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Classification of 3-bridge arborescent links
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ABSTRACT. In this paper, we give a complete classification of 3-bridge arborescent
links.

1. Introduction

An n-bridge sphere of a link L in S* is a 2-sphere which meets L in 2n
points and cuts (S*, L) into n-string trivial tangles (By, ) and (B,, ;). Here,
an n-string trivial tangle is a pair (B3,¢) of the 3-ball B* and n arcs properly
embedded in B3 parallel to the boundary of B>. We call a link L an n-bridge
link if L admits an n-bridge sphere and does not admit an (n — 1)-bridge
sphere. Two n-bridge spheres S; and S, of L are said to be pairwise isotopic
(isotopic, in brief) if there exists a homeomorphism f : (S*, L) — (S3, L) such
that f(S1) =S, and f is pairwise isotopic to the identity, i.e., there is a
continuous family of homeomorphisms f; : (S, L) — (S* L) (0 <¢<1) such
that fo=f and f; =id. Two n-bridge spheres S; and S, are said to
be homeomorphic if there exists an orientation-preserving homeomorphism
f:(S* L) — (S L) such that f(S;) = S,.

The only 1-bridge link is the unknot, and the 2-bridge links are completely
classified by Schubert [27], by showing the uniqueness of 2-bridge spheres of
2-bridge links up to isotopy. Moreover, it is proved by Otal ([21] and [22])
that the unknot (resp. any 2-bridge link) admits a unique n-bridge sphere up
to isotopy for m>1 (resp. n>2). These results were recently refined by
Scharlemann and Tomova [26]. The bridge indices of Montesinos links are
completely determined by Boileau and Zieschang [5]. In [14], the author
constructed a family of links each of which admits infinitely many 3-bridge
spheres up to isotopy. However, not much is known about 3-bridge links and
3-bridge spheres in general.
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Bridge presentations of links are intimately related with Heegaard splittings
of closed orientable 3-manifolds (see, for example, [2]). Boileau, Collins and
Zieschang [3] classified genus-2 Heegaard splittings of small Seifert fibered
spaces. Kobayashi [17] characterized non-simple 3-manifolds of genus 2, and
Morimoto [19] gave a list of all isotopy classes of genus-2 Heegaard splittings
for certain graph manifolds containing essential tori.

Fig. 1

In this paper, we classify 3-bridge arborescent links by using the results of
[17] and [19]. Moreover, in the sequel of this paper, we classify their 3-bridge
spheres up to isotopy. We first recall the definition of arborescent links. An
arborescent tangle is a tangle obtained from rational tangles by repeatedly
applying the operations in Figure 1. By an arborescent link, we mean a link
obtained by closing an arborescent tangle with a trivial tangle (see [8]). Arbor-
escent links are also defined by a plumbing construction from a weighted tree
(see [10]). Arborescent links form an important family of links which contains
2-bridge links and Montesinos links, and the double branched covering of the
3-sphere S* branched over an arborescent link is a graph manifold. Bonahon
and Siebenmann [6] gave a complete classification of arborescent links (cf. [9]).

We now state our main results. The following theorem gives the complete
list of 3-bridge arborescent links, where two links are equivalent if there exists
an orientation-preserving homeomorphism of S3 which carries one of the two
links to the other.

THEOREM 1. A link L in S3 is a 3-bridge arborescent link if and only if L is
equivalent to one of the following links.

(1) The link Ly((B, /o, B,/o4), (B /o2, B3/23)) in Figure 2 (1)

() The link La((By/21,8,/54), (/o). (B2, B/ 23) in Figure 2 (2).

(3) The link Ly((B, /o1, B2, By/o), (1/2,—n/(2n + 1)) in Figure 2 (3).

(4) The Montesinos link L(—b;p, /o1, B2/, p3/o3) (see Figure 6).

Here, o;, of, B, Bi are integers such that oo >1 and g.c.d.(o;,f;) =
g.cd.(af,B)) =1 (i=1,2,3), and oy and n are integers such that |og| > 1 and
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|2n+ 1| > 1. In Figure 2, the circle encircling a rational number /o represents
the rational tangle of slope f/o.

(1) LABi/ou, Biras), (B/az, Br/az)) (2) LA(Br/oy, Bi/e), (1/oy), B/, B/ar2))

() L((B/ow, B/, Bilas), (172, -n/(2n+1)))

Fig. 2

For each i=1,2,3, we denote by & the family of links as in (i)
in Theorem 1. In order to state a classification theorem of the links in
UL U L5, we prepare a notation.

NotatioN 1. Let sy,...,5 and s{,...,s. be rational numbers whose
denominators are greater than 1. We use the following notation.
* (S1y...,8) & (s],...,s)) when (s1,...,s)=(s],...,s]) in (Q/Z)" and
r

) Oy
)
D.8i= s
i=1 i=1
!

* (S1,...,8) ~(8],...,s) when (s1,...,8)~(s],...,s.) or (s/,...,s]).

The following theorem gives the complete classification of the links in
A ULU L.
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THEOREM 2. Any link in %1 U %, U %5 is not equivalent to a Montesinos
link, and two links in distinct families of ¥, &> and %5 are not equivalent.
Moreover, the links in each of the families are classified as follows.

(1) Li((s1,52), (53,54)) and Ly((s{,s3), (53,54)) are equivalent if and only if

(1) (s1,82) ~ (s},50) and (53,55) ~ (s},5}), or
(1-60)  (51,52) ~ (5,55) and (s3.51) ~ (5},55).
(2)  La((s1,82), (1/a0), (s3,54)) and Ly((s7,53), (1/ag), (s5,s4)) are equivalent
if and only if a9 = oy and one of the following holds.

- =
N“

(2-0)  (s1,82) > (51,87) and (s3,54) = (53,54),
(2-i)  (s1,%2) ~ (s3,51) and (s3,54) = (53, 53),
(2-iil)  (s1,82) = (83,84) and (s3,84) = (s1,55), 0
(2-1v)  (s1,52) & (54,53) and (s3,54) > (s3,57)-

(3) La((s1,52,53), (1/2,—n/(2n + 1))) and  L3((s},s3,53), (1/2, —n'/(2n" +
1))) are equivalent if and only if n =n’ and (s1,5,53) ~ (s1,55,55).

o,
5 g

(1) £, (generic) (2) £, (generic) (3) L(B/a, Blla)), (172, -n/(2n+1)))

(4) £; (lal>1)

Fig. 3

REMARK 1. (1) The classification of the links in % is already obtained by
[11, Lemma 2.2]. Though the classification of the links in %, and %3 may be
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also obtained by using the theory of Bonahon and Siebenmann [6], we give a
direct proof in this paper.

(2) The Kinoshita-Terasaka knot and the Conway’s 11 crossing knot (cf.
[16, Example 3.8.4 and Fig. 3.8.1]) are equivalent to L,((—1/3,1/2),(1/2),
(—1/2,1/3)) and Ly((1/2,—-1/3),(1/2),(=1/2,1/3)), respectively. Theorem 2
(2) gives alternative proof of the inequivalence of these knots.

(3) Except for some special case, the dotted lines in Figure 2 give the
characteristic decomposition of each link by essential Conway spheres (see [6]
and Theorem 4 for the definition of the characteristic decomposition, and see
Proposition 4 and Figure 12 for the exceptional cases).

In the proof of Theorem 1, we also obtain the 3-bridge spheres for the
links as illustrated in Figure 3. In the sequel of this paper, we show that these
3-bridge spheres form a complete list of 3-bridge spheres for the links in
Theorem 1 up to isotopy, and moreover, we give a necessary and sufficient
condition for any two of these 3-bridge spheres to be isotopic.

This paper is organized as follows. In Section 2, we recall some basic
properties of arborescent links. In Section 3, we recall a relation between
3-bridge spheres of links and genus-2 Heegaard surfaces of 3-manifolds. In
Section 4, we recall the characterization of genus-2 graph manifolds given by
Kobayashi [17]. In Section 5, we calculate the mapping class groups of some
of the graph manifolds, which will be used in the rest of this paper. Finally, in
Sections 7 and 8, we prove Theorems 1 and 2, respectively.

2. Seifert fibered spaces, graph manifolds and arborescent links

In this section, we recall (i) basic facts concerning Seifert fibered spaces,
(ii) description of Seifert fibered spaces as double branched coverings due to
Montesinos [18], and (iii) the characteristic decomposition theory of links
established by Bonahon and Siebenmann [6].

For a given compact surface F with boundary, we denote by
F(p,/ou,fy/0a, ..., B, /o) the orientable Seifert fibered space over F with
Seifert indices S, /oy, p,/%2,...,0,/0n. To be precise, consider the surface
Fy:= F\Int(D;U---UD,), where {D;},_,_, is a set of r disjoint disks in
Int(F), and let My be the trivial S'-bundle or the orientable twisted S'-bundle
according as Fy is orientable or non-orientable. Then F(f, /oy, f2/02, ..., [0,/%)
is obtained by gluing M,, and r solid tori Vi,...,V,, where the gluing
homeomorphism is given as follows. Let Fj be the image of a cross section
of the bundle My, — Fj, and let 7; be the component of dM, projecting to
oD; (i=1,2,...,r). Lets; be the intersection of 7; and Fj and /; be a fiber
of My on T;. We orient s; and /; so that the ordered pair (s;,/;) gives the
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orientation of 7; induced by that of M. Then the gluing homeomorphism
maps the boundary of the meridian disk of V; to the loop on 7; representing
the homology class o;s; + f3;/;.

We call ¢:=adFj\(|J._, s/, ie., the union of the components of 0F]
projecting to 0F, the horizontal loop(s). We occasionally call a component of
¢ a horizontal loop.

For a closed surface F, we denote by F(b;f,/a1,fs/00,...,0,/ o) the
Seifert fibered space obtained as follows. Set Fy = F\(an open disk) and
consider the Seifert fibered space My = Fo(f,/ou,P2/%2,...,0,/o). Let ¢ and
h, respectively, be the horizontal loop and a regular fiber of the Seifert fibered
space lying on the boundary torus. Then F(b;f,/o1,f,/0%,...,0,/%) is the
Seifert fibered space obtained by gluing Fy(f, /o, f,/%, ..., p, /%) and a solid
torus so that the meridian loop of the solid torus is identified with the loop
representing ¢ + bh.

ProposiTION 1 (cf. [23]). (1) Let F be a compact surface with boundary,
and consider two Seifert fibered spaces M = F(f,/o1,...,B./o) and M' :=
F(By/oi, ..., Bl al). Then there is an orientation-preserving homeomorphism
¢ : M — M' which preserves the Seifert fibration and maps the horizontal loop ¢
of M to the horizontal loop ¢' of M', if and only if the following hold.

(i) After a permutation of indices,

(&),,,/ﬁ) _ (ﬂ_i ﬁr’>e<Q/Z)’-

o o ap ol

(2) Let F be a closed surface, and consider two Seifert fibered spaces
M = F(b;By/on,. .., B, o) and M' := F(b'; By /o, ..., BL/ol).  Then there is an
orientation-preserving homeomorphism ¢ : M — M' which preserves the Seifert
fibration if and only if the following hold.

(i) After a permutation of indices,

(B )= (B ) iy

o o o o
rR. r R
(i) b+>—==b'+>—=€Q.
i=1 % =10

NotaTiON 2. Let /& and ¢, respectively, be a regular fiber and a horizontal
loop of a Seifert fibered space M = F(f,/o1,...,p,/a). Then we say that
M=F(f,/ou,...,p, /o) wrt. h and ¢. The above proposition implies that
(By/oa,. .., P, /o) is uniquely defined up to the equivalence relation described in
the proposition.
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Fig. 4. n=5,a0=0,a1 =2,ap =3,a3 =3,a4 =2,as =3 and f/o = 31/50.

A graph manifold is a 3-manifold obtained by gluing Seifert fibered spaces
along their boundaries. Graph manifolds are introduced and classified by
Waldhausen [29].

