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Abstract. We show that the Lebesgue spaces for defining BMO can be replaced

by p-convex rearrangement-invariant quasi-Banach function spaces associated with

Ap-weighted measures.

1. Introduction

In this paper, we apply the notion of p-convexity to study the char-

acterizations of BMO by rearrangement-invariant quasi-Banach function spaces

(r.-i.q-B.f.s) on ðRn;oÞ where o A Ay.

The notion of p-convexity 1a pay for Banach lattices was introduced

in [2, 4, 10]. For the extension of the notion of p-convexity to quasi-Banach

space, the reader is referred to [3] p. 156.

The notion of p-convexity was used to study the isomorphic properties of

Banach lattices (see [11] Volume II, Section 1.d). In this paper, we find that

BMO can be characterized by an r.-i.q-B.f.s. on ðRn;oÞ, o A Ap, if it is p-convex.

On one hand, this paper shows that p-convexity is not only an abstract

notion arising from the Banach space geometry, it also has applications on

the study of some concrete function spaces. On the other hand, this paper

generalizes the characterizations of BMO by replacing the Lebesgue spaces Lp,

1a p < y, by rearrangement-invariant quasi-Banach function spaces.

We recall some results on the characterizations of BMO. Let B ¼
fBðx0; rÞ : x0 A Rn; r > 0g where Bðx0; rÞ ¼ fx A Rn : jx� x0j < rg. Let us de-

note the center and the radius of B A B by cB and rB, respectively. Let M0 be

the set of locally integrable function on Rn.

Recall that a locally integrable function f belongs to BMO if

k f kBMO ¼ sup
B AB

kð f � fBÞwBkL1

kwBkL1

< y

where fB ¼ 1
jBj
Ð
B
f ðxÞdx.

2010 Mathematics Subject Classification. 42B35, 46B20, 46E30.

Key words and phrases. Bounded Mean Oscillation, Ap-weight, p-convexity, rearrangement-

invariant quasi-Banach function spaces.



More generally, BMO can be defined via the Lp norm. That is,

BMO ¼ f A M0 : sup
B AB

kð f � fBÞwBkLp

kwBkLp

< y

� �
:

Thus, the characterization of BMO can be generalized by examining whether

we have the following identification

BMO ¼ f A M0 : sup
B AB

kð f � fBÞwBkLpðoÞ
kwBkLpðoÞ

< y

( )
ð1:1Þ

where o A Ay.

As Lemma 2 shows, one inclusion is easily obtained. One of the main

result of this paper is that the identity (1.1) is true provided that o A Ap, see

Theorem 3.1.

We further extend our result by considering the r.-i.q-B.f.s. Yo on ðRn;oÞ
where o A Ay. That is, we investigate whether the characterization

BMO ¼ f A M0 : sup
B AB

kð f � fBÞwBkYo

kwBkYo

< y

( )
ð1:2Þ

is valid. This result is presented in Theorem 3.5.

For any r.-i.q-B.f.s Yo on ðRn;oÞ, we introduce BMOYo
. It is defined by

BMOYo
¼ f A M0 : sup

B AB

kð f � fBÞwBkYo

kwBkYo

< y

( )
:

Write k f kBMOYo
¼ supB AB

kð f � fBÞwBkYo

kwBkYo

.

To prove the embedding BMO ,! BMOYo
, we establish the John-

Nirenberg inequality for r.-i.q-B.f.s on ðRn;oÞ, see Proposition 3.2. In fact,

with that proposition, the embedding

BMO ,! BMOYo
ð1:3Þ

holds for r.-i.q-B.f.s Yo on ðRn;oÞ, o A Ay.

The unweighted version of the characterization (1.2) is presented in [7].

For the unweighted case, an expected condition on the Boyd indices of the

rearrangement-invariant Banach function space (r.-i.B.f.s.) X on ðRn; j � jÞ where
j � j is the Lebesgue measure is enough to guarantee the characterization of

BMO by X . However, when Yo is an r.-i.q-B.f.s. on ðRn;oÞ and o A Ap, we

need the notion of p-convexity to establish the reverse inclusion of (1.3).

Moreover, for a general r.-i.q-B.f.s. Yo on ðRn;oÞ, it is not necessarily a

subset of M0. That is, fB is not necessarily well defined for any B A B and

f A Yo.

