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ABSTRACT. We give a proof of McShane’s identity in [5] based on the investigation on
the arrangement of axes of simple hyperbolic elements in a once punctured torus group
which are represented by palindromic words. Our argument includes a short proof of
the fact that the linear measure of the infinitesimal Birman-Series set is zero.

1. Introduction

Let T be a once punctured torus equipped with a finite area hyperbolic
metric. We denote by [y| the length of a closed geodesic y on T. G. McShane
proved in [5] the identity

1 T
Z arcsm( (y|/2)> =3 (L.1)

where the sum is taken over all simple closed geodesics passing through a fixed
pair of Weierstrass points. In this note we give an alternative proof of (1.1).
Let G be a once punctured torus group, that is, a group of hyperbolic motions
on the unit disk D with the factor surface T = D/G. G is freely generated by
a pair of neighbors {a,b} (for definition, see Section 2.1). It acts also on the
boundary 0D of D in the complex plane C. The axes of ¢ and b meet at
a single point O of D. Let E be the closure in dD of the set of fixed points
of generators (simple and primitive hyperbolic elements) in G whose axes
pass through O. In [5] E is called the infinitesimal Birman-Series set, and a
component of 0D — E a gap of E. Our proof follows the usual steps: show
that the left hand side of (1.1) is a quarter of the sum of angles subtended by
gaps with respect to O and deduce (1.1) from the fact that the linear measure
|E| of E is zero (see [2]). However our technique is based on theorems in [3]
and [4] which characterize generators whose axes pass through O in terms
of the words of symbols in I" = {a,a™!,b,b~'}. By this characterization we
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establish a correspondence between positively oriented pairs of neighbors whose
axes pass through O and the gaps of E. So the identity (4.2) we obtain first
is expressed in the language of Fuchsian groups and does not involve the
hyperbolic geometry in appearance. In Section 5 we show that (1.1) and (4.2)
are identical. Our argument includes an elementary proof of that |E|=0.

2. Once punctured torus group and pair of neighbors

2.1. We regard D as a model of the hyperbolic plane. For two distinct
points p and ¢ of dD, L(p,q) will denote the directed hyperbolic line with
initial point p and terminal point g.

The group # (D) of orientation-preserving motions on D is identified with
SU(1,1)/{+I}. A hyperbolic element g of #(D) has two fixed points in D,
the repelling fixed point p, and the attracting fixed point ¢,. The axis ax(g) of
g is the directed line L(py,q,).

The once punctured torus group G is a Fuchsian subgroup of # (D). Let
g be a hyperbolic element of G. Then its axis ax(g) projects to a closed
geodesic on T which will be denoted by y,. The element g is called simple if
7, 18 a simple curve and primitive if g = h" for an & € G and an integer n, then
n=+1. A simple and primitive hyperbolic element in G is called a generator.
Two generators g and /4 in G are called neighbors if they correspond to a pair
of simple closed curves on T with intersection number 1 and the axes of g and
h intersect in D.

An ordered pair of neighbors {a,b} in G is said to be positively oriented
when the axis of b cuts the axis of a from the right to the left. For two pairs
of neighbors {a,b} and {a’,b'}, we write {a,b} ~ {a’,b'} if there exists c € G
such that {a',b'} = c{a,b}c = {c"'ac,c"'bc}. We write also a ~a’ if a’ is
conjugate to @ in G. If {a,b} is a positively oriented pair of neighbors and
{a’,b'} ~{a,b}, then {a’,b'} is positively oriented, since each ce G is an
orientation-preserving homeomorphism of D.

We fix a pair of neighbors {a,b}. Each element of G is written as a
word of the symbols a, a~!, b and b~'. If W =eje,...e,, where e;el =
{a,a=',b,b~'}, then n is called the length of W and denoted by /(W). For
each e e I' we let n (W) denote the number of ¢;’s which equals e. Since G is
free on a and b, each g e G is represented by a unique reduced word W,, the
shortest expression of g as a word.

