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ABSTRACT. The existence of slowly and regularly varying solutions in the sense of
Karamata implying nonoscillation is proved for a class of second order nonlinear
retarded functional differential equations of Thomas-Fermi type. A motivation for
such study is the extensively developed theory offering a number of properties of
regularly and slowly varying functions ([2])—consequently of such solutions of differ-
ential equations. As an illustration, the precise asymptotic behaviour for ¢ — oo of the
slowly varying solutions for a subclass of considered equations is presented.

1. Introduction

Theory of regular variation in the sense of Karamata has proved to be a
powerful tool for the asymptotic analysis (e.g. nonoscillation, precise asymp-
totic behaviour), of solutions of second order linear and nonlinear ordinary
differential equations, see [7]. For the reader’s convenience we recall that a
measurable function L : [0, 0) — (0, o0) is said to be slowly varying if it satisfies

L(At)/L(t) — 1, as t — oo for Vi > 0.

Furthermore, the function
f(5) =t"L(1), for peR

is said to be regularly varying of index p. The totality of these functions is
denoted by RV(p), and in particular SV (= RV(0)) stands for the totality of
slowly varying functions.

One of the most important properties of slowly varying functions is the
following representation theorem (see e.g. [2, Ch. 1]).

ProposITION 1.1.  L(¢) € SV if and only if L(t) is expressed in the form

L(t) = () exp{Jté(s)ds/s}, >, (1.1)

a
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for some a >0 and some measurable functions c(t) and 6(t) such that
c(t) = coe(0,00) and o(t) — 0 as t— oo.

If in particular c(f) = ¢o, then L(¢) is called a normalized slowly varying
function. The order of growth or decay of L(#) is severely limited in the sense
that, for any ¢ > 0,

t°L(t) > oo and ¢ °L(t) — 0 as t — oo. (1.2)

Throughout the paper write ds/s as shorthand for s~! ds.

We quote here the following result which is, on one hand, a typical one on
the subject and on the other one, along with the Schauder-Tychonoff fixed
point theorem, the main means for proving the results of this paper, [7, Th. 1.1].

ProprosITION 1.2.  Consider the linear ordinary differential equation

*(1) = q(0)x(0), (A)

where q:[a,0) — (0,00) is continuous and integrable in [a,o0). Then there
hold:

(a) Equation (A) possesses a fundamental set of solutions consisting of a
decreasing normalized slowly varying solution xy(t) = Lo(t) and an increasing
regularly varying solution of index 1, xi(t) = tLi(t) with Ly(t) ~ Ly'(¢) as
t — oo, if and only if

w

o) :== IJ q(s)ds — 0, as t — oo. (1.3)

t

(b) These solutions can be for each T > a, respectively represented as

sa(t) = exp{ [ (4(6) - Qo) (14)
where v(f) — 0 as t — oo and satisfies the integral equation
o) = 1| (et - €60/ (15)
and
(0 =expd [ (1= 005+ wis)asss}. (16)

where w(t) — 0 as t — oo and satisfies the integral equation

t
T

w(t) =1 J [20(s) = (w(s) — O(s))*Jds. (1.7)
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Here the symbol ~ denotes the asymptotic equivalence: f(f) ~ g(f) &
f(0)/g(t) = 1, as t — o0.

The study of second order functional differential equations by means of
regular variation has been attempted for the first time by the present authors
in [5]. There and in its continuation [6] the above Proposition has been
generalized as follows:

ProposiTioN 1.3.  Consider the linear functional differential equation

x"(1) = q(1)x(g(1)),

where q is as in Proposition 1.2 and g : [a, o) — (0, 00) is continuous, increasing
and satisfies g(t) < t, g(t) — oo as t — oo and limsup, ., t/g(t) < oo. Then,
the considered equation possesses a slowly varying solution and a regularly
varying solution of index 1 if and only if (1.3) is satisfied.

