
Hiroshima Math. J.

41 (2011), 89–136
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Abstract. In this paper, we give a complete classification of 3-bridge arborescent

links.

1. Introduction

An n-bridge sphere of a link L in S3 is a 2-sphere which meets L in 2n

points and cuts ðS3;LÞ into n-string trivial tangles ðB1; t1Þ and ðB2; t2Þ. Here,

an n-string trivial tangle is a pair ðB3; tÞ of the 3-ball B3 and n arcs properly

embedded in B3 parallel to the boundary of B3. We call a link L an n-bridge

link if L admits an n-bridge sphere and does not admit an (n� 1)-bridge

sphere. Two n-bridge spheres S1 and S2 of L are said to be pairwise isotopic

(isotopic, in brief ) if there exists a homeomorphism f : ðS3;LÞ ! ðS3;LÞ such

that f ðS1Þ ¼ S2 and f is pairwise isotopic to the identity, i.e., there is a

continuous family of homeomorphisms ft : ðS3;LÞ ! ðS3;LÞ ð0a ta 1Þ such

that f0 ¼ f and f1 ¼ id. Two n-bridge spheres S1 and S2 are said to

be homeomorphic if there exists an orientation-preserving homeomorphism

f : ðS3;LÞ ! ðS3;LÞ such that f ðS1Þ ¼ S2.

The only 1-bridge link is the unknot, and the 2-bridge links are completely

classified by Schubert [27], by showing the uniqueness of 2-bridge spheres of

2-bridge links up to isotopy. Moreover, it is proved by Otal ([21] and [22])

that the unknot (resp. any 2-bridge link) admits a unique n-bridge sphere up

to isotopy for nb 1 (resp. nb 2). These results were recently refined by

Scharlemann and Tomova [26]. The bridge indices of Montesinos links are

completely determined by Boileau and Zieschang [5]. In [14], the author

constructed a family of links each of which admits infinitely many 3-bridge

spheres up to isotopy. However, not much is known about 3-bridge links and

3-bridge spheres in general.
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Bridge presentations of links are intimately related with Heegaard splittings

of closed orientable 3-manifolds (see, for example, [2]). Boileau, Collins and

Zieschang [3] classified genus-2 Heegaard splittings of small Seifert fibered

spaces. Kobayashi [17] characterized non-simple 3-manifolds of genus 2, and

Morimoto [19] gave a list of all isotopy classes of genus-2 Heegaard splittings

for certain graph manifolds containing essential tori.

In this paper, we classify 3-bridge arborescent links by using the results of

[17] and [19]. Moreover, in the sequel of this paper, we classify their 3-bridge

spheres up to isotopy. We first recall the definition of arborescent links. An

arborescent tangle is a tangle obtained from rational tangles by repeatedly

applying the operations in Figure 1. By an arborescent link, we mean a link

obtained by closing an arborescent tangle with a trivial tangle (see [8]). Arbor-

escent links are also defined by a plumbing construction from a weighted tree

(see [10]). Arborescent links form an important family of links which contains

2-bridge links and Montesinos links, and the double branched covering of the

3-sphere S3 branched over an arborescent link is a graph manifold. Bonahon

and Siebenmann [6] gave a complete classification of arborescent links (cf. [9]).

We now state our main results. The following theorem gives the complete

list of 3-bridge arborescent links, where two links are equivalent if there exists

an orientation-preserving homeomorphism of S3 which carries one of the two

links to the other.

Theorem 1. A link L in S3 is a 3-bridge arborescent link if and only if L is

equivalent to one of the following links.

(1) The link L1ððb1=a1; b 0
1=a

0
1Þ; ðb2=a2; b

0
2=a

0
2ÞÞ in Figure 2 (1).

(2) The link L2ððb1=a1; b 0
1=a

0
1Þ; ð1=a0Þ; ðb2=a2; b

0
2=a

0
2ÞÞ in Figure 2 (2).

(3) The link L3ððb1=a1; b2=a2; b3=a3Þ; ð1=2;�n=ð2nþ 1ÞÞÞ in Figure 2 (3).

(4) The Montesinos link Lð�b; b1=a1; b2=a2; b3=a3Þ (see Figure 6).

Here, ai, a 0
i , bi , b 0

i are integers such that ai; a
0
i > 1 and g:c:d:ðai; biÞ ¼

g:c:d:ða 0
i ; b

0
i Þ ¼ 1 ði ¼ 1; 2; 3Þ, and a0 and n are integers such that ja0j > 1 and

Fig. 1
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j2nþ 1j > 1. In Figure 2, the circle encircling a rational number b=a represents

the rational tangle of slope b=a.

For each i ¼ 1; 2; 3, we denote by Li the family of links as in (i)

in Theorem 1. In order to state a classification theorem of the links in

L1 UL2 UL3, we prepare a notation.

Notation 1. Let s1; . . . ; sr and s 01; . . . ; s
0
r be rational numbers whose

denominators are greater than 1. We use the following notation.
� ðs1; . . . ; srÞAðs 01; . . . ; s 0rÞ when ðs1; . . . ; srÞ ¼ ðs 01; . . . ; s 0rÞ in ðQ=ZÞr and

Pr
i¼1

si ¼
Pr
i¼1

s 0i .

� ðs1; . . . ; srÞ@ ðs 01; . . . ; s 0rÞ when ðs1; . . . ; srÞAðs 01; . . . ; s 0rÞ or ðs 0r; . . . ; s 01Þ.

The following theorem gives the complete classification of the links in

L1 UL2 UL3.

Fig. 2
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Theorem 2. Any link in L1 UL2 UL3 is not equivalent to a Montesinos

link, and two links in distinct families of L1, L2 and L3 are not equivalent.

Moreover, the links in each of the families are classified as follows.

(1) L1ððs1; s2Þ; ðs3; s4ÞÞ and L1ððs 01; s 02Þ; ðs 03; s 04ÞÞ are equivalent if and only if

(1-i) ðs1; s2Þ@ ðs 01; s 02Þ and ðs3; s4Þ@ ðs 03; s 04Þ, or
(1-ii) ðs1; s2Þ@ ðs 03; s 04Þ and ðs3; s4Þ@ ðs 01; s 02Þ.

(2) L2ððs1; s2Þ; ð1=a0Þ; ðs3; s4ÞÞ and L2ððs 01; s 02Þ; ð1=a 0
0Þ; ðs 03; s 04ÞÞ are equivalent

if and only if a0 ¼ a 0
0 and one of the following holds.

(2-i) ðs1; s2ÞAðs 01; s 02Þ and ðs3; s4ÞAðs 03; s 04Þ,
(2-ii) ðs1; s2ÞAðs 02; s 01Þ and ðs3; s4ÞAðs 04; s 03Þ,
(2-iii) ðs1; s2ÞAðs 03; s 04Þ and ðs3; s4ÞAðs 01; s 02Þ, or
(2-iv) ðs1; s2ÞAðs 04; s 03Þ and ðs3; s4ÞAðs 02; s 01Þ.

(3) L3ððs1; s2; s3Þ; ð1=2;�n=ð2nþ 1ÞÞÞ and L3ððs 01; s 02; s 03Þ; ð1=2;�n 0=ð2n 0 þ
1ÞÞÞ are equivalent if and only if n ¼ n 0 and ðs1; s2; s3Þ@ ðs 01; s 02; s 03Þ.

Remark 1. (1) The classification of the links in L1 is already obtained by

[11, Lemma 2.2]. Though the classification of the links in L2 and L3 may be

Fig. 3
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also obtained by using the theory of Bonahon and Siebenmann [6], we give a

direct proof in this paper.

(2) The Kinoshita-Terasaka knot and the Conway’s 11 crossing knot (cf.

[16, Example 3.8.4 and Fig. 3.8.1]) are equivalent to L2ðð�1=3; 1=2Þ; ð1=2Þ;
ð�1=2; 1=3ÞÞ and L2ðð1=2;�1=3Þ; ð1=2Þ; ð�1=2; 1=3ÞÞ, respectively. Theorem 2

(2) gives alternative proof of the inequivalence of these knots.

(3) Except for some special case, the dotted lines in Figure 2 give the

characteristic decomposition of each link by essential Conway spheres (see [6]

and Theorem 4 for the definition of the characteristic decomposition, and see

Proposition 4 and Figure 12 for the exceptional cases).

In the proof of Theorem 1, we also obtain the 3-bridge spheres for the

links as illustrated in Figure 3. In the sequel of this paper, we show that these

3-bridge spheres form a complete list of 3-bridge spheres for the links in

Theorem 1 up to isotopy, and moreover, we give a necessary and su‰cient

condition for any two of these 3-bridge spheres to be isotopic.

This paper is organized as follows. In Section 2, we recall some basic

properties of arborescent links. In Section 3, we recall a relation between

3-bridge spheres of links and genus-2 Heegaard surfaces of 3-manifolds. In

Section 4, we recall the characterization of genus-2 graph manifolds given by

Kobayashi [17]. In Section 5, we calculate the mapping class groups of some

of the graph manifolds, which will be used in the rest of this paper. Finally, in

Sections 7 and 8, we prove Theorems 1 and 2, respectively.

2. Seifert fibered spaces, graph manifolds and arborescent links

In this section, we recall (i) basic facts concerning Seifert fibered spaces,

(ii) description of Seifert fibered spaces as double branched coverings due to

Montesinos [18], and (iii) the characteristic decomposition theory of links

established by Bonahon and Siebenmann [6].

For a given compact surface F with boundary, we denote by

Fðb1=a1; b2=a2; . . . ; br=arÞ the orientable Seifert fibered space over F with

Seifert indices b1=a1; b2=a2; . . . ; br=ar. To be precise, consider the surface

F0 :¼ FnIntðD1 U � � �UDrÞ, where fDig1aiar is a set of r disjoint disks in

IntðFÞ, and let M0 be the trivial S1-bundle or the orientable twisted S1-bundle

according as F0 is orientable or non-orientable. Then Fðb1=a1; b2=a2; . . . ; br=arÞ
is obtained by gluing M0, and r solid tori V1; . . . ;Vr, where the gluing

homeomorphism is given as follows. Let F 0
0 be the image of a cross section

of the bundle M0 ! F0, and let Ti be the component of qM0 projecting to

qDi ði ¼ 1; 2; . . . ; rÞ. Let si be the intersection of Ti and F 0
0 and hi be a fiber

of M0 on Ti. We orient si and hi so that the ordered pair ðsi; hiÞ gives the
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orientation of Ti induced by that of M0. Then the gluing homeomorphism

maps the boundary of the meridian disk of Vi to the loop on Ti representing

the homology class aisi þ bihi.

We call c :¼ qF 0
0nð6

r

i¼1
siÞ, i.e., the union of the components of qF 0

0

projecting to qF , the horizontal loop(s). We occasionally call a component of

c a horizontal loop.

For a closed surface F , we denote by Fðb; b1=a1; b2=a2; . . . ; br=arÞ the

Seifert fibered space obtained as follows. Set F0 ¼ Fnðan open diskÞ and

consider the Seifert fibered space M0 ¼ F0ðb1=a1; b2=a2; . . . ; br=arÞ. Let c and

h, respectively, be the horizontal loop and a regular fiber of the Seifert fibered

space lying on the boundary torus. Then Fðb; b1=a1; b2=a2; . . . ; br=arÞ is the

Seifert fibered space obtained by gluing F0ðb1=a1; b2=a2; . . . ; br=arÞ and a solid

torus so that the meridian loop of the solid torus is identified with the loop

representing cþ bh.

Proposition 1 (cf. [23]). (1) Let F be a compact surface with boundary,

and consider two Seifert fibered spaces M :¼ Fðb1=a1; . . . ; br=arÞ and M 0 :¼
Fðb 0

1=a
0
1; . . . ; b

0
r=a

0
rÞ. Then there is an orientation-preserving homeomorphism

j : M ! M 0 which preserves the Seifert fibration and maps the horizontal loop c

of M to the horizontal loop c 0 of M 0, if and only if the following hold.

(i) After a permutation of indices,

b1
a1

; . . . ;
br
ar

� �
¼ b 0

1

a 0
1

; . . . ;
b 0
r

a 0
r

� �
A ðQ=ZÞr:

(ii)
Pr
i¼1

bi
ai

¼
Pr
i¼1

b 0
i

a 0
i

A Q.

(2) Let F be a closed surface, and consider two Seifert fibered spaces

M :¼ F ðb; b1=a1; . . . ; br=arÞ and M 0 :¼ Fðb 0; b 0
1=a

0
1; . . . ; b

0
r=a

0
rÞ. Then there is an

orientation-preserving homeomorphism j : M ! M 0 which preserves the Seifert

fibration if and only if the following hold.

(i) After a permutation of indices,

b1
a1

; . . . ;
br
ar

� �
¼ b 0

1

a 0
1

; . . . ;
b 0
r

a 0
r

� �
A ðQ=ZÞr:

(ii) bþ
Pr
i¼1

bi
ai

¼ b 0 þ
Pr
i¼1

b 0
i

a 0
i

A Q.

Notation 2. Let h and c, respectively, be a regular fiber and a horizontal

loop of a Seifert fibered space M ¼ Fðb1=a1; . . . ; br=arÞ. Then we say that

M ¼ Fðb1=a1; . . . ; br=arÞ w.r.t. h and c. The above proposition implies that

ðb1=a1; . . . ; br=arÞ is uniquely defined up to the equivalence relation described in

the proposition.
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A graph manifold is a 3-manifold obtained by gluing Seifert fibered spaces

along their boundaries. Graph manifolds are introduced and classified by

Waldhausen [29].

A ð3; 1Þ-manifold pair is a pair ðM;LÞ of a compact oriented 3-manifold M

and a proper 1-submanifold L of M. By a surface F in ðM;LÞ, we mean a

surface F in M intersecting L transversely. Two surfaces F and F 0 in ðM;LÞ
are said to be pairwise isotopic (isotopic, in brief,) if there is a homeomorphism

f : ðM;LÞ ! ðM;LÞ such that f ðF Þ ¼ F 0 and f is pairwise isotopic to the

identity. We call a ð3; 1Þ-manifold pair a tangle if M is homeomorphic to B3.