154 Kwok-Pun Ho



In Theorem 3.5, we figure out a condition imposed on an r.-i.q-B.f.s. so

that on one hand, it is a subset of M0 and on the other hand, the charac-

terization (1.2) is valid. More precisely, we find that if Yo is p-convex and its

Boyd’s indices satisfying pa pYo
a qYo

< y, then Yo HM0 and we have the

characterization (1.2).

2. Background materials

We present the notations and terminologies used in this paper.

Even though the Ap class is well-known, for completeness, we o¤er the

definition of Ap weight functions.

Definition 2.1. For 1 < p < y, a locally integrable function o : Rn !
½0;yÞ is said to be an Ap weight if

sup
B AB

1

jBj

ð
B

oðxÞdx
� �

1

jBj

ð
B

oðxÞ�p 0=p
dx

� �p=p 0

< y

where p 0 ¼ p

p�1 . A locally integrable function o : Rn ! ½0;yÞ is said to be

an A1 weight if

1

jBj

ð
B

oðyÞdyaCoðxÞ; a:e: x A B

for some constant C > 0. We define Ay ¼ 6
pb1

Ap.

For any o A Ay and any Lebesgue measurable set E, write oðEÞ ¼Ð
E
oðxÞdx. We have the following characterization of Ay weight (see [6]

Theorem 9.3.3 (d)).

Theorem 2.1. A locally integrable function o : Rn ! ½0;yÞ belongs to Ay

if and only if there exist an e > 0 and a constant C0 > 0 such that for any B A B

and all measurable subsets E of B, we have

oðEÞ
oðBÞ aC0

jEj
jBj

� �e
: ð2:1Þ

We recall the John-Nirenberg inequality in the next theorem (see [6],

Theorem 7.1.6).

Theorem 2.2. There exist constants C1;C2 > 0 such that for any g > 0 and

any B A B,

jfx A B : j f ðxÞ � fBj > ggjaC1 exp � C2g

k f kBMO

� �
jBj; f A BMOnC

where C denotes the set of constant functions.
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We state some background materials for rearrangement-invariant quasi-

Banach function spaces.

Let o A Ay. For any Lebesgue measurable function f , denote its decreas-

ing rearrangement with respect to ðRn;oÞ by f �;o.

We recall the definition of rearrangement-invariant Banach function space

from [1, Chapter 1, Definitions 1.1 and 1.3, and Chapter 2, Definition 4.1].

For any o A Ay, let Mo denote the class of o-measurable functions.

Definition 2.2. Let o A Ay. A mapping r : Mo ! ½0;y� is said to

be a rearrangement-invariant Banach function norm if for all o-measurable

functions f , g, f fngyn¼1 on Rn and a > 0, we have

(1) rð f Þ ¼ 0 , f ¼ 0 o-a:e:, rðaf Þ ¼ arð f Þ, rð f þ gÞa rð f Þ þ rðgÞ
(2) 0a ga f o-a:e: ) rðgÞa rð f Þ
(3) 0a fn " f o-a:e: ) rð fnÞ " rð f Þ
(4) oðEÞ < y ) rðwEÞ < y
(5) oðEÞ < y )

Ð
E
f ðxÞoðxÞdxaCErð f Þ for some CE > 0.

(6) rð f Þ ¼ rðgÞ for every pair of equimeasurable functions f , g.

The collection Yo of all functions f in Mo for which rðj f jÞ < y is called a

rearrangement-invariant Banach function space (r.-i.B.f.s.). The norm of Yo is

given by k � kYo
¼ rðj � jÞ.

For any r.-i.B.f.s. Yo, according to the Luxemburg representation theorem

(see [1] Chapter 2, Theorem 4.10), we have a norm rYo
: Mð½0;yÞÞ ! ½0;y�

where Mð½0;yÞÞ is the set of Lebesgue measurable functions on ½0;yÞ such

that

k f kYo
¼ rYo

ð f �;oÞ:

We find that this property is crucial on the definition of Boyd’s indices. On

the other hand, the validity of the Luxemburg representation theorem relies

on the fact that the associated space of an r.-i.B.f.s. is not trivial. But for a

general quasi-Banach function space, the associated space may be trivial. That

is, item (5) of Definition 2.2 does not necessarily hold for a general quasi-

Banach function space. For instance, when 0 < p < 1, the associated space of

LpðRnÞ is equal to f0g.
Therefore, we use the subsequent definition for rearrangement-invariant

quasi-Banach function spaces.