2.2. Each simple closed curve on T is isotopic to a unique geodesic curve.
Hence we can identify the set of the conjugacy classes of generators in G
with the set of isotopy classes of oriented simple closed curves on T. Then a
characterization of generators by words in I" = {a,a',b,b7'} is
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Fig. 1

THEOREM 2.1 ([3], see also Theorem 5.1 in [1]). Up to permutations of I’
which interchange a and b, a and a', or b and b= the word W representing a
generator g in G is up to cyclic permutations either a or of the form

aba™b...a"b

where {ni,na,...,n} = {n,n+ 1} for some positive integer n.

In [3] the theorem concerns the free group F(a,b) of rank 2 and its statement
is true for any element g of F(a,b) which forms a basis with another element
h. Tt is important to note that for a generator, its reduced word has at most
two symbols in I

2.3. We owe the following description to [l]. Let {a,b} be positively
oriented. We denote by Jy,; the subarc of 0D between ¢, and ¢, which
does not contain p,. Then the fixed point p of aba~'b~! lies in Jy, 4. (To
see this, apply the proof of Proposition 33.23 in [9] by setting 7' = ¢ and
U-'=b.) Likewise we see that a~'(p), a'b~'(p) and b~!(p) are situated
in 0D as in Figure 1. The four points p, a~'(p), a~'b~!(p) and b~!(p) divide
0D to four arcs. We label the arcs as follows: [b] is the arc between p and
a'(p), [a'] is the arc between a~!(p) and a 'b7!(p), [b7!] is the arc
between a~'b7!(p) and b7!(p), and [a] is the arc between b~!(p) and p.
Let W =ey...ee.41 be a reduced word of the symbols in I, then we define
(W] =er...elem]

Let W =e;...e,a be a reduced word. Since a sends [b~!]U[a] U [b] into
[a] and a is orientation-preserving, the subarcs [Wh™!], [Wa] and [Wb] of [W]
are arranged in anticlockwise order. We can say the same thing when (a,b) is
replaced by (h~',a), (a=',b™") and (b,a™'). If We G is a cyclically reduced
word and hyperbolic, then {[W"]}~, is a decreasing sequence of arcs and the
attracting fixed point gy of W equals ﬂil[W”]. This observation leads to
the following lemma.
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LemMA 2.1. Let Wy and W, be cyclically reduced words for hyperbolic
elements in G with distinct axes. Let m and n be positive integers such
that {(W]") = ((Ws) and ((W]) > {((Wy). Let W" =ejey...e, and W} =
fifo... fq. Then qw, precedes qw, in anticlockwise order around 0D starting
from p if and only if
(i) (e1, fi) equals (b,a™"), (b,b7"), (b,a), (a',b7"), (a ' ,a) or (b7, a), or
(i) There is an index number r such that e; = f; for each i=1,2,....r and

either

(@) e =a and (e, fr41)
(b) e =0b" and (er1, fi+
() e=a! and (er41, f;
(d) e, =b and (e,+1,f+1)

We define two transformations on the set of pairs of neighbors:
o{g,h} ={g,hg},  w2{g,h} = {gh,h}.

Note that gh is a generator, because y, is isotopic to a Dehn twist of y, along
v, For positive integers n we define also

aulg.ht = {(gh)" "9, (9)"a}, o ulg. 1} = {(hg)"h, (hg)""}.

These are pairs of neighbors, because

(a, ) (b=1,b) or (b7',a), or
= (b1 a), (a‘l,a) or (a™',b7), or
( = oY, (b,b7Y) or (b,a™'), or

)
):
= (b, ), (a,a™') or (a,b).

n 1

(9,1} 2 {g,hg} = {g(hg)" " hg}

=5 {glhg)" " hgg(hg)""} ~ {(gh)" " g, (gh)"g},

wl’"l e
{g,h} =2 {gh,h} = {gh, h(gh)""'}

= {ghh(gh)"™" h(gh)" "} ~ {(hg)"h, (hg)""'h}.

Since {a,b} is positively oriented, so are the pairs g,{a,b}. This can be seen
from Lemma 2.1, but more easily from (5.1) below. Note that entries of all
o.{a,b} are palindromes in the symbols ¢ and b. Let ¥ denote the semigroup
generated by {o, :n e Z}, where gy is defined to be the identity.

