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ABSTRACT. We clarified the variational meaning of the special values {(2M) (M =1,
2,3,...) of Riemann zeta function {(s). These are essentially the best constant of
Sobolev inequality. In the background we consider Dirichlet-Neumann boundary value
problem for a differential operator (—1)™(d/dx)**. Tts Green function is found and
expressed in terms of the well-known Bernoulli polynomial. The supremum of the
diagonal value of Green function is equal to the best constant for corresponding Sobolev
inequality. Discrete version of the corresponding Sobolev inequality is also presented.

1. Introduction and results
Sobolev inequalities
ull o) < Cllullymso) (2 <=R")

play crucial roles in the development of theory of differential equations. How-
ever, one can rarely find explicit forms of the best constants among such C.
In Watanabe et al. [10] and Kametaka et al. [2], a systematic way to find the
best constant of Sobolev inequality was discovered in the case p =2, ¢ = o0,
where Green functions for suitable boundary value problem are obtained and
their aspect as reproducing kernels is investigated. It should be noted that
Talenti [9] found the best constant in another special case g =np/(n— p),
Q=R"

Let us first survey our results [5]. For M =1,2,3,..., given Sobolev
spaces

H(X, M) = {u(x) | u(x), ™ (x) € L*(0,1),u(x) € A(X)},

AP) :uD(1) —uD(0)=0 (0<i<M-1), Jl u(x)dx =0,
0
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AD) :u®(0) =u®(1)=0 (0<i<[M-1)/2),
AN = a0 (0) = (1) =0 (0<i<[(M—2)/2]), Jl u(x)dx =0,

where the boundary conditions for u(x) in 4(N) are not required when M =1,
we have found the best constants of the corresponding Sobolev inequalities,
which are expressed by using Riemann zeta function as follows:

C(P, M) = 27 M=Ng=2Mr o0y,
C(D, M) =27 GM=D(22M _ )z=2M¢ (2 M),
C(N, M) =2rM¢(2M).

The key to finding the best constants is Green functions of suitable boundary
value problems for (—1)™(d/dx)*.
We here introduce Sobolev space

H=HM) = {u(x)|u(x),u™ (x) e L*(0,1),u?)(0) =0 (0 <i<[(M—1)/2]),
uP (1) =0 (0<i<[(M-2)/2)} (1.1)

where the boundary conditions for u(x) at x = | are not required when M =1,
Sobolev inner product

1
(u,v),, = J u™) (x)5™M) (x)dkx, (1.2)
Sobolev energy

1
Julfy = | 160 (o (13)

and Sobolev functional

2
S(u) = S(M;u) =< sup u(y)>/|ul|i4- (1.4)
0<y<l1

Sesquilinear form (-,-),, is proved to be an inner product of H afterwards. H
is Hilbert space with an inner product (-,-),,.

The purpose of this paper is to find the supremum of Sobolev functional
S(u). Our conclusion is as follows:

THEOREM 1.1. Let G(x,y) = G(M;x,y) be Green function defined later in
Theorem 3.1.
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(1) The supremum Cy= sup S(u) is given by
ue H,u¢0

Co=C(M) = max G(y,y)=G(1,1) =22*" — D) ?M2M)  (1.5)

0<y<l1

and is attained by putting u(x) = c¢G(x, 1), where ¢ is an arbitrarily fixed complex
number.  We here list explicit forms of C(M).

=1, C@=1/3  C3)=2/15, C(4) =17/315,

C(5)=62/2835,  C(6) = 1382/155925,  (C(7) = 21844/6081075,

6
C(8) = 929569/638512875,

(2) The infimum inf S(u) is equal to zero.
ue Hyu¢0

Concerning the infimum, we can prove easily as follows:
S(sin(z(n + 1/2)x)) =2(z(n+1/2)) " =0  (n— ).

The above Theorem 1.1(1) is rewritten equivalently as follows:

THEOREM 1.2.  For any function u(x) € H, there exists a positive constant C
which is independent of u(x) such that Sobolev inequality

2
1
(sup |u(y)|> SCJ ™) (x)|dx (1.6)
0<y<l 0

holds.  Among such C the best constant Cy is the same as Theorem 1.1(1).
If we replace C by Cy in (1.6), then the equality holds for u(x) = cG(x,1)
(0 < x < 1) for any complex number c.

The engineering meaning of Sobolev inequality is that the square of the
maximal bending of a string (M = 1) [3] or a beam (M = 2) is estimated from
above by the constant multiple of the potential energy.