The aim of this paper is to obtain results similar to those of Proposition
1.3 for the nonlinear (retarded, i.e. for g(¢) < ) equation

x"(1) = q(0)x(g(1))" (B)

for both the superlinear (y > 1) and the sublinear cases (y < 1).
Note that for g(¢) = ¢, equation (B) is reduced to the celebrated Thomas-
Fermi atomic model

x"(1) = q(0)x(2)". (©)

The structure of positive solutions of the retarded differential equation (B)
is radically different from that of the ordinary differential equation (C). E.g.,
the superlinear equation (C) (y > 1) always possesses a solution x(z) which is
defined and positive on a finite interval [fo,?;) and blows up at #; in the sense
that x(¢) and x'(¢#) — o0 as t — #; — 0. On the other hand equation (B) admits
no such solutions. In fact, suppose that x(¢) is a solution of (B) (y > 1) on
[to,?1) which blows up at #;. Integrating (B) from #, to ¢ yields

t

x'(1) = x'(t) +J q(s)x(g(s))"ds, <.

fo
Letting t — #; — 0 and using g(z) < ¢, we have for t — ¢, — 0,

t

14
o> | alo)xto(s)ds > | axtole))ds — w0,
to to
which is a contradiction. For some additional differences see e.g. [1].
To avoid repetition we state here the following conditions on ¢ and ¢ valid
throughout the text:
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q:la,0) — (0,00) is a continuous, integrable function,
g:la,0) — (0,00) is a continuous function which is increasing and satisfies

g(r) <t and ¢g(r) — oo, as t — 0. (1.8)

Throughout the text all statements expressed by inequalities hold for t > T'
and this adjective will be occasionally omitted. Also the number 7" need not
be the same at each occurrence.

2. The superlinear case (y > 1)

Let x(¢) be a positive solution of (B) on [fp, c0). Since by (B), x"(¢) > 0
for ¢t > 1, where #; is such that g(#;) =1, x'(¢) is increasing for ¢ >17. It
follows that either x’(¢#) < 0 on [f;,00) or x'(f) > 0 on some [y, 0) < [, o0),
which means that a positive solution of (B) is either decreasing or eventually
increasing.

If x'(#)<0 on [f,00), then we must have x'(#) — 0. In fact, if
x'(t) = ¢ <0, then x'(f) < ¢ for t>1t;, and integrating this inequality from
t1 to t gives x(f) < x(#)+c(t—t)— —oo, as t— oo contradicting the
positivity of x(#). Hence, in this case x(¢) tends to a finite limit x(o0) >0
as t — oo.

If on the other hand x'(¢) > 0 on [f2, c0) then, due to x"(¢) > 0, x/(¢) is
eventually positive and increases to a finite or infinite limit x’(c0) as ¢ — oo.
In case x'(o0) is finite, then x(¢) satisfies x(¢)/t — x'(o0), that is, x(¢) is
asymptotic to a constant multiple of ¢ as t — oo. If x’(o0) is infinite, then for
any M, one has for sufficiently large ¢, x'(f) > M and so x(f) > Mt, whence
x(t) = tp(t) with ¢(¢) — o0 as t — oo.

We first consider slowly varying solutions and prove:

THEOREM 2.1. In addition to (1.8) suppose that

lim sule O(s)ds/s < 1/e. (2.1)
=0 Jg(r)
I
o1 = tJm q(s)ds — 0, as t— oo, (2.2)

then equation (B) possesses a slowly varying solution.

Proor. First notice that SV solutions cannot increase, for being convex,
they would violate (1.2). Let / be a positive constant less than 1/(4e). By
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(2.1) and (2.2) one can choose T > « so large that g(7") > a and the inequalities
O(1) <1< 1/(4e) and [, O(s)ds/s < 1/e hold for > T.

Let = denote the set of positive continuous functions &(7) on [g(T), c)
which are nonincreasing and satisfy

E(t)y=1 for ¢g(T)<t<T, E(g(0)/é(t) <e for t=T. (2.3)

It is clear that = is a closed and convex subset of C[g(T), o0) which is a
locally convex space equipped with the topology of uniform convergence on
compact subintervals of [g(T), o).