2.4. For any positively oriented pair of neighbors {a,b} in a once-punctured
torus group, x = |tra|, y = |tr b| and z = |tr ab| satisfy

x4+ —xpz=0. (2.1)

On the other hand, a triple of numbers (x, y,z) satisfying x >2, y>2, z>2
and (2.1) determines a unique conjugacy class of positively oriented pairs of
neighbors in once-punctured torus groups. Let A, B be matrices in SU(1,1)



A proof of McShane’s identity 15

such that x =tr 4 and y = tr B, z = |tr AB| and ABA~'B~! is parabolic. As-
sume that ax(B) cuts ax(A4) from the right to the left. Then z =tr AB and
tr ABA~'B~! = -2 (see [9, Lemma 33.21]). If we normalize 4 and B so that
ABA7'B~! fixes 1 and that the axes of 4 and B meet at 0, then we have
uniquely

X xz — 2y — 2ix y yz — 2x + 2iy
A= 2 2z . B= 2 2z
xz — 2y + 2ix x yz —2x—2iy y
2z 2 2z 2
(2.2)
We have also
z—2i z z42i z
AB—| 2 2 | pa=| ? 2 (2.3)
z z 4 2i z z—2i
2 2 2 2

3. Palindrome pair of neighbors

3.1. Let {a,b} be a pair of neighbors in G. Let O be the intersecting point
of the axes ax(a) and ax(b). The axis ax(g) of a hyperbolic element g of G
passes through O if and only if the reduced word W, = eje;...e, for g of the
symbols in {a,a”',b,b~'} is a palindrome, that is, e; =e,; 1 ;, i =1,2,...,r.
To show this, we assume that O is the origin. A hyperbolic element A e
SU(1,1) has its axis passing through O if and only if A* = 4, where

A*:(S q) forA:(p q>.

r p r S

Therefore ax(g) passes through O if and only if W, =eje;...e, is a palin-
drome, because

* * * %
(erex...e;)" =el...e5ef =e,...e201.

This fact has interesting applications. See, for example, [4] and [6]. By The-
orem 2.1 we have

LemMmA 3.1.  Let W be the reduced word for a generator g with axis passing
through O. Then, after a suitable permutation of symbols, W = a or

W =a™"ba™b...ba"*ba"™+

satisfying () ny=mn; if i+ j=k+2, (ii) {2n,no,...,n} equals either {2n;},
{2n1,2n; + 1} or {2n; — 1,2m} and (iii) n,(W) =ny + - + ngy1 > k = np(W).
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3.2. Let p; and p, be distinct points of dD — {p}. We write p; < p, if p;
precedes p, in anticlockwise order around 0D starting from p. Let g_, be
the attracting fixed point of (ba)"flb for n=1,2,..., and ¢, the attracting
fixed point of (ab)"a for n=0,1,.... Then by Lemma 2.1 ¢, < ¢, for all
integers n. See Figure 1, where an axis is labeled by the element of G which
keeps it invariant. Since ¢, € [(ab)"] and ¢_, € [(ha)"""] for all n > 2, we have
lim, ., g, = qu and lim, . ¢, = qps. We denote by Iy, the arc on dD
between ¢, and g, which contains the fixed point p of aba~'b~!. We shall
call Iy, s the gap associated to the pair {a,b}. Its meaning is clarified by the
theorem below. If n # 0, then J; (4 ) is the interval in Jy, 5y between g, | and
¢n. Thus

Jiapy = Liapy U L#jofan{a.by (3.1)

Two distinct intervals in the right hand side have disjoint interiors.

Tueorem 3.1.  In I, ;) there are no terminal points of axes of generators
which pass through O. Let |Ij, | denote the angle subtended by the arc Iy, p
with respect to the center O. Then

. 2
14,5y = 2 arcsin (M) (3.2)

Proof. Suppose that a generator g has its axis which passes through O
and the terminal point ¢, in Iy, . Since G is discrete, g, cannot be p. 1If ¢,
lies between p and ¢, then by Lemmas 2.1 and 3.1 the reduced word for g
has the form W = a™ba™b...ba"ba™, where n; is a positive integer. Thus
WW is of the form (ab)"aaW, for some non-negative integer n and some word
Wi. By Lemma 2.1, qw = qww < qab = (g1 This is a contradiction.
We can prove in the same way that g cannot have an axis which passes through
O and ends between p and gp,.