A trivial tangle is a ð3; 1Þ-manifold pair ðB3;LÞ, where L is the union of two arcs

embedded in the 3-ball B3 which bounds disjoint disks with arcs on the boundary

of B3. A rational tangle is a trivial tangle with its boundary fixed. A well-

known fact is that rational tangles correspond to rational numbers, called the

slopes of the rational tangles. For example, the rational tangle of slope b=a can

be illustrated as in Figure 4, where a, b are defined by the continued fraction

b

a
¼ �a0 þ ½a1;�a2; . . . ;Gam�

:¼ �a0 þ
1

a1 þ
1

�a2 þ
1

� � � þ 1

Gam

together with the condition that a and b are relatively prime and ab 0. Here,

the numbers ai denote the numbers of right-hand half twists.

It is known that any 2-bridge link is obtained by closing a rational tangle

with the trivial arcs. We denote by Sða; bÞ the 2-bridge link obtained by

closing a rational tangle of slope b=a with the rational tangle of slope 1=0.

Fig. 4. n ¼ 5; a0 ¼ 0; a1 ¼ 2; a2 ¼ 3; a3 ¼ 3; a4 ¼ 2; a5 ¼ 3 and b=a ¼ 31=50.
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A Montesinos pair is a ð3; 1Þ-manifold pair which is built from the pair in

Figure 5 (1) or (2) by plugging some of the holes with rational tangles of finite

slopes. We say that a Montesinos pair is trivial if it is homeomorphic to a

rational tangle or ðS;PÞ � I , where S is a 2-sphere, P is the union of four

distinct points on S and I is a closed interval. A Montesinos link is a link

obtained by plugging the remaining holes of a Montesinos pair in Figure 5 (1)

with rational tangles of finite slopes, as shown in Figure 6. Unless otherwise

stated, we assume that b=a is not an integer, that is, a > 1. The above

Montesinos link is denoted by Lð�b; b1=a1; . . . ; br=arÞ. A Montesinos link

is said to be elliptic if it is a nontrivial 2-bridge link or if r ¼ 3 and
1
a1
þ 1

a2
þ 1

a3
> 1. An arborescent link is a link in S3 obtained by gluing some

Montesinos pairs in their boundaries as in Figure 7.

Fig. 6. b ¼ 3.

Fig. 5

Fig. 7
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The following proposition is a classical result due to Montesinos [18].

Proposition 2. (1) Let ðN;LÞ be the Montesinos pair in Figure 8 (1).

Then the double branched covering of N branched over L is a Seifert fibered

space Dðb1=a1; b2=a2; . . . ; br=arÞ over a disk. Moreover, the pre-images of the

loops a and b in the figure, respectively, are the union of two parallel horizontal

loops and the union of two regular fibers.

(2) Let L be a Montesinos link Lð�b; b1=a1; . . . ; br=arÞ. Then the double

branched covering of S3 branched over L is a Seifert fibered space

S2ð�b; b1=a1; b2=a2; . . . ; br=arÞ over the 2-sphere.

(3) Let ðN;LÞ be the Montesinos pair in Figure 8 (2). Then the double

branched covering of N branched over L is a Seifert fibered space

M €ooðb1=a1; b2=a2; . . . ; br=arÞ over a Möbius band. Moreover, the pre-images

of the loops a and b in the figure, respectively, are the union of two parallel

horizontal loops and the union of two regular fibers.

Fig. 8

Fig. 10

Fig. 9
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Remark 2. We denote the covering transformations of the double

branched coverings in (1) and (3) in Proposition 2 by f and g, respectively.

Then f and g are fiber-preserving involutions of Dðb1=a1; b2=a2; . . . ; br=arÞ and

M €ooðb1=a1; b2=a2; . . . ; br=arÞ, respectively, and induce the involutions on the

base orbifolds as illustrated in Figure 9.

If a Montesinos pair ðN;LÞ is nontrivial, then the double branched

covering of N branched over L is not homeomorphic to a solid torus nor

S1 � S1 � I (cf. [13, Examples VI.5]). The following remark, which is used

to prove Proposition 4, is a direct consequence of [13, Examples VI.5 and

Theorem VI.18].

Remark 3. Let ðN;LÞ be a nontrivial Montesinos pair with nonempty

boundary, and let M be the double branched covering of N branched along L.

(1) If ðN;LÞ is the ring tangle illustrated in Figure 10, then M admits two

Seifert fibrations. Namely, M can be regarded as Dð�1=2; 1=2Þ w.r.t. h and c

or a S1-bundle over a Möbius band w.r.t. c and h, where c and h are simple

loops in qM which project to the loops a and b, respectively, as in Figure 10

(see Notation 2).

(2) If ðN;LÞ is not the ring tangle, then M admits a unique Seifert

fibration up to isotopy.

Montesinos links are classified by the following theorem (see [31], [7,

Chapter 12]).

Theorem 3. Let L be a Montesinos link Lð�b; b1=a1; . . . ; br=arÞ.
(1) If ra 2, then L is a 2-bridge link. To be precise,

( i ) if r ¼ 0, then L is a torus link,

( ii ) if r ¼ 1, then L ¼ Lð�b; b1=a1Þ is a 2-bridge link Sðba1 � b1; a1Þ,
(iii) if r ¼ 2, then L ¼ Lð�b; b1=a1; b2=a2Þ is a 2-bridge link Sðp; qÞ,

where p ¼ ba1a2 þ a1b2 þ a2 and q ¼ pb1ðba2 þ b2Þ=jpj.
(2) If r > 2, then L is not a 2-bridge link, and such links are classified by

the ordered set of fractions ðb1=a1; . . . ; br=arÞ A ðQ=ZÞr, up to cyclic

permutations and reversal of order, together with the rational number

b0 ¼ bþ
Pr

j¼1

bj
aj
.

Bonahon and Siebenmann [6] established a theory to decompose a link

into simpler pieces in a canonical way. This decomposition consists of two

steps. The first step is just the torus decomposition of the knot exterior. The

second step is a decomposition by ‘‘Conway spheres’’. To state the result, we

need to introduce some notation. A Conway sphere in ðM;LÞ is a 2-sphere in

IntðMÞ or in qM which meets L transversally in 4 points. A Conway sphere

F is said to be pairwise-compressible if there is a disk D in MnL such that

98 Yeonhee Jang



DVF ¼ qD and qD does not bound a disk in FnL. Otherwise, F is said to be

pairwise-incompressible. A Conway sphere F is said to be q-parallel if F splits

M into two parts M1 and M2 such that for one of which, say M1, we have

a homeomorphism ðM1;M1 VLÞG ðF ;F VLÞ � ½0; 1�. We say that a ð3; 1Þ-
manifold pair ðM;LÞ is Conway-simple if there does not exist a pairwise-

incompressible, non-q-parallel Conway sphere in IntðMÞ for ðM;LÞ. We

sometimes call the pair ðF ;F VLÞ a Conway sphere and denote it by ðS2;PÞ.
A link L in S3 is said to be simple if S3nL do not contain an essential

torus. Bonahon and Siebenmann established the characteristic decomposition

theorem for simple links ([6, Theorem 3.4]). The following theorem is a

corollary of the characteristic decomposition theorem for simple arborescent

links.

Theorem 4. Let L be an arborescent link in S3, which is simple. Then

there is a 2-manifold F HS3 which is unique up to pairwise isotopy of ðS3;LÞ
and has the following properties.

(1) The components of F are pairwise-incompressible Conway spheres, no

two of which are pairwise isotopic in ðS3;LÞ.
(2) Each component N of the 3-manifold obtained from S3 by splitting

along F gives a Montesinos pair ðN;LVNÞ.
(3) When any component is omitted from F, property (2) fails.

Moreover, arborescent links with essential tori in their complements can be

characterized by the following proposition (see [6] and [9]).

Proposition 3. The following three families form a complete list of non-

hyperbolic arborescent links.

I. L is the boundary of a single unknotted band, i.e., a torus knot or link of

type ð2; nÞ for some n A Z.

II. L has two parallel components, each of which bounds a twice-punctured

disk properly embedded in S3nL.
III. L or its reflection is the pretzel link Pðp; q; r;�1Þ :¼

Mð�1; 1=p; 1=q; 1=rÞ, where p; q; rb 2 and
1

p
þ 1

q
þ 1

r
b 1.

Remark 4. For families I and II, Figure 11 reveals an obvious annulus or

Möbius band that forms an obstruction to the existence of a hyperbolic

structure. Meanwhile, the pretzel links in family III contain incompressible

tori when 1
p
þ 1

q
þ 1

r
¼ 1 (by Oertel’s work [20]) and are Seifert fibered when

1
p
þ 1

q
þ 1

r
> 1 (see [25, Theorem 3.4]. In fact, such links are torus links unless

ðp; q; rÞ is a permutations of ð2; 2; nÞ).

Using Theorem 4 and Proposition 3, we obtain the following proposition.
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Proposition 4. Let L be a 3-bridge arborescent link which is not a

Montesinos link.

(1) If L is non-simple (i.e., S3nL contains an essential torus), then

L is equivalent to the link in Figure 12 (1) for some n0 0. Thus, L is

equivalent to L2ðð�1=2; 1=2Þ; ð1=nÞ; ð�1=2; 1=2ÞÞ A L2 or L1ðð�1=2; 1=2� nÞ;
ð�1=2; 1=2� nÞÞ A L1 according as jnj > 1 or jnj ¼ 1.

(2) If L is simple and has a trivial characteristic decomposition, then L is

equivalent to the link L1ððb1=a1; b2=a2Þ; ð�1=2; 1=2ÞÞ A L1 (see Figure 12 (2)).

In this case, the double branched covering M2ðLÞ of S3 branched over L is a Seifert

fibered space P2ð0; b1=a1; b2=a2Þ, which contains a separating essential torus.

(3) If L is simple and has a nontrivial characteristic decomposition, then the

pre-image of the family of Conway spheres in M2ðLÞ is a family of separating

tori and gives the (nontrivial) torus decomposition of M2ðLÞ.

Proof. Let L be a 3-bridge arborescent link and suppose that L is not a

Montesinos link.

(1) Suppose that L is non-simple. Since the links in the family I in

Proposition 3 are 2-bridge torus links and the links in the family III in

Proposition 3 are Montesinos links, L has two parallel components each of

which bounds a twice-punctured disk properly embedded in S3nL by Prop-

osition 3. Since L is a 3-bridge link, L consists of 3 trivial components, and L

is obtained by adding a parallel circle to one component of a 2-bridge link, say

Fig. 11

Fig. 12
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L 0. We show that L 0 is equivalent to the link in Figure 13 (2) for some

n0 0. To this end, note that ðS3;L 0Þ is a union of some tangle, ðB3; t1Þ, and a

ring tangle, ðB3; t2Þ, as shown in Figure 13 (1). Let M2ðL 0Þ (resp. M2ðtiÞ) be
the double branched covering of S3 (resp. B3) branched over L 0 (resp. ti), and

set T :¼ M2ðt1ÞVM2ðt2Þ. Since M2ðL 0Þ is a lens space, the torus T bounds a

solid torus V in M2ðL 0Þ. Since M2ðt2ÞGDð�1=2; 1=2Þ is not a solid torus, we

see V ¼ M2ðt1Þ. Suppose that the meridian of V ¼ M2ðt1Þ is identified with

the loop representing cahb for some integers a and b, where h and c are a

regular fiber and a horizontal loop of M2ðt2ÞGDð�1=2; 1=2Þ. If jaj > 1, then

M2ðL 0Þ is a Seifert fibered space over a disk with three exceptional fibers,

and hence, it is not a lens space, a contradiction. If a ¼ 0, then b must be

G1, and M2ðL 0Þ is the connected sum of two 3-dimensional projective space,

a contradiction. Hence, jaj ¼ 1 and M2ðL 0Þ is a Seifert fibered space

S2ðGb;�1=2; 1=2Þ. This implies that L 0 is equivalent to the 2-bridge link

in Figure 13 (2) for some nonzero integer nð¼GbÞ by [12, Corollary 4.12].

Hence L is equivalent to the link in Figure 12 (1). The remaining assertion is

easily observed.

(2) Suppose that L is simple and that the characteristic decomposition of

L is trivial. By the definition of the characteristic decomposition, ðS3;LÞ is a

Montesinos pair with no boundary. Since L is not a Montesinos link by the

assumption, ðS3;LÞ is obtained from the ð3; 1Þ-manifold pair in Figure 5 (2) by

plugging the holes with rational tangles of finite slopes. Note that L is a

generalized Montesinos link in the sense of [5]. Since L is a 3-bridge link, it

follows from [5, Theorem 2.1 and Figure 9] that L is equivalent to the link in

Figure 12 (2).

(3) Suppose that L is simple and that L admits a nontrivial characteristic

decomposition. Let F be a family of Conway spheres in ðS3;LÞ which gives

the characteristic decomposition of L, and let fðNi;Ni VLÞgmi¼1 be the Mon-

tesinos pairs in the decomposition. Since the double branched coverings of Ni

branched over Ni VL are Seifert fibered spaces, the double branched covering

M2ðLÞ of S3 branched over L is a graph manifold.

Fig. 13
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Let p be the covering projection M2ðLÞ ! S3, and assume, on the

contrary, that p�1ðF Þ does not give a (nontrivial) torus decomposition of

M2ðLÞ. Then p�1ðNiÞU p�1ðNjÞ is a (connected) Seifert fibered space for some

i; j ði0 jÞ A f1; . . . ;mg.
If neither ðNi;Ni VLÞ nor ðNj;Nj VLÞ is the ring tangle in Figure 10, then

each of p�1ðNiÞ and p�1ðNjÞ admits a unique Seifert fibration by Remark

3. The two Montesinos pairs ðNi;Ni VLÞ and ðNj;Nj VLÞ are glued so that

the images of regular fibers of p�1ðNiÞ and p�1ðNjÞ are identified. Then, either

ðNi UNj; ðNi UNjÞVLÞ is a Montesinos pair, or it contains a mutually parallel

components contributing ring tangles and hence L is non-simple. This contra-

dicts the assumption.