For each ¢ € £ we define for 1 > T, g:(t) = q(1)&(g(1))” /&(7).  Using (2.3)
and the fact that y > 1 and &(7) < 1, we have

E(9(0)7/€(0) = E(g(0) ™ Eg(0))/&(1) <ce (2.4)

which implies that for 1> T, ¢:(f) <eq(f) and so due to (2.2) and the
subsequent inequality,

o0
0:(1) ::zJ Ge(s)ds — 0 as t— o (2.5)
t
and Q¢(f) < 1/4. Consequently, Proposition 1.2 applies to the family of linear
ordinary differential equations

x"(t) = qe()x(r),  CleZ (2.6)

and ensures that for each ¢ e 5 equation (2.6) has a decreasing SV-solution
x(t) expressed in the form

xe(t) = exp{ﬁ(%(s) - 0}, @7)

where vs(7) satisfies the integral equation (1.5) with v and Q: replacing v and
Q respectively.

We will show that there exists at least one ¢ € £ for which the function
x:(t) given by (2.7) exactly provides an SV-solution of equation (B). Use is
made of the Schauder-Tychonoff fixed point theorem for this purpose. Let us
define @ to be the mapping which assigns to every ¢ € = the function @& given
by

() =1 for g(T)<t<T, DE(t) = xe(t) for t = T.

Our task is to show that @ is continuous and maps Z into a relatively compact
subset of Z.

(i) @ maps Z into itself: We divide [T, o0) into two subintervals [T, 7]
and [Tj,00) where 71> T and such that T =g(7)). If e Z, then for
T <t < T, we have by observing the choice of Tj,
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t
T

T
< exp{J eQ(s)ds/s} <e,

9(Th)

PE(g(1)) /D) = 1/x2(1) = p{j (0:(s) — %(s))ds/s}

and for ¢t > T), arguing in the same way we get

OE(g(1))/PE(1) = p{j (@) - %(s))ds/s} <el

g(t

This implies that @¢ e &, that is, P(5) < 5.
(i) @(&) is relatively compact in Cl[g(T), 0): The inclusion @(Z5) < &
shows that @(Z) is locally uniformly bounded on [g(T), o). If £ € Z, then for

t>T,

(@8)' (1) = xe(1) (ve(r) — Q1) /1 = xe(1) (= Qe(1) /1) = —eQ(1)/1,

which implies that @(&) is locally equicontinuous on [g(T), o). The relative
compactness of @(Z) in Clg(T), ) follows from Arzela-Ascoli lemma.

(i) @ is a continuous mapping: Let {£,} be a sequence in = converging
to £ € 5, which means that the sequence {&,(f)} converges to £(¢) uniformly on
compact subintervals of [g(T), c0). To show continuity of @ we have to prove
that {®@¢&, (1)} converges to @E(f) on any compact interval of [g(T), c0). Nat-
urally it suffices to restrict our attention to the interval [T, 00). Noting that by
using (2.7) and applying the mean value theorem, one obtains

|@E,(1) = DE(1)] = [xe, (1) — xe(1)] < J;(Ivc,, (8) = ve(9)] +1Qe, (5) — Qe(s)])ds/s.

We need to verify that the two sequences A, = '|vg (£) —ve(f)|, B, =
11 Q¢, (t) — Q¢(1)| converge to 0 uniformly on compact subintervals of [T, ).
The sequence B, is easier to handle. In fact, we have the inequality

o0

B, < J |92, (s) — qe(s)|ds < J qa(9)I€a(9(5))"/En(s) = E(g(s))" /<(s) ds.
t t
Since the integrand of the last integral, denoted by F,(t), satisfies F, (1) < 2eq(?),
by (2.4) and F,(t) — 0, t€ [T, ) as n — oo, we conclude using the Lebesgue
dominated convergence theorem that B, — 0 uniformly on [T, o) as n — 0.
To deal with the sequence A, we first note that in virtue of (1.5),

A, < del r 102 (5) — ve(s)|s2 ds + 4ezr 10(5) — O:(s)ls 2 ds (28)

1
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for t > T, where we have used the fact that Q¢ (¢) and Q¢(¢) are less than or
equal to e/ < 1/4 on [T,o0) which then holds also for vg () and vg(f) since
ve (1) < Qe (1), ve(t) < Qc(2), x:(f) given by (2.7) being decreasing. Denoting
the first integral in (2.8) by w(z) we are able to transform (2.8) into the
following differential inequality