A (3, 1)-manifold pair is a pair (M, L) of a compact oriented 3-manifold M
and a proper l-submanifold L of M. By a surface F in (M,L), we mean a
surface F in M intersecting L transversely. Two surfaces F and F’ in (M, L)
are said to be pairwise isotopic (isotopic, in brief)) if there is a homeomorphism
f:(M,L)— (M,L) such that f(F)=F' and f is pairwise isotopic to the
identity. We call a (3, 1)-manifold pair a tangle if M is homeomorphic to B>.
A trivial tangle is a (3,1)-manifold pair (B*, L), where L is the union of two arcs
embedded in the 3-ball B* which bounds disjoint disks with arcs on the boundary
of B®. A rational tangle is a trivial tangle with its boundary fixed. A well-
known fact is that rational tangles correspond to rational numbers, called the
slopes of the rational tangles. For example, the rational tangle of slope f/a can
be illustrated as in Figure 4, where o, f are defined by the continued fraction

B

az—ao—&—[al,—az,...,iam]

1
= —ay + i

ay + i
—a) +

...+iam

together with the condition that o« and f are relatively prime and « > 0. Here,
the numbers «; denote the numbers of right-hand half twists.

It is known that any 2-bridge link is obtained by closing a rational tangle
with the trivial arcs. We denote by S(«,f) the 2-bridge link obtained by
closing a rational tangle of slope (/o with the rational tangle of slope 1/0.
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(-
(1) )

Fig. 5

A Montesinos pair is a (3,1)-manifold pair which is built from the pair in
Figure 5 (1) or (2) by plugging some of the holes with rational tangles of finite
slopes. We say that a Montesinos pair is trivial if it is homeomorphic to a
rational tangle or (S,P) x I, where S is a 2-sphere, P is the union of four
distinct points on S and [ is a closed interval. A Montesinos link is a link
obtained by plugging the remaining holes of a Montesinos pair in Figure 5 (1)
with rational tangles of finite slopes, as shown in Figure 6. Unless otherwise
stated, we assume that /o is not an integer, that is, « > 1. The above
Montesinos link is denoted by L(—b;f,/o4,...,0,/%). A Montesinos link
is said to be elliptic if it is a nontrivial 2-bridge link or if r=3 and
4+ 43> 1. An arborescent link is a link in S* obtained by gluing some
Montesinos pairs in their boundaries as in Figure 7.

Fig. 7
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Fig. 8

The following proposition is a classical result due to Montesinos [18].

ProposITION 2. (1) Let (N,L) be the Montesinos pair in Figure 8 (1).
Then the double branched covering of N branched over L is a Seifert fibered
space D(B, /o1, py/02, ..., B, /o) over a disk. Moreover, the pre-images of the
loops a and b in the figure, respectively, are the union of two parallel horizontal
loops and the union of two regular fibers.

(2) Let L be a Montesinos link L(—b;f,/o,...,p,/o). Then the double
branched covering of S* branched over L is a Seifert fibered space
S%(=b; By /o1, Br/ %, . ., B, /o) over the 2-sphere.

(3) Let (N,L) be the Montesinos pair in Figure 8 (2). Then the double
branched covering of N branched over L is a Seifert fibered space
Mé(fy /o, Pr/02y ..., B o) over a Mobius band. Moreover, the pre-images
of the loops a and b in the figure, respectively, are the union of two parallel
horizontal loops and the union of two regular fibers.

Oy (-

1
Fig. 9
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REMARK 2. We denote the covering transformations of the double
branched coverings in (1) and (3) in Proposition 2 by f and g, respectively.
Then f and g are fiber-preserving involutions of D(f, /o, 5/, ..., p./o) and
Mo(B, /o, Pr/02,...,pB./0), respectively, and induce the involutions on the
base orbifolds as illustrated in Figure 9.

If a Montesinos pair (N,L) is nontrivial, then the double branched
covering of N branched over L is not homeomorphic to a solid torus nor
S! x S x I (cf. [13, Examples VL5]). The following remark, which is used
to prove Proposition 4, is a direct consequence of [13, Examples VI.5 and
Theorem VI.18].

ReMark 3. Let (N,L) be a nontrivial Montesinos pair with nonempty
boundary, and let M be the double branched covering of N branched along L.

(1) If (N, L) is the ring tangle illustrated in Figure 10, then M admits two
Seifert fibrations. Namely, M can be regarded as D(—1/2,1/2) w.r.t. & and ¢
or a S'-bundle over a Mébius band w.r.t. ¢ and /, where ¢ and 4 are simple
loops in 0M which project to the loops a and b, respectively, as in Figure 10
(see Notation 2).

(2) If (N,L) is not the ring tangle, then M admits a unique Seifert
fibration up to isotopy.

Montesinos links are classified by the following theorem (see [31], [7,
Chapter 12]).

THEOREM 3. Let L be a Montesinos link L(=b;[,/o,...,[, /o).
(1) If r<2, then L is a 2-bridge link. To be precise,
(1) if r=0, then L is a torus link,
(ii) ifr=1, then L = L(—b;[5,/o1) is a 2-bridge link S(boy — By,01),
(iii) if r=2, then L =L(=b;p,/o1,P,/0) is a 2-bridge link S(p,q),
where p = boyon + a1y +on and q = pp(box + B,)/|p|-

(2) If r> 2, then L is not a 2-bridge link, and such links are classified by
the ordered set of fractions (B,/o1,...,p,/%) € (Q/Z)", up to cyclic
permutations and reversal of order, together with the rational number
by=b+ Z]f’:l i—J]

Bonahon and Siebenmann [6] established a theory to decompose a link
into simpler pieces in a canonical way. This decomposition consists of two
steps. The first step is just the torus decomposition of the knot exterior. The
second step is a decomposition by “Conway spheres””. To state the result, we
need to introduce some notation. A Conway sphere in (M, L) is a 2-sphere in
Int(M) or in dM which meets L transversally in 4 points. A Conway sphere
F is said to be pairwise-compressible if there is a disk D in M\L such that
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DNF = 34D and 0D does not bound a disk in F\L. Otherwise, F is said to be
pairwise-incompressible. A Conway sphere F is said to be d-parallel if F splits
M into two parts My and M, such that for one of which, say M;, we have
a homeomorphism (M;,M,NL) =~ (F,FNL)x[0,1]. We say that a (3,1)-
manifold pair (M,L) is Conway-simple if there does not exist a pairwise-
incompressible, non-J-parallel Conway sphere in Int(M) for (M,L). We
sometimes call the pair (F,FNL) a Conway sphere and denote it by (S?, P).

A link L in S? is said to be simple if S*\L do not contain an essential
torus. Bonahon and Siebenmann established the characteristic decomposition
theorem for simple links (|6, Theorem 3.4]). The following theorem is a
corollary of the characteristic decomposition theorem for simple arborescent
links.

THEOREM 4. Let L be an arborescent link in S3, which is simple. Then
there is a 2-manifold F = S3 which is unique up to pairwise isotopy of (S*,L)
and has the following properties.

(1) The components of F are pairwise-incompressible Conway spheres, no
two of which are pairwise isotopic in (S*,L).

(2) Each component N of the 3-manifold obtained from S* by splitting
along F gives a Montesinos pair (N,LNN).

(3) When any component is omitted from F, property (2) fails.

Moreover, arborescent links with essential tori in their complements can be
characterized by the following proposition (see [6] and [9]).

PropoSITION 3.  The following three families form a complete list of non-
hyperbolic arborescent links.

L. L is the boundary of a single unknotted band, i.e., a torus knot or link of
type (2,n) for some neZ.

II. L has two parallel components, each of which bounds a twice-punctured
disk properly embedded in S*\L.

III. L or its vreflection is the pretzel Ilink P(p,q,r,—1):=

M(-1;1/p,1/q,1/r), where p,q,r > 2 and %—l—é—i—% > 1.

RemARK 4. For families I and II, Figure 11 reveals an obvious annulus or
Mobius band that forms an obstruction to the existence of a hyperbolic
structure. Meanwhile, the pretzel links in family III contain incompressible
tori when %+}1+%:1 (by Oertel’s work [20]) and are Seifert fibered when
%—i—é—i—% > 1 (see [25, Theorem 3.4]. In fact, such links are torus links unless
(p,q,r) is a permutations of (2,2,n)).

Using Theorem 4 and Proposition 3, we obtain the following proposition.
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(1) n#0 ) a;>1 (i=1,2)

Fig. 12

ProPOSITION 4. Let L be a 3-bridge arborescent link which is not a
Montesinos link.

(1) If L is non-simple (ie., S3\L contains an essential torus), then
L is equivalent to the link in Figure 12 (1) for some n #0. Thus, L is
equivalent to L,((—1/2,1/2),(1/n),(=1/2,1/2))e % or L((—1/2,1/2 —n),
(—1/2,1/2 —n)) € & according as |n| > 1 or |n| =1.

(2) If L is simple and has a trivial characteristic decomposition, then L is
equivalent to the link L\((B,/o1,B,/02),(=1/2,1/2)) € ¥ (see Figure 12 (2)).
In this case, the double branched covering My(L) of S* branched over L is a Seifert
fibered space P*(0;f,/a1,B,/%2), which contains a separating essential torus.

(3) If L is simple and has a nontrivial characteristic decomposition, then the
pre-image of the family of Conway spheres in M>(L) is a family of separating
tori and gives the (nontrivial) torus decomposition of M,(L).

Proor. Let L be a 3-bridge arborescent link and suppose that L is not a
Montesinos link.

(1) Suppose that L is non-simple. Since the links in the family T in
Proposition 3 are 2-bridge torus links and the links in the family III in
Proposition 3 are Montesinos links, L has two parallel components each of
which bounds a twice-punctured disk properly embedded in S*\L by Prop-
osition 3. Since L is a 3-bridge link, L consists of 3 trivial components, and L
is obtained by adding a parallel circle to one component of a 2-bridge link, say
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Fig. 13

L’. We show that L’ is equivalent to the link in Figure 13 (2) for some
n#0. To this end, note that (S3,L’) is a union of some tangle, (B3, 1), and a
ring tangle, (B*,1,), as shown in Figure 13 (1). Let My(L') (resp. M(t;)) be
the double branched covering of S3 (resp. B?) branched over L’ (resp. ¢;), and
set T := M,(t;) N M>(t;). Since M>(L') is a lens space, the torus 7 bounds a
solid torus ¥V in M>(L’). Since M»(t2) = D(—1/2,1/2) is not a solid torus, we
see V' = M,(t;1). Suppose that the meridian of V' = M;(#)) is identified with
the loop representing ¢*i” for some integers « and f, where & and ¢ are a
regular fiber and a horizontal loop of M»(#;) = D(—1/2,1/2). 1If |«| > 1, then
M,(L") is a Seifert fibered space over a disk with three exceptional fibers,
and hence, it is not a lens space, a contradiction. If « =0, then f must be
+1, and M,(L’) is the connected sum of two 3-dimensional projective space,
a contradiction. Hence, |¢/=1 and M,(L’) is a Seifert fibered space
S%(4+p;—1/2,1/2). This implies that L’ is equivalent to the 2-bridge link
in Figure 13 (2) for some nonzero integer n(= +f) by [12, Corollary 4.12].
Hence L is equivalent to the link in Figure 12 (1). The remaining assertion is
easily observed.

(2) Suppose that L is simple and that the characteristic decomposition of
L is trivial. By the definition of the characteristic decomposition, (S3,L) is a
Montesinos pair with no boundary. Since L is not a Montesinos link by the
assumption, (S3, L) is obtained from the (3, 1)-manifold pair in Figure 5 (2) by
plugging the holes with rational tangles of finite slopes. Note that L is a
generalized Montesinos link in the sense of [5]. Since L is a 3-bridge link, it
follows from [5, Theorem 2.1 and Figure 9] that L is equivalent to the link in
Figure 12 (2).

(3) Suppose that L is simple and that L admits a nontrivial characteristic
decomposition. Let F be a family of Conway spheres in (S*, L) which gives
the characteristic decomposition of L, and let {(N;,N;NL)}!", be the Mon-
tesinos pairs in the decomposition. Since the double branched coverings of N;
branched over N;N L are Seifert fibered spaces, the double branched covering
M, (L) of S3 branched over L is a graph manifold.
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ﬁm T . ‘
quotient

— X

. -1 180° by 7

Fig. 14

Let p be the covering projection M>(L) — S*, and assume, on the
contrary, that p~!'(F) does not give a (nontrivial) torus decomposition of
M>(L). Then p~'(N;)Up~!(N;) is a (connected) Seifert fibered space for some
i,j (i#j)e{l,...,m}.