Now we prove the second statement of the theorem. If {a,b} is a
positively oriented pair of neighbors and if x=tra, y=trb (taken to be
positive) and z = |tr ab|, then {a,b} is simultaneously conjugate to {4, B},
where 4 and B are as in (2.2). Since the conjugation is done by a conformal
automorphism of the unit disk, we need only to consider the pair {4, B}. The
attracting fixed points of the matrices in (2.3) satisfiy

Im(q48) = 7; Im(gp4) :g. (3.3)

Thus |I{4, 5| = 2 arcsin(2/z) = 2 arcsin(2/tr AB). Now we complete the proof.
O
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Recall that Jy, sy is the subarc of dD between ¢, and ¢, which contains
Itapy. Suppose that Jg, is seen from O with the angle |Jy, 4| For the
matrices A and B as above we have

_xz—2y—2ix _ yz—2x+2iy
N e N i

Now (3.3) and (3.4) together with the conformality of Mobius transformations
yield

M > min< arcsin (%) / arcsin (L> ,arcsin (g> / arcsin —2y .
T (a.53] z zVx?—4 : 2/y? -4

Since the function arcsin(z)/arcsin(fr) is decreasing for te (0,07") for each

0 > 1, we obtain
\trgl* —4

|tr g

(3.4)

I, )2 .
M > ¢ = min{ — arcsin
|J{a,b}‘ T

) : ¢ 1s a hyperbolic element of G

(3.5)

Finally we remark that the ratio |I;, 5}|/|/{4 5| tends to 1 as min{tr a,tr b} — oo.

4. Sequences of palindrome pairs of neighbors

We fix a positively oriented pair of neighbors {a,b}. Let O denote the
intersecting point of the axes of ¢ and . Let 2(a,b) be the @-orbit of {a,b}.
More precisely #(a,b) is the minimal set satisfying the following conditions:
(1) {a,b} e P(a,b)

(if) If {g,h} € 2(a,b) then {(gh)""'g, (gh)"g}, {(hg)"h, (hg)"~'h} € ?(a,b) for

any positive integer n.

Likewise we define 2(b,a™'), #?(a~',b~') and 2(b~' a) by the %-orbits of
{b,a™'}, {a',b7'} and {b~!,a}, respectively. Let = P(a,b)U2 (b a)U
P(a b~ YU2P(b,a™'). For each generator which belongs to a pair in 2, the
corresponding word in I is a palindrome. Hence its axis passes through O.
Let I' = {a,a ', b,b'}.

ProroSITION 4.1, If the reduced word Wy in I' for a generator f of G is a
palindrome, then f belongs to a pair in 2.

Proof. We introduce an algorithm to find a pair {a’,b’} in 2 such that
ne (W' +np (W’') =1, where W' is the reduced word for f in {a’,b’}. Then
the last equation means either f =a’ or f =5".

Since the arguments for the proof are similar for other cases, we treat
only the case where W = W, is a word in {a,b} and n,(W) > ny(W). So
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we assume that W is a"ba"™b...ba" ba™ ' with my,..., my,; positive and
mi=m; if i+ j=k+2. We have n,(W)=my +---+my1, ny(W) =k and
(W) =n,(W)+n,(W). There are three cases.