Definition 2.3. Let o A Ay. A quasi-Banach function space Yo on

ðRn;oÞ is rearrangement-invariant (r.-i.) if

(1) k � kYo
is a quasi-norm;

(2) k � kYo
satisfy item (2)–(4) in Definition 2.2;
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(3) there exists a quasi-norm rYo
: Mð½0;yÞÞ ! ½0;y� such that

k f kYo
¼ rYo

ð f �;oÞ:

We combine the definition of Boyd indices for r.-i.B.f.s. from [1], Chapter

3, Definition 5.10 and the definition of Boyd indices for r.-i.q-B.f.s. from [12] to

give the following definition.

Definition 2.4. For each t > 0 and any Lebesgue measurable function f

on ½0;yÞ, let Et denote the dilation operator defined by

ðEt f ÞðxÞ ¼ f ðtxÞ; xb 0:

The Boyd indices of an r.-i.q-B.f.s. Yo are the numbers defined by

pYo
¼ supfp : bC > 0; Et < 1; rYo

ðEt f ÞaCt�1=prYo
ð f Þg;

qYo
¼ inffq : bC > 0; Et > 1; rYo

ðEt f ÞaCt�1=qrYo
ð f Þg:

We have 0a pYo
a qYo

ay. For any quasi-Banach function space Yo,

let Y 0
o be the associated space (the Köthe dual) of Yo (see [13] p. 35).

Lemma 1. Let Yo be an r.-i.B.f.s. on ðRn;oÞ. For any Lebesgue mea-

surable set E with oðEÞ < y, we have

kwEkYo
kwEkY 0

o
¼ oðEÞ: ð2:2Þ

The above lemma is crucial to establish the main result in [7]. The proof

of the above lemma is given in [1] Chapter 2, Theorem 5.2.

The identification BMOLpðoÞ ¼ BMO is valid provided that o A Ap. To

apply this result to r.-i.q-B.f.s. on ðRn;oÞ, we introduce the notion of p-th

power (1=p-convexification). For any 0 < p < y and any quasi-Banach func-

tion space Yo on ðRn;oÞ, define the p-th power of Yo, Y p
o by

f A Y p
o , j f j1=p A Yo;

and the quasi-norm of Y p
o is defined by k f kY p

o
¼ k j f j1=pkp

Yo
. The reader is

referred to [13] Section 2.2 for a complete discussion on the notion of p-th

power of quasi-Banach function space. For 0 < p < 1, Y p
o is a Banach space

(see [5] Proposition 1.11) while for 1 < p < y, it is a quasi-Banach space (see

[13] Chapter 2, Proposition 2.22).

As claimed on the introduction, conditions on the Boyd indices are not

su‰cient to assert the characterization of BMO by Ap weights. We need

another notion from the geometry of quasi-Banach space. Let 0 < p < y. A
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quasi-Banach function space X is said to be p-convex if there exists a constant

C > 0 such that

Xn
i¼1

j fijp
 !1=p������

������
X

aC
Xn
i¼1

k fikp
X

 !1=p

for any f fign
i¼1 HX .

Any p-convex quasi-Banach function space is also r-convex provided that

0 < ra p (see [3] Lemma 4).

The following proposition gives a procedure to obtain an equivalent norm

for a p-convex quasi-Banach function space. That procedure was already

presented in [4, 10] for Banach lattices.

Proposition 2.3. Let 1a p < y. If the quasi-Banach function space Yo

is p-convex, then

h½p�ð f Þ ¼ inf
Xn
i¼1

k fikY p
o
: j f ja

Xn
i¼1

j fij; fi A Y p
o ; i ¼ 1; 2; . . . ; n; n A N

( )
ð2:3Þ

is a lattice norm and is equivalent to k � kY p
o
. Hence, Yo is normable and admits

hð f Þ ¼ ðh½p�ðj f j
pÞÞ1=p

as an equivalent lattice norm.

The proof of the above proposition is given by [13, Proposition 2.23].

3. The characterizations of BMO

We present several embedding and characterizations of BMO in this

section. We first pay our attention to the weighted Lebesgue space LpðoÞ,
1a p < y, o A Ay.