If neither (N;,N;N L) nor (N;,N;N L) is the ring tangle in Figure 10, then
each of p~!(N;) and p~!(N;) admits a unique Seifert fibration by Remark
3. The two Montesinos pairs (N;,N;N L) and (N;,N;NL) are glued so that
the images of regular fibers of p~!(N;) and p~!(N;) are identified. Then, either
(N;UN;, (N;UN;)N L) is a Montesinos pair, or it contains a mutually parallel
components contributing ring tangles and hence L is non-simple. This contra-
dicts the assumption.

If (N, N;NL) or (N;, N;NL) is a ring tangle, then its pre-image can be
regarded as D(—1/2,1/2) or an S'-bundle over Mobius band by Remark 3
(1). By an argument similar to that in the previous case, it can be seen that
(Ni,N;NL)U(N;,N;NL) forms a Montesinos pair or L is non-simple. This
again contradicts the assumption.

Hence, the pre-image of F gives the torus decomposition of M,(L).
Moreover, each component of the pre-image of F is a separating torus, because
each component of F separates S° and its pre-image in M,(L) is connected.

O

3. 3-bridge spheres and genus-2 Heegaard surfaces

Let M be a closed orientable 3-manifold of Heegaard genus 2, and let
(V1,V2; F) be a genus-2 Heegaard splitting of M, ie., V| and V, are genus-2
handlebodies in M such that M = ViUV, and F =0V, =0V, =V NV, By
[2, Proof of Theorem 5], there is an involution 7 on M which satisfies the
following condition.

(*) =(Vi)=V; (i=1,2) and 7|y, is equivalent to the standard involution

J on a standard genus-2 handlebody V' as illustrated in Figure 14.
To be precise, there is a homeomorphism ;: V; — V' such that

T =y (i=1,2).
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Two involutions 7 and 7’ are said to be strongly equivalent if there exists a
homeomorphism /# on M such that hth~' =1’ and that / is isotopic to the
identity map id,,.

PROPOSITION 5. Let M be a closed orientable 3-manifold and let (Vy, V,; F)
be a genus-2 Heegaard splitting of M. Let t and t' be involutions of M
satisfying the condition (%). Then t and 1’ are strongly equivalent.

Although the above proposition seems to be well-known, we could not find
a proof in literature. For completeness, we present a proof which is obtained
by refining the proof of [2, Theorem §].

ProOOF OF ProOPOSITION 5. By the assumption, there exist homeomorphisms
Y, Vi— Vand y/: V; — V such that y,(z| . )y; ' = 7 and y/(<'|, )/ =T
(i=1,2). Put g, :=yy;' : V= V. By [2, Theorem 5], ¢,|; can be iso-
toped to a homeomorphism ¢{ : 3V — 0V which commutes with J|,,. Since
91| extends to a homeomorphism ¢, : V' — V, ¢ also extends to a self-
homeomorphism of V7, which is denoted by ¢] again. Since ¢,|,, and ¢f|;),
are isotopic, ¢, and ¢ are isotopic. By [2, Theorem 7], there exists a
homeomorphism ¢ : V' — V" such that ¢{|,, = ¢}, and ¢ commutes with
the involution 7 on V. Since ¢{|;, = ]|y, @ is isotopic to ¢{. Put
n=vy; "o/, : Vi — V1. Then

77(T|V1)77 1 / 1 //wl(‘['V])lpl] "— l‘//1 / 1 //0- llpl
- i lﬁlpl _T/|V1

Moreover, since ¢{ is isotopic to ¢, # is isotopic to 1//{*1(p11//1 =1idy,.

Since 7| is isotopic to the identity map on 0V, = 0V) = F, it extends to a
self-homeomorphism of M, which is isotopic to id),. We use the same
symbol, 77, to denote the above homeomorphism on M. Note that
nty~' =1 on 17, especially on 0V, =0V,. By applying the previous argu-
ment to w2(17|V7)1p2 V— V, we can find a -equivariant homeomorphism

V=V such that g,lop = (Yo oy Set 0" =5 oy s Vo — Vo
Then we have # |(W2 = 1loy,, which implies that n' is 1sotoplc to idy,, and
n'(zly,)n" = 7'y,

By gluing the (z,7’)-equivariant homeomorphisms 7|, and 7" : Vs — V5,
we obtain a homeomorphism /: M — M such that hth™' =1’ and that & is
isotopic to idy;. Hence we obtain the required result. O

Two Heegaard splittings (77, V>; F) and (W), W5; G) of a 3-manifold M
are said to be isotopic if there exists a self-homeomorphism f of M such that
f(F)= G and f is isotopic to the identity map idy, on M. Thus we regard
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(V1,Vo; F) and (V,, V1; F) as the same Heegaard splittings. We say that
two Heegaard splittings (V, V; F) and (W), W); G) of a 3-manifold M are
homeomorphic if there exists an orientation-preserving homeomorphism f of M
such that f(F) = G.

For each genus-2 Heegaard splitting (77, V5; F), we call an involution of
M satistying the condition (x) the hyper-elliptic involution associated with
(V1,V2; F) (or associated with F, in brief) and denote it by zr. By Prop-
osition 5, the strong equivalence class of tr is uniquely determined by the
isotopy class of (Vi, Va; F).

Let L be a 3-bridge link and let M be the double branched covering of
S3 branched over L. Let 7, be the covering transformation on M. If Sis a
3-bridge sphere of L, its pre-image in M is a genus-2 Heegaard surface F such
that 7 = 7,. Moreover, the isotopy class of F is uniquely determined by that
of S because a pairwise isotopy on (S3, L) lifts to an isotopy on M. Thus we
obtain the following map @; from the set of 3-bridge spheres of L, up to
isotopy, to the set of genus-2 Heegaard surfaces of M, up to isotopy, whose
hyper-elliptic involutions are 7.

@y : {3-bridge spheres of L}/~
— {genus-2 Heegaard surfaces F of M s.t. tp =1.}/~.

It is obvious that @, is surjective. We will discuss the injectivity of @, in
the sequel of this paper. Note that we also obtain the following map @.

@ :{(L,S)|L:3-bridge link, S : 3-bridge sphere of L}/
— {(M,F)| M : genus-2 3-manifold,
F : genus-2 Heegaard surface of M}/=.

Here, (L,S) =~ (L’,S’) means that there exists an orientation-preserving self-
homeomorphism of S* which sends L to L’ and S to S’, whereas
(M,F)~ (M',F') means that there exists an orientation-preserving homeo-
morphism from M to M’ which sends F to F’. Then it is proved by Birman
and Hilden [2, Theorem 8] that this map @ is bijective.

4. Heegaard splittings of genus-2 graph manifolds

In [17], Kobayashi gave a classification of genus-2 closed Haken manifolds
which admit nontrivial torus decompositions, by studying the intersection of
Heegaard surfaces and essential tori. In this section, we recall the result and
characterize genus-2 Heegaard splittings of genus-2 graph manifolds which
admit nontrivial torus decompositions by separating essential tori.
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We use the following notation.

D[r]  (resp. Mo[r], A[r]): the set of all orientable Seifert fibered spaces
over a disk D (resp. a Mobius band Mé, an annulus A4) with r
exceptional fibers.

SMk: the set of the exteriors of the nontrivial 2-bridge knots which admit
Seifert fibrations.

SMy: the set of the exteriors of the nontrivial 2-bridge links different
from the Hopf link which admit Seifert fibrations.

SLg: the set of the exteriors of the 1-bridge knots in lens spaces each of
which admits a Seifert fibration whose horizontal loop is a meridian
loop.

KI: the twisted /-bundle on the Klein bottle.

REMARK 5. The family SMg (resp. SM, SLk) consists of Seifert fibered
spaces contained in the family Mk (resp. M, Lg) introduced in [17].

In the above, we regard S and S? x S! as lens spaces, and a knot in a
lens space Ly is called a 1-bridge knot if there is a Heegaard splitting
(V1,V2; F) of Ly of genus one such that V;NK (i=1,2) is an arc trivially
embedded in V;. Here, an arc a in a solid torus V is said to be trivially
embedded in V if there is a disk D in V' such that DNJV = b is an arc and
cl(0D —b) = a.

The following lemmas characterize the families SMg, SM; and SLg.

Lemma 1 ([17, Lemmas 4.2 and 4.4)). (1) For a nontrivial 2-bridge knot
S(o, B) with || < ||, its exterior belongs to SMy if and only if f/a=1/(2n+1)
for some integer n with |2n+ 1| > 3. Moreover, the exterior E(S(2n+ 1,1)) is
homeomorphic to the Seifert fibered space D(1/2,—n/(2n+ 1)) € D[2] (w.r.t. a
regular fiber and the meridian).

(2) For a 2-bridge link S(o, ) with || < |al, its exterior belongs to SM, if
and only if f/a=1/(2n) for some integer n with |n| >2. Moreover, the
exterior E(S(2n,1)) with |n| > 2 is homeomorphic to the Seifert fibered space
A(l/n) € A[1] (w.r.t. a regular fiber and the meridians).

LemMa 2 ([30, Lemma 1]). Let K be a 1-bridge knot in a lens space
such that its exterior E(K) belongs to SLx. Then E(K) is homeomorphic to
the Seifert fibered space D(f\/o1,p,/%) € D[2] or Mé(1/a) e M4[0]U M4ll],
where the meridian loop of K is a horizontal loop of the Seifert fibered
space.

Conversely, the Seifert fibered space D(f,/o1,p,/%2) € D[2] or Mé(1/a) €
Mo0)UM[l] is the exterior of a l-bridge knot K in a lens space where the
meridian of K is a horizontal loop.
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REMARK 6. When E(K) =~ Md(1/u) in the above lemma, the lens space
containing K is homeomorphic to P?(0;1/a) =~ S?(«;—1/2,1/2). Moreover, K
is a regular fiber of P?(0;1/a), and the meridian of K is a horizontal loop of
E(K) =~ Mé(1/a) (see [30, Proof of Lemma 1]).

From the main theorem of Kobayashi [17] together with the above
lemmas, we have the following characterization of genus-2 Heegaard splittings
of genus-2 graph manifolds which admit nontrivial torus decompositions by
separating essential tori. (Though the genus-2 manifolds admitting non-
separating essential tori are also studied by Kobayashi [17], we do not
need to study such manifolds in this paper.)

THEOREM 5. Let M be a closed, orientable, connected graph manifold
with a Heegaard splitting of genus two. Assume that M admits a nontrivial
torus decomposition by T such that each component of T is separating. Let
(V1, Va3 F) be a genus-2 Heegaard splitting of M. Then F is ambient isotopic
to a Heegaard surface, denoted by the same symbol F, which satisfies one of the
Sfollowing four conditions (F1), (F2), (F3) and (F4) (see Figure 15). Moreover,
M is obtained by gluing Seifert fibered spaces as in (Ml1-a), ..., (M4) under each
condition (F1), (F2), (F3) or F(4) as follows.

(F1) For i=1,2, V;NT consists of a single separating essential annulus.
In this case, M is obtained from M), and M, by identifying their
boundaries, where

(M1-a) M, € D[2] and M, € SLx N D[2], or

(M1-b) M, € D[2] and M, € SLx N M4[1],

where the regular fiber and a horizontal loop of M, are identified with the

meridian loop and the regular fiber of M,, respectively.