Case 1: k=1 or {my,...,m} ={2m},

Case 2: k=2 and {2my,my,...,m;} = {2my,2m; + 1},

Case 3: k=2 and {2my,ma,...,m} = {2m; —1,2m}.
For Cases 1 and 2, let a; = a and b; = a”™ba™. Then {a),b} = o]"{a,b} =
{a,a™ba™} e 2. Case 1 means W = (a™ba™)*. Since f is a generator,
k=1 and hence f =b;. For Case 2, f has the form W, =b{"aibia ...
a\b{'a\by"".  Since

I’lbl(Wl) = nb(W), nal(W]) = I’la(W) — 2m1nb(W), (4.1)
we have [(W)) <I(W). Next we consider Case 3. If mj > 1, then let

{ar,b1} = {a,a™'ba™ '} = /" {a,b} € #. Then {aj,b;} belongs to 2
and f is written as

W1 = a{”bla{”bl . blai”blaf“ h
Here n € {1,2}, k=2,...,/, and ny =n;;; = 1. Since
gy (W) = ng(W) = 2(my — Dnp(W),  np, (W1) = np(W),

we have [(Wy) <I(W). If my =1, then W is written as (ab)"a(ab)™a...
(ab)"a with positive integers ny,...,n;. Let n=min{ny,...,n}. Since
{a,ab} is a generating pair of G, Theorem 2.1 yields subcases.

Case 3-1: {m,...,nm} = {n},

Case 3-2: {m,...,m}={nn+1} and n =n,

Case 3-3: {m,...,m} ={n,n+1} and ny =n—+1.
Let {ai, b1} = {(ab)"a, (ab)""'a} = 6,.1{a,b} € Z. Case 3-1 means that W =
((ab)"a)’. Since f is a generator, /=1 and W =a;. We can write W as
Wy =al'bial? ... .al"bial*" for Case 3-2 and W, =bl'a\b?*.. .6 a b for
Case 3-3, with some positive integers pi,..., ps+1. For Case 3-2, the word
Wi in the pair {aj, b1} = {(ab)"a, (ab)" ' a} satisfies

nay (W) = (m + Dna(W) = (m1 + 2)ns (W),
np, (W) = —mng(W) + (ny + D)np(W).

Thus we have [(W)) <I(W). For Case 3-3, with the pair {a;,b;} =
{(ab)"'a, (ab)™a}, we have the equations

ng, (W) = mng(W) — (ny + Dnp(W), — np, (W) = —(n1 — D)ng(W) + nyny (W)

and hence /(W) < [(W). For all the cases above, if 1 < /(W) </(W), we
repeat this step with {a, b} replaced by {a;,b;}. Then after finite steps we find
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a pair {a’,b'} in 2 such that /(W') = 1, where W' is the reduced word for f in

{a', 07} O
Let 2, be the collection of {a,b}, {b',a}, {a',b~'} and {b,a™'}. We
define #,, n=2,3,..., inductively by the collection of all g,{c,d} with

{¢,d} € #,—y and meZ — {0}. Thus, a pair {g,h} of 2 which belongs to
2, has the form {(cd)" "¢, (cd)"c} or {(d¢)"d,(de)" "d} for some {c,d} e
%,_1 and for some positive integer m. By (3.1) applied to the pairs in &}, we
see that dD is divided into four gaps Iy sy, Ipt 4y, Liat,p1ys Iipary and
infinitely many subarcs Jy, 51, {g,h} € #>. Each Jy, ; is in turn divided into
the gap I, ;) and subarcs J; 145 of 25 defined for all non-zero integers m.
By continuing this observation we see that ¢D is divided into the union of gaps
Iyy ny with {g,h} € 2 and its complement E. Let us consider the sequence of
sets E, = 0D — Uy endion- We apply (3.5) to all {g,h} € 2 to have
Ity m| = c|Jgm|. Let|-| denote also the angular measure on 0D with respect
to O. Then |E, 1| < (1 —¢)|E,| < (1 —c¢)"|E| for all n. Thus we obtain that
|E| =0, a result due to Birman and Series [2]. By Proposition 4.1, E is the
closure of the set of all fixed points of generators whose axes pass through O,
or the infinitesimal Birman-Series set in [5]. By using (3.2) we obtain

2
2 arcsin <—h> =27 (4.2)
e |tr ghl

Let 2(a) = #(a,b)U2(b~",a). Since I, and Ijy1 1y are antipodal with
respect to O, {g,h} and {g~',h~'} contribute the same angle to the sum.
Hence we obtain

2 1 VA
arcsin| —— | = arcsin| ———— | = =, 4.3
2 ()= 2 (cosh<|y§,h|/2>> > @)

{g,h}eP(a {g9,h}eP(a)

where y , is the simple closed geodesic which is the projection of the axis of gh.