If ðNi;Ni VLÞ or ðNj;Nj VLÞ is a ring tangle, then its pre-image can be

regarded as Dð�1=2; 1=2Þ or an S1-bundle over Möbius band by Remark 3

(1). By an argument similar to that in the previous case, it can be seen that

ðNi;Ni VLÞU ðNj;Nj VLÞ forms a Montesinos pair or L is non-simple. This

again contradicts the assumption.

Hence, the pre-image of F gives the torus decomposition of M2ðLÞ.
Moreover, each component of the pre-image of F is a separating torus, because

each component of F separates S3 and its pre-image in M2ðLÞ is connected.

r

3. 3-bridge spheres and genus-2 Heegaard surfaces

Let M be a closed orientable 3-manifold of Heegaard genus 2, and let

ðV1;V2;F Þ be a genus-2 Heegaard splitting of M, i.e., V1 and V2 are genus-2

handlebodies in M such that M ¼ V1 UV2 and F ¼ qV1 ¼ qV2 ¼ V1 VV2. By

[2, Proof of Theorem 5], there is an involution t on M which satisfies the

following condition.

(*) tðViÞ ¼ Vi ði ¼ 1; 2Þ and tjVi
is equivalent to the standard involution

T on a standard genus-2 handlebody V as illustrated in Figure 14.

To be precise, there is a homeomorphism ci : Vi ! V such that

T ¼ ciðtjVi
Þc�1

i ði ¼ 1; 2Þ.

Fig. 14
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Two involutions t and t 0 are said to be strongly equivalent if there exists a

homeomorphism h on M such that hth�1 ¼ t 0 and that h is isotopic to the

identity map idM .

Proposition 5. Let M be a closed orientable 3-manifold and let ðV1;V2;F Þ
be a genus-2 Heegaard splitting of M. Let t and t 0 be involutions of M

satisfying the condition (*). Then t and t 0 are strongly equivalent.

Although the above proposition seems to be well-known, we could not find

a proof in literature. For completeness, we present a proof which is obtained

by refining the proof of [2, Theorem 8].

Proof of Proposition 5. By the assumption, there exist homeomorphisms

ci : Vi ! V and c 0
i : Vi ! V such that ciðtjVi

Þc�1
i ¼ T and c 0

i ðt 0jVi
Þc 0�1

i ¼ T

ði ¼ 1; 2Þ. Put j1 :¼ c 0
1c

�1
1 : V ! V . By [2, Theorem 5], j1jqV can be iso-

toped to a homeomorphism j 0
1 : qV ! qV which commutes with TjqV . Since

j1jqV extends to a homeomorphism j1 : V ! V , j 0
1 also extends to a self-

homeomorphism of V , which is denoted by j 0
1 again. Since j1jqV and j 0

1jqV
are isotopic, j1 and j 0

1 are isotopic. By [2, Theorem 7], there exists a

homeomorphism j 00
1 : V ! V such that j 00

1 jqV ¼ j 0
1jqV and j 00

1 commutes with

the involution T on V . Since j 00
1 jqV ¼ j 0

1jqV , j 00
1 is isotopic to j 0

1. Put

h :¼ c 0�1
1 j 00

1c1 : V1 ! V1. Then

hðtjV1
Þh�1 ¼ c 0�1

1 j 00
1c1ðtjV1

Þc�1
1 j 00�1

1 c 0
1 ¼ c 0�1

1 j 00
1Tj 00

1�1c 0
1

¼ c 0�1
1 Tc 0

1 ¼ t 0jV1
:

Moreover, since j 00
1 is isotopic to j1, h is isotopic to c 0�1

1 j1c1 ¼ idV1
.

Since hjF is isotopic to the identity map on qV2 ¼ qV1 ¼ F , it extends to a

self-homeomorphism of M, which is isotopic to idM . We use the same

symbol, h, to denote the above homeomorphism on M. Note that

hth�1 ¼ t 0 on V1, especially on qV2 ¼ qV1. By applying the previous argu-

ment to c 0
2ðhjV2

Þc�1
2 : V ! V , we can find a T-equivariant homeomorphism

j2 : V ! V such that j2jqV ¼ ðc 0
2hc

�1
2 ÞjqV . Set h 0 :¼ c 0�1

2 j2c2 : V2 ! V2.

Then we have h 0jqV2
¼ hjqV2

, which implies that h 0 is isotopic to idV2
, and

h 0ðtjV2
Þh 0 ¼ t 0jV2

.

By gluing the ðt; t 0Þ-equivariant homeomorphisms hjV1
and h 0 : V2 ! V2,

we obtain a homeomorphism h : M ! M such that hth�1 ¼ t 0 and that h is

isotopic to idM . Hence we obtain the required result. r

Two Heegaard splittings ðV1;V2;FÞ and ðW1;W2;GÞ of a 3-manifold M

are said to be isotopic if there exists a self-homeomorphism f of M such that

f ðFÞ ¼ G and f is isotopic to the identity map idM on M. Thus we regard
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ðV1;V2;F Þ and ðV2;V1;FÞ as the same Heegaard splittings. We say that

two Heegaard splittings ðV1;V2;F Þ and ðW1;W2;GÞ of a 3-manifold M are

homeomorphic if there exists an orientation-preserving homeomorphism f of M

such that f ðF Þ ¼ G.

For each genus-2 Heegaard splitting ðV1;V2;FÞ, we call an involution of

M satisfying the condition (*) the hyper-elliptic involution associated with

ðV1;V2;F Þ (or associated with F , in brief ) and denote it by tF . By Prop-

osition 5, the strong equivalence class of tF is uniquely determined by the

isotopy class of ðV1;V2;FÞ.
Let L be a 3-bridge link and let M be the double branched covering of

S3 branched over L. Let tL be the covering transformation on M. If S is a

3-bridge sphere of L, its pre-image in M is a genus-2 Heegaard surface F such

that tF ¼ tL. Moreover, the isotopy class of F is uniquely determined by that

of S because a pairwise isotopy on ðS3;LÞ lifts to an isotopy on M. Thus we

obtain the following map FL from the set of 3-bridge spheres of L, up to

isotopy, to the set of genus-2 Heegaard surfaces of M, up to isotopy, whose

hyper-elliptic involutions are tL.

FL : f3-bridge spheres of Lg=@

! fgenus-2 Heegaard surfaces F of M s:t: tF ¼ tLg=@:

It is obvious that FL is surjective. We will discuss the injectivity of FL in

the sequel of this paper. Note that we also obtain the following map F.

F : fðL;SÞ jL : 3-bridge link; S : 3-bridge sphere of Lg=G

! fðM;F Þ jM : genus-2 3-manifold;

F : genus-2 Heegaard surface of Mg=G:

Here, ðL;SÞG ðL 0;S 0Þ means that there exists an orientation-preserving self-

homeomorphism of S3 which sends L to L 0 and S to S 0, whereas

ðM;F ÞG ðM 0;F 0Þ means that there exists an orientation-preserving homeo-

morphism from M to M 0 which sends F to F 0. Then it is proved by Birman

and Hilden [2, Theorem 8] that this map F is bijective.

4. Heegaard splittings of genus-2 graph manifolds

In [17], Kobayashi gave a classification of genus-2 closed Haken manifolds

which admit nontrivial torus decompositions, by studying the intersection of

Heegaard surfaces and essential tori. In this section, we recall the result and

characterize genus-2 Heegaard splittings of genus-2 graph manifolds which

admit nontrivial torus decompositions by separating essential tori.
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We use the following notation.

D½r� (resp. M €oo½r�, A½r�): the set of all orientable Seifert fibered spaces

over a disk D (resp. a Möbius band Mö, an annulus A) with r

exceptional fibers.

SMK : the set of the exteriors of the nontrivial 2-bridge knots which admit

Seifert fibrations.

SML: the set of the exteriors of the nontrivial 2-bridge links di¤erent

from the Hopf link which admit Seifert fibrations.

SLK : the set of the exteriors of the 1-bridge knots in lens spaces each of

which admits a Seifert fibration whose horizontal loop is a meridian

loop.

KI : the twisted I -bundle on the Klein bottle.

Remark 5. The family SMK (resp. SML, SLK ) consists of Seifert fibered

spaces contained in the family MK (resp. ML, LK ) introduced in [17].

In the above, we regard S3 and S2 � S1 as lens spaces, and a knot in a

lens space LN is called a 1-bridge knot if there is a Heegaard splitting

ðV1;V2;F Þ of LN of genus one such that Vi VK ði ¼ 1; 2Þ is an arc trivially

embedded in Vi. Here, an arc a in a solid torus V is said to be trivially

embedded in V if there is a disk D in V such that DV qV ¼ b is an arc and

clðqD� bÞ ¼ a.

The following lemmas characterize the families SMK , SML and SLK .

Lemma 1 ([17, Lemmas 4.2 and 4.4]). (1) For a nontrivial 2-bridge knot

Sða; bÞ with jbj < jaj, its exterior belongs to SMK if and only if b=a ¼ 1=ð2nþ 1Þ
for some integer n with j2nþ 1jb 3. Moreover, the exterior EðSð2nþ 1; 1ÞÞ is

homeomorphic to the Seifert fibered space Dð1=2;�n=ð2nþ 1ÞÞ A D½2� (w.r.t. a
regular fiber and the meridian).

(2) For a 2-bridge link Sða; bÞ with jbj < jaj, its exterior belongs to SML if

and only if b=a ¼ 1=ð2nÞ for some integer n with jnjb 2. Moreover, the

exterior EðSð2n; 1ÞÞ with jnjb 2 is homeomorphic to the Seifert fibered space

Að1=nÞ A A½1� (w.r.t. a regular fiber and the meridians).

Lemma 2 ([30, Lemma 1]). Let K be a 1-bridge knot in a lens space

such that its exterior EðKÞ belongs to SLK. Then EðKÞ is homeomorphic to

the Seifert fibered space Dðb1=a1; b2=a2Þ A D½2� or M €ooð1=aÞ A M €oo½0�UM €oo½1�,
where the meridian loop of K is a horizontal loop of the Seifert fibered

space.

Conversely, the Seifert fibered space Dðb1=a1; b2=a2Þ A D½2� or M €ooð1=aÞ A
M €oo½0�UM €oo½1� is the exterior of a 1-bridge knot K in a lens space where the

meridian of K is a horizontal loop.
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Remark 6. When EðKÞGM €ooð1=aÞ in the above lemma, the lens space

containing K is homeomorphic to P2ð0; 1=aÞGS2ða;�1=2; 1=2Þ. Moreover, K

is a regular fiber of P2ð0; 1=aÞ, and the meridian of K is a horizontal loop of

EðKÞGM €ooð1=aÞ (see [30, Proof of Lemma 1]).

From the main theorem of Kobayashi [17] together with the above

lemmas, we have the following characterization of genus-2 Heegaard splittings

of genus-2 graph manifolds which admit nontrivial torus decompositions by

separating essential tori. (Though the genus-2 manifolds admitting non-

separating essential tori are also studied by Kobayashi [17], we do not

need to study such manifolds in this paper.)

Theorem 5. Let M be a closed, orientable, connected graph manifold

with a Heegaard splitting of genus two. Assume that M admits a nontrivial

torus decomposition by T such that each component of T is separating. Let

ðV1;V2;F Þ be a genus-2 Heegaard splitting of M. Then F is ambient isotopic

to a Heegaard surface, denoted by the same symbol F , which satisfies one of the

following four conditions (F1), (F2), (F3) and (F4) (see Figure 15). Moreover,

M is obtained by gluing Seifert fibered spaces as in ðM1-aÞ; . . . ; ðM4Þ under each
condition (F1), (F2), (F3) or F(4) as follows.

(F1) For i ¼ 1; 2, Vi VT consists of a single separating essential annulus.

In this case, M is obtained from M1 and M2 by identifying their

boundaries, where

(M1-a) M1 A D½2� and M2 A SLK VD½2�, or
(M1-b) M1 A D½2� and M2 A SLK VM €oo½1�,
where the regular fiber and a horizontal loop of M1 are identified with the

meridian loop and the regular fiber of M2, respectively.

Moreover,
� M1 VF is an essential annulus saturated in the Seifert fibration of M1,

and
� M2 VF is a 2-holed torus which gives a 1-bridge decomposition of

the 1-bridge knot K such that M2 ¼ EðKÞ.
(F2) By exchanging V1 and V2 if necessary,

( i ) V1 VT consists of two disjoint non-separating essential annuli

satisfying the following condition: there exists a complete meridian

disk system ðD1;D2Þ of V1 such that D1 V ðV1 VTÞ ¼ q and

D2 V ðV1 VTÞ consists of essential arcs properly embedded in each

annulus of V1 VT, and

(ii) V2 VT consists of disjoint non-parallel separating essential annuli.

In this case, M is obtained from M1 and M2 by identifying their

boundaries, where
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(M2-a) M1 A D½2� and M2 A SMK HD½2�, or
(M2-b) M1 A D½3� and M2 A SMK HD½2�,
where the regular fiber and a horizontal loop of M1 are identified with the

meridian loop and the regular fiber of M2, respectively.

Moreover,
� M1 VF consists of two disjoint essential saturated annuli in M1 which

divide M1 into three solid tori, and
� the 2-bridge knot corresponding to M2 is Sð2nþ 1; 1Þ, and M2 VF

is a 2-bridge sphere.

(F3) For i ¼ 1; 2, Vi VT consists of two disjoint non-separating essential annuli

satisfying the condition (i) in (F2).

Fig. 15
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In this case,

(M3) M is obtained from M1 A M €oo½r� ðr ¼ 1; 2Þ and M2 A SMK HD½2�
by identifying their boundaries, where the regular fiber and a

horizontal loop of M1 are identified with the meridian loop and the

regular fiber of M2, respectively.

Moreover,
� M1 VF consists of two disjoint essential saturated annuli in M1 which

divide M1 into two solid tori, and
� the 2-bridge knot corresponding to M2 is Sð2nþ 1; 1Þ, and M2 VF is a

2-bridge sphere.