Moreover,

e M| NF is an essential annulus saturated in the Seifert fibration of M,

and

* M)NF is a 2-holed torus which gives a 1-bridge decomposition of

the 1-bridge knot K such that M, = E(K).
(F2) By exchanging V\ and V, if necessary,

(1) ViNT consists of two disjoint non-separating essential annuli
satisfying the following condition: there exists a complete meridian
disk system (Dy,D;) of Vi such that DiN(ViNT)= and
DyN(ViNT) consists of essential arcs properly embedded in each
annulus of ViNT, and

(i) V2NT consists of disjoint non-parallel separating essential annuli.
In this case, M is obtained from M, and M, by identifying their

boundaries, where
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(F1) t —:
Vi 2
(F2
(F3- -

Fig. 15

(M2-a) M, € D[2] and M, € SMg < D[2], or
(M2-b) M, € D[3] and M, e SMg <= D[2],
where the regular fiber and a horizontal loop of M, are identified with the
meridian loop and the regular fiber of M,, respectively.
Moreover,
* M| NF consists of two disjoint essential saturated annuli in My which
divide M, into three solid tori, and
e the 2-bridge knot corresponding to M, is S2n+1,1), and M,NF
is a 2-bridge sphere.
For i=1,2, V:NT consists of two disjoint non-separating essential annuli
satisfying the condition (i) in (F2).
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In this case,

(M3) M is obtained from M, € Mé[r] (r=1,2) and M, € SMx < D|[2]
by identifying their boundaries, where the regular fiber and a
horizontal loop of M\ are identified with the meridian loop and the
regular fiber of M, respectively.

Moreover,

e M| NF consists of two disjoint essential saturated annuli in My which

divide M into two solid tori, and

* the 2-bridge knot corresponding to M, is S2n+1,1), and M, NF is a

2-bridge sphere.
(F4) For i=1,2, V;NT consists of two disjoint non-parallel separating essen-
tial annuli satisfying the condition (ii) in (F2).
In this case,

(M4) M is obtained from M, M,e D[]2] and M;e SMy < A[l]
by identifying their boundaries where the regular fibers and hor-
izontal loops of M; (i = 1,2) are identified with the meridian loops
and regular fibers of Ms, respectively.

Moreover,

* M;NF is an essential saturated annulus in M; (i =1,2), and

* the 2-bridge link corresponding to M5 is S(2n,1) (|n| = 2), and M3NF

is a 2-bridge sphere.

In the above theorem, a surface in a Seifert fibered space is said to be
saturated in the Seifert fibration if it is a union of fibers.

ProOF OF THEOREM 5. The desired results follow from the main theorem
of [17] and Lemmas 1 and 2. Here we note that we do not have the case with
M, € D[2] and M, e SLxNMo[0] (see Lemma 2), because Lemma 2 implies
that in this case the Seifert fibration on M; extends to a Seifert fibration on
M. The numbers of the conditions in this theorem correspond to the numbers
of the conditions in the main theorem of [17] as follows.

Theorem 5 (Ml-a), (M1-b) | (M2-a), (M2-b) | (M3) | (M4)

main theorem of [17] (i) (iii) (ii) (iv)

O

DEerFINITION 1. We define M(1-a), M(1-b), M(2-a), M(2-b), M(3) and M(4)
to be the families of 3-manifolds which satisfy the conditions (M1-a), (M1-b),
(M2-a), (M2-b), (M3) and (M4) of Theorem 5, respectively. We set M(1) =
M(1-a) UM(1-b) and M(2) = M(2-a) UM(2-b).
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5. Mapping class groups

In this section, we calculate a certain subgroup of the mapping class
groups of the Seifert fibered spaces and the graph manifolds which arose in
Theorem 5. The results in this section are used in Sections 7, 8 and in the
sequel of this paper.

Let M be a compact orientable 3-manifold obtained by gluing two
3-manifolds M, and M, along a torus 7. We identify the universal cover of T
with R? and 7;(T) with the action of Z* on R?. Then T is identified with
R?/Z*. By considering the regular neighborhood of 7 in M, we identify M
with the union M;U (T x [1,2])UM,, where M;N (T x [1,2]) =T x {i} for
i=1,2. For a rational number r and an oriented essential simple loop y on
T, an r-Dehn twist, Dy, along T in the direction of y is a self-homeomorphism
of T x[1,2] defined as follows.

DI([X], 1) == ([% + rg(1)7], 1),

where 7 is the element of Z> = R? corresponding to 7, [X] denotes the point of
R?/Z? determined by XeR? and ¢ is a smooth function on R such that
¢(00,1] =0, $[2,00) =1 and ¢|, 5 is increasing.

If r is an integer, then D;|Tx{i} = idryy;) for i=1,2. Hence, D; extends
to a self-homeomorphism idy, UD;Uidy,, which we denote by D; again.
We denote Dy1 by D,, and call it the Dehn twist along T in the direction
of .

For a Seifert fibered space N, let .#(N) be the subgroup of the
(orientation-preserving) mapping class group of N which consists of the
elements preserving the Seifert fibration of N and each of exceptional fibers.

Let M be a 3-manifold which belongs to M(1)UM(2)UM(3)UM(4),
where M(1), M(2), M(3) and M(4) are as in Definition 1. Then, by the
definition, M is obtained by gluing two or three Seifert fibered spaces. Let
A (M) denote the subgroup of the (orientation-preserving) mapping class group
of M which consists of the elements preserving each piece of the torus
decomposition, the Seifert fibration of each Seifert piece and each exceptional
fiber. We remark that the group .#(M) depends on the Seifert fibration of
(Seifert pieces of) M. When we treat .# (M), we consider the Seifert fibration
of (Seifert pieces of) M which can be seen in context.

The reason why we are interested in the subgroup .# (M) is that the hyper-
elliptic involution 7 associated with a genus-2 Heegaard surface F determines
an element in .#(M) (cf. [4, Proposition 20]). In this section, we calculate
A (M) for some manifolds in Theorem 5. Throughout this paper, we do not
distinguish between a self-homeomorphism and its isotopy class: we denote
them by the same symbol.
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Let M be a manifold in M(1)UM(2)UM@B3)UM(4), and let T be the
union of tori which give the torus decomposition of M. Let 2 be the
subgroup of .#(M) generated by the all possible Dehn twists along T.
Then we obtain the following.

Lemma 3. (1) @2 = Z if M belongs to M(1-b), M(3) or M(4). Moreover,
9 is generated by D,, where y is a regular fiber of M>, a regular fiber of My or a
regular fiber of M according as M belongs to M(1-b), M(3) or M(4).

(2) 2 =1 if M belongs to M(1-a) or M(2).

Proof. Choose a normal orientation for 7. For each closed-up com-
ponent M; of M\T which is totally orientable (i.e., M; itself and its base space
are orientable), pick out an (oriented) fiber C;; on each component T;; of
OM;. Let¢;; =+1 or —1 according as the orientations of 7" and 6 M; coincide
on T;; or not. Let V' be the subgroup of H;(T) generated by the elements
Z/ & ;|Ci j], where M; ranges over all totally orientable Seifert fibered closed-up
components of M\T. Then we have 2 = H\(T)/V by [6, Proposition 15.2].

We prove the assertion for the case M € M(4). (The remaining cases can
be treated similarly.) Note that H(T) =<ci,h,c0,h)2Z@LZOLZDZ,
where ¢; and h; are a horizontal loop and the regular fiber of M; e D[2],
respectively (i =1,2). By the definition of M(4), we may choose ¢; and ¢, so
that they are identified with the regular fibers of M3 € A[1]. We assume that ¢;
is homologous to —c¢; in M3. Since M|, M, and Mj are totally orientable,
V =<hi,ha,c1 —c2y. Hence, we have 9 =~ H\(T)/V ~<c;) = Z. O

When M is obtained by gluing two Seifert fibered spaces M| and M, let 4
be the subgroup of .#(M;) x .#(M>) consisting of all elements (fi, f3) such
that fi|, is isotopic to f|;. When M is obtained by gluing three Seifert
fibered spaces M), M, and M; along T =T, UT,, where T; = M;N M;
(i=1,2), let 4 be the subgroup of .# (M) x (M) x .4 (M3) consisting of
all elements (f1, f2, f3) such that fi|;, and f2|;, are isotopic to f3|5, and f3|,,
respectively. Then we have the following exact sequence (see [6, Theorem
15.1] and [24]).

19— U4(M)— 44— 1. (1)

Next, we calculate .#(N) for N e D[2]U Mo[1]U A[1].

Lemma 4. (1) If N is a Seifert fibered space D(f5\/o1,p,/%2) € D[2], then
M(N) = {f> =Ly, where [ is the involution of N in Remark 2 (see Figure 16
(1))-

(2) If N is a Seifert fibered space Md(f/o) € Mo[l], then M (N)=
{g1,92,b) =L, ® ZLr ® Z», where g, and g, are the involutions as illustrated in
Figure 16 (2) and b is the Dehn twist along a saturated annulus Ay in Figure 16

(2)-
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N

Fig. 16

(3) If N is a Seifert fibered space A(f/a) € A[l], then M (N) has a
presentation

M(N) = hyyhaya | bt by, [hy o), [h, a), haahs ' a)y,

where hy and hy are the involutions as illustrated in Figure 16 (3) and a is the
Dehn twist along a saturated annulus A, in Figure 16 (3).

RemaArRk 7. The Dehn twist along an annulus is defined as for the Dehn
twist along a torus. We note that the Dehn twist b in (2) is isotopic to the
n-rotation along fibers of N € Md[1] (see [15, Lemma 25.1]). From now on, b
denotes the z-rotation along fibers of N € Mé[l].

ProoF oF LEmMMA 4. By [15, Proposition 25.3], the full mapping class
group of the Seifert fibered space N is generated by fiber-preserving homeo-
morphisms. Let F be the base space of N. Let .#°(N) be the subgroup of
A (N) generated by those (fiber-preserving) elements which induce the identity
map on F, and let .#*(F) denote the subgroup of the mapping class group of
the pair (F, exceptional points), generated by those homeomorphisms which fix
each of the exceptional points. By [15, Proposition 25.3], we have a split exact
sequence

1*)%0(]\/)%%(]\[) — M (F) — 1.

Moreover, it is proved in [15, Lemma 25.2] that .#°(N) is isomorphic to the
first relative homology group H;(F,J0F) of the base space.
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(1) Let N be a Seifert fibered space over a disk with two exceptional
fibers. It is easy to see that .#*(D) =~ Z, for a disk D with one exceptional
point. We note that the essential arcs properly embedded in a disk with two
exceptional points are unique up to ambient isotopy. These imply that
M*(F) =7, and the generator lifts to the self-homeomorphism f of N in
Figure 16 (1). Since .#°(N) =1, we have the desired result.

(2) Let N be a Seifert fibered space over a Mobius band with one
exceptional fiber. Then we can see that .#°(N) = (b) =~ Z, (see [15, Lemma
25.2]) and A" (F) =~ Z, ® Z, whose generators lift to the self-homeomorphisms
g1 and g>» of N. Hence, we obtain the desired result.

(3) Let N be a Seifert fibered space over an annulus with one exceptional
fiber. Then we can see that ..%O(N) =<ay=7Z and M*(F) =7, ® Z, whose
generators lift to the self-homeomorphisms %; and /4y of N. By using these
results, we obtain the desired result. ]

In the remainder of this section, we describe .# (M) for M € M(1) UM(4).
To this end, we define a family of self-homeomorphisms of M.

DeFiNiTION 2. (1) Let M be a manifold in M(l-a), ie, M= MU
(T x [1,2])U M,, where M, M, € D[2]. We define a self-homeomorphism G
of M as follows.

GO‘MI =/, G0|M2 = /2, G0|TX[1,2] =R,

where f; (i =1,2) is the involution f on M; € D[2] in Remark 2 (see Figure 16
(1)), and R is the self-homeomorphism of 7 x [1,2] defined by R([X],?) =
=N

(2) Let M be a manifold in M(1-b), ie., M =M U(T x [1,2])UM,,
where M| € D[2] and M, € Mé[1]. Let h; be a regular fiber of M; (i=1,2).
We define self-homeomorphisms Gy, G,, H and g of M as follows. (Recall
that D7 denotes the r-Dehn twist along 7" in the direction of 7.)

Gily, = 1 Gily, =91, Gilrep g =R,
7 1/2
G2|M1 = ld7 G2|M2 = ¢, G2|T><[1,2] = Dh1 ,
1 1/2
Hly, =1, H|y, = b, Hlryp10 = Dy,

u = Dp,.