This paper consists of seven sections. In section 2, we present Bernoulli
polynomial [1, 7, 11], which plays an important role in this paper. In section
3, we present a boundary value problem for (—1)(d/dx)** with Dirichlet-
Neumann boundary condition. In section 4, we show that Green function
G(x,y) is expressed in terms of Bernoulli polynomial. In section 5, it is
clarified that Green function G(x,y) is a reproducing kernel for H and
(+,-)5- Section 6 is devoted to the proof of Theorem 1.2. Finally, in section
7, we present a discrete version of Theorem 1.2 (M =1).
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2. Bernoulli polynomial

As a preparation, we explain briefly about Bernoulli polynomials and their
properties which are required in this paper.

Bernoulli polynomials b;(x) defined by the following relation:

bo(x) =1

bi(x) = bj-1(x), J bi(x)dx=0 (j=1,2,3,...).

Here we list explicit forms of b;(x) (j=0,1,...,8).
1 1, 1

1

0

bo(x) =1, bl(x):x—i, bz(x):zx —Ex—i——,
b3(x):éx3—%x2+%x, b4(x)=%x4—%x3+ﬁx —
bs(x) :1;—0x5 —41—8x4 —&—%xS —%x,

be(x) :%)ﬁ —ﬁxs +ﬁx4 —ﬁxz WZO’

br(x) = 50140 x' - 14140 X0+ 14140 - 43120 ST

1 3

[ R B

bs(%) = 20320™

They are also defined by the following generating function:

Bernoulli polynomial b;(x) is j-th polynomial with respect to x.

e =1) > b

xt 0
e

Jj=0

properties of Bernoulli polynomial b;(x) [4, 5].

bi(1 —x) = (=1)7b(x)

(-1

(1) — b(0) ={1 =1

o

a0 =7 U0

by1(1/2) =0
)7+ by(0) = B/ (2))!

(=01,

#1).

(j=0,1,2,..

(It < 27).

2,..)).

(j=1,2,3,...).

).
(j=0,1,2,..

).

~ 70080 T8620" T 17280 160480 1209600

We list up the

(2.1)

(2.2)
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n (2.5), B; is Bernoulli number defined by the following recurrence relation:
n—1

(2n
S0 (3)E=n =123

Next we derive Fourier expansion formula of b;({x}), where
[} =x—[, [ =sup{nez|n<xh

denotes a decimal part of a real number x. {x} is a periodic function of x
with period 1. For j=1,2,3,..., we have

bi{x}) = = > (V=127k) 7 exp(v/—12mkx)

k#0
that is to say
boi({x}) = (=1)""12) " (27k) ¥ cos(2mkx), (2.6)
k=1
by ({x}) = (=1)""'2> " (27k)” ¥V sin(2mkx). (2.7)
k=1
For j=0,1,2,..., the relation
J+1 - 2 i
(1) by(0) =2 "(2mk)” —2,4(21)7 (2.8)
k=1 (2m)*
byi(1/2) = =(1 =27 D)by(0) (29)

follows from the above Fourier expansion of b;({x}). In (2.8), {(z) is
Riemann {-function. The following lemma concerning Bernoulli polynomials
plays important roles hereafter.

Lemma 2.1 ([4, 5]). u(x)= (—1)-/+1b2j(x) (j=1,2,3,...) satisfy the fol-
lowing properties:

 max u(x) = u(0) = u(l) > 0, (2.10)
Or<r13r<11 u(x) =u(1/2) <0, (2.11)
max |u( )| = u(0) = u(l), (2.12)
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u'(x) <0 (0 <x<1/2), (2.13)
u'(x) >0 (1/2<x<1). (2.14)

3. Dirichlet-Neumann boundary value problem

For any bounded continuous function f(x) on an interval 0 < x < 1, we
consider the following Dirichlet-Neumann boundary value problem:

BVP(M)
(—1)Mu@M) = £(x) O<x<1) (3.1)
u?(0) =u?* (1) =0 (0<i<M-1). (3.2)

For later convenience sake, we introduce monomials {E;(x)} defined by

B X/ (j=0,1,2,...)
=13 U2

Note that E/(x) = E;_1(x) (j=0,£1,42,...). We also use the abbreviation
E;=E;(1) (j=0,%+1,42,...). We prepare the next lemma.

LemMA 3.1. For any N X N regular matrix A and N x 1 matrices a and b,

we have the following equality:
=2 (33
‘a |0 . .