(F4) For i ¼ 1; 2, Vi VT consists of two disjoint non-parallel separating essen-

tial annuli satisfying the condition (ii) in (F2).

In this case,

(M4) M is obtained from M1;M2 A D½2� and M3 A SML HA½1�
by identifying their boundaries where the regular fibers and hor-

izontal loops of Mi ði ¼ 1; 2Þ are identified with the meridian loops

and regular fibers of M3, respectively.

Moreover,
� Mi VF is an essential saturated annulus in Mi ði ¼ 1; 2Þ, and
� the 2-bridge link corresponding to M3 is Sð2n; 1Þ ðjnjb 2Þ, and M3 VF

is a 2-bridge sphere.

In the above theorem, a surface in a Seifert fibered space is said to be

saturated in the Seifert fibration if it is a union of fibers.

Proof of Theorem 5. The desired results follow from the main theorem

of [17] and Lemmas 1 and 2. Here we note that we do not have the case with

M1 A D½2� and M2 A SLK VM €oo½0� (see Lemma 2), because Lemma 2 implies

that in this case the Seifert fibration on M1 extends to a Seifert fibration on

M. The numbers of the conditions in this theorem correspond to the numbers

of the conditions in the main theorem of [17] as follows.

Theorem 5 (M1-a), (M1-b) (M2-a), (M2-b) (M3) (M4)

main theorem of [17] (i) (iii) (ii) (iv)

r

Definition 1. We define M(1-a), M(1-b), M(2-a), M(2-b), M(3) and M(4)

to be the families of 3-manifolds which satisfy the conditions (M1-a), (M1-b),

(M2-a), (M2-b), (M3) and (M4) of Theorem 5, respectively. We set M(1) ¼
M(1-a)UM(1-b) and M(2) ¼ M(2-a)UM(2-b).
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5. Mapping class groups

In this section, we calculate a certain subgroup of the mapping class

groups of the Seifert fibered spaces and the graph manifolds which arose in

Theorem 5. The results in this section are used in Sections 7, 8 and in the

sequel of this paper.

Let M be a compact orientable 3-manifold obtained by gluing two

3-manifolds M1 and M2 along a torus T . We identify the universal cover of T

with R2 and p1ðTÞ with the action of Z2 on R2. Then T is identified with

R2=Z2. By considering the regular neighborhood of T in M, we identify M

with the union M1 U ðT � ½1; 2�ÞUM2, where Mi V ðT � ½1; 2�Þ ¼ T � fig for

i ¼ 1; 2. For a rational number r and an oriented essential simple loop g on

T , an r-Dehn twist, Dr
g , along T in the direction of g is a self-homeomorphism

of T � ½1; 2� defined as follows.

Dr
gð½~xx�; tÞ :¼ ð½~xxþ rfðtÞ~gg �; tÞ;

where ~gg is the element of Z2 HR2 corresponding to g, ½~xx� denotes the point of

R2=Z2 determined by ~xx A R2 and f is a smooth function on R such that

fðy; 1� ¼ 0, f½2;yÞ ¼ 1 and fj½1;2� is increasing.

If r is an integer, then Dr
g jT�fig ¼ idT�fig for i ¼ 1; 2. Hence, Dr

g extends

to a self-homeomorphism idM1
UDr

g U idM2
, which we denote by Dr

g again.

We denote D1
g by Dg, and call it the Dehn twist along T in the direction

of g.

For a Seifert fibered space N, let MðNÞ be the subgroup of the

(orientation-preserving) mapping class group of N which consists of the

elements preserving the Seifert fibration of N and each of exceptional fibers.

Let M be a 3-manifold which belongs to M(1)UM(2)UM(3)UM(4),

where M(1), M(2), M(3) and M(4) are as in Definition 1. Then, by the

definition, M is obtained by gluing two or three Seifert fibered spaces. Let

MðMÞ denote the subgroup of the (orientation-preserving) mapping class group

of M which consists of the elements preserving each piece of the torus

decomposition, the Seifert fibration of each Seifert piece and each exceptional

fiber. We remark that the group MðMÞ depends on the Seifert fibration of

(Seifert pieces of ) M. When we treat MðMÞ, we consider the Seifert fibration

of (Seifert pieces of ) M which can be seen in context.

The reason why we are interested in the subgroup MðMÞ is that the hyper-

elliptic involution tF associated with a genus-2 Heegaard surface F determines

an element in MðMÞ (cf. [4, Proposition 20]). In this section, we calculate

MðMÞ for some manifolds in Theorem 5. Throughout this paper, we do not

distinguish between a self-homeomorphism and its isotopy class: we denote

them by the same symbol.
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Let M be a manifold in M(1)UM(2)UM(3)UM(4), and let T be the

union of tori which give the torus decomposition of M. Let D be the

subgroup of MðMÞ generated by the all possible Dehn twists along T .

Then we obtain the following.

Lemma 3. (1) DGZ if M belongs to M(1-b), M(3) or M(4). Moreover,

D is generated by Dg, where g is a regular fiber of M2, a regular fiber of M1 or a

regular fiber of M3 according as M belongs to M(1-b), M(3) or M(4).

(2) D ¼ 1 if M belongs to M(1-a) or M(2).

Proof. Choose a normal orientation for T . For each closed-up com-

ponent Mi of MnT which is totally orientable (i.e., Mi itself and its base space

are orientable), pick out an (oriented) fiber Ci; j on each component Ti; j of

qMi. Let ei; j ¼ þ1 or �1 according as the orientations of T and qMi coincide

on Ti; j or not. Let V be the subgroup of H1ðTÞ generated by the elementsP
j ei; j½Ci; j�, where Mi ranges over all totally orientable Seifert fibered closed-up

components of MnT . Then we have DGH1ðTÞ=V by [6, Proposition 15.2].

We prove the assertion for the case M A M(4). (The remaining cases can

be treated similarly.) Note that H1ðTÞ ¼ hc1; h1; c2; h2iGZlZlZlZ,

where ci and hi are a horizontal loop and the regular fiber of Mi A D½2�,
respectively (i ¼ 1; 2). By the definition of M(4), we may choose c1 and c2 so

that they are identified with the regular fibers of M3 A A½1�. We assume that c1
is homologous to �c2 in M3. Since M1, M2 and M3 are totally orientable,

V ¼ hh1; h2; c1 � c2i. Hence, we have DGH1ðTÞ=V G hc1iGZ. r

When M is obtained by gluing two Seifert fibered spaces M1 and M2, let D

be the subgroup of MðM1Þ �MðM2Þ consisting of all elements ð f1; f2Þ such

that f1jT is isotopic to f2jT . When M is obtained by gluing three Seifert

fibered spaces M1, M2 and M3 along T ¼ T1 UT2, where Ti ¼ Mi VM3

ði ¼ 1; 2Þ, let D be the subgroup of MðM1Þ �MðM2Þ �MðM3Þ consisting of

all elements ð f1; f2; f3Þ such that f1jT1
and f2jT2

are isotopic to f3jT1
and f3jT2

,

respectively. Then we have the following exact sequence (see [6, Theorem

15.1] and [24]).

1 ! D ! MðMÞ ! D ! 1: ð1Þ

Next, we calculate MðNÞ for N A D½2�UM €oo½1�UA½1�.

Lemma 4. (1) If N is a Seifert fibered space Dðb1=a1; b2=a2Þ A D½2�, then
MðNÞ ¼ h f iGZ2, where f is the involution of N in Remark 2 (see Figure 16

(1)).

(2) If N is a Seifert fibered space M €ooðb=aÞ A M €oo½1�, then MðNÞ ¼
hg1; g2; biGZ2 lZ2 lZ2, where g1 and g2 are the involutions as illustrated in

Figure 16 (2) and b is the Dehn twist along a saturated annulus Ab in Figure 16

(2).
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(3) If N is a Seifert fibered space Aðb=aÞ A A½1�, then MðNÞ has a

presentation

MðNÞ ¼ hh1; h2; a j h21 ; h22 ; ½h1; h2�; ½h1; a�; h2ah�1
2 ai;

where h1 and h2 are the involutions as illustrated in Figure 16 (3) and a is the

Dehn twist along a saturated annulus Aa in Figure 16 (3).

Remark 7. The Dehn twist along an annulus is defined as for the Dehn

twist along a torus. We note that the Dehn twist b in (2) is isotopic to the

p-rotation along fibers of N A M €oo½1� (see [15, Lemma 25.1]). From now on, b

denotes the p-rotation along fibers of N A M €oo½1�.

Proof of Lemma 4. By [15, Proposition 25.3], the full mapping class

group of the Seifert fibered space N is generated by fiber-preserving homeo-

morphisms. Let F be the base space of N. Let M0ðNÞ be the subgroup of

MðNÞ generated by those (fiber-preserving) elements which induce the identity

map on F , and let M�ðF Þ denote the subgroup of the mapping class group of

the pair (F , exceptional points), generated by those homeomorphisms which fix

each of the exceptional points. By [15, Proposition 25.3], we have a split exact

sequence

1 ! M0ðNÞ ! MðNÞ ! M�ðF Þ ! 1:

Moreover, it is proved in [15, Lemma 25.2] that M0ðNÞ is isomorphic to the

first relative homology group H1ðF ; qFÞ of the base space.

Fig. 16
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(1) Let N be a Seifert fibered space over a disk with two exceptional

fibers. It is easy to see that M�ðDÞGZ2 for a disk D with one exceptional

point. We note that the essential arcs properly embedded in a disk with two

exceptional points are unique up to ambient isotopy. These imply that

M�ðF ÞGZ2 and the generator lifts to the self-homeomorphism f of N in

Figure 16 (1). Since M0ðNÞ ¼ 1, we have the desired result.

(2) Let N be a Seifert fibered space over a Möbius band with one

exceptional fiber. Then we can see that M0ðNÞ ¼ hbiGZ2 (see [15, Lemma

25.2]) and M�ðF ÞGZ2 lZ2 whose generators lift to the self-homeomorphisms

g1 and g2 of N. Hence, we obtain the desired result.

(3) Let N be a Seifert fibered space over an annulus with one exceptional

fiber. Then we can see that M0ðNÞ ¼ haiGZ and M�ðFÞGZ2 lZ2 whose

generators lift to the self-homeomorphisms h1 and h2 of N. By using these

results, we obtain the desired result. r

In the remainder of this section, we describe MðMÞ for M A M(1)UM(4).

To this end, we define a family of self-homeomorphisms of M.

Definition 2. (1) Let M be a manifold in M(1-a), i.e., M ¼ M1 U
ðT � ½1; 2�ÞUM2, where M1;M2 A D½2�. We define a self-homeomorphism G0

of M as follows.

G0jM1
¼ f1; G0jM2

¼ f2; G0jT�½1;2� ¼ R;

where fi ði ¼ 1; 2Þ is the involution f on Mi A D½2� in Remark 2 (see Figure 16

(1)), and R is the self-homeomorphism of T � ½1; 2� defined by Rð½~xx�; tÞ ¼
ð½�~xx�; tÞ.

(2) Let M be a manifold in M(1-b), i.e., M ¼ M1 U ðT � ½1; 2�ÞUM2,

where M1 A D½2� and M2 A M €oo½1�. Let hi be a regular fiber of Mi ði ¼ 1; 2Þ.
We define self-homeomorphisms G1, G2, H and m of M as follows. (Recall

that Dr
g denotes the r-Dehn twist along T in the direction of g.)

G1jM1
¼ f ; G1jM2

¼ g1; G1jT�½1;2� ¼ R;

G2jM1
¼ id; G2jM2

¼ g2; G2jT�½1;2� ¼ D
1=2
h1

;

HjM1
¼ id; HjM2

¼ b; HjT�½1;2� ¼ D
1=2
h2

;

m ¼ Dh2 :

Here, f , g1 and g2 are involutions of M1 or M2 as described in Lemma 4, b is

an involution of M2 as described in Remark 7, and R is the involution of

T � ½1; 2� defined in (1).
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(3) Let M be a manifold in M(4), i.e., M ¼ M1 UM2 U
ððT1 UT2Þ � ½1; 2�ÞUM3, where M1;M2 A D½2�, M3 A A½1�, Ti � f1gHMi and

Ti � f2gHM3 ði ¼ 1; 2Þ. Let hi
3ðHTiÞ be a regular fiber of M3. We define

self-homeomorphisms G3 and l of M as follows.

G3jMi
¼ fi; G3jM3

¼ h1; G3jTi�½1;2� ¼ R ði ¼ 1; 2Þ;

li ¼ Dhi
3
:

Here, fi ði ¼ 1; 2Þ and R are the involutions of Mi and Ti � ½1; 2�, respectively,
as in (1), and h1 is the involution of M3 described in Lemma 4 (3). Since l1
and l2 are isotopic by Lemma 3, we denote them by l.

Proposition 6. (1) If M A M(1-a) and the decomposition of M into M1

and M2 A D½2� is the torus decomposition, then MðMÞ ¼ hG0 jG2
0iGZ2.

(2) If M A M(1-b) and the decomposition of M into M1 A D½2� and

M2 A M €oo½1� is the torus decomposition, then MðMÞ has a group presentation

MðMÞ ¼ hG1;G2;H; m jG2
i ði ¼ 0; 1Þ;H 2m�1; ½G1;G2�; ½G1;H�m; ½G2;H�;

G1mG
�1
1 m; ½G2; m�; ½H; m�i

(3) If M A M(4) and the decomposition of M into M1;M2 A D½2� and

M3 A A½1� is the torus decomposition, then MðMÞ has a group presentation

MðMÞ ¼ hG3; l jG2
3 ; ðG3lÞ2i

Proof. (2) Assume that M A M(1-b) and the decomposition of M into

M1 A D½2� and M2 A M €oo½1� is the torus decomposition. We identify M with

M1 U ðT � ½1; 2�ÞUM2 by considering the regular neighborhood of T ¼ qM1 ¼
qM2.

Let h1 and h2ðHTÞ be regular fibers of M1 and M2, respectively. Then

fh1; h2g generates p1ðTÞ. We denote the Dehn twists along T in the direction

of h1 and h2 by l and m, respectively. Then, by Lemma 3 (1), D is the infinite

cyclic group generated by m, where l ¼ 1.