Here, f, g1 and g, are involutions of M| or M, as described in Lemma 4, b is
an involution of M, as described in Remark 7, and R is the involution of
x [1,2] defined in (1).
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(3) Let M be a manifold in M@), ie, M=MUMU
(ThUTy) x [1,2])U M3, where M, M, e D[2], Mse A[l], T; x {1} =« M; and
T; x {2} = M5 (i=1,2). Let hi(= T;) be a regular fiber of M3;. We define
self-homeomorphisms G3 and A of M as follows.

Gily, =fi Gl =M, Gl =R (1=1,2),

}vi == Dhi .

Here, f; (i =1,2) and R are the involutions of M; and T; x [1,2], respectively,
as in (1), and A is the involution of M3 described in Lemma 4 (3). Since 4,
and A, are isotopic by Lemma 3, we denote them by A.

ProposiTION 6. (1) If M € M(1-a) and the decomposition of M into M,
and M, e D[2] is the torus decomposition, then (M) = {Gy|G}> = Z».

(2) If MeM(1-b) and the decomposition of M into M, € D]2] and
M, € M6[1] is the torus decomposition, then M (M) has a group presentation

%(M) = <G],G27H,,U| G12 (l: 071)7H2/171a [G13G2]a [GlaH],ua [G27H]7

G1ﬂGf1ﬂ; [G27 ,u]7 [ku]>

(3) If MeM(4) and the decomposition of M into My, M, € D[2] and
M; € A[l] is the torus decomposition, then M (M) has a group presentation

(M) = {Gs, 1] G3,(G32)*)

ProOF. (2) Assume that M € M(1-b) and the decomposition of M into
M, € D[2] and M, € Mj[1] is the torus decomposition. We identify M with
M U(T x [1,2]) U M, by considering the regular neighborhood of T'= M, =
oM.

Let iy and /(< T) be regular fibers of M, and M,, respectively. Then
{h1,h,} generates n;(T). We denote the Dehn twists along 7T in the direction
of iy and &, by 4 and u, respectively. Then, by Lemma 3 (1), & is the infinite
cyclic group generated by u, where A= 1.

On the other hand, we have #(M)=<f)=Z, and 4 (M>)=
{g1,92,b) =2, ®Z, ®Z, by Lemma 4 (1) and (2). Then by considering
matching conditions on 7, we see that

A=(f ), (id, g0), (id, b)> = (Zs)".

Let G;, G; and H be the self-homeomorphisms of M as described in Definition
2. Then we have

GiZZ[Gl,Gz]Z[Gz,H]Zl (i=1,2),

(2)
H? =y, G1HG;' = H! and hence [G),H| = u!
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in .4(M). Moreover,
g, = —id, g, = id, lg = id, (3)

where 1y denotes the restriction of the inner automorphism X — YXY~!
induced by Y (= Gy,G, or H) to 9 =<uy. Hence the above equalities (2)
and (3), together with the exact sequence (1), implies the desired presentation of
M(M).

(1), (3) can be proved similarly using the exact sequence (1) and Lemmas 3
and 4. W

6. Principles of gluing

In this section, we describe useful facts which are used in the proof of
Theorems 1, 2 and in the sequel of this paper.

Let M be a closed orientable 3-manifold obtained by gluing M; and M,
along a torus 7, and let F be a surface in M intersecting 7 transversely in n
parallel essential loops, C, for some positive integer n. Then we may identify
M with M = MU (T x [1,2])U M, as in Section 5, and we may assume that
A:=FN(T x[1,2]) consists of n parallel product annuli C x[1,2]. Put
Fi:=FNM; for i=1,2. Let y be an oriented loop on 7 which meets
each component of 4 once, and let DI/" be the k/n-Dehn twist along T
in the direction of y defined in the previous section. We define D;‘ / "(F) by
F UDf/ "(A)UF,, where we assume that the components of A are ‘“evenly
spaced” on T x [1,2]. We call it the surface obtained from F by applying k/n-
Dehn twist along T in the direction of y. Note that if F is a separating surface
(e.g., Heegaard surface), then n is even, which implies D~,1/ 2(F ) is defined.

LEMMA 5. Let M and F be as in the above, and assume that F is a genus-2
Heegaard surface of M. Assume also that the involution tp preserves the above
decomposition, and set t;:=tp|y (i=1,2) and t4:=TF|r, . Assume fur-

ther that v is hyper-elliptic, namely, t4([X],t) = ([-X],1).
If F' .= D;/Z(F) is also a genus-2 Heegaard surface of M, then g = D,tp.
Proor. Consider the involution 7/, = D,/*r,D; "2
tf=D,t4 on T x [1,2], because

on T x[1,2]. Then
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In particular, 7|7,y = Talpyqy for i=1,2, and hence, we obtain an invo-
lution 7' :=71 U7, U1, on M.
Since

D240} 2(D)2(A)) = D) P4(4) = D)(4),

we see that the involution 7’ preserves F’ :FIUD;/Z(A)UFZ. Since tf
preserves F; (i=1,2), tp|p: F — F is orientation-preserving and 74 1is
hyper-elliptic, we see that Fix(tr)NA4 = . Hence

Fix(zr|p) = Fix(7 |FﬂM1) U Fix(72|FﬂM2) = FiX(T/‘F’)'

This implies |Fix('|p/)| =6, and hence 7’ is the hyper-elliptic involution 7z
associated with the Heegaard surface F’.

On the other hand, since D, u, =id for i=1,2, we see from the above
facts that

=1
= Ut Un
=t UDt4U1r
=D,71UD,t4UD,1;
= D,tF. O

LeMMA 6. Let M = MU M, be a closed orientable 3-manifold obtained by
gluing two 3-manifolds M| and M, along a torus T = 0M| = 0M,. Let F and
F’ be two surfaces in M, and put F;=FNM; and F/ = F' O\ M; for i =1,2.

(1)  Suppose that

(i) FNT =F'NT consists of n parallel essential loops on T for
some positive integer n, and

(ii) F; is isotopic to F! in M; (i=1,2).

Then F' is isotopic to D;C / "(F) for some integer k and for some loop y

on T which meets each component of FNT = F' NT in one point.

(2)  Suppose that

(1) Fy is isotopic to F| in M, by an isotopy fixing 0M,, and
(i) F, is isotopic to F, in M.
Then F and F' are isotopic in M.

Proor. (1) Suppose that (1-i) and (1-ii) hold. Identify M with
M U(T x [1,2])UM,. We may assume that each of FN(T x[1,2]) and
F'N(T x [1,2]) consists of n parallel essential annuli in 7 x [1,2]. By the
condition (l-ii), we may assume that F'NM;=FNM; (i=1,2) after an
isotopic deformation of F’' in M =M U(T x[1,2])UM,. Then F’'N
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(T x[1,2]) consists of n parallel annuli such that J(F'N(T x[1,2])) =
O(FN(T x [1,2])). Thus it follows that F'N(T x[1,2]) is isotopic to
DY"(FN (T x [1,2])) by an isotopy fixing (T x [1,2]) for some ke Z.
Then F’ is isotopic to DX/"(F).

(2) Suppose that (2-i) and (2-ii) hold. By the condition (2-ii), we may
assume that F'N M, = FN M, after an isotopic deformation of F’ in
M = M, UM,. By the condition (2-i), F'N M, is isotopic to FN M; by an
isotopy fixing dM,. Hence, F’ is isotopic to F in M. O

LemMma 7. Let L be a link in S*, and suppose that the (3, 1)-manifold pair
(S, L) is decomposed into (B;,L,) and (B3, Ls) by a Conway sphere (S*, P).
Let S and S' be two surfaces in (S°,L) such that

(i) SN(S? P)=S"N(S? P) consists of n parallel loops on S*\P each of

which separates P into two families of two points, and

(i) SNB? is isotopic to S'NB} in (B}, L) (i=1,2).

Then S and S’ are isotopic in (S* L).

Proor. We identify (S*, L) with (B}, Li) U ((S2, P) x [1,2]) U (B3, L»), and
we may assume that each of SN (S? x [1,2]) and S’ N (S? x [1,2]) consists of n
parallel essential annuli in (S?\P) x [1,2]. Since SN B} is isotopic to S'N B}
in (B}, L;) (i=1,2), we may assume that SNB} = S'NB} (i=1,2) after an
isotopic deformation of S’ in (S3,L) = (B}, L)U((S? P) x [1,2])U (B3, L»).
Then S'N(S? x [1,2]) consists of n parallel essential annuli in (S>\P) x [I, 2]
sharing the same boundary with SN (S? x [1,2]). It can be easily seen that
SN((S?,P) x[1,2]) and S'N((S P) x[1,2]) are isotopic in (S, P) x [1,2]
with their boundaries fixed (cf. [6, Theorem 8.3 (3)]). Hence, S and S’ are
isotopic in (S3,L). ]

Let L be a link in S Let (By,L;) be a tangle in (S* L), and put
S; = 0B;. Let h be a homeomorphism from B to the standard 3-ball B* = R?
such that #(S) N L) = P = S? = 0B3, where P = {(0’%’%) ler, e = -_I—l}. Set
(By, Ly) = (S3, L)\Int(By, L;). Then we regard (S*, L) as (By,L;)U (B, L),
where (By,L;) is glued to (B, L;) by the identity map on S;. Let g be the
rotation through =z about the third coordinate axis in R®. Let u=
h='gh:S; — S; and let L' be a link in S* such that (S3 L") = (By,L1)U,
(B,, Ly) with g as gluing map. The operation of replacing (S*, L) by (S3 L)
is called a mutation of (S3,L) along S;, by the mutation involution u (cf.
[11]). Let ¢, be the the circle {(x1,x2,0) | x7 +x3 = 1}, and put ¢, := h~(c).
We call ¢, a mutation loop of the mutation.

LemMa 8. Let L, L', Sy, u, ¢, be as above. Let y be a component of the
pre-image of ¢, in M = M>(L)(= M>(L")). Then there is a homeomorphism
[ My(L) — My(L') such that f~'tp.f = D,tp.
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Proor. Let T be the pre-image of S} in M. Then T cuts M = M,(L)
into two manifolds, M| and M, < M. Namely, M is obtained by gluing M,
and M, by the identity map on 7. Let g€ Diff(T) be a lift of 4, and observe
that 4([X]) = [ +17]. Then M,(L') is obtained by gluing M, and M, along
T by g. Identify M = M,(L) with MU (T x [1,2])U M,, where dM; and
T x {i} are identified by the identity map (i =1,2). Then M,(L’') can be
regarded as the manifold obtained from M, T x [1,2] and M> by gluing 0M,
and 7 x {1} by the identity map and gluing dM, and T x {2} by g Thus
there is a homeomorphism f : My(L) — M>(L') defined by f|,, =id (i=1,2)
and fl7. 9 =Dy 2 On the other hand, we may assume that the involution
7, on M = M;U(T x [1,2]) UM, preserves the decomposition and rL|TX[172] is
equal to the involution, 7| 5, defined by

(X, 0) = ([=x, 0).
Set 7;:=7trly (i=1,2). Then the involution 77 on M,(L') = MUy
(T x [1,2])Uz M, is given by
Ty, =T (i=1,2),
TL’|TX[1.2] =T,
Hence, after identifying M>(L’) with M = M,(L) by the homeomorphism f,
the involution 7,/ is identified with
fluf =1 UD,IV/ZT[Lz]D;I/Z Uty
= UDy U
=D,(t1Utp 5 U12)

:DVTL' |:|

7. Proof of Theorem 1

In this section, we prove Theorem 1, namely, we determine all 3-bridge
arborescent links. We also describe all 3-bridge spheres of the links up to
homeomorphism except for Montesinos links and for some special links
(Proposition 7). The 3-bridge spheres of the exceptional links will be studied
in the sequel of this paper.

Let L be a 3-bridge arborescent link. If L is a Montesinos link, then L
satisfies the condition (4) in Theorem 1 by the result of Boileau and Zieschang
[5]. So, in order to prove Theorem 1, we may assume that L is not a
Montesinos link. Then, by Proposition 4, one of the following holds.
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(i) L is equivalent to the link L,((—1/2,1/2),(1/a),(=1/2,1/2)) € &,.

(ii) L is equivalent to the link L((f, /o1, /%), (=1/2,1/2)) € &.