(F*hw(1)) > —delt*'! Jf |0¢,(5) — Qc(s)]s 2 ds. (2.9)

Integrating (2.9) from ¢ to co and noting that */w(¢) — 0 as t — oo, since v¢(z)
does we obtain

w(t) < % JIOC |Q¢ (5) — Qe(s)|s*! 2 ds. (2.10)

Combining (2.10) with (2.8) yields for 1t > T

1 ve, (1) — ve(0)] < delr™™! r 10:(s) — Qc(s)|s* 2 ds

el | 105,05~ 09l

which ensures that A4, also tends to zero uniformly on [7', 00) as n — o0, since
B, is such. We thus conclude that the sequence {®¢,} converges to &¢ in the
topology of C[g(T), ).

Therefore, applying the Schauder-Tychonoff fixed point theorem, we see
that there exists e & such that ¢ = @&, which implies that &(r) = xs(¢)
for t > T, that is, &(¢) satisfies the differential equation &"(¢) = q:(1)&(¢) or
equivalently &"(z) = q(£)&(g(2))”. Since &(¢) is slowly varying due to the
definition of @&, we have established the existence of an SV-solution for
equation (B). This completes the proof of Theorem 2.1.

ReEMaRrk 2.1. It is directly concluded that condition (2.1) is implied by
limsup #/¢(¢) < o (2.11)

1— o0
which is less general but simpler.
The preceding theorem gives only a sufficient condition for the existence of
an SV solution which might tend to zero or to a positive constant i.e., the
simplest (“trivial”) SV solution. For the latter case there holds:

THEOREM 2.2. Let (1.8) and (2.11) hold, then equation (B) has a slowly
varying solution x(t) such that x(t) — const. > 0, as t — oo, if and only if

Joo tq(t)dt < oo. (2.12)

a
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ProOOF. “Only if”. Let x(f) — ¢ >0 as ¢t — oco. Then, integrating equa-
tion (B) twice over (z,00) and integrating by part, one concludes that the
integral [ (s — t)g(s)ds converges. Since also [ g(s)ds does by hypothesis,
condition (2.12) follows.

“If”. Condition (2.12) implies condition (2.2). Hence, by Theorem 2.1
and Remark 2.1, equation (B) has an SV solution which decreases and tends
either to zero or to ¢ > 0. Suppose x(z) — 0. Then in virtue of the mean
value theorem applied to the integral representation of x(¢), after dividing by
x(t), one has

o0

1< x(g(0) ' g0)/x(0) | (5= Dats)ds

t
But, due to the representation (1.2) and (2.11), the quotient x(g(z))/x(¢) is
bounded and so, by letting ¢ — oo in the preceding inequality, one has
1 <0. Thus x(f) — ¢ >0, qed.

This result generalizes P. K. Wong’s Theorem 1.2 in [§] for the equation
without deviating argument x” = xF(x,7) when xF(x,1) = q(#)x’.

COROLLARY 2.1. Let ¢(t) € RV (), o < —=2.  Suppose that (1.3) holds and,
instead of (2.1) that

t
J O(s)ds/s — 0, as t— oo. (2.13)
9(1)

Then, the slowly varying solutions of equation (B) obtained in the above theorems,
have the following asymptotic behaviour

xm~<@—nﬁw@mXMﬂ as 1= o,

Proor. Since condition (2.13) implies (2.1), Theorem 2.1 ensures for some
&(r) € B, the existence of a slowly varying solution x(¢) of equation (B) having
the representation (2.7). Noting that x(¢) is decreasing and that Q:(¢) < eQ(?),
by using (2.13) we obtain for ¢ — o

1 < x(g(1)/x(1) < exp{er Q(s)ds/s} -1,

(1)
whence x(g()) ~ x(¢), as t — oo.
Integrating (A) over [f,00) and observing that ¢(¢) € RV (a), o < —2, and
applying Karamata theorem ([7], Prop. 1) we get for t — oo

xX'() ~ —J q(s)(x(s))"ds ~ —1q(1)(x(1))".

t

Another integration over (7,t) gives the desired result.
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ReMARK 2.2. Note that condition (2.13) holds for any retarded argument
g(r) if Q(r)/t is integrable on [a,c0), which is true for o < —2. But then
condition (2.13) implies (2.12) so that equation (B) has a trivial solution x(z)
1.e. tending to a positive constant. Hence only the case « = —2 might lead to
an SV solution tending to zero.