Lemma 2. Let 0 < p < y and o A Ay. We have

BMO ,! BMOLpðoÞ: ð3:1Þ

Proof. According to the John-Nirenberg inequality, we have

jfx A B : j f ðxÞ � fBj > ggjaC1 exp � C2g

k f kBMO

� �
jBj:

Applying inequality (2.1), we find that

oðfx A B : j f ðxÞ � fBj > ggÞaC0C
e
1 exp � C2eg

k f kBMO

� �
oðBÞ ð3:2Þ
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for some C0 > 0. Hence, there exists constant C3 > 0 so that for any

B A B,

1

oðBÞ kð f � fBÞwBk
p

LpðoÞ

¼ p

oðBÞ

ðy
0

gp�1oðfx A B : j f ðxÞ � fBj > ggÞdg

aC0C
e
1 p

ðy
0

gp�1 exp � C2eg

k f kBMO

� �
dgaC3k f kp

BMO:

Therefore, the embedding (3.1) is valid. r

Lemma 3. If 1a p < y and o A Ap, then

BMOLpðoÞ ,! BMO: ð3:3Þ

Proof. When 1 < p, by the Hölder inequality, we obtain

ð
B

j f ðxÞ � fBjdxa
ð
B

j f ðxÞ � fBjpoðxÞdx
� �1=p ð

B

oðxÞ�p 0=p
dx

� �1=p 0

:

Therefore, the Ap condition concludes thatð
B

j f ðxÞ � fBjdxaCkð f � fBÞwBkLpðoÞ
jBj

oðBÞ1=p
:

Similarly, the proof of the embedding (3.3) for p ¼ 1 follows from the

definition of A1 weight functions. r

The above lemmas o¤er a new characterization for BMO by LpðoÞ,
o A Ap. We will generalize this characterization of BMO to r.-i.q-B.f.s. on the

rest of this section. Even though the characterization of BMO by LpðoÞ is a

special case of the following results, the proof for the general case is, in fact,

based on this special case.

Theorem 3.1. Let 1a p < y and o A Ap. We have

BMO ¼ BMOLpðoÞ:

The norms are mutually equivalent.

We now turn our attention to the r.-i.q-B.f.s. on ðRn;oÞ, o A Ay.

We prove the embedding BMO ,! BMOYo
by using the John-Nirenberg

inequality. We have a supporting lemma for establishing the John-Nirenberg

inequality on Yo.
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Lemma 4. Let o A Ay. If Yo is an r.-i.q-B.f.s. on ðRn;oÞ with qYo
< y,

then for any q > qYo
, there exists a constant C > 0 such that for any x0 A Rn and

R > r > 0, we have

kwBðx0; rÞkYo

kwBðx0;RÞkYo

aC
oðBðx0; rÞÞ
oðBðx0;RÞÞ

� �1=q
: ð3:4Þ

The proof of Lemma 4 follows from the definition of Boyd’s indices and

the facts that

kwBðx0; rÞkYo

kwBðx0;RÞkYo

¼
rYo

ðw½0;oðBðx0; rÞÞ�Þ
rYo

ðw½0;oðBðx0;RÞÞ�Þ

and Etw½0;oðBðx0;RÞÞ� ¼ w½0;oðBðx0; rÞÞ� where t ¼ oðBðx0;RÞÞ
oðBðx0; rÞÞ .

We have the following John-Nirenberg inequality for r.-i.q-B.f.s..

Proposition 3.2. Let o A Ay. If Yo is an r.-i.q-B.f.s. on ðRn;oÞ with

qYo
< y, then there exist K1;K2 > 0 such that for any g > 0 and any B A B,

kwfx AB:j f ðxÞ� fBj>ggkYo
aK1 exp � K2g

k f kBMO

� �
kwBkYo

; Ef A BMOnC:

Proof. As o A Ay ¼ 6
1ap<y Ap, we have C4, d > 0 (see [6] Corollary

9.3.4 and Proposition 9.1.5.(9)) such that for any l > 1,

oðBðx0; lrÞÞaC4l
doðBðx0; rÞÞ; Ex0 A Rn:

It su‰ces to consider the case when g is large, so, without loss of generality,

we assume that ðC4C0Þ1=dC e=d
1 exp

h
� C2eg

dk f kBMO

i
< 1.