Concerning the uniqueness and existence of the solution to BVP(M), we
have the following theorem:

‘ad”'b = —

THEOREM 3.1. For any bounded continuous function f(x) on an interval
0 <x <1, BVYP(M) has a unique classical solution u(x) expressed as

1
u(x) = JO Gl ) f()dy (0 <x<1). (3.4)

Green function G(x,y) = G(M;x,y) (0<x,y<1) is given by the following
three equivalent expressions:

(—1)M Eaji ‘ Exm-1-»p(1 =)
(1) G(x,y)= Ery—1(|x—y)) +
2 Eyji1(x) ‘ 0
Eyj-i ‘ E2(M—1—i)+l(y)

3.5
Ey(1 = x) ‘ 0 ] )
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where 0 <i,j < M —1. Moreover, we have |Ey;_;| = 1.

(2) G(x,y) = (-1)"+1g2M {b2M<x; y') ~ by (x: y)

sou(3- ) e (-] e

() 23w+ 1/2))M sin(a(j + 1/2)x) sin(z(j + 1/2)y). (3.7)

J=0

Proor oF THeorReM 3.1(1). We suppose that BVP(M) has a classical
solution u(x). Introducing new functions u; = u) (0 <i<2M — 1) and ma-
trices

u="(up,...,up-1), e="0,...,0,1),
0 1
0 . . .
N = . (2M x 2M nilpotent matrix),
o1
0
one can rewrite BVP(M) as follows:
' =Nu+e(-1)"f(x) O<x<]1) (3.8)
ugi(()) = u2i+1(1) =0 (O <i<M- 1) (39)

Let E(x) be an upper-triangular matrix given by

E(x) = exp(xN) = (E;-)(x),

which is a fundamental solution to the initial-value problem E’ = NE,
E(0) =1. Solving (3.8), we have

X

wszwwm+LEu—m44w7wm4

1

wm:E@fnmnijufww4Wﬂw@,

X

or equivalently, for 0 <i<2M — 1,
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Employing the boundary conditions uy;(0) = u241(1) =0 (0<i< M —1), we
have

ugi(x) = Z Ey(j—iy+1(x)u2i11(0) + J:(_I)MEZ(MliHI(x —y)f(y)dy,
=0
M—1 X
i1 (x) =Y Eajoy(x)uz1(0) + L (=DM Exar-1-9(x = »).f(»)dy,
=

1
wi(x) = Y Exjopy(x — Dugy(1) — J (=DM Expro1-n (x = ). (»)dy,
=0

1
uiy1(x) = ‘ Exj—iztys1(x — Dug(1) — J (_I)MEZ(M—l—i)(x - »)f(y)dy

X

for 0 <i< M —1. In particular, we have

M—-1 X
uo(X) = Y Eppi(xX)ugy41(0) + L (=DM Eap1(x = p)f(0)dy,  (3.10)
=0

M-1 1
wo(x) = 3 Exx — Duy(1) —j ()M Exyrr(x — 9) )y (.11)

j=0 ¥

Using the boundary conditions u5;(0) = uz;41(1) =0 (0 <i < M — 1) again, we
have

0= un(0) = 3 Eyyy(—Duy(1) JO<—1>MEz(M,l,,-H(—y)f(y)az%
7=0
M—-1 1
0 =uyi(l) = Eyj—iy(1uajs1(0) + JO(_I)MEZ(Mflfi)(l =) f(y)dy.
Jj=0

Solving the above linear system of equations with respect to uy;(1), uzi1(0)
(0<i<M-1), we have

1

() (1) = j0<—1>M<E2(j,,->>“(—1)(Ez(M,I,M><—y>f<y>dy, (3.12)

1

(u2i41)(0) = — JO(_1)M<E2(j—i))7l(1)<E2(M—1—i))(1 =) f(y)dy. (3.13)

Substituting (3.12) and (3.13) into (3.10) and (3.11), we have
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! M -1
uo(x) = = | (1 (B () Exgy o) (D B 1-9)(1 = 3)7 )y

n r(_l)MEzM,l(lx — NS (y)dy,

1
+j (=)™ Eapey (x — y) S (0)dy.