On the other hand, we have MðM1Þ ¼ h f iGZ2 and MðM2Þ ¼
hg1; g2; biGZ2 lZ2 lZ2 by Lemma 4 (1) and (2). Then by considering

matching conditions on T , we see that

D ¼ hð f ; g1Þ; ðid; g2Þ; ðid; bÞiG ðZ2Þ3:

Let G1, G2 and H be the self-homeomorphisms of M as described in Definition

2. Then we have

G2
i ¼ ½G1;G2� ¼ ½G2;H� ¼ 1 ði ¼ 1; 2Þ;

H 2 ¼ m; G1HG�1
1 ¼ H�1 and hence ½G1;H� ¼ m�1

ð2Þ
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in MðMÞ. Moreover,

iG1
¼ �id; iG2

¼ id; iH ¼ id; ð3Þ

where iY denotes the restriction of the inner automorphism X ! YXY�1

induced by Y (¼ G1;G2 or H) to D ¼ hmi. Hence the above equalities (2)

and (3), together with the exact sequence (1), implies the desired presentation of

MðMÞ.
(1), (3) can be proved similarly using the exact sequence (1) and Lemmas 3

and 4. r

6. Principles of gluing

In this section, we describe useful facts which are used in the proof of

Theorems 1, 2 and in the sequel of this paper.

Let M be a closed orientable 3-manifold obtained by gluing M1 and M2

along a torus T , and let F be a surface in M intersecting T transversely in n

parallel essential loops, C, for some positive integer n. Then we may identify

M with M ¼ M1 U ðT � ½1; 2�ÞUM2 as in Section 5, and we may assume that

A :¼ F V ðT � ½1; 2�Þ consists of n parallel product annuli C � ½1; 2�. Put

Fi :¼ F VMi for i ¼ 1; 2. Let g be an oriented loop on T which meets

each component of A once, and let D
k=n
g be the k=n-Dehn twist along T

in the direction of g defined in the previous section. We define D
k=n
g ðFÞ by

F1 UD
k=n
g ðAÞUF2, where we assume that the components of A are ‘‘evenly

spaced’’ on T � ½1; 2�. We call it the surface obtained from F by applying k=n-

Dehn twist along T in the direction of g. Note that if F is a separating surface

(e.g., Heegaard surface), then n is even, which implies D
1=2
g ðFÞ is defined.

Lemma 5. Let M and F be as in the above, and assume that F is a genus-2

Heegaard surface of M. Assume also that the involution tF preserves the above

decomposition, and set ti :¼ tF jMi
ði ¼ 1; 2Þ and tA :¼ tF jT�½1;2�. Assume fur-

ther that tA is hyper-elliptic, namely, tAð½~xx�; tÞ ¼ ð½�~xx�; tÞ.
If F 0 :¼ D

1=2
g ðFÞ is also a genus-2 Heegaard surface of M, then tF 0 ¼ DgtF .

Proof. Consider the involution t 0A ¼ D
1=2
g tAD

�1=2
g on T � ½1; 2�. Then

t 0A ¼ DgtA on T � ½1; 2�, because

D1=2
g tAD

�1=2
g ð½~xx�; tÞ ¼ D1=2

g tA
��
~xx� 1

2fðtÞ~gg
�
; t
�

¼ D1=2
g

��
�~xxþ 1

2fðtÞ~gg
�
; t
�

¼ Dgð½�~xx�; tÞ

¼ DgtAð½~xx�; tÞ:
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In particular, t 0AjT�fig ¼ tAjT�fig for i ¼ 1; 2, and hence, we obtain an invo-

lution t 0 :¼ t1 U t 0A U t2 on M.

Since

D1=2
g tAD

�1=2
g ðD1=2

g ðAÞÞ ¼ D1=2
g tAðAÞ ¼ D1=2

g ðAÞ;

we see that the involution t 0 preserves F 0 ¼ F1 UD
1=2
g ðAÞUF2. Since tF

preserves Fi ði ¼ 1; 2Þ, tF jF : F ! F is orientation-preserving and tA is

hyper-elliptic, we see that FixðtF ÞVA ¼ q. Hence

FixðtF jF Þ ¼ Fixðt1jFVM1
ÞUFixðt2jFVM2

Þ ¼ Fixðt 0jF 0 Þ:

This implies jFixðt 0jF 0 Þj ¼ 6, and hence t 0 is the hyper-elliptic involution tF 0

associated with the Heegaard surface F 0.

On the other hand, since DgjMi
¼ id for i ¼ 1; 2, we see from the above

facts that

tF 0 ¼ t 0

¼ t1 U t 0A U t2

¼ t1 UDgtA U t2

¼ Dgt1 UDgtA UDgt2

¼ DgtF : r

Lemma 6. Let M ¼ M1 UM2 be a closed orientable 3-manifold obtained by

gluing two 3-manifolds M1 and M2 along a torus T ¼ qM1 ¼ qM2. Let F and

F 0 be two surfaces in M, and put Fi ¼ F VMi and F 0
i ¼ F 0 VMi for i ¼ 1; 2.

(1) Suppose that

( i ) F VT ¼ F 0 VT consists of n parallel essential loops on T for

some positive integer n, and

(ii) Fi is isotopic to F 0
i in Mi ði ¼ 1; 2Þ.

Then F 0 is isotopic to D
k=n
g ðF Þ for some integer k and for some loop g

on T which meets each component of F VT ¼ F 0 VT in one point.

(2) Suppose that

( i ) F1 is isotopic to F 0
1 in M1 by an isotopy fixing qM1, and

(ii) F2 is isotopic to F 0
2 in M2.

Then F and F 0 are isotopic in M.

Proof. (1) Suppose that (1-i) and (1-ii) hold. Identify M with

M1 U ðT � ½1; 2�ÞUM2. We may assume that each of F V ðT � ½1; 2�Þ and

F 0 V ðT � ½1; 2�Þ consists of n parallel essential annuli in T � ½1; 2�. By the

condition (1-ii), we may assume that F 0 VMi ¼ F VMi ði ¼ 1; 2Þ after an

isotopic deformation of F 0 in M ¼ M1 U ðT � ½1; 2�ÞUM2. Then F 0 V
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ðT � ½1; 2�Þ consists of n parallel annuli such that qðF 0 V ðT � ½1; 2�ÞÞ ¼
qðF V ðT � ½1; 2�ÞÞ. Thus it follows that F 0 V ðT � ½1; 2�Þ is isotopic to

D
k=n
g ðF V ðT � ½1; 2�ÞÞ by an isotopy fixing qðT � ½1; 2�Þ for some k A Z.

Then F 0 is isotopic to D
k=n
g ðFÞ.

(2) Suppose that (2-i) and (2-ii) hold. By the condition (2-ii), we may

assume that F 0 VM2 ¼ F VM2 after an isotopic deformation of F 0 in

M ¼ M1 UM2. By the condition (2-i), F 0 VM1 is isotopic to F VM1 by an

isotopy fixing qM1. Hence, F 0 is isotopic to F in M. r

Lemma 7. Let L be a link in S3, and suppose that the ð3; 1Þ-manifold pair

ðS3;LÞ is decomposed into ðB3
1 ;L1Þ and ðB3

2 ;L2Þ by a Conway sphere ðS2;PÞ.
Let S and S 0 be two surfaces in ðS3;LÞ such that

( i ) S V ðS2;PÞ ¼ S 0 V ðS2;PÞ consists of n parallel loops on S2nP each of

which separates P into two families of two points, and

(ii) S VB3
i is isotopic to S 0 VB3

i in ðB3
i ;LiÞ ði ¼ 1; 2Þ.

Then S and S 0 are isotopic in ðS3;LÞ.

Proof. We identify ðS3;LÞ with ðB3
1 ;L1ÞU ððS2;PÞ � ½1; 2�ÞU ðB3

2 ;L2Þ, and
we may assume that each of S V ðS2 � ½1; 2�Þ and S 0 V ðS2 � ½1; 2�Þ consists of n

parallel essential annuli in ðS2nPÞ � ½1; 2�. Since S VB3
i is isotopic to S 0 VB3

i

in ðB3
i ;LiÞ ði ¼ 1; 2Þ, we may assume that S VB3

i ¼ S 0 VB3
i ði ¼ 1; 2Þ after an

isotopic deformation of S 0 in ðS3;LÞ ¼ ðB3
1 ;L1ÞU ððS2;PÞ � ½1; 2�ÞU ðB3

2 ;L2Þ.
Then S 0 V ðS2 � ½1; 2�Þ consists of n parallel essential annuli in ðS2nPÞ � ½1; 2�
sharing the same boundary with S V ðS2 � ½1; 2�Þ. It can be easily seen that

S V ððS2;PÞ � ½1; 2�Þ and S 0 V ððS2;PÞ � ½1; 2�Þ are isotopic in ðS2;PÞ � ½1; 2�
with their boundaries fixed (cf. [6, Theorem 8.3 (3)]). Hence, S and S 0 are

isotopic in ðS3;LÞ. r

Let L be a link in S3. Let ðB1;L1Þ be a tangle in ðS3;LÞ, and put

S1 ¼ qB1. Let h be a homeomorphism from B1 to the standard 3-ball B3 HR3

such that hðS1 VLÞ ¼ PHS2 ¼ qB3, where P ¼ 0; e1ffiffi
2

p ; e2ffiffi
2

p
� 	

j e1; e2 ¼G1
n o

. Set

ðB2;L2Þ ¼ ðS3;LÞnIntðB1;L1Þ. Then we regard ðS3;LÞ as ðB1;L1ÞU ðB2;L2Þ,
where ðB1;L1Þ is glued to ðB2;L2Þ by the identity map on S1. Let g be the

rotation through p about the third coordinate axis in R3. Let m ¼
h�1gh : S1 ! S1 and let L 0 be a link in S3 such that ðS3;L 0Þ ¼ ðB1;L1ÞUm

ðB2;L2Þ with m as gluing map. The operation of replacing ðS3;LÞ by ðS3;L 0Þ
is called a mutation of ðS3;LÞ along S1, by the mutation involution m (cf.

[11]). Let cg be the the circle fðx1; x2; 0Þ j x2
1 þ x2

2 ¼ 1g, and put cm :¼ h�1ðcgÞ.
We call cm a mutation loop of the mutation.

Lemma 8. Let L, L 0, S1, m, cm be as above. Let g be a component of the

pre-image of cm in M ¼ M2ðLÞðGM2ðL 0ÞÞ. Then there is a homeomorphism

f : M2ðLÞ ! M2ðL 0Þ such that f �1tL 0 f ¼ DgtL.
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Proof. Let T be the pre-image of S1 in M. Then T cuts M ¼ M2ðLÞ
into two manifolds, M1 and M2 HM. Namely, M is obtained by gluing M1

and M2 by the identity map on T . Let ~mm A Di¤ðTÞ be a lift of m, and observe

that ~mmð½~xx�Þ ¼
�
~xxþ 1

2
~gg
�
. Then M2ðL 0Þ is obtained by gluing M1 and M2 along

T by ~mm. Identify M ¼ M2ðLÞ with M1 U ðT � ½1; 2�ÞUM2, where qMi and

T � fig are identified by the identity map (i ¼ 1; 2). Then M2ðL 0Þ can be

regarded as the manifold obtained from M1, T � ½1; 2� and M2 by gluing qM1

and T � f1g by the identity map and gluing qM2 and T � f2g by ~mm. Thus

there is a homeomorphism f : M2ðLÞ ! M2ðL 0Þ defined by f jMi
¼ id ði ¼ 1; 2Þ

and f jT�½1;2� ¼ D
�1=2
g . On the other hand, we may assume that the involution

tL on M ¼ M1 U ðT � ½1; 2�ÞUM2 preserves the decomposition and tLjT�½1;2� is

equal to the involution, t½1;2�, defined by

t½1;2�ð½~xx�; tÞ ¼ ð½ ~�x�x�; tÞ:

Set ti :¼ tLjMi
ði ¼ 1; 2Þ. Then the involution tL 0 on M2ðL 0Þ ¼ M1 Uid

ðT � ½1; 2�ÞU~mm M2 is given by

tL 0 jMi
¼ ti ði ¼ 1; 2Þ;

tL 0 jT�½1;2� ¼ t½1;2�:

Hence, after identifying M2ðL 0Þ with M ¼ M2ðLÞ by the homeomorphism f ,

the involution tL 0 is identified with

f �1tL 0 f ¼ t1 UD1=2
g t½1;2�D

�1=2
g U t2

¼ t1 UDgt½1;2� U t2

¼ Dgðt1 U t½1;2� U t2Þ

¼ DgtL: r

7. Proof of Theorem 1

In this section, we prove Theorem 1, namely, we determine all 3-bridge

arborescent links. We also describe all 3-bridge spheres of the links up to

homeomorphism except for Montesinos links and for some special links

(Proposition 7). The 3-bridge spheres of the exceptional links will be studied

in the sequel of this paper.

Let L be a 3-bridge arborescent link. If L is a Montesinos link, then L

satisfies the condition (4) in Theorem 1 by the result of Boileau and Zieschang

[5]. So, in order to prove Theorem 1, we may assume that L is not a

Montesinos link. Then, by Proposition 4, one of the following holds.
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( i ) L is equivalent to the link L2ðð�1=2; 1=2Þ; ð1=aÞ; ð�1=2; 1=2ÞÞ A L2.

( ii ) L is equivalent to the link L1ððb1=a1; b2=a2Þ; ð�1=2; 1=2ÞÞ A L1.

(iii) The double branched cover M ¼ M2ðLÞ is a graph manifold which

admits a nontrivial torus decomposition by separating tori.

Hence we may assume L satisfies the condition (iii), in order to prove

Theorem 1. Then M satisfies the assumption of Theorem 5 and the covering

transformation tL is equal to the hyper-elliptic involution tF associated with a

genus-2 Heegaard surface F of M, which is obtained as the pre-image of a

3-bridge sphere of L. Note, however, that every pair ðM;FÞ in Theorem 5

does not necessarily yield an arborescent link, i.e., ðM;Fix tF Þ=tF is not

necessarily an arborescent link. In Proposition 7 below, we describe the

link ðM;Fix tF Þ=tF for each manifold M and genus-2 Heegaard surface F

in Theorem 5, determine if it is an arborescent link, and identify the link with a

link in Theorem 1 if it is an arborescent link. We also describe the 3-bridge

sphere S of L obtained as the image of F .