(iii) The double branched cover M = M>(L) is a graph manifold which

admits a nontrivial torus decomposition by separating tori.

Hence we may assume L satisfies the condition (iii), in order to prove
Theorem 1. Then M satisfies the assumption of Theorem 5 and the covering
transformation 7, is equal to the hyper-elliptic involution 7y associated with a
genus-2 Heegaard surface F' of M, which is obtained as the pre-image of a
3-bridge sphere of L. Note, however, that every pair (M, F) in Theorem 5
does not necessarily yield an arborescent link, i.e., (M, Fix tg)/tF is not
necessarily an arborescent link. In Proposition 7 below, we describe the
link (M,Fix tr)/tp for each manifold M and genus-2 Heegaard surface F
in Theorem 5, determine if it is an arborescent link, and identify the link with a
link in Theorem 1 if it is an arborescent link. We also describe the 3-bridge
sphere S of L obtained as the image of F.

PROPOSITION 7. Let M be a graph manifold which satisfies the condition of
Theorem 5, and F a genus-2 Heegaard surface. Let L be the link in S* obtained
as the quotient (M, Fix tp)/tp, and S the 3-bridge sphere of L obtained as the
image of F. Then the following hold.

(1) Suppose the condition (F1) is satisfied.

(1-a)  If the condition (M1-a) is satisfied, then L belongs to ¥ and S
is homeomorphic to the 3-bridge sphere Sy or S» in Figure 3 (1)
or (2).

(1-b) If the condition (M1-b) is satisfied, then L belongs to the
set

{La((Br/ou, By /ey), (1 o), (Baf o2, B2/ 3))
€ Ly | (Ba/o2, B/ 5) ~ (=1/2,1/2)}

and S is homeomorphic to the 3-bridge sphere in Figure 3 (4).
(2)  Suppose the condition (F2) is satisfied.
(2-a) If the condition (M2-a) is satisfied, then L belongs to the
set

{Li((Br /e, Br/er), (Baf o2, B/ 23))
€ 21| (B2, B/ 5) ~ (1/2,—n/(2n + 1))
for some n with [2n+ 1| > 1}

and S is homeomorphic to the 3-bridge sphere Ss in Figure 3.
(2-b)  If the condition (M2-b) is satisfied, then L belongs to #3 and S
is homeomorphic to the 3-bridge sphere in Figure 3 (5).
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(3) Suppose the condition (F3) is satisfied. Then L is not an arborescent
link. Actually, L is equivalent to the link in Figure 25.

(4)  Suppose the condition (F4) is satisfied. Then L belongs to ¥, and S is
homeomorphic to the 3-bridge sphere in Figure 3 (4).

ReMARK 8. The proof of the uniquness of S up to homeomorphism in the
case (1-b) is postponed to the sequel of this paper, because we need to prove
additional facts.

Theorem 1 immediately follows from the above proposition. Thus the
remainder of this section is devoted to the proof of Proposition 7.

Case 1. F satisfies the condition (F1).

Then M is obtained by gluing M| € D[2] and M, € SLg, where the regular
fiber, /11, of M, is identified with the meridian loop of M>, which is a horizontal
loop, ¢;, of the Seifert fibered space M, by Lemma 2. Since the regular fiber,
hy, of M, intersects h; = ¢, in a single point, /4, is regarded as a horizontal
loop, ¢, of M;. Let oy, B;, af, B be integers such that

(i) M;=D(B;/o,Bi/o}) wrt. h; and ¢; (i=1,2) when M belongs to

M(1-a), or
(i) My =D(Bi/ou,pi/o)) w.rt. by and ¢; and My = Mé(1/0n) wrt.
and ¢, when M belongs to M(1-b).

Recall from Theorem 5 that

e FN M, is an essential saturated annulus in M, and

* FN M, is a 2-holed torus which gives a 1-bridge decomposition of the

1-bridge knot K such that M, = E(K).

Let 7; be the involution of M; preserving the annulus M;NF, which is
equivalent to the involution f in Remark 2 (see Figure 18 (1)). Let 7, be the
“hyper-elliptic involution” of M, associated with the 1-bridge decomposition
determined by M, NF (see Figure 17). We may assume 71|y, = 72|5,, and
hence obtain an involution 7 =17 Ut of M which preserves the Heegaard
surface F. Moreover, we can easily see that F/{t) is a 2-sphere with 6 cone-
points. Hence 7 is the hyper-elliptic involution associated with F.

Fig. 17
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Cast 1.1. M belongs to M(1-a), i.e., My € D[2] and M, € SLx N D]2).

By [19, Theorem 3 and Corollary 4.1], F N M, is isotopic to one of the two
2-holed tori in Figure 18 (2) by an isotopy fixing dM,. To be precise,
FN M, =cl(dV\0M,), where V is the regular neighborhood in M, of the
graph obtained by connecting a horizontal loop and an exceptional fiber of M,
by an arc as illustrated in Figure 18 (2). We can observe as in Figure 18 (2)
that the hyper-elliptic involution 7, of M>, associated with each of the 1-bridge
decomposition is equivalent to the involution f in Remark 2. Each of the
2-holed torus in M, together with an essential annulus in M; uniquely
determines a genus-2 Heegaard surface of M, and the Heegaard surface F
is isotopic to one of these two Heegaard surfaces (see Lemma 6 (2) and [19,
Proposition 5.2]). These Heegaard surfaces determine the same hyper-elliptic
involution 7 = 71 U1,.

Moreover, since h; and c¢; are identified with ¢, and h;, respectively, we
see by Figure 8 (i) (note that a is the quotient of a horizontal loop and b
is the quotient of a regular fiber) that L is equivalent to the link
Li((By/o, B1/2)), (Ba)oa, B5]23)) € Z1. We note that, though the pairs
(B;/ou, Bi /o)) are defined only up to the equivalence relation in Proposition
1 (cf. Notation 2), the link type of the resulting link is not affected by the
choice of the representative (f;/a;, f3;/a}). (This corresponds to the easy if part
of Theorem 2 (1).) For each genus-2 Heegaard surface F, the image of F N M;
in (M;, Fix 7;)/7; is as illustrated in Figure 18, and hence, we see that F
projects to one of the 3-bridge spheres S; and S, in Figure 3. Thus S is
homeomorphic to S; or S, by virtue of [2, Theorem 8] (see Section 3). This
completes the proof of the assertion (1-a) in Proposition 7.

Case 1.2. M belongs to M(1-b), i.e., My € D[2] and M, € SLx N M4[1].

Note that M, = Mé(1/ay) for some oy € Z with |op| > 2 by Lemma 2.
We first describe the involution 7, of M,.

LEMMA 9. 1, is equivalent to the involution g; in Lemma 4.

Proor. Since the base orbifold is non-orientable, we see that z;(M;) has
trivial center. Hence by Tollefson [28, Corollary 7.2] (where readers should
be careful about typos) we see that the strong equivalence class of the
involution 7, is determined by its image in the mapping class group .# (M) =
(g1, 92,b) = (Z,)* (see Lemma 4 (2)). Note that .#(M,) = (Z,)* is realized
by the group action on M, as illustrated in Figure 19. To be precise, the
natural projection Diff(M;,) — .#(M,) has a section s:.#(M,) — Diff (M)
such that the image G of s is described by Figure 19. In the figure, M,/<{g;)
is equal to N/<g;) in Figure 16 with /o = 1/a. The orbifold M,/{g1,¢>) is
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Fig. 18

obtained as the quotient of M,/{g;) by the involution induced by ¢, and the
orbifold M,/G is obtained as the quotient of M,/{g;,¢>> by the involution
induced by . Thus M,/G has B? as the underlying space and the singular set
forms the graph I' in B? as illustrated in Figure 19. The group G is identified
with the covering transformation group of the branched covering M> — M, /G,
where the monodromy of the associated unbranched covering is given by
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Fig. 19

¢ : 7 (B\I') — G as illustrated in Figure 19. Here, each symbol near to an
edge represent the image of the meridian of the edge by ¢.

Since 7, has order 2, it is strongly equivalent to gi, g2, b, 9192, ¢1b, g2b or
g192b.  We show that g is the only possibility for 7. To this end, note that
M, /{t;) must be a 3-ball because 7, is a hyper-elliptic involution associated
with a 1-bridge decomposition of M,. Since 72|, is a hyper-elliptic invo-
lution of the torus dM,, 7, cannot be g,, b nor g,b. Thus 7, is strongly
equivalent to g1, g192, 910 or gigob. However, we can see that M>/<{g1¢>),
M, /{g1by and M,/{g1g>b) are not homeomorphic to a 3-ball, as follows.

We first show this for gjg>. Note that M>/{gi1g2)> — (B>, I") is
the branched covering associated with the monodromy  : 7w (B3\I") —
G/{g192) = (Zz)z. Let s and ¢ be the elements of G/<{g1¢g,) obtained as the
images of g;(=g>) and b, respectively. Then y is as illustrated in the left
figure of Figure 20 (1). Then, by passing the intermediate covering space
corresponding to <s,)/{t), we see that M»/{gig>) is a lens space of type
(20,1) with an open 3-ball removed, which is not homeomorphic to B3. By
using Figure 20 (2) and (3), we can also see that neither M,/{gib)> nor
M,/{g1g2b) is a 3-ball. Hence, the only possibility for 7, is the involution
g1- This completes the proof of Lemma 9. O

By Lemma 9, (M>,Fix 15)/{t2) = (M3, Fix g1)/<{g1> and it is the Mon-
tesinos pair as illustrated in the left figure of Figure 19. Since ¢; and A are
identified with %, and ¢;, respectively, we see, by using Proposition 2 as in Case
1.1, that L is equivalent to the arborescent link in Figure 21, which in turn is
equivalent to the link Ly((f, /o1, B1/2)), (1/22),(=1/2,1/2)) € &>. As in Case
1.1, though (B, /o1, B /o) is defined only up to certain equivalence, this link is
determined without ambiguity (see the if part of Theorem 2 (2)). This
completes the proof of the assertion (1-b) in Proposition 7. We shall show
in the sequel of this paper that the 3-bridge sphere of L obtained as the image
of F is as illustrated in Figure 21.
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CaSE 2. F satisfies the condition (F2).

Then M is obtained by gluing M) € D[2]UD[3] and M, = E(S(2n+1,1))
€ SMy, where the regular fiber, s, of M) is identified with the meridian
loop of M;, which is a horizontal loop, ¢;, of the Seifert fibered space
M, =D(1/2,—n/(2n+ 1)) (cf. Lemma 1). Since the regular fiber, /&,, of M,
intersects /1; = ¢, in a single point, /&, is regarded as a horizontal loop, ¢, of
M. Let o;,f; (i=1,2,3) be integers such that M| = D(f,/o1,p,/02) € D[2]
or My = D(p, /o, P/, p3/o3) € D[3] w.r.t. by and ¢;. Recall from Theorem
S that

e FN M, consists of two essential saturated annuli in M; which divide

M, into three solid tori, and

e FN M, is a 2-bridge sphere of the nontrivial 2-bridge knot S(2n + 1,1)

such that M, = E(S(2n+1,1)).

If My = D(f,/ou, fy/ 02, f3/03) € D[3], we assume the following convention.

CONVENTION 1. The singular fibers of indices f)/o1, fa/c2, Ps/o3 are
located in My in this order with respect to the annuli F N\ M, as illustrated in
Figure 22.  Namely, the singular fiber of index p,/oy is located in the “central
component” of M\\F

This convention determines the ordered triple (f,/a1,f5/02,F3/093) up to
the equivalence relation ~ in Notation 1.

Note that the isotopy type of F N M, in M, is uniquely determined under
this convention. Moreover, the isotopy type of FN M, in M, is unique up to
isotopy fixing dM, by [19, Theorem 4]. Hence, by Lemma 6 (2), there is a
unique possibility for F up to isotopy under Convention 1.

Let 7; be the involution of M| preserving the annuli FN M; which is
equivalent to the involution f in Remark 2. Let 7, be the involution of M, as
illustrated in Figure 23. Then we may assume 71|y, = 72/s),, and hence we
obtain an involution t = 7y U, of M which preserves the Heegaard surface F.
Moreover, we can see that 7 is the hyper-elliptic involution associated with F.

