then, the associate space of Y, is
nontrivial and we have two constants Dy, D, > 0 such that for any Lebesgue
measurable set E with w(E) < o0,

Dio(E) < xglly, lxelly, < D2oo(E). (3.7)

ProOF. As Y, is l-convex, it possesses an equivalent lattice norm # and,
hence, Y, # {0}. Denote the associate norm for » by #'. Thus, #'(:) is an
equivalent norm for || - ||,,. Furthermore, by [1], Chapter 1, Theorem 2.4, we
have a constant C > 0 so that

J N g)lo(x)dx <n(f)n'(9) < Cllf Iy, llglly,

for any feY, and ge Y. The first inequality in (3.7) follows by taking

f=9=xe
To establish the second inequality of (3.7), we consider the linear operator

Peth) = g |, S o)

where E is a Lebesgue measurable set with w(E) < co. For any 1 < p < oo,
Pg is uniformly bounded on L?(w). More precisely, |Pgllpw)—rr@w) = 1-
Thus, for any 1 < p,q < oo and E, Pg is of joint weak type (p, p;q,q) (see [1],
Chapter 4, Theorem 4.11). According to Theorem 3 of [12] or Theorem 4.4
of [8], Pg is bounded on Y, with operator norm independent of E. That is,
there is a constant C > 0 such that for any Lebesgue measurable set £ and any

f € Y(/)s

1
o(E) ‘ J, 70| el =12y, = €Uy
Then,
lxelly, = sup{H f(X)ao(x)dx|: | flly, < 1} < Cﬂ. 0
g lxelly,

We now present the main results of this paper. Theorems 3.5 and 3.6 give
the characterizations of BMO by 4, weighted r.-i.q-B.f.s. for p > 1 and p =1,
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respectively. To obtain Theorem 3.5, we use the openness property for A4,
weight functions when p > 1 (see [6] Corollary 9.2.6). That is,

4,= | 4. (3.8)
l<r<p
THEOREM 3.5. Let 1 <p< oo and we A, Suppose that Y, is an
r-i.g-B.fs. on (R",w) with p < py, <qy, < o and Y, is p-convex. Then,
Y, € M,

BMOy, = BMO

and || - || gyo,, is an equivalent norm of || - | gyso-
w

Proor. We first show that Y, = .#,. Using property (3.8), we see that

w € A, for some r slightly smaller than p. By using Lemma 4 of [3], Y,, is

r-convex. Therefore, 7, is well-defined. Denote the associate norm of 7 by
/

M- From Lemma 5, for any B € %, we have yz3€ Y,NY,. Forany f €Y,
the Holder inequality ensures that

s = 157 |, L

< (], ool ‘w<x>dx>”’ (, w_,.,/,(wx)u,,,

where ' is the conjugate of r. Using the Holder inequality for 1y and the
definition of A,, we obtain

o P 1 I r !
71y < Clng U1 ) BT S Cn(f) gy (xs)" o8
PYo

As Y] is L-convex and the lower Boyd index of Y satisfies pyr === > £> 1,
we are allowed to apply Lemma 5 to || -[[y,. Moreover, 7, 7,y and n[’r] are
equivalent to |- ||y, || [ly, and [|-[|y,y, respectively. Thus,

0B\ 1
<|| ||y,> oy = Wl

That is, fp is well-defined and Y, < .#,.
It remains to prove the embedding BMOy, 6 — BMO. Theorem 3.1
ensures that BMOy(,) = BMO. Thus, for any /€ BMOy,, we obtain

< 00.

g <

Y,

XB ”Y

j|f<> Fol o(x)dx < my(lf — fol 2oty (1)



164 Kwok-Pun Ho

Similarly, as Y is ;-convex and py: :p% > €> I, applying Lemma 5 to
|- Ily, again and using the fact that #;; and [, are equivalent to |- ||y, and

[ - ll¢y;y, respectively, we obtain

4

r

S = Jislen)) o(B)
5]y,

I/ — fBlxs

8llY,

[ 1) = salota <
B

¥, @(B)

w

=C

where the constant C > 0 is independent of Be 4 and f € BMOy,. Hence,
the inequality

I/ = f8)xsll L) < M = Folrslly,
XBHL"((u) ZBlly,
is valid and the embedding BMOy, — BMO follows apparently. O

Using Lemma 1 instead of Lemma 5 when w € 41, we have the following
result.

THEOREM 3.6. Let we A;. If Y, is an r.-i.Bfs. on (R",w), then
BMOy, = BMO

and || - | gyo,, s an equivalent norm of || - || gyso-
w
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