Proposition 7. Let M be a graph manifold which satisfies the condition of

Theorem 5, and F a genus-2 Heegaard surface. Let L be the link in S3 obtained

as the quotient ðM;Fix tF Þ=tF , and S the 3-bridge sphere of L obtained as the

image of F. Then the following hold.

(1) Suppose the condition (F1) is satisfied.

(1-a) If the condition (M1-a) is satisfied, then L belongs to L1 and S

is homeomorphic to the 3-bridge sphere S1 or S2 in Figure 3 (1)

or (2).

(1-b) If the condition (M1-b) is satisfied, then L belongs to the

set

fL2ððb1=a1; b 0
1=a

0
1Þ; ð1=a0Þ; ðb2=a2; b

0
2=a

0
2ÞÞ

A L2 j ðb2=a2; b 0
2=a

0
2Þ@ ð�1=2; 1=2Þg

and S is homeomorphic to the 3-bridge sphere in Figure 3 (4).

(2) Suppose the condition (F2) is satisfied.

(2-a) If the condition (M2-a) is satisfied, then L belongs to the

set

fL1ððb1=a1; b 0
1=a

0
1Þ; ðb2=a2; b 0

2=a
0
2ÞÞ

A L1 j ðb2=a2; b 0
2=a

0
2Þ@ ð1=2;�n=ð2nþ 1ÞÞ

for some n with j2nþ 1j > 1g

and S is homeomorphic to the 3-bridge sphere S3 in Figure 3.

(2-b) If the condition (M2-b) is satisfied, then L belongs to L3 and S

is homeomorphic to the 3-bridge sphere in Figure 3 (5).
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(3) Suppose the condition (F3) is satisfied. Then L is not an arborescent

link. Actually, L is equivalent to the link in Figure 25.

(4) Suppose the condition (F4) is satisfied. Then L belongs to L2 and S is

homeomorphic to the 3-bridge sphere in Figure 3 (4).

Remark 8. The proof of the uniquness of S up to homeomorphism in the

case (1-b) is postponed to the sequel of this paper, because we need to prove

additional facts.

Theorem 1 immediately follows from the above proposition. Thus the

remainder of this section is devoted to the proof of Proposition 7.

Case 1. F satisfies the condition (F1).

Then M is obtained by gluing M1 A D½2� and M2 A SLK , where the regular

fiber, h1, of M1 is identified with the meridian loop of M2, which is a horizontal

loop, c2, of the Seifert fibered space M2 by Lemma 2. Since the regular fiber,

h2, of M2 intersects h1 ¼ c2 in a single point, h2 is regarded as a horizontal

loop, c1, of M1. Let ai, bi, a 0
i , b 0

i be integers such that

( i ) Mi ¼ Dðbi=ai; b 0
i=a

0
i Þ w.r.t. hi and ci ði ¼ 1; 2Þ when M belongs to

M(1-a), or

(ii) M1 ¼ Dðb1=a1; b 0
1=a

0
1Þ w.r.t. h1 and c1 and M2 ¼ M €ooð1=a2Þ w.r.t. h2

and c2 when M belongs to M(1-b).

Recall from Theorem 5 that
� F VM1 is an essential saturated annulus in M1, and
� F VM2 is a 2-holed torus which gives a 1-bridge decomposition of the

1-bridge knot K such that M2 ¼ EðKÞ.
Let t1 be the involution of M1 preserving the annulus M1 VF , which is

equivalent to the involution f in Remark 2 (see Figure 18 (1)). Let t2 be the

‘‘hyper-elliptic involution’’ of M2 associated with the 1-bridge decomposition

determined by M2 VF (see Figure 17). We may assume t1jqM1
¼ t2jqM2

and

hence obtain an involution t ¼ t1 U t2 of M which preserves the Heegaard

surface F . Moreover, we can easily see that F=hti is a 2-sphere with 6 cone-

points. Hence t is the hyper-elliptic involution associated with F .

Fig. 17
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Case 1.1. M belongs to M(1-a), i.e., M1 A D½2� and M2 A SLK VD½2�.

By [19, Theorem 3 and Corollary 4.1], F VM2 is isotopic to one of the two

2-holed tori in Figure 18 (2) by an isotopy fixing qM2. To be precise,

F VM2 ¼ clðqVnqM2Þ, where V is the regular neighborhood in M2 of the

graph obtained by connecting a horizontal loop and an exceptional fiber of M2

by an arc as illustrated in Figure 18 (2). We can observe as in Figure 18 (2)

that the hyper-elliptic involution t2, of M2, associated with each of the 1-bridge

decomposition is equivalent to the involution f in Remark 2. Each of the

2-holed torus in M2 together with an essential annulus in M1 uniquely

determines a genus-2 Heegaard surface of M, and the Heegaard surface F

is isotopic to one of these two Heegaard surfaces (see Lemma 6 (2) and [19,

Proposition 5.2]). These Heegaard surfaces determine the same hyper-elliptic

involution t ¼ t1 U t2.

Moreover, since h1 and c1 are identified with c2 and h2, respectively, we

see by Figure 8 (i) (note that a is the quotient of a horizontal loop and b

is the quotient of a regular fiber) that L is equivalent to the link

L1ððb1=a1; b 0
1=a

0
1Þ; ðb2=a2; b

0
2=a

0
2ÞÞ A L1. We note that, though the pairs

ðbi=ai; b 0
i=a

0
i Þ are defined only up to the equivalence relation in Proposition

1 (cf. Notation 2), the link type of the resulting link is not a¤ected by the

choice of the representative ðbi=ai; b 0
i=a

0
i Þ. (This corresponds to the easy if part

of Theorem 2 (1).) For each genus-2 Heegaard surface F , the image of F VMi

in ðMi;Fix tiÞ=ti is as illustrated in Figure 18, and hence, we see that F

projects to one of the 3-bridge spheres S1 and S2 in Figure 3. Thus S is

homeomorphic to S1 or S2 by virtue of [2, Theorem 8] (see Section 3). This

completes the proof of the assertion (1-a) in Proposition 7.

Case 1.2. M belongs to M(1-b), i.e., M1 A D½2� and M2 A SLK VM €oo½1�.

Note that M2 ¼ M €ooð1=a2Þ for some a2 A Z with ja2jb 2 by Lemma 2.

We first describe the involution t2 of M2.

Lemma 9. t2 is equivalent to the involution g1 in Lemma 4.

Proof. Since the base orbifold is non-orientable, we see that p1ðM2Þ has

trivial center. Hence by Tollefson [28, Corollary 7.2] (where readers should

be careful about typos) we see that the strong equivalence class of the

involution t2 is determined by its image in the mapping class group MðM2Þ ¼
hg1; g2; biG ðZ2Þ3 (see Lemma 4 (2)). Note that MðM2ÞG ðZ2Þ3 is realized

by the group action on M2 as illustrated in Figure 19. To be precise, the

natural projection Di¤ðM2Þ ! MðM2Þ has a section s : MðM2Þ ! Di¤ðM2Þ
such that the image G of s is described by Figure 19. In the figure, M2=hg1i
is equal to N=hg1i in Figure 16 with b=a ¼ 1=a. The orbifold M2=hg1; g2i is
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obtained as the quotient of M2=hg1i by the involution induced by g2, and the

orbifold M2=G is obtained as the quotient of M2=hg1; g2i by the involution

induced by b. Thus M2=G has B3 as the underlying space and the singular set

forms the graph G in B3 as illustrated in Figure 19. The group G is identified

with the covering transformation group of the branched covering M2 ! M2=G,

where the monodromy of the associated unbranched covering is given by

Fig. 18
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j : p1ðB3nGÞ ! G as illustrated in Figure 19. Here, each symbol near to an

edge represent the image of the meridian of the edge by j.

Since t2 has order 2, it is strongly equivalent to g1, g2, b, g1g2, g1b, g2b or

g1g2b. We show that g1 is the only possibility for t2. To this end, note that

M2=ht2i must be a 3-ball because t2 is a hyper-elliptic involution associated

with a 1-bridge decomposition of M2. Since t2jqM2
is a hyper-elliptic invo-

lution of the torus qM2, t2 cannot be g2, b nor g2b. Thus t2 is strongly

equivalent to g1, g1g2, g1b or g1g2b. However, we can see that M2=hg1g2i,
M2=hg1bi and M2=hg1g2bi are not homeomorphic to a 3-ball, as follows.

We first show this for g1g2. Note that M2=hg1g2i ! ðB3;GÞ is

the branched covering associated with the monodromy c : p1ðB3nGÞ !
G=hg1g2iG ðZ2Þ2. Let s and t be the elements of G=hg1g2i obtained as the

images of g1ð¼ g2Þ and b, respectively. Then c is as illustrated in the left

figure of Figure 20 (1). Then, by passing the intermediate covering space

corresponding to hs; ti=hti, we see that M2=hg1g2i is a lens space of type

ð2a; 1Þ with an open 3-ball removed, which is not homeomorphic to B3. By

using Figure 20 (2) and (3), we can also see that neither M2=hg1bi nor

M2=hg1g2bi is a 3-ball. Hence, the only possibility for t2 is the involution

g1. This completes the proof of Lemma 9. r

By Lemma 9, ðM2;Fix t2Þ=ht2i ¼ ðM2;Fix g1Þ=hg1i and it is the Mon-

tesinos pair as illustrated in the left figure of Figure 19. Since c1 and h1 are

identified with h2 and c2, respectively, we see, by using Proposition 2 as in Case

1.1, that L is equivalent to the arborescent link in Figure 21, which in turn is

equivalent to the link L2ððb1=a1; b 0
1=a

0
1Þ; ð1=a2Þ; ð�1=2; 1=2ÞÞ A L2. As in Case

1.1, though ðb1=a1; b 0
1=a

0
1Þ is defined only up to certain equivalence, this link is

determined without ambiguity (see the if part of Theorem 2 (2)). This

completes the proof of the assertion (1-b) in Proposition 7. We shall show

in the sequel of this paper that the 3-bridge sphere of L obtained as the image

of F is as illustrated in Figure 21.

Fig. 19
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Fig. 20

Fig. 21
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Case 2. F satisfies the condition (F2).

Then M is obtained by gluing M1 A D½2�UD½3� and M2 ¼ EðSð2nþ 1; 1ÞÞ
A SMK , where the regular fiber, h1, of M1 is identified with the meridian

loop of M2, which is a horizontal loop, c2, of the Seifert fibered space

M2 ¼ Dð1=2;�n=ð2nþ 1ÞÞ (cf. Lemma 1). Since the regular fiber, h2, of M2

intersects h1 ¼ c2 in a single point, h2 is regarded as a horizontal loop, c1, of

M1. Let ai; bi ði ¼ 1; 2; 3Þ be integers such that M1 ¼ Dðb1=a1; b2=a2Þ A D½2�
or M1 ¼ Dðb1=a1; b2=a2; b3=a3Þ A D½3� w.r.t. h1 and c1. Recall from Theorem

5 that
� F VM1 consists of two essential saturated annuli in M1 which divide

M1 into three solid tori, and
� F VM2 is a 2-bridge sphere of the nontrivial 2-bridge knot Sð2nþ 1; 1Þ

such that M2 ¼ EðSð2nþ 1; 1ÞÞ.
If M1 ¼ Dðb1=a1; b2=a2; b3=a3Þ A D½3�, we assume the following convention.

Convention 1. The singular fibers of indices b1=a1, b2=a2, b3=a3 are

located in M1 in this order with respect to the annuli F VM1, as illustrated in

Figure 22. Namely, the singular fiber of index b2=a2 is located in the ‘‘central

component’’ of M1nF

This convention determines the ordered triple ðb1=a1; b2=a2; b3=a3Þ up to

the equivalence relation @ in Notation 1.

Note that the isotopy type of F VM1 in M1 is uniquely determined under

this convention. Moreover, the isotopy type of F VM2 in M2 is unique up to

isotopy fixing qM2 by [19, Theorem 4]. Hence, by Lemma 6 (2), there is a

unique possibility for F up to isotopy under Convention 1.

Let t1 be the involution of M1 preserving the annuli F VM1 which is

equivalent to the involution f in Remark 2. Let t2 be the involution of M2 as

illustrated in Figure 23. Then we may assume t1jqM1
¼ t2jqM2

, and hence we

obtain an involution t ¼ t1 U t2 of M which preserves the Heegaard surface F .

Moreover, we can see that t is the hyper-elliptic involution associated with F .

Since h1 and c1 are identified with c2 and h2, respectively, we see by Figure

23 and Figure 8 that L is equivalent to the link L1ððb1=a1; b2=a2Þ;
ð1=2;�n=ð2nþ 1ÞÞÞ A L1 or L3ððb1=a1; b2=a2; b3=a3Þ; ð1=2;�n=ð2nþ 1ÞÞÞ A L3

Fig. 22
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according as M belongs to M(2-a) or M(2-b). As in Case 1, though

ðb1=a1; b2=a2Þ or ðb1=a1; b2=a2; b3=a3Þ is defined only up to the equivalence,

the link is determined without ambiguity under Convention 1, since the

Montesinos pair ðM2;Fix t2Þ=t2 admits a ‘‘horizontal’’ symmetry. Moreover,

we see that F projects to the 3-bridge spheres in Figure 3 (3) or (5) according

as M belongs to M(2-a) or M(2-b). Thus S is homeomorphic to the 3-bridge

spheres in Figure 3 (3) or (5) according as M belongs to M(2-a) or M(2-b) by

virtue of [2, Theorem 8]. This completes the proof of the assertion (2) in

Proposition 7.

Case 3. F satisfies the condition (F3).