ExampLE 2.1.
x" (1) = q(t)x(¢/log )7, y>1,0<d<1

where ¢(1) = r(1)/2(log 1)° and r(¢) is a continuous positive function such that
r(t) = p>0 as t — oo.

It is clear that ¢(r) e RV(—2) and Q(t) ~ p/(log 1)° as t — o, so that (1.3)
holds.

One can, moreover, show that (2.13) is satisfied and an application of
Corollary 2.1 gives for 0 <J < 1

X(1) ~ (1 =0)/p(y = 1) /7 log 1)~/
If in particular, 1 <y <2, =2—7y and p = 1, then x(¢) ~ (log t)fl as t — oo.
If in addition

r(t) = ((log t — loglog #)/log t)”(1 + 2/log 1),

then the considered equation possesses an exact SV solution x(7) = (log l)_l.
For 6 =1, Corollary 2.1 leads to

x(t) ~ (p(y — 1) loglog 7)"/1=7 as t — 0.
It is easy to check that if r(z) is given by

r(f) = ((loglog 1 — logloglog 1) /loglog ¢)?/'~Y

x (1+1/logt+y/(y—1)logtloglog 1),
then, the equation has an exact SV solution x(z) = ((y — 1) loglog 1)/~

Next we consider the existence of an RV(1) solution i.e. of the form
x(1) = t/(t) where /() is some SV function and prove

THEOREM 2.3. Let (1.8) hold and let L(t) be a normalized slowly varying
Sunction with 5(s) as in (1.1) and such that L'(t) >0, L(t) — o0, as t — 0.
Suppose that there exists a constant K > 0 such that for t > T > a,

tr 4(s)(9(s) L(g(s)))" ™" ds < Ko(1). (2.14)

t

Then, equation (B) possesses a regularly varying solution of index 1 satisfying

x(t) < tL(t), for t > T. (2.15)
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Proor. First observe that, due to the assumptions on L, the function
o(t) =tL'(t)/L(¢r) is positive, tends to zero and the integral defining L is
divergent.

Next put

o0

4(t) = g()(g() L(g(1))) ", QL<z>=rj as)ds.  (216)

t

Hence, due to (2.14) Q. (f) — 0, as t — oo and so there exists 7 > a such that
L(T)>1 and K/L(T)""" <1, and for 1> T, Q(1) < 1/8.

Now the proof mimics the one of Theorem 2.1 with a different choice of
the set = and of the mapping @. Namely, this time we define = to be the set
of positive continuous functions &(7) € C[g(T'), c0) which are nondecreasing and
satisfy

T <&() <tL(t)/L(T), t=T, &) =:tL(t)/L(T), g(T)<t<T. (2.17)

—

It is clear that = is a closed convex subset of the locally convex space
Clg(T),0). For each &€ & put

ge(0) = d@(D) (), lt) = rjx 4e(s)ds.

Using the increasing nature of £(¢), the inequality g(¢) < ¢ and (2.17), we have

g(n) /&) < Eg() " < (9()L(g())/L(T))™!,  1=T, (2.18)
which implies that
0:(1) < QL()/L(T) ' <1/8, t>T, forall (€=

and that by (2.14), Q:(¢) — 0, as 1 — 0.
It then follows from Proposition 1.2 that every member of the family of
linear differential equations

x"(t) = qe(2)x(1), felr, (2.19)

possesses an RV(1)-solution X:(z) having the representation

t
X:(1) = exp{JT(l + we(s) — Qé(S))dS/S}, (2.20)
where wg() is a solution of the integral equation (1.7) with we(s) and Qg(s)
replacing w(s) and Q(s) respectively, satisfying ws(¢#) — 0, t — oo and so by
0:(1) < 1/8, we have |ws(t)] < 1/4.