According to the John-Nirenberg inequality for o (see (3.2)), we find that

oðfx A B : j f ðxÞ � fBj > ggÞaoð ~BBÞ

where ~BB A B with

c ~BB ¼ cB and r ~BB ¼ ðC4C0Þ1=dC e=d
1 exp � C2eg

dk f kBMO

� �
rB:

As Yo is r.-i. with respect to o (see [1] Chapter 2, Definition 5.1 and

Corollary 5.3), we assert that

kwfx AB:j f ðxÞ� fBj>ggkYo
a kw ~BBkYo

:

In view of qYo
< y, (2.1) and Lemma 4 guarantee that for any q > qYo

kwfx AB:j f ðxÞ� fBj>ggkYo
aK1 exp � K2g

k f kBMO

� �
kwBkYo

where K1 ¼ ðC4C0Þne=qdCne2=qd
1 and K2 ¼ C2ne

2

qd
. r
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Theorem 3.3. Let o A Ay. Suppose that Yo is an r.-i.q-B.f.s. on ðRn;oÞ
with qYo

< y. Then, we have the embedding

BMO ,! BMOYo
: ð3:5Þ

Proof. Let k be the Aoki-Rolewicz index for the quasi-Banach function

space Yo (see [9] Theorem 1.3). That is, k is a number such that k � kk
Yo

is sub-

additive on Yo. For any j A N, Proposition 3.2 gives

kwfx AB:2 j<j f ðxÞ� fBja2 jþ1gk
k
Yo

aK k
1 exp � kK22

j

k f kBMO

� �
kwBk

k
Yo

because qYo
< y. Multiplying 2ð jþ1Þk on both sides and summing over j, we

find that

kð f � fBÞwBk
k
Yo

aCk f kk
BMOkwBk

k
Yo

ð3:6Þ

for some constant C > 0. More precisely, we have the above inequality

because

X
j AN

2 jk exp � kK22
j

k f kBMO

� �
aC

ðy
0

sk�1 exp � kK2s

k f kBMO

� �
dsaCk f kk

BMO

for some constant C > 0 independent of f A BMO and B A B. The embedding

(3.5) follows from inequality (3.6). r

The condition qYo
< y is the best condition for the embedding (3.5) in

term of Boyd’s indices. For instance, when Yo ¼ Ly, the upper Boyd indices

of Yo is infinity. We see that the embedding (3.5) does not hold because

BMOLy ¼ Ly (see [7]).

Corollary 3.4. Let o A Ay. If Yo is an r.-i.q-B.f.s. on ðRn;oÞ with

qYo
< y, then for any f A BMO and for all m <

K2

k f kBMO

(K2 is given in Proposi-

tion 3.2), we have

kexp½mj f � fBj�wBkYo
aCðm; f ÞkwBkYo

;

for some constant Cðm; f Þ independent of B A B.

To obtain the embedding of BMOYo
,! BMO, we encounter a technical

obstacle. Any p-convex r.-i.q-B.f.s. Yo on ðRn;oÞ possesses two quasi-norms.

The first one k � kYo
is not a norm but it is rearrangement-invariant. The

second one hð�Þ is a norm but it is not necessarily rearrangement-invariant.

On one hand, the merit of having an rearrangement-invariant quasi-norm

is that the Boyd type interpolation theorem can be applied to Yo (see [12]).

On the other hand, the advantage of possessing a norm is that the associate
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space (Köthe dual) of Yo is non-trivial. Even though Yo does not necessarily

have an rearrangement-invariant norm, the following lemma shows how to

incorporate these two separated properties to obtain a generalization of Lemma

1 for Yo.

Lemma 5. Let o A Ay. Suppose that Yo is an r.-i.q-B.f.s. on ðRn;oÞ with
1 < pYo

a qYo
< y and Yo is 1-convex. Then, the associate space of Yo is

nontrivial and we have two constants D1;D2 > 0 such that for any Lebesgue

measurable set E with oðEÞ < y,

D1oðEÞa kwEkYo
kwEkY 0

o
aD2oðEÞ: ð3:7Þ

Proof. As Yo is 1-convex, it possesses an equivalent lattice norm h and,

hence, Y 0
o 0 f0g. Denote the associate norm for h by h 0. Thus, h 0ð�Þ is an

equivalent norm for k � kY 0
o
. Furthermore, by [1], Chapter 1, Theorem 2.4, we

have a constant C > 0 so thatð
R n

j f ðxÞgðxÞjoðxÞdxa hð f Þh 0ðgÞaCk f kYo
kgkY 0

o

for any f A Yo and g A Y 0
o. The first inequality in (3.7) follows by taking

f ¼ g ¼ wE .

To establish the second inequality of (3.7), we consider the linear operator

PEð f Þ ¼
1

oðEÞ

ð
E

f ðxÞoðxÞdx
� �

wE

where E is a Lebesgue measurable set with oðEÞ < y. For any 1a pay,

PE is uniformly bounded on LpðoÞ. More precisely, kPEkLpðoÞ!LpðoÞ ¼ 1.