5. Equivalence of the series constants

In this section we prove that the two identities (1.1) and (4.3) are identical
when the pair of Weierstrass points P, and P; is chosen as described below.

5.1. For materials in this paragraph, see [7]. Let W, be the reduced word
for a generator g in I'={a,a ',b,b~'}. Then in the homology group
H|(T) = G/[G,G], ¢g is homologous to n,(Wy)a+ ny(W,)b, and n,(W,) and
ny(W,) are coprime integers. For each pair of neighbors {g,h}, there exists
a homeomorphism ¢ of T onto itself which sends y, and y, to y, and
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v, Tespectively. Obviously {g,/} is positively oriented if and only if ¢ is
orientation-preserving. Since both {a,b} and {g,h} give bases of H;(T),

na(Wy)  np(Wy)
det(na(Wh) (Wh)) +1, (5.1)

and the determinant above equals 1 if and only if {g,/} is positively oriented.

Let ¥ denote the set of isotopy classes of unoriented simple closed curves
in T. We can identify % with the set of unoriented closed geodesics, because
each isotopy class has a unique geodesic representative p. If the axes of
two generators g and g’ project to y, then g’ is conjugate either to g or to g~ !,
and hence ny(W,)/n,(W,) = ny(Wy ) /n,(Wy). Thus ny(W,)/n,(W,) depends
only on 7. We write slope(y) = ny(W,) /n,(W,) and define a mapping
slope : ¥ — Q=QU {s}-

There exists a complex number 7 with Im(z) >0 such that C, =
C — (Z + Zx) is a covering surface of T such that the lifts of ¢ and b define
the transformations z — z + 1 and z — z + 7, respectively, generating the group
of covering transformations G ~ H|(T). We say that a straight line in C has
slope q/p if it is parallel to the line passing through 0 and p + ¢gr. Each pair
of coprime integers (p,q) defines a simple closed curve ¢ in T, which is the
projection of a line in C, with slope ¢/p. Since the correspondence ¢/p — [c]
is the inverse of slope,

LEMMA 5.1.  The mapping slope : & — Q which sends Vg 10 1 (Wy) [na(Wy)
is bijective.

By this lemma we identify % with {yq/p p/q € Q}, where Vatp_ is the
geodesic curve W1th slope(yq /p) =¢q/p. Let P, P, and P; denote the G-orbits
of the points 2+ T, 2‘5 and | 3, respectively, and let Py, P, and P; be their
projections in T. If the puncture is filled by a point P4, then P;, P>, P3 and
P, are the Weierstrass points of the torus T=TU{Ps}. We divide ¥ into
three subsets #},, S3 and 9»3 so that Ya/p € i if Vq/p Dasses through P; and
Py, or equlvalently there exists a line with slope ¢/p which meets points of
P and P,. Therefore, Ya/p belongs to H,, 3 or S>3 in accordance with
(p,q) = (1,0), (0,1) or (1,1) mod 2.

The projection of O is P, because it is the intersection of y, =y, and
% = 71j0- 1f {g,h} € ?(a), then the axes of g and & pass through O. Hence
7, and y, pass through P;. By (5.1) either y, or y, belongs to %1, and the
other belongs to #3. Then y,, belongs to ¥2;. So we can define a mapping
@ : P(a) — Y2 by the correspondence @({g,h}) =y, For the rest of this
section we will show that @ is bijective.
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Let {f,g} be a pair in 2(a). Let Wy = w;...w,, be the reduced word for
S and W, = w41 ...w, the one for g. Since fg is also a generator, by Lemma
3.1, either {wy,...,w,} = {a,b} or {wy,...,w,} = {b~' a}. Thus their juxta-
position Wy, = wi ... WyuWpy1 ... w, is the reduced word for fg. Note that Wy,
is cyclically reduced too. Suppose that y;, =y, for two pairs {fi,¢1} and
{f2,92} in P(a). Since fig, is conjugate either to fig; or (flgl)_l, W, is a
cyclic permutation of Wy, or Wfl‘ql1 This is possible only when exactly either
P(a,b) or Z(b~',a) contains both {fi,¢:1} and {f>,9.}, and Wp,, is a cyclic
permutation of Wy, . Since the proof for the other case can be modified
easily, we consider the case where {fi,g:} € Z(a,b). Let pi =n,( W), q1 =
ny(Wy), 1= na(Wy,), s1=np(Wy,), p2=nsWg), g2 =nm(Wp,), r2 = na(Wy,)
and s, = np(W,,). We show that r; =r, and s; =s,. If this is not the case,
we can assume without loss of generality that r; > r, and s; > s if 1| = rp.
Since Wp,, is a cyclic permutation of Wy, , p1+r = pr+r and g + 51 =
¢»+ 5. Since {f1,¢91} and {f>,¢-} are positively oriented,