We shall estimate X:(7) given by (2.20) from below and above. First we
have X:(T) =1 and so X:(f) > 1 for t > T. Next, using the inequality
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t

J; we(s)ds/s < J 52 J; 20¢(r)drds <2 J; Q:(s)ds/s,

T

following from the representation of wg(7), we find that

t

Jr (we(s) — Qe(s))ds/s < J
r T

<log(L(#)/L(T)),

0:(s)ds/s < KL(T)'~" J;(L’(s) JL(s))ds

where (2.14), the expression for d(¢), the inequality KL(T)' ™7 <1 and the
preceding one have been used. Thus we obtain

X:(t) < tL(t)/TL(T). (2.21)
Let us now define the mapping @ : & — C[g(T), 0) by
OE(t) = TX:(1), t=>T, and OE(t) =tL(t)/L(T), g(T)<t<T.

—

In view of the definition @ and (2.21) we see that @ maps = into itself.

The inclusion @(Z) < & shows that the set @(Z) is locally uniformly
bounded on [¢g(T), o). Formulas (2.20), (2.21) and |we(7)| < 1/4 lead to the
inequality (®¢)'(1) = TX/(t) < 5L(t)/4L(T) for t> T, holding for all e =
which implies that @(Z) is locally equicontinuous on [g(T), ). From these
facts it follows via the Arzela-Ascoli lemma that @(%) is relatively compact in
Cly(T), =0).

Finally it can be verified that @ is a continuous mapping in the topology
of C[T, o). Let {&,(7)} be any sequence in = converging to £(¢) € & uniformly
on compact subintervals of [7,00). We shall prove that &¢, (1) — PE(1)
uniformly on any compact subinterval of [T, o).

To do so, we note that

|DE,(1) = PE(D)] < TN X, (1) = Xe(1)] < tL(0)/L(T) J;(l%(S) — we(s)|

+10z,(s) — Qc(s)|)ds/s.

Therefore, to establish the above mentioned convergence, it suffices to show
that for n — o

Ay =twe, () —we(r) =0 and By =170, (1) = Qe(1)] — 0

uniformly on compact subintervals of [T, 00). The convergence of B, follows
by applying the Lebesgue dominated convergence theorem as in the proof of
Theorem 2.1, using inequality (2.18) instead of (2.4).

To obtain the convergence of 4, one repeats the argument leading to the
convergence of the sequence A, in the proof of Theorem 2.1, using this time the



148 Kusano Taka$i and V. MARIC

representation for wg(¢) instead of the representation for ve(f) and the in-
equality Q:(f) < 1/8 instead of Qs(¢) < 1/4.

Thus all the hypotheses of the Schauder-Tychonoff fixed point theorem are
fulfilled, so that there exists £(¢) € = such that &(r) = @&(r). By the definition
of @ this function &(7) satisfies &"(7) = q:(¢)&(r) = q(1)&(g(1))?, t > T and hence
is a solution of equation (B). In view of (2.20) it is clear that £(7) € RV(1).
The estimate (2.15) follows from (2.21) due to the definition of @.

ReEmMARK 2.3. If condition (2.11) is assumed, then Theorem 2.3 holds
when in (2.14) g(s) is replaced by s.

Condition (2.14) requires that Qy(¢) tends to zero at a particular rate.
One can remove that request at the cost of restricting the coefficient ¢(¢) in
equation (B).

To wit, there holds

THEOREM 2.4. [f, in addition to (1.8), the condition

L(1) == IJ q(s)g(s)""ds — 0, as t— oo

1

is satisfied for some ¢ > 0, then equation (B) has a regularly varying solution of
index 1.

The proof is much the same as the one of Theorem 2.3. The only
difference is the choice of the function &(#) which here satisfies for some m > 0,
E(t) =&(T) for g(f) <t < T, t<&(t) <t'™™ for t>T and of the mapping
@ : 5 — Clg(T), ) being here ®&(t) = T for g(T) <t < T and ®E(f) =
X:(t) for t > T. Also, property (1.2) is used to get an inequality analogous to
0:(1) < 1/8.