Since /) and ¢; are identified with ¢; and h,, respectively, we see by Figure
23 and Figure 8 that L is equivalent to the link L;((f,/a1,0,/%),

(1/2,=n/2n+1))) € 1 or Ls((B1/on, B2/ %2, B3 /), (1/2, =n/(2n +1))) € &3
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according as M belongs to M(2-a) or M(2-b). As in Case 1, though
(By/o1,P2/02) or (fy/on,pr/02,P3/03) is defined only up to the equivalence,
the link is determined without ambiguity under Convention 1, since the
Montesinos pair (M;, Fix 75)/7, admits a “horizontal” symmetry. Moreover,
we see that F projects to the 3-bridge spheres in Figure 3 (3) or (5) according
as M belongs to M(2-a) or M(2-b). Thus S is homeomorphic to the 3-bridge
spheres in Figure 3 (3) or (5) according as M belongs to M(2-a) or M(2-b) by
virtue of [2, Theorem 8]. This completes the proof of the assertion (2) in
Proposition 7.

Fig. 23

CasE 3. F satisfies the condition (F3).

Then M is obtained by gluing M, e Mo[r] (r=1,2) and M, =
E(S(2n+1,1)) e SMk, where the regular fiber, &, of M; is identified with the
meridian loop of M;, which is a horizontal loop, ¢,, of the Seifert fibered space
M, =D(1/2,—n/(2n+ 1)) by Lemma 1. Since the regular fiber, /s, of M)
intersects /; = ¢, in a single point, /4, is regarded as a horizontal loop, ¢, of
M. Let o;,f, (i =1,2) be integers such that M| = Mo(f, /o, f2/0) € Mdlr]
(r=1,2) wrt. b and ¢;. Here,

(i) Jou| =2 and b’z_g if r=1, and

(ii)  Joul, Jon| =2 1f r= 2.
Recall from Theorem 5 that
e FN M, consists of two saturated essential annuli in M; which divide
M; into two solid tori, and
e FN M, is a 2-bridge sphere of the nontrivial 2-bridge knot S(2n + 1, 1)
such that M, = E(S(2n+ 1,1)).
Let 7; and 71, respectively, be the involutions of M| and M, as illustrated in
Figure 24 (1) and (2). Then we may assume 7|, = 72|y, and hence, we
obtain an involution 7 =1t; U1y of M which preserves the Heegaard surface
F. Moreover, we can see that 7 is the hyper-elliptic involution associated with
F. Hence (M;,Fix 1;)/t; (i =1,2) is the (3, 1)-manifold pair as illustrated in
Figure 24, and L is equivalent to the link in Figure 25 (cf. [14]).
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Fig. 25

In the following we show that L is not an arborescent link. Assume, on
the contrary, that L is an arborescent link. Then, since L is non-simple (this
fact is directly observed from Figure 25), L must be equivalent to the link in
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Figure 12 (1) by Proposition 4 (1). Note that L must consist of 3 compo-
nents. So, one of the following holds.

(i) (00,81) = (s2,5,) = (0, 1) (mod 2).

(i) (a1,B)) = (22,8,) = (1,0) or (1,1) (mod 2).
Let K; and K; be the two components of L “inside” the solid torus bounded by
the torus in Figure 25, and let K3 be the remaining component of L. Then
both K;UKj3 and K, U K3 are equivalent to the 2-component trivial link or a
2-bridge link S(2(2n+1),1) (|2n+ 1| > 3) according as the condition (i) or (ii)
holds (see Figure 26). On the other hand, the link in Figure 12 (1) is obtained
by adding a loop parallel to a component of a 2-bridge link S(4m,2m + 1) for
some nonzero integer m, and hence, only one pair of its components forms a
2-component trivial link. This shows that K; U K3 nor K, U K3 cannot be the
trivial link, and hence the case of Figure 26 (1) cannot occur. Thus both of
KiUK; and K>,UK3; must be equivalent to S(2(2n+1),1) (2n+1| = 3).
This implies that S(4m,2m+ 1) must be isotopic to S(2(2n+1),1) and
therefore 2m + 1 = +1 (mod 4m). Hence, m must be +1. However, since
2n+1] >3, S2(2n+1),1) is not equivalent to S(4,3)=S(4,—1) nor
S(—4,—1) = S(4,1), a contradiction. Hence, L is not an arborescent link.
This completes the proof of the assertion (3) in Proposition 7.

Cast 4. F satisfies the condition (F4).

Then M is obtained by gluing three Seifert fibered spaces M, M € D[2]
and M; = E(S(2n,1)) € A[l], where the regular fiber, /;, of M; (i=1,2) is
identified with the meridian loop of M3, which is a horizontal loop, cé, of the
Seifert fibered space M, = A(1/n) (see Lemma 1). Since the regular fiber,
hi = OM;N0M;, of M; intersects /; = ¢} in a single point, A} is identified with
a horizontal loop, ¢;, of M; (i=1,2). Let o, f;, o/, (i=1,2) be integers
such that M; = D(pB;/o;,Bi/«!) € D[2] w.r.t. h; and ¢; (i =1,2). Recall from
Theorem 5 that
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E(SQn,1))

2-bridge
sphere

Fig. 27

e FNM; (i=1,2) is an essential saturated annulus in A;, and
* FNMsis a 2-bridge sphere of the 2-bridge link S(2r,1) (|n| > 2) such
that M3 = E(S(2n,1)).

Note that the isotopy type of FN M; in M; (i = 1,2) is uniquely determined by
the assumption. Moreover, the isotopy type of F N M3 in Mj is also uniquely
determined by the assumption, because each 2-bridge link admits a unique
2-bridge sphere up to isotopy by [27]. Hence, the isotopy type of F is uniquely
determined by the assumption modulo powers of 1/2-Dehn twists along
M;NM; in the direction of the fiber of M; (i=1,2). Now, we assume
the following convention.

CONVENTION 2. The singular fibers of M, are located so that the singular
fiber of M\ of index B,/o1 and the singular fiber of My of index B,/a) are
contained in the same component of M\F.

By the above observation, we see that there are at most two possibilities
for the homeomorphism type of F under Convention 2. Namely, if F* is a
Heegaard surface satisfying the condition (F4) and Convention 2, then the
surface, F**, obtained from F* by applying 1/2-Dehn twist along M;N M3 in
the direction of the fiber of M3 (i = 1,2), together with F* forms a complete
set of representatives of the Heegaard surfaces of M satisfying the condition
(F4) and Convention 2. However, we can see by using the S!-action on M;
that F** is isotopic to F*. Hence, M admits a unique genus-2 Heegaard
surface satisfying Convention 2 up to isotopy.

Let 7; (i=1,2) be the involution of M; preserving the annuli F N M;,
which is equivalent to the involution f in Remark 2. Let 73 be the involution
of Mj as illustrated in Figure 27. Then we may assume t;|;), = 73],y for
both i=1,2, and hence we obtain an involution t=7Ut,Ur3 of M
preserving the Heegaard surface F. Moreover, we can see that 7 is the
hyper-elliptic involution associated with F.

Hence, by an argument similar to that in the previous cases, we see that L
is equivalent to the 3-bridge link Ly((f,/o1,B1/21), (1/n), (By/u2, f5]%5)) € L.
Though the pairs (f;/x,f;/o!) are defined only up to equivalence, the Con-
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vention 2 guarantees that the link is determined without ambiguity. Moreover,
S is homeomorphic to the 3-bridge sphere as illustrated in Figure 3 (4) with
o9 =n by virtue of [2, Theorem §|.

This completes the proof of Proposition 7 and hence that of Theorem 1.

8. Proof of Theorem 2

In this section, we prove Theorem 2. Though this would follow from the
classification of arborescent links by Bonahon and Siebenmann [6], we give an
alternative proof by studying the double branched coverings. We remark that
Theorem 2 (1) is already proved by Gordon and Luecke [11] by essentially the
same method. However, we include its proof as a warm-up exercise for the
more complicated proof of the remaining assertions, where we need to study
not only the homeomorphism types of the double branched coverings but also
the covering transformations.

ProposiTioN 8. (1) For a link L= Li((s1,%2),(s3,84)), M = M,y(L) is
decomposed into two Seifert fibered spaces My = D(s1,s2) and M, = D(s3,54).
(1) If (s1,8) ~(=1/2,1/2) (resp. (s3,84) ~ (=1/2,1/2)), then M is a
Seifert fibered space P%(0;s3,s4) (resp. P>(0;s1,s2)) over a projective

plane P>.

(i) If (s1,%) * (=1/2,1/2) and (s3,s4) * (—=1/2,1/2), then the decompo-
sition of M into M| and M, gives the torus decomposition of M.

(2) For a link L= Ly((s1,52),(1/a),(s3,84)), M = My(L) is decomposed

into three Seifert fibered spaces My = D(s1,s2), My = D(s3,54) and M3 = A(1/x).

(1) If (s1,82) ~ (s3,84) ~ (=1/2,1/2), then M is a Seifert fibered space
Ki(0;1/a) over a Klein bottle KI.

(i) If (s1,8) ~ (=1/2,1/2) and (s3,84) * (=1/2,1/2) (resp. (s1,s2) *
(—=1/2,1/2) and (s3,s4) ~ (=1/2,1/2)), then M has the torus
decomposition into MyU Mz = Mé(1/a) and M, = D(s3,s4) (resp.
M,UM; = Mo(l/a) and My = D(s1,s2)).

(i) If (s1,8) # (=1/2,1/2) and (s3,84) * (—1/2,1/2), then the decom-
position of M into My, M, and M3 gives the torus decomposition of M.

(3) For a link L= L3((s1,82,83),(1/2,—n/(2n+1))), M = M>(L) admits

the torus decomposition into two Seifert fibered spaces My = D(sy,$2,53) and
M, =D(1/2,—n/(2n+ 1)).

Proor. (1) Put L = Li((s1,52),(s3,54)). Then we see, by using Propo-
sition 2, that M is obtained from M; = D(s;,s2) and M, = D(s3,s4) by
identifying their boundaries, where (hy,c;) is identified with (cp,/). Here,
h; and ¢; are a regular fiber and a horizontal loop of M;, respectively, such that
M; = D(sy,s2) or D(s3,s4) according as i =1 or 2 with respect to /; and c;.
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(i) Assume that (s,s2) ~ (—1/2,1/2). Then M, is identified with an
Sl-bundle over a Mébius band, so that ¢; is a fiber and 4; is a horizontal
loop (Remark 3 (1)). Since (h,¢;) is identified with (cz,h;), M is homeo-
morphic to P?(0;s3,s4). Similarly, if (s3,s4) ~(=1/2,1/2), then we have
M =~ P2(0;53,S4).

(ii) Assume that (s1,s2) # (=1/2,1/2) and (s3,84) # (—1/2,1/2). Then
the Seifert fibration of M; is unique (i = 1,2) (see Remark 3 (2)), and hence the
decomposition of M into M; and M, gives the nontrivial torus decomposition.

(2) and (3) can be proved similarly. O

ProoF ofF THEOREM 2. By Proposition 8, the double branched coverings of
S3 branched along two links which belong to distinct families of %, %, and
%5 are not homeomorphic. This implies that no two links in distinct families
of &, ¥, or &5 are equivalent.

(1) Since the “if” part of the statement can be seen easily, we prove the
“only if” part (cf. [11, Lemma 2.2]).

Assume that L = Li((s1,52), (s3,84)) and L' = L;((s1,53), (s5,54)) are equi-
valent. Then the oriented manifolds M>(L) and M,(L') are homeomorphic.

Assume that (s1,s) ~ (—1/2,1/2). Then, by Proposition 8 (1), we
have (s7,83) ~ (—1/2,1/2) or (s3,s4) ~(—1/2,1/2). Moreover, M>(L) =
P?(0;53,54), and M>(L') = P?(0;s5,s;) or P*(0;s],s}) according as (s,s}) ~
(—1/2,1/2) or (s5,s4) ~(—1/2,1/2). By the classification of Seifert fibered
spaces, we have (s3,s4) ~ (s3,5;) or (s3,s4) ~ (s1,s5) according as (s},s5) ~
(—1/2,1/2) or (s5,s5) ~(—1/2,1/2). Hence, the statement (1) of Theorem 2
holds in this case. Similarly, we can see that the statement (1) of Theorem 2
holds when (s3,s4) ~ (—1/2,1/2).