X

Note that Ejy—1(—x) = —Esp—1(x). Taking an average of the above two
expressions, we have obtained the following expression for a solution
u(x) = uo(x) to BVP(M):

1
u(x) = J Gx ) f()dy  (0<x<1), (3.14)

where G(x, y) represents Green function given by

(-n* 4
3 [Eavr—1(]x — p]) = (Egj1) (%) (Eagjmiy) ™ (1) (Exmr—1-)(1 = »)

G(x7 y) =

+ (Ey)(x = D(Exjo) " (=D (Ear-1-9a)(=»)] (0<x,p<1).
Owing to the relation E;(—x) = (—1)'Ei(x), G(x, y) is rewritten as

G C o) = (B oy (1 —
G(x, y) =~ —[Eanr-1(}x = y]) = (Ezpr1) (¥)(Eaj-p) (Exar-1-)(1 = »)

— (Ex)(1 = X)(Eaji) " (Eaxpr—1-ip41) (7)) O<x,p<1), (3.15)

where E; = E;(1). Applying Lemma 3.1 to (3.15), we have (1) of Theorem 3.1.

Since the right-hand side of (3.14) includes only a data function f(x), the
solution to BVP(M) is unique. From the next theorem, we can show that u(x)
defined by (3.14) satisfies BVP(M), which guarantees the existence of the
solution.

THEOREM 3.2. Green function G(x,y) = G(M;x,y) satisfies the following
properties.

(1) *MG(x,y)=0 (0<x,y<l,x#yp). (3.16)

(2) 0YG(x V)l =07 G(x, Y] =0 (0<i<M-10<y<1). (3.17)
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(3)  0LG(X, Y)|ymg = OGN, ¥)] o

_ 0 (0<i<2M -2)
_{(—I)M (i=2M-1) (0<x<1). (3.18)
(4)  0.G(x, )l mpio — 0:G (X, ¥)ioyo
_ 0 (0<i<2M -2)
{(—I)M (i=2M—1) (0<y<]1). (3.19)
(5) G(x,»)>0 (0<x,y<]l). (3.20)

PROOF OF THEOREM 3.2(1)~(4). Operating 8* (1 <k <2M) on both sides
of (3.5), we have

M
= [(sgn@c =~ ) Easr il =)

oKG(x, y) =

Exj—i | Eau—1-p(1—y)
Esi1k(x) ‘ 0

B>y | Eyv-1-i+1()
Eyi(1- ) | 0

+(-D*

]. (3.21)

Putting £k =2M in (3.21) and using E;(x) =0 (j < 0), we have (3.16). For
0<k<M-—1, we have

) ‘ Exp-1-p(1 =)

(—1)M283G(x, )| g = Expr—1-1)+1 () +

Ex(j-k)+1(0) ‘ 0
Eyj—iy | Exm—1-i+1(»)
+ } = Exp—1-k)+1()
Exji 0
N By ‘ Eyp-1-iy+1(9) o
o0 -~ 0 ‘ —Exm—1-1)+1()

and

Es(j-i) ‘ Exp-1-p(1 =)
0

(—1)M2031G(x, y)| oy = Exy—1-i)(1 — ») +

Exji

B> | Exv-1-iy+1()
Es(jk-1)+1(0) ‘ 0
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= Eyy-1-1(1 = »)
Exjy | Exu-1-p(1— )
0 --- 0 ‘ —Exp—1-k)(1 = p)

where we have used Ex(0) =0 (k #0), 1 (k=0) and |Ey;_»| = 1. Hence we
have (3.17). For 0 <k <2M — 1, we have

(-n"

+

YO, 7)lyag = OG0 D)0 = — (1= (=1)")Eapr-1-£(0)
_f0 (0 <k <2M—2)
_{(_I)M (k=2M —1) (0<x<1),

which proves (3.18). (3.19) follows from (3.18). The positivity (3.20) is
shown later.

Concerning the uniqueness of Green function, we have the following
theorem:

THEOREM 3.3. The smooth function G(x,y) on an open set 0 < x,y < 1,
x # y satisfying properties (3.16), (3.17) and (3.18) is unique.

PrOOF OF THEOREM 3.3. Suppose that we have another function G(x, y)
satisfying the same properties (3.16), (3.17) and (3.18). For any function f(x),

1
u(x) = L Gl fdy  (0<x<1)

satisfies BVP(M). From Theorem 3.1, we have

1 1
| 6w =] cnsmw  ©<x<.

This shows G(x,y) = G(x,y) (0 <x,y < 1).

Proor oF THEOREM 3.1(2), (3). (3) follows from (2) by Fourier series
expansion of Bernoulli polynomial (2.6). In order to prove (2), it is enough to
show that G(x, y) defined by (3.6) satisfies the properties (3.16), (3.17) and
(3.18). Differentiating G(x, y) with respect to x