REMARK 2.4. If condition (2.11) is assumed, then Theorem 2.4 holds
when in the condition I,(f) — 0 as ¢t — oo, g(s) is replaced by s.

As in the SV case we want to obtain a necessary and sufficient condition
for the existence of the simplest case of RV(1) solutions of equation (B) i.e. of
the form x(¢) = ¢L(¢) with L(#) - ¢ >0 as t — 0. We prove

THEOREM 2.5. Let (1.8) and (2.11) hold. Then equation (B) has a reg-
ularly varying solution x(t) of index 1 such that

x(t)/t — ¢>0, as t— oo (2.22)
if and only if

I(a) = J@ q(t)g(t)’dt < oo. (2.23)
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Proor. The “only if” part. This follows directly from the integral
representation for x'(z) obtained by integrating equation (B) over [z, 00) since
x'(f) — x'(0) = ¢ as t — oo, and x(g(s)) ~ cg(s) due to (2.22).

The “if”” part. First notice that (2.23) implies /(¢#) — 0 as t — oo, whence
due to (2.11),

0,(1) := IJ q(s)g(s)"'ds -0 as t — 0. (2.24)

Moreover

X

| eupdsis = [ | atsrgto) vt = 0,06 = 0yfa) + | atspso(s)”” .
a adt a
Due to (2.23) and (2.11) the right-hand integral and so the left hand one
converges to a constant 4 > 0.

Now we form the set & of positive functions &(¢) € Clg(T'), o) which are
nondecreasing and satisfy

Et)=T for g(T)<t<T and T<&ét)<Bt fort>T, (2295

where B > 1 is an arbitrary fixed constant, and define the mapping @ : & —
Clg(T), ) by

O(t)=T for g(T)<t<T and OE(t) = TX:(t) for t>T,
where X:(7) is the solution (2.20) of the equation (2.19) with

a:(0) = d(((0) 40 < q0&(0) ™ < Ma(g, M =B

Hence

o0 o0

ge(s)ds < rj Ma(s)g(s)"ds = MO, (1).

t

0:(0 =1
Thus by (2.24), Q:(r) — 0 as t — oo and so Q:(¢) < 1/8 for t > T and for each
¢ which is needed here as in the previous proof.

We follow the same line of proof as before.

The mapping @ maps = into itself. The left-hand side inequality in (2.25)
for @&(r) is proved as before and the right-hand one is obtained as follows:

First we construct the normalized slowly varying function L(z) with
o(s) = MQy(s)/s, so that MQ,(s)/s = L'(s)/L(s).

Also due to the convergence of the relevant integral, L(z) — C >

Arguing as in obtaining (2.21) we obtain for ¢t > T, X:(¢) < tL(t)/TL( ).
The right-hand inequality in (2.25) for @&(r) follows by L(¢)/L(T) < B for
t > T, provided T > a is chosen sufficiently large. Hence &(Z) < =.
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Now, from (2.25) one concludes that the set @(Z) is locally uniformly
bounded on [¢g(T), o0).

Also, it follows from (&¢)' (1) = TX!(1) < 5B/4, t > T, that ®(Z) is locally
equicontinuous on [g(T), ). N

The proof of the continuity of mapping @ is the same as in Theorem
2.1.  An application of the Schauder-Tychonoff fixed point theorem leads to
the desired result as before.

This result generalizes P. K. Wong’s Theorem 2.3 in [§8] for the corre-
sponding equation without deviating argument.

Note that if (2.11) holds, then in (2.23) ¢g(¢) may be replaced by ¢.

3. The sublinear case (y < 1)

The proofs of results in this section simply re-use the main idea of the
previous ones in this paper. Namely, to combine Proposition 1.2 pertinent to
the equation (A) (i.e. without the deviating argument) with the Schauder-
Tychonoff fixed point theorem. The differences between these and the previous
proofs in the text, consist in the construction of the set & and of the operator
@. It is our aim to stress only these facts and to neglect the calculations.

As in Section 2 we begin with consideration of SV solutions:

THEOREM 3.1. Let (1.8) hold and let M(t) denote a normalized slowly
varying function which decreases to zero, with 6(t) = tM'(t)/M(t) < 0. Assume
in addition that there exists a constant k > 1 such that M(g(t))/M(t) < k.