Then M is obtained by gluing M1 A M €oo½r� ðr ¼ 1; 2Þ and M2 ¼
EðSð2nþ 1; 1ÞÞ A SMK , where the regular fiber, h1, of M1 is identified with the

meridian loop of M2, which is a horizontal loop, c2, of the Seifert fibered space

M2 ¼ Dð1=2;�n=ð2nþ 1ÞÞ by Lemma 1. Since the regular fiber, h2, of M2

intersects h1 ¼ c2 in a single point, h2 is regarded as a horizontal loop, c1, of

M1. Let ai; bi ði ¼ 1; 2Þ be integers such that M1 ¼ M €ooðb1=a1; b2=a2Þ A M €oo½r�
ðr ¼ 1; 2Þ w.r.t. h1 and c1. Here,

( i ) ja1jb 2 and
b2
a2

¼ 0

1
if r ¼ 1, and

(ii) ja1j; ja2jb 2 if r ¼ 2.

Recall from Theorem 5 that
� F VM1 consists of two saturated essential annuli in M1 which divide

M1 into two solid tori, and
� F VM2 is a 2-bridge sphere of the nontrivial 2-bridge knot Sð2nþ 1; 1Þ

such that M2 ¼ EðSð2nþ 1; 1ÞÞ.
Let t1 and t2, respectively, be the involutions of M1 and M2 as illustrated in

Figure 24 (1) and (2). Then we may assume t1jqM1
¼ t2jqM2

, and hence, we

obtain an involution t ¼ t1 U t2 of M which preserves the Heegaard surface

F . Moreover, we can see that t is the hyper-elliptic involution associated with

F . Hence ðMi;Fix tiÞ=ti ði ¼ 1; 2Þ is the ð3; 1Þ-manifold pair as illustrated in

Figure 24, and L is equivalent to the link in Figure 25 (cf. [14]).

Fig. 23
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In the following we show that L is not an arborescent link. Assume, on

the contrary, that L is an arborescent link. Then, since L is non-simple (this

fact is directly observed from Figure 25), L must be equivalent to the link in

Fig. 24

Fig. 25
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Figure 12 (1) by Proposition 4 (1). Note that L must consist of 3 compo-

nents. So, one of the following holds.

( i ) ða1; b1Þ1 ða2; b2Þ1 ð0; 1Þ ðmod 2Þ.
(ii) ða1; b1Þ1 ða2; b2Þ1 ð1; 0Þ or ð1; 1Þ ðmod 2Þ.

Let K1 and K2 be the two components of L ‘‘inside’’ the solid torus bounded by

the torus in Figure 25, and let K3 be the remaining component of L. Then

both K1 UK3 and K2 UK3 are equivalent to the 2-component trivial link or a

2-bridge link Sð2ð2nþ 1Þ; 1Þ ðj2nþ 1jb 3Þ according as the condition (i) or (ii)

holds (see Figure 26). On the other hand, the link in Figure 12 (1) is obtained

by adding a loop parallel to a component of a 2-bridge link Sð4m; 2mþ 1Þ for

some nonzero integer m, and hence, only one pair of its components forms a

2-component trivial link. This shows that K1 UK3 nor K2 UK3 cannot be the

trivial link, and hence the case of Figure 26 (1) cannot occur. Thus both of

K1 UK3 and K2 UK3 must be equivalent to Sð2ð2nþ 1Þ; 1Þ ðj2nþ 1jb 3Þ.
This implies that Sð4m; 2mþ 1Þ must be isotopic to Sð2ð2nþ 1Þ; 1Þ and

therefore 2mþ 11G1 ðmod 4mÞ. Hence, m must be G1. However, since

j2nþ 1jb 3, Sð2ð2nþ 1Þ; 1Þ is not equivalent to Sð4; 3Þ ¼ Sð4;�1Þ nor

Sð�4;�1Þ ¼ Sð4; 1Þ, a contradiction. Hence, L is not an arborescent link.

This completes the proof of the assertion (3) in Proposition 7.

Case 4. F satisfies the condition (F4).

Then M is obtained by gluing three Seifert fibered spaces M1;M2 A D½2�
and M3 ¼ EðSð2n; 1ÞÞ A A½1�, where the regular fiber, hi, of Mi ði ¼ 1; 2Þ is

identified with the meridian loop of M3, which is a horizontal loop, ci3, of the

Seifert fibered space M2 ¼ Að1=nÞ (see Lemma 1). Since the regular fiber,

hi
3 H qMi V qM3, of M3 intersects hi ¼ ci3 in a single point, hi

3 is identified with

a horizontal loop, ci, of Mi ði ¼ 1; 2Þ. Let ai; bi; a
0
i ; b

0
i ði ¼ 1; 2Þ be integers

such that Mi ¼ Dðbi=ai; b 0
i=a

0
i Þ A D½2� w.r.t. hi and ci ði ¼ 1; 2Þ. Recall from

Theorem 5 that

Fig. 26
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� F VMi ði ¼ 1; 2Þ is an essential saturated annulus in Mi, and
� F VM3 is a 2-bridge sphere of the 2-bridge link Sð2n; 1Þ ðjnjb 2Þ such

that M3 ¼ EðSð2n; 1ÞÞ.
Note that the isotopy type of F VMi in Mi ði ¼ 1; 2Þ is uniquely determined by

the assumption. Moreover, the isotopy type of F VM3 in M3 is also uniquely

determined by the assumption, because each 2-bridge link admits a unique

2-bridge sphere up to isotopy by [27]. Hence, the isotopy type of F is uniquely

determined by the assumption modulo powers of 1=2-Dehn twists along

Mi VM3 in the direction of the fiber of Mi ði ¼ 1; 2Þ. Now, we assume

the following convention.

Convention 2. The singular fibers of M2 are located so that the singular

fiber of M1 of index b1=a1 and the singular fiber of M2 of index b 0
2=a

0
2 are

contained in the same component of MnF.

By the above observation, we see that there are at most two possibilities

for the homeomorphism type of F under Convention 2. Namely, if F � is a

Heegaard surface satisfying the condition (F4) and Convention 2, then the

surface, F ��, obtained from F � by applying 1/2-Dehn twist along Mi VM3 in

the direction of the fiber of M3 ði ¼ 1; 2Þ, together with F � forms a complete

set of representatives of the Heegaard surfaces of M satisfying the condition

(F4) and Convention 2. However, we can see by using the S1-action on M3

that F �� is isotopic to F �. Hence, M admits a unique genus-2 Heegaard

surface satisfying Convention 2 up to isotopy.

Let ti ði ¼ 1; 2Þ be the involution of Mi preserving the annuli F VMi,

which is equivalent to the involution f in Remark 2. Let t3 be the involution

of M3 as illustrated in Figure 27. Then we may assume tijqMi
¼ t3jM3VMi

for

both i ¼ 1; 2, and hence we obtain an involution t ¼ t1 U t2 U t3 of M

preserving the Heegaard surface F . Moreover, we can see that t is the

hyper-elliptic involution associated with F .

Hence, by an argument similar to that in the previous cases, we see that L

is equivalent to the 3-bridge link L2ððb1=a1; b 0
1=a

0
1Þ; ð1=nÞ; ðb2=a2; b

0
2=a

0
2ÞÞ A L2.

Though the pairs ðbi=ai; b 0
i=a

0
i Þ are defined only up to equivalence, the Con-

Fig. 27
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vention 2 guarantees that the link is determined without ambiguity. Moreover,

S is homeomorphic to the 3-bridge sphere as illustrated in Figure 3 (4) with

a0 ¼ n by virtue of [2, Theorem 8].

This completes the proof of Proposition 7 and hence that of Theorem 1.

8. Proof of Theorem 2

In this section, we prove Theorem 2. Though this would follow from the

classification of arborescent links by Bonahon and Siebenmann [6], we give an

alternative proof by studying the double branched coverings. We remark that

Theorem 2 (1) is already proved by Gordon and Luecke [11] by essentially the

same method. However, we include its proof as a warm-up exercise for the

more complicated proof of the remaining assertions, where we need to study

not only the homeomorphism types of the double branched coverings but also

the covering transformations.

Proposition 8. (1) For a link L ¼ L1ððs1; s2Þ; ðs3; s4ÞÞ, M ¼ M2ðLÞ is

decomposed into two Seifert fibered spaces M1 ¼ Dðs1; s2Þ and M2 ¼ Dðs3; s4Þ.
( i ) If ðs1; s2Þ@ ð�1=2; 1=2Þ (resp. ðs3; s4Þ@ ð�1=2; 1=2Þ), then M is a

Seifert fibered space P2ð0; s3; s4Þ (resp. P2ð0; s1; s2Þ) over a projective

plane P2.

(ii) If ðs1; s2ÞS ð�1=2; 1=2Þ and ðs3; s4ÞS ð�1=2; 1=2Þ, then the decompo-

sition of M into M1 and M2 gives the torus decomposition of M.

(2) For a link L ¼ L2ððs1; s2Þ; ð1=aÞ; ðs3; s4ÞÞ, M ¼ M2ðLÞ is decomposed

into three Seifert fibered spaces M1 ¼ Dðs1; s2Þ, M2 ¼ Dðs3; s4Þ and M3 ¼ Að1=aÞ.
( i ) If ðs1; s2Þ@ ðs3; s4Þ@ ð�1=2; 1=2Þ, then M is a Seifert fibered space

Klð0; 1=aÞ over a Klein bottle Kl.

( ii ) If ðs1; s2Þ@ ð�1=2; 1=2Þ and ðs3; s4ÞS ð�1=2; 1=2Þ (resp. ðs1; s2ÞS
ð�1=2; 1=2Þ and ðs3; s4Þ@ ð�1=2; 1=2Þ), then M has the torus

decomposition into M1 UM3 ¼ M €ooð1=aÞ and M2 ¼ Dðs3; s4Þ (resp.

M2 UM3 ¼ M €ooð1=aÞ and M1 ¼ Dðs1; s2Þ).
(iii) If ðs1; s2ÞS ð�1=2; 1=2Þ and ðs3; s4ÞS ð�1=2; 1=2Þ, then the decom-

position of M into M1, M2 and M3 gives the torus decomposition of M.

(3) For a link L ¼ L3ððs1; s2; s3Þ; ð1=2;�n=ð2nþ 1ÞÞÞ, M ¼ M2ðLÞ admits

the torus decomposition into two Seifert fibered spaces M1 ¼ Dðs1; s2; s3Þ and

M2 ¼ Dð1=2;�n=ð2nþ 1ÞÞ.

Proof. (1) Put L ¼ L1ððs1; s2Þ; ðs3; s4ÞÞ. Then we see, by using Propo-

sition 2, that M is obtained from M1 ¼ Dðs1; s2Þ and M2 ¼ Dðs3; s4Þ by

identifying their boundaries, where ðh1; c1Þ is identified with ðc2; h2Þ. Here,

hi and ci are a regular fiber and a horizontal loop of Mi, respectively, such that

Mi ¼ Dðs1; s2Þ or Dðs3; s4Þ according as i ¼ 1 or 2 with respect to hi and ci.
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(i) Assume that ðs1; s2Þ@ ð�1=2; 1=2Þ. Then M1 is identified with an

S1-bundle over a Möbius band, so that c1 is a fiber and h1 is a horizontal

loop (Remark 3 (1)). Since ðh1; c1Þ is identified with ðc2; h2Þ, M is homeo-

morphic to P2ð0; s3; s4Þ. Similarly, if ðs3; s4Þ@ ð�1=2; 1=2Þ, then we have

MGP2ð0; s3; s4Þ.
(ii) Assume that ðs1; s2ÞS ð�1=2; 1=2Þ and ðs3; s4ÞS ð�1=2; 1=2Þ. Then

the Seifert fibration of Mi is unique (i ¼ 1; 2) (see Remark 3 (2)), and hence the

decomposition of M into M1 and M2 gives the nontrivial torus decomposition.

(2) and (3) can be proved similarly. r

Proof of Theorem 2. By Proposition 8, the double branched coverings of

S3 branched along two links which belong to distinct families of L1, L2 and

L3 are not homeomorphic. This implies that no two links in distinct families

of L1, L2 or L3 are equivalent.

(1) Since the ‘‘if ’’ part of the statement can be seen easily, we prove the

‘‘only if ’’ part (cf. [11, Lemma 2.2]).

Assume that L ¼ L1ððs1; s2Þ; ðs3; s4ÞÞ and L 0 ¼ L1ððs 01; s 02Þ; ðs 03; s 04ÞÞ are equi-

valent. Then the oriented manifolds M2ðLÞ and M2ðL 0Þ are homeomorphic.

Assume that ðs1; s2Þ@ ð�1=2; 1=2Þ. Then, by Proposition 8 (1), we

have ðs 01; s 02Þ@ ð�1=2; 1=2Þ or ðs 03; s 04Þ@ ð�1=2; 1=2Þ. Moreover, M2ðLÞG
P2ð0; s3; s4Þ, and M2ðL 0ÞGP2ð0; s 03; s 04Þ or P2ð0; s 01; s 02Þ according as ðs 01; s 02Þ@
ð�1=2; 1=2Þ or ðs 03; s 04Þ@ ð�1=2; 1=2Þ. By the classification of Seifert fibered

spaces, we have ðs3; s4Þ@ ðs 03; s 04Þ or ðs3; s4Þ@ ðs 01; s 02Þ according as ðs 01; s 02Þ@
ð�1=2; 1=2Þ or ðs 03; s 04Þ@ ð�1=2; 1=2Þ. Hence, the statement (1) of Theorem 2

holds in this case. Similarly, we can see that the statement (1) of Theorem 2

holds when ðs3; s4Þ@ ð�1=2; 1=2Þ.
Assume that ðs1; s2ÞS ð�1=2; 1=2Þ and ðs3; s4ÞS ð�1=2; 1=2Þ. Then, by

Proposition 8 (1), M2ðLÞ has the nontrivial torus decomposition into

M1 ¼ Dðs1; s2Þ and M2 ¼ Dðs3; s4Þ. Then M2ðL 0Þ also has the nontrivial torus

decompositions into M 0
1 ¼ Dðs 01; s 02Þ and M 0

2 ¼ Dðs 03; s 04Þ. Moreover, M2ðLÞ is

obtained from M1 and M2 by identifying ðc1; h1Þ and ðh2; c2Þ, and M2ðL 0Þ
is obtained from M 0

1 and M 0
2 by identifying ðc 01; h 0

1Þ and ðh 0
2; c

0
2Þ. Let

f : M2ðLÞ ! M2ðL 0Þ be an orientation-preserving homeomorphism obtained

as a lift of the homeomorphism from ðS3;LÞ to ðS3;L0Þ. Then, by the

uniqueness of torus decomposition, we may assume that f ðM1Þ ¼ M 0
1 or M 0

2.