Thus, for any 1a p; qay and E, PE is of joint weak type ðp; p; q; qÞ (see [1],

Chapter 4, Theorem 4.11). According to Theorem 3 of [12] or Theorem 4.4

of [8], PE is bounded on Yo with operator norm independent of E. That is,

there is a constant C > 0 such that for any Lebesgue measurable set E and any

f A Yo,

1

oðEÞ

ð
E

f ðxÞoðxÞdx
����

����kwEkYo
¼ kPEð f ÞkYo

aCk f kYo
:

Then,

kwEkY 0
o
¼ sup

ð
E

f ðxÞoðxÞdx
����

���� : k f kYo
a 1

� �
aC

oðEÞ
kwEkYo

: r

We now present the main results of this paper. Theorems 3.5 and 3.6 give

the characterizations of BMO by Ap weighted r.-i.q-B.f.s. for p > 1 and p ¼ 1,
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respectively. To obtain Theorem 3.5, we use the openness property for Ap

weight functions when p > 1 (see [6] Corollary 9.2.6). That is,

Ap ¼ 6
1<r<p

Ar: ð3:8Þ

Theorem 3.5. Let 1 < p < y and o A Ap. Suppose that Yo is an

r.-i.q-B.f.s. on ðRn;oÞ with pa pYo
a qYo

< y and Yo is p-convex. Then,

Yo JM0,

BMOYo
¼ BMO

and k � kBMOYo
is an equivalent norm of k � kBMO.

Proof. We first show that Yo JM0. Using property (3.8), we see that

o A Ar for some r slightly smaller than p. By using Lemma 4 of [3], Yo is

r-convex. Therefore, h½r� is well-defined. Denote the associate norm of h½r� by

h 0
½r�. From Lemma 5, for any B A B, we have wB A Yo VY 0

o. For any f A Yo,

the Hölder inequality ensures that

j f jB ¼ 1

jBj

ð
B

j f ðxÞjdx

a
1

jBj

ð
B

j f ðxÞjroðxÞdx
� �1=r ð

B

o�r 0=rðxÞdx
� �1=r 0

where r 0 is the conjugate of r. Using the Hölder inequality for h½r� and the

definition of Ar, we obtain

j f jB aCðh½r�ðj f j
rÞh 0

½r�ðwBÞÞ
1=r 1

oðBÞ1=r
aChð f Þðh 0

½r�ðwBÞÞ
1=r 1

oðBÞ1=r
:

As Y r
o is

p

r
-convex and the lower Boyd index of Y r

o satisfies pY r
o
¼ pYo

r
b

p

r
> 1,

we are allowed to apply Lemma 5 to k � kY r
o
. Moreover, h, h½r� and h 0

½r� are

equivalent to k � kYo
, k � kY r

o
and k � kðY r

oÞ
0 , respectively. Thus,

j f jB aCk f kYo

oðBÞ
kwBkY r

o

 !1=r
1

oðBÞ1=r
aCk f kYo

1

kwBkYo

< y:

That is, fB is well-defined and Yo JM0.

It remains to prove the embedding BMOYo
,! BMO. Theorem 3.1

ensures that BMOLrðoÞ ¼ BMO. Thus, for any f A BMOYo
, we obtain

ð
B

j f ðxÞ � fBjroðxÞdxa h½r�ðj f � fBjrwBÞh 0
½r�ðwBÞ:
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Similarly, as Y r
o is

p

r
-convex and pY r

o
¼ pYo

r
b

p

r
> 1, applying Lemma 5 to

k � kY r
o
again and using the fact that h½r� and h 0

½r� are equivalent to k � kY r
o
and

k � kðY r
oÞ

0 , respectively, we obtain

ð
B

j f ðxÞ � fBjroðxÞdxaC
ðhðj f � fBjwBÞÞ

roðBÞ
kwBkY r

o

¼ C
k j f � fBjwBk

r
Yo
oðBÞ

kwBk
r
Yo

where the constant C > 0 is independent of B A B and f A BMOYo
. Hence,

the inequality

kð f � fBÞwBkLrðoÞ
kwBkLrðoÞ

aC
k j f � fBjwBkYo

kwBkYo

is valid and the embedding BMOYo
,! BMO follows apparently. r

Using Lemma 1 instead of Lemma 5 when o A A1, we have the following

result.

Theorem 3.6. Let o A A1. If Yo is an r.-i.B.f.s. on ðRn;oÞ, then

BMOYo
¼ BMO

and k � kBMOYo
is an equivalent norm of k � kBMO.
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