0:det<p1+r1 91+Sl>_det(1)1+r1 Q1+S1>:det<l’1+r1 6]1+S1>.

1 51 r 52 rp—r2 S1—5

Thus r; —r; >0 and s; — s > 0, and there exist coprime positive integers m
and n with

m(p1 +711,q1 +81) = n(ry — 2,51 — 52).

Since p; +r; and ¢ + s; are coprime too, n must be 1. But this contradicts
that py+r, >r—r or q1 +s1 > s1 —s;. Thus r; =r, and s; = 5, and hence
p1=p2 and q; = ¢». By Lemma 5.1 f] and f, are conjugate and so are g
and g;. Since they are simple and primitive, and their axes pass through O,
fi=/f> and ¢g; = ¢g>. We conclude that the map @ is injective.

5.2. In what follows all rational numbers ¢/p are such that p and ¢ are
coprime and p > 0. We identify Q with the set of vertices of the Farey
tessellation .7 of the upper half plane (see [7]): Two vertices ¢/p and s/r are
connected by an edge in J if and only if

det(p f)‘il- (5.2)

r

If ¢/p, q1/p1 and g»/p> are vertices of a triangle in 7 and the edge connecting
q1/p1 and ¢»/p> separates ¢g/p from —gq/p, then

P pitp

q Q1 +q (5.3)

(If ¢/p = —n/1 is a negative integer, let ¢1/py = —1/0 and ¢»/pr» = (—n+1)/1.)
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Let y,/, € 423 and choose q1/p1 and p,/q, as above. Then by (5.2) and
(5.3) either y, , or y,,, belongs #, and the other belongs to #i3. The
identity (5.2) means that y, ,, and y, ,, meet at a single point, and this point
must be P;. Therefore y, ,, and y,,,,, define a pair of neighbors {f,h} such
that yr =9, /ps Y0 = Vgp, and 75 =7,, and such that the axes of f and /
pass through O. Since yg = 7/, by interchanging f and 5, if necessary, we
assume that {f,h} is positively oriented. Moreover, by replacing {f, s} by
{1, h~'}, if necessary, we assume that the reduced word for f has the
symbols in {a,b} or in {b~! a}. We consider the case where the word is in
{a,b}. The other case follows simply by replacing {a,b} by {b~' a}. By
Proposition 4.1 there are a generator g and o € ¢4 such that {f, g} = o{a,b}.
Since both {f,g} and {f,h} are positively oriented,

1 0

det(mwh) ng(Ww) = (W) =1,

where W), is the reduced word for i in {f,f ' g,97'}. Since the axes of
f, g and h pass through O, W, is a palindrome in {f*' g}. Therefore
h=f"gf" for some integer n. If n >0, then {f,h} = olo{a,b} e #(a) and
ym = ©({f,h}). So in order to show that @ is surjective, what is left for us is
to prove

LemmA 5.2. Let {f,g} e P(a,b). If h= f"gf™ for a positive integer
n, then there exists a pair {f1,g1} € ?(a) such that fig, is conjugate to fh or to
(/h)"" and hence ({f1.g1}) = 7y

Proof.  Let {f,g9} = 0 Om, - -.0m,{a,b}. Our proof is by induction on p.
If p=0, that is, if {f,g} = {a,b}, then {f,h} ={a,a"ba"}. In this case
let {fi,q1}={a""'b"'a" ' a} =¢";"{b',a}. Then we have figi ~ (fh) .
If p>0, let {c,d} =0y,...0m{a,b} e P(ab). Then {f,g}= {(cd)™ ',
(cd)™c} if m=m; >0 and {f,g} = {(de)"d, (dc)"""d} if m = —m, > 0.