Suppose f ðM1Þ ¼ M 0
1, and hence f ðM2Þ ¼ M 0

2. By the uniqueness of Seifert

fibration of M1, we may assume that f ðh1Þ ¼Gh 0
1. Since the covering

transformation maps h1 to h�1
1 , we can choose f so that f ðh1Þ ¼ h 0

1. Thus

f ðc2Þ ¼ f ðh1Þ ¼ h 0
1 ¼ c 02. Since f is orientation-preserving, we see that

f ðh2Þ ¼ h 0
2. This implies f ðc1Þ ¼ f ðh2Þ ¼ h 0

2 ¼ c 01. Thus f jMi
: Mi ! M 0

i

sends ðci; hiÞ to ðc 0i ; h 0
i Þ. Hence, we have ðs1; s2Þ@ ðs 01; s 02Þ and ðs3; s4Þ@
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ðs 03; s 04Þ by Proposition 1. Similarly, we can prove that ðs1; s2Þ@ ðs 03; s 04Þ and

ðs3; s4Þ@ ðs 01; s 02Þ if f ðM1Þ ¼ M 0
2.

(2) Since the ‘‘if ’’ part of the statement can be seen easily, we prove the

‘‘only if ’’ part.

Assume that L ¼ L2ððs1; s2Þ; ð1=aÞ; ðs3; s4ÞÞ and L 0 ¼ L2ððs 01; s 02Þ; ð1=a 0Þ;
ðs 03; s 04ÞÞ are equivalent. Then M2ðLÞ and M2ðL 0Þ are homeomorphic.

Case 1. ðs1; s2Þ@ ðs3; s4Þ@ ð�1=2; 1=2Þ.

By Proposition 8 (2) and the assumption, we see M2ðL 0ÞGM2ðLÞG
Klð0; 1=aÞ. By Proposition 8 (2) again, we see ðs 01; s 02Þ@ ðs 03; s 04Þ@ ð�1=2; 1=2Þ
and a ¼ a 0.

Case 2. ðs1; s2Þ@ ð�1=2; 1=2Þ and ðs3; s4ÞS ð�1=2; 1=2Þ (or ðs1; s2ÞS
ð�1=2; 1=2Þ and ðs3; s4Þ@ ð�1=2; 1=2Þ).

By Proposition 8 (2), M2ðLÞ has the torus decomposition into Dðs1; s2Þ and
M €ooð1=aÞ. Since M2ðL 0ÞGM2ðLÞ, we see, by Proposition 8 (2) again, that

ðs 01; s 02Þ@ ð�1=2; 1=2Þ or ðs 03; s 04Þ@ ð�1=2; 1=2Þ, and that M2ðL 0Þ has the torus

decomposition into Dðs 01; s 02Þ and M €ooð1=a 0Þ, or Dðs 03; s 04Þ and M €ooð1=a 0Þ. By

using the gluing data and Proposition 1 as in the proof of (1), we obtain the

desired conclusion.

Case 3. ðs1; s2ÞS ð�1=2; 1=2Þ and ðs3; s4ÞS ð�1=2; 1=2Þ.

By Proposition 8 (2), M2ðLÞ has the torus decomposition into Dðs1; s2Þ,
Að1=aÞ and Dðs3; s4Þ. Since M2ðL 0Þ is homeomorphic to M2ðLÞ, it has the

torus decomposition into 3 pieces. Hence, we see by Proposition 8 (2) that

ðs 01; s 02ÞS ð�1=2; 1=2Þ and ðs 03; s 04ÞS ð�1=2; 1=2Þ and that M2ðL 0Þ has the torus

decomposition into Dðs 01; s 02Þ, Að1=a 0Þ and Dðs 03; s 04Þ. By using the gluing data

and Proposition 1 as in the proof of (1), we have a ¼ a 0, and

( i ) ðs1; s2Þ@ ðs 01; s 02Þ and ðs3; s4Þ@ ðs 03; s 04Þ, or

(ii) ðs1; s2Þ@ ðs 03; s 04Þ and ðs3; s4Þ@ ðs 01; s 02Þ.
Suppose that (i) holds. Then one of the following holds.

( i-i ) ðs1; s2ÞAðs 01; s 02Þ and ðs3; s4ÞAðs 03; s 04Þ,
( i-ii ) ðs1; s2ÞAðs 01; s 02Þ and ðs3; s4ÞAðs 04; s 03Þ,
(i-iii) ðs1; s2ÞAðs 02; s 01Þ and ðs3; s4ÞAðs 03; s 04Þ, or

(i-iv) ðs1; s2ÞAðs 02; s 01Þ and ðs3; s4ÞAðs 04; s 03Þ.
The conditions (i-i) and (i-iv), respectively, are nothing other than the

conditions (2-i) and (2-ii). Moreover, if ðs1; s2ÞAðs2; s1Þ or ðs3; s4ÞAðs4; s3Þ,
i.e., s1 1 s2 or s3 1 s4 in Q=Z, then the condition (i-ii) and (i-iii) are also

equivalent to (2-i) or (2-ii). So, we may assume that s1 2 s2 and s3 2 s4 in

Q=Z. In the following, we show that (i-ii) or (i-iii) cannot happen under this

assumption.
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From now on, we identify M2ðLÞGM2ðL 0Þ with an oriented manifold

M via an orientation-preserving homeomorphism, and we regard tL and tL 0

as involutions of M. Then tL and tL 0 are conjugate in the (orientation-

preserving) mapping class group of M since L and L 0 are equivalent. Recall

the assumption that s1 2 s2 and s3 2 s4 in Q=Z. If ðs1; s2ÞS ðs3; s4Þ, then

MðMÞ is equal to the (orientation-preserving) mapping class group of M.

If ðs1; s2Þ@ ðs3; s4Þ, then MðMÞ is an index-2 subgroup of the (orientation-

preserving) mapping class group of M.

We first assume that ðs1; s2ÞS ðs3; s4Þ, and hence MðMÞ is equal to the

(orientation-preserving) mapping class group of M. Recall that MðMÞ ¼
hG; l jG2; ðGlÞ2i, where we may assume that tL ¼ G :¼ G3 (see Definition 2

and Proposition 6 (3)). Note that L 0 is obtained from L by mutation along

one of the essential Conway spheres which give the characteristic decomposition

of L. Note also that the pre-image of the mutation loop in M is a regular

fiber of Að1=aÞ. Recall that l A MðMÞ is the Dehn twist along a component

of the tori which give the torus decomposition of M in the direction of the

regular fiber of Að1=aÞ (see Definition 2). Hence, by Lemma 8, we can see

that tL 0 is conjugate to ltL ¼ lG in MðMÞ. Hence, lG must be conjugate

to G in MðMÞ, namely, there exists an element g A MðMÞ such that

g�1Gg ¼ lG. Since g ¼ Glm or lm for some integer m, we see that l�mGlm ¼
l�2mG is equal to lG, which implies l2mþ1 ¼ 1. This is impossible since l is of

infinite order in MðMÞ. Hence, (i-ii) or (i-iii) cannot be satisfied.

Next, we assume that ðs1; s2Þ@ ðs3; s4Þ, and hence MðMÞ is an index-2

subgroup of the (orientation-preserving) mapping class group of M. Let h be

a symmetry of ðS3;LÞ illustrated in Figure 28 (1) or (2) according as

ðs1; s2ÞAðs3; s4Þ or ðs1; s2ÞAðs4; s3Þ, and let ~hh be a lift of h to M. Then

Fig. 28
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MðMÞ t ~hhMðMÞ gives a (left) coset decomposition of the (orientation-

preserving) mapping class group of M. Since tL and tL 0 are conjugate in

the (orientation-preserving) mapping class group of M, there exists an element

g A MðMÞ such that g�1tLg ¼ tL 0 or ð~hhgÞ�1
tLð~hhgÞ ¼ tL 0 . Since ~hh�1tL~hh ¼ tL,

we have g�1tLg ¼ tL 0 , and hence, tL and tL 0 are conjugate in MðMÞ. Hence,

as in the previous case, we can see that (i-ii) or (i-iii) cannot be satisfied.

The case when the condition (ii) holds can be treated similarly.

(3) Since the ‘‘if ’’ part of the statement can be seen easily, we prove the

‘‘only if ’’ part.

Assume that L ¼ L3ððs1; s2; s3Þ; ð1=2;�n=ð2nþ 1ÞÞÞ and L 0 ¼ L3ððs 01; s 02; s 03Þ;
ð1=2;�n 0=ð2n 0 þ 1ÞÞÞ are equivalent. Then by using the fact that M2ðLÞG
M2ðL 0Þ and Proposition 8 (3), we see that n ¼ n 0, and ðs1; s2; s3ÞAðs 01; s 02; s 03Þ,
ðs 01; s 03; s 02Þ, ðs 02; s 01; s 03Þ, ðs 02; s 03; s 01Þ, ðs 03; s 01; s 02Þ or ðs 03; s 02; s 01Þ. We treat the case

when s1, s2 and s3 are mutually distinct in Q=Z. (The remaining case can be

treated similarly.)

From now on, M denotes M2ðLÞGM2ðL 0Þ, and note that MðMÞ is equal

to the (orientation-preserving) mapping class group of M. We regard that tL
and tL 0 as elements of MðMÞ which are conjugate in MðMÞ. Recall that M is

obtained from M1 A D½3� and M2 A SML by gluing them along their boundaries.

To describe the group MðMÞ, recall that the mapping class group G of a

3-punctured disk is the extension of the quotient of the 3-braid group B3,

B3=hðxyÞ3i ¼ hx; y j xyx ¼ yxy; ðxyÞ3i;

by the order-2 cyclic group generated by the involution t in Figure 29 (see, for

example, [1, p. 35]). Here, x and y are elements corresponding to the standard

generators of B3 (see Figure 29). Hence,

G ¼ hx; y; t j xyx ¼ yxy; ðxyÞ3; t2; txt ¼ x�1; tyt ¼ y�1i

G ha; b; t j a3; b2; t2; tat ¼ ba�1b; tbt ¼ bi;

where a ¼ xy and b ¼ yxy. Then, by [15, Proposition 25.3], we see that

MðM1Þ is isomorphic to the subgroup P3=hðxyÞ3iz hti of G, generated by

Fig. 29
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the images in G of the pure braid group P3 < B3 and t. By using Lemma 3

and the exact sequence (1), we can see that MðMÞ is isomorphic to MðM1Þ.
From now on, we identify MðMÞ with MðM1Þ, so MðMÞ is identified with the

subgroup of G. Here, we may assume that tL ¼ t.

Claim 1. (1) The centralizer ZðtÞ of t in G is equal to f1; yxy; t; yxytgG
Z2 lZ2.

(2) The centralizer ZðtÞ of t in MðMÞ is equal to f1; tgGZ2.

Proof. (1) Let j be the automorphism of G defined by jðtÞ ¼ t,

jðaÞ ¼ a�1 and jðbÞ ¼ b. Then the inner automorphism it of G induced by

the involution t is the composition of j and the inner automorphism ib induced

by the order-2 element b, because

itðaÞ ¼ ba�1b ¼ ibjðaÞ

itðbÞ ¼ b ¼ ibjðbÞ

itðtÞ ¼ t ¼ ibjðtÞ:

Note that any element g of G is represented uniquely by

tn0an1bn2an3bn4 . . . an2m�1bn2m

for some n0 A Z2, n2i�1 A Z3 and n2i A Z2 ði ¼ 1; 2; . . . ;mÞ such that ni 0 0 for

any i but 0, 1 and 2m. Then

itðgÞ ¼ ibjðtn0an1bn2an3bn4 . . . an2m�1bn2mÞ

¼ ibðtn0a�n1bn2a�n3bn4 . . . a�n2m�1bn2mÞ:

Suppose the word representing g contains the letter a, i.e., n1 0 0, then the

above word is equal to tn0ba�n1bn2a�n3bn4 . . . a�n2m�1bn2mþ1, and hence it is not

equal to g. Thus, if g belongs to the centralizer of t, then g does not contain

a, and hence g is contained in the subgroup of G generated by t and b ¼ xyx,

which is equal to f1; yxy; t; yxytg. It is obvious that this group is contained

in the centralizer of t. Hence, we obtain the desired result.

(2) is a direct consequence of (1). r

Note that tL 0 is conjugate to t, y�1ty, x�1tx, ðxyÞ�1
txy, ðyxÞ�1

tyx or

ðxyxÞ�1txyxð¼ tðxyxÞ2 ¼ tÞ in MðMÞ according as ðs1; s2; s3ÞAðs 01; s 02; s 03Þ,
ðs 01; s 03; s 02Þ, ðs 02; s 01; s 03Þ, ðs 02; s 03; s 01Þ, ðs 03; s 01; s 02Þ or ðs 03; s 02; s 01Þ (see Lemma 8).

Assume first that ðs1; s2; s3ÞAðs 01; s 03; s 02Þ. Since tL 0 ¼ y�1ty is conjugate

to tL ¼ t in MðMÞ, there exists g A MðMÞ such that y�1ty ¼ g�1tg. Then

gy�1 A ZðtÞ ¼ f1; tg by Claim 1 (2), and hence g ¼ y or ty. However, y and

ty do not belong to MðMÞ, a contradiction. Hence, ðs1; s2; s3ÞAðs 01; s 03; s 02Þ
cannot be satisfied.
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Similarly, we can see that ðs1; s2; s3ÞAðs 02; s 01; s 03Þ, ðs 02; s 03; s 01Þ or ðs 03; s 01; s 02Þ
cannot be satisfied. Hence, we have ðs1; s2; s3Þ@ ðs 01; s 02; s 03Þ. r
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