If there exist a constant K >0 and T > a such that for t > T,

(| alo) Mg ds < ~Ko0),
t

then, equation (B) possesses a slowly varying solution x(t) such that x(t) > M(t)
for t > T.

o

Here, for the proof we form the set & of continuous nonincreasing
functions &(¢) on [g(T),o0) which satisfy &(z) =1, for g(T) <t < T, and
E(t) = M(t)/M(T), and &(g(r))/E(f) <k, for t > T.

The mapping @ : & — C[g(T), o) is in this case defined exactly as in the
proof of Theorem 2.1 and the proof runs in the line of proof of Theorem 2.3.

ExampLE 3.1. It is left to the reader to show that Theorem 3.1 applies to
the sublinear differential equation

X)) = q()x(t)’,  0<y<1,0<0<1,
where

q(1) = (log(0 log 1)) (¢* log t(loglog £)*) "' (1 + 1/log 1 + 2/log t loglog 7).
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One chooses here M(f) =1/loglogt. (One exact SV solution is x(z) =

1/loglog f).
Next, we consider RV(1) solutions:

THEOREM 3.2. Let (1.8) hold. If

IJ q(s)s” L ds — 0 as t— oo,
t

then equation (B) possesses a regularly varying solution of index 1.

Here, choose T > a so that (1 —m)T™ > 1 for some 0 < m < 1, define the
set = of positive continuous functions &£(¢) to be exactly the same as in the
proof of Theorem 2.4. Also, define the mapping @ : & — Clg(T),0) by
DE(1) = T, for g(T) <t < T, ®E(t) = T X:(1) for t > T, where X:(¢) is
given by (2.20).

ExampLE 3.2. The sublinear retarded differential equation
x"(t) = q(t)x(at)", 0<y<l,0<o<1,

where ¢(1) ~ k/t"*7(log 1)° as t — oo, serves as an example when Theorem 3.2
can be applied.

If k=1/67, =y and q(t) = 1/a7t'*7(log 6t)’, it is easily checked that
x(t) =tlogt is one relevant solution.

References

[1] R. P. Agarwal, S. R. Grace and D. O’Regan, “Oscillation for Second Order Dynamic
Equations”, Taylor & Francis, London-New York, 2003.

[2] N. H. Bingham, C. M. Goldie and J. L. Teugels, “Regular Variation”, Encyclopedia of
Mathematics and its Applications 27, Cambridge University Press, 1987.

[3] I T. Kiguradze and T. A. Chanturiya, ‘“Asymptotic Properties of Solutions of Non-
autonomous Ordinary Differential Equations”, Nauka, Moscow, 1990. (in Russian)

[4] J. Jaros and T. Kusano, Remarks on the existence of regularly varying solutions for second
order linear differential equations, Publ. Inst. Math. (Beograd) 72(86) (2002), 113-118.

[5] T. Kusano and V. Mari¢, On a class of functional differential equations having slowly
varying solutions, Publ. Inst. Math. (Beograd) 80(94) (2006), 207-217.

[6] T. Kusano and V. Mari¢, Regularly varying solutions to functional differential equations
with deviating arguments, Bull. T. CXXXIV Acad. Serbe Sci. Arts, Classe Sci. Nat. Sci.
Math. 32 (2007), 105-128.

[7] V. Mari¢, “Regular Variation and Differential Equations”, Lecture Notes in Mathematics
1726, Springer-Verlag, Berlin, 2000.

[8] P. K. Wong, Existence and asymptotic behavior of proper solutions of a class of second-
order nonlinear differential equations, Pacific J. Math 13 (1963), 737-760.



152

Kusano Taka$i and V. MARIC

Kusano Takasi
Department of Applied Mathematics
Faculty of Science
Fukuoka University
Fukuoka, 841-0180, Japan
E-mail: kusano@zj8.so-net.ne.jp

V. Marié
Serbian Academy of Sciences
and Arts, Kneza Mihaila 35
11000 Beograd, Serbia
E-mail: vojam@uns.ac.rs