If n=1, then fh=gf ' =cd if m; >0 and fh= (dc)f1 if m <0. In
this case we can let {fi,91} = {¢,d}. Now we assume that n>2. If m=
my =2, then let {fi,91} = 6" 20m 1{c,d}. So fi = ((cd)™ "¢)"((cd)” *c)-
((ed)™'¢)"? and g; = (cd)™ '¢c. Since

! = ((ed)" ) (ed)"e) ™ (ed)" )"
= ()"0 (ed) ") (cd)" )",

we have f~'h7'= fig;. If my =1, then {f g} ={c,cdc} and {f h}=
{c, e de™ ™} In this case, we replace {f,g} by {c,d} =0, ...0m {a,b}.
Then {f,h} ={f,f""'gf™"'}. Since o is replaced by o, ...du,, by hy-
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pothesis of induction there is a pair {fi,91} € #(a) with &{fi,g1} = yp. If
m=—m; >0, then let {fi,q1} =" %0 (minic,d}. So fi=((de)"d)" >
((de)™ ' d)((de)™d)" and g; = (de)™d. Since

Bt = ((de)"d)" ((de)™ " d) " ((de)"d)" = ((de)"d)""" ((de)" " d)((de)"d)" ",

we have f~'h7! = fig;. O

Now we complete the proof that @ is bijective. Thus (4.3) and (1.1) are
identical.

6. McShane’s identity for torus with one hole

Let G be a Fuchsian group generated by a and b such that D/G is a
torus with one boundary curve. We assume that ax(b) cuts ax(a) from the
right to the left and that x =tra, y =trb are positive. Then z=trab >0
and t = tr(aba~'b~') < -2, where t = —xpz + x>+ y*+z> -2, and the con-
jugacy class of G is determined by the quadraple (x, y,z,¢) (see [9, 33.D]). It
has a representative generated by

X -2y + xz — ixvV2 —t
e 2 2W2—t-2 |
2y +xz+ixvV2—1t x
2W2—1-2 2
Y “2x+ yz4+ipV2 —t
B 2 2zl —t-2
—2x+ yz—ipV/2—t ¥
2

2Vz2 —t =2

Here 4 and B e SU(1,1) are chosen so that the axes of 4 and B intersect at the
origin and that the real axis is perpendicular to the axis of ABA 'B~!. Let
p=1. A similar argument to the one in Section 3 shows that the subarc
Iy 4,8y on 0D between g4 and gp4 which contains p is a gap for the group
generated by 4 and B. Let Ji4 p, denote the subarc between ¢4 and ¢p which
contains p. Since

o, — xv2—t Im g — W2 —t
i VX242 =1 =2’ 1 V=4Vt — -2
2—t 2—t
Imgup = ——F———v=, Im gp4 = o,

Ly zZ—t—-2
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the ratio of the angle subtended by Iy, 5 and the one subtended by Ji4 g
satisfies

ln] . arcsm( m) arcsm( zz—z—2>
‘J{A’B}| = . (xi\/z‘:)’ . W21
aresin| o =—"---) arcsin Va2

As in Section 3 this yields |I{, )| > ¢|J(4,5| for all positively oriented pairs of
neighbors {a,b} in G, where ¢ is a constant defined as in (3.5), and we can
show that the linear measure of the infinitesimal Birman-Series set is 0 and
deduce a variation of (1.1) in [8, Corollary 1.10]

. cosh(|d|/4) =
zy: o /sinh?(71/2) + cosh?(]/4)

N

where ¢ is the geodesic homotopic to the boundary curve and y runs over all
simple closed geodesics passing through the Weierstrass points other than the
intersection of y, and y,.
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