Assume that (sy,s) # (=1/2,1/2) and (s3,84) + (=1/2,1/2). Then, by
Proposition 8 (1), M,(L) has the nontrivial torus decomposition into
M = D(s1,s2) and M, = D(s3,s4). Then M,(L') also has the nontrivial torus
decompositions into M| = D(s},s5) and M} = D(s},s;). Moreover, M>(L) is
obtained from M; and M, by identifying (c;,/;) and (ha,¢2), and M,(L')
is obtained from M| and M) by identifying (c{,h]) and (hl,c}). Let
f: My(L) — M,(L') be an orientation-preserving homeomorphism obtained
as a lift of the homeomorphism from (S3 L) to (S° L'). Then, by the
uniqueness of torus decomposition, we may assume that f(M;) = M| or Mj.
Suppose f(M;) = M{, and hence f(M,)= M,. By the uniqueness of Seifert
fibration of M,;, we may assume that f(i)= th]. Since the covering
transformation maps /; to h;!, we can choose f so that f(h;) =h|. Thus
f(ea) =f(m)=h;=c}. Since f is orientation-preserving, we see that
f(hy) = hy. This implies f(c1) = f(h) =hy =c;. Thus fl,, : M; — M]
sends (c;,h;) to (c/,h]). Hence, we have (s1,52) ~ (s1,5}) and (s3,84) ~

IR
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(s5,s4) by Proposition 1. Similarly, we can prove that (si,s2) ~ (s3,s;) and
(s3,84) ~ (s1,83) if f(M) = M;.

(2) Since the “if” part of the statement can be seen easily, we prove the
“only if” part.

Assume that L = Ly((s1,82), (1/a),(s3,84)) and L' = Ly((s,s5),(1/a),
(s5,s4)) are equivalent. Then M,(L) and M,(L’) are homeomorphic.

CasE 1. (Sl,Sz) ~ (S3,S4) ~ (—1/2, 1/2).

By Proposition 8 (2) and the assumption, we see M;(L )EMQ( ) =
KI(0;1/2). By Proposition 8 (2) again, we see (s{,s5) ~ (s5,55) ~ (—1/2,1/2)
and o =o'

CasE 2. (s1,8) ~ (=1/2,1/2) and (s3,s4) + (=1/2,1/2) (or (s1,82) #
(=1/2,1/2) and (s3,54) ~ (—=1/2,1/2)).

By Proposition 8 (2), M>(L) has the torus decomposition into D(sy,s,) and
Mo(1/a). Since M»(L') =~ M,(L), we see, by Proposition 8 (2) again, that
(s1,85) ~ (=1/2,1/2) or (s5,s4) ~(—1/2,1/2), and that M>(L’) has the torus
decomposition into D(s],s5) and Mo(1/a’), or D(s5,s,) and Mé(1/a’). By
using the gluing data and Proposition 1 as in the proof of (1), we obtain the
desired conclusion.

CasE 3. (s1,8) # (—=1/2,1/2) and (s3,s4) + (—=1/2,1/2).

By Proposition 8 (2), M>(L) has the torus decomposition into D(sy,s),
A(1/o) and D(s3,s4). Since M,(L') is homeomorphic to M,(L), it has the
torus decomposition into 3 pieces. Hence, we see by Proposition 8 (2) that
(s1,8%) * (=1/2,1/2) and (s3,s4) * (—=1/2,1/2) and that M>(L’) has the torus
decomposition into D(s{,s3), A(1/«') and D(s},s;). By using the gluing data
and Proposition 1 as in the proof of (1), we have o =o', and

(1) (s1,82) ~ (s1,55) and (s3,54) ~ (s3,5), or

(if)  (s1,5) ~ (s3,55) and (s3,84) ~ (s7,53).

Suppose that (i) holds. Then one of the following holds.

(i-1)  (s1,8) =~ (s],57) and (s3,54) = (55,5%),

(i-ii)  (s1,82) = (s],53) and (s3,54) = (84,5%),

(i-iil)  (s1,82) =~ (s5,51) and (s3,81) =~ (s5,54), or

(i-iv)  (s1,8) =~ (s},51) and (s3,54) = (84,5%).

The conditions (i-i) and (i-iv), respectively, are nothing other than the
conditions (2-1) and (2-ii). Moreover, if (s1,52) & (52,51) or (s3,34) ~ (84, 53),
ie, s =8 or s3=s4 in Q/Z, then the condition (i-ii) and (i-iii) are also
equivalent to (2-i) or (2-ii). So, we may assume that s; # s, and s3 # s4 in
Q/Z. 1In the following, we show that (i-ii) or (i-iii) cannot happen under this
assumption.

~
~
~
~
~
~
~
~
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From now on, we identify M,(L) =~ M,(L’) with an oriented manifold
M via an orientation-preserving homeomorphism, and we regard 7, and 7,
as involutions of M. Then 7, and 7, are conjugate in the (orientation-
preserving) mapping class group of M since L and L’ are equivalent. Recall
the assumption that s; #s; and s3 # 54 in Q/Z. If (s1,5) # (s3,54), then
AM(M) is equal to the (orientation-preserving) mapping class group of M.
If (s1,82) ~ (s3,84), then .#(M) is an index-2 subgroup of the (orientation-
preserving) mapping class group of M.

We first assume that (s1,s2) + (s3,54), and hence .#(M) is equal to the
(orientation-preserving) mapping class group of M. Recall that .#(M) =
(G,2|G?, (G)»)2>, where we may assume that 7, = G := G5 (see Definition 2
and Proposition 6 (3)). Note that L’ is obtained from L by mutation along
one of the essential Conway spheres which give the characteristic decomposition
of L. Note also that the pre-image of the mutation loop in M is a regular
fiber of A(1/a). Recall that 1€ .#(M) is the Dehn twist along a component
of the tori which give the torus decomposition of M in the direction of the
regular fiber of A(1/a) (see Definition 2). Hence, by Lemma 8, we can see
that 7, is conjugate to Ar;, = AG in .#(M). Hence, AG must be conjugate
to G in .#(M), namely, there exists an element ye .#(M) such that
7y 1Gy = AG. Since y = G or A" for some integer m, we see that A " G." =
J7¥G is equal to AG, which implies 2! = 1. This is impossible since A is of
infinite order in .#(M). Hence, (i-ii) or (i-iii) cannot be satisfied.

() OO ()
3 o

I
(1) (57,52) = (83,54) (2) (51,82) = (84,53)

Fig. 28

Next, we assume that (s;,s2) ~ (s3,54), and hence .#(M) is an index-2
subgroup of the (orientation-preserving) mapping class group of M. Let & be
a symmetry of (S°, L) illustrated in Figure 28 (1) or (2) according as
(s1,8) ~ (s3,54) or (s1,5)~ (s4,53), and let h be a lift of & to M. Then
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AM(M) U hal(M) gives a (left) coset decomposition of the (orientation-
preserving) mapping class group of M. Since 7, and 7, are conjugate in
the (orientation-preserving) mapping class group of M, there exists an element
ye. (M) such that y~'r;p=1. or (hy) 'zp(hy) =tp. Since h 't h =1,
we have y~'t;y = 71/, and hence, t; and 7,/ are conjugate in .#(M). Hence,
as in the previous case, we can see that (i-ii) or (i-iii) cannot be satisfied.

The case when the condition (ii) holds can be treated similarly.

(3) Since the “if”” part of the statement can be seen easily, we prove the
“only if” part.

Assume that L = L3((s1,52,53),(1/2,—n/(2n+1))) and L’ = L3((s},s5,53),
(1/2,—n’'/(2n’ +1))) are equivalent. Then by using the fact that M>(L) =~
M>(L'") and Proposition 8 (3), we see that n=n', and (s1,52,s3) = (51,55, 5%),
(s1,85,85), (s5,s1,8%), (sh,s%,87), (s%,87,85) or (s5,85,57). We treat the case
when 51, 5, and s3 are mutually distinct in Q/Z. (The remaining case can be
treated similarly.)

From now on, M denotes M>(L) = M»(L’), and note that .#(M) is equal
to the (orientation-preserving) mapping class group of M. We regard that 7,
and 7,/ as elements of .# (M) which are conjugate in .#(M). Recall that M is
obtained from M, € D[3] and M, € SM;, by gluing them along their boundaries.

\f\\ v\ y

&3

Fig. 29

To describe the group .# (M), recall that the mapping class group G of a
3-punctured disk is the extension of the quotient of the 3-braid group Bj,

By /{(xp)*> = {x, p | xpx = yxp, (xp)*,

by the order-2 cyclic group generated by the involution 7 in Figure 29 (see, for
example, [1, p. 35]). Here, x and y are elements corresponding to the standard
generators of B; (see Figure 29). Hence,

G =<x,p,tlxpx = ypxy, ()’ e =x LT =7
~ {a,b,7|a’, b* 1% tat = ba”'b, bt = b)),

where @ = xy and b= yxy. Then, by [15, Proposition 25.3], we see that
(M) is isomorphic to the subgroup P3/{(xy)’> > (x> of G, generated by
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the images in G of the pure braid group P; < Bz and 7. By using Lemma 3
and the exact sequence (1), we can see that .#(M) is isomorphic to .#(M).
From now on, we identify .#(M) with .#(M,), so .# (M) is identified with the
subgroup of G. Here, we may assume that 7, = 7.

Cram 1. (1) The centralizer Z(t) of T in G is equal to {1, yxy,t, yxyt} =
7, ® 7.
(2) The centralizer Z(z) of © in M(M) is equal to {1,7} = Z,.

Proor. (1) Let ¢ be the automorphism of G defined by ¢(7) =7,
¢(a) =a"' and ¢(b) = b. Then the inner automorphism z, of G induced by
the involution 7 is the composition of ¢ and the inner automorphism 1, induced
by the order-2 element b, because

1:(a) = ba™'b = y,p(a)
1(b) = b = 1p(b)
1:(7) = v = (7).
Note that any element g of G is represented uniquely by
a™p"a" ™ . a"m p"

for some ng € Zy, ny;—1 € Z3 and ny; € Zy (i =1,2,...,m) such that n; # 0 for
any i but 0, 1 and 2m. Then

lf(g) — l/,(ﬂ(‘['noanlbnzan3bn4 . .an2m*]bn2m)
= (t"a"bmaTmh™ L LaT P ),

Suppose the word representing g contains the letter a, i.e., n; # 0, then the
above word is equal to t™ba"b™a "3b"™ .. .a "1™ and hence it is not
equal to g. Thus, if g belongs to the centralizer of 7, then g does not contain
a, and hence ¢ is contained in the subgroup of G generated by 7 and b = xyx,
which is equal to {1, yxy,z, yxyr}. It is obvious that this group is contained
in the centralizer of 7. Hence, we obtain the desired result.

(2) is a direct consequence of (1). O

Note that 7;. is conjugate to 7, y 'y, x 'zx, (xy)_lrxy, (yx)_lfyx or

(xyx) 'exyx(= t(xyx)* =1) in (M) according as (si,s,s3) ~ (81,585, 5%),
(s1,85,85), (8%,81,8%), (s5,8%,81), (s%,81,85) or (s5,55,s51) (see Lemma 8).

Assume first that (si,s2,s3) ~ (s],s5,55). Since 7., = y~l7py is conjugate
to t, =t in .4 (M), there exists y e .#(M) such that y~'ty =y~'ry. Then
yv~'e Z(r) = {1,7} by Claim 1 (2), and hence y = y or ty. However, y and
7y do not belong to .#(M), a contradiction. Hence, (s1,s2,53)~ (s1,55,55)
cannot be satisfied.
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Similarly, we can see that (s,s2,53) ~ (s5,51,55), (s5,5%,51) or (s3,s],55)

cannot be satisfied. Hence, we have (s1,s,53) ~ (51,55, 5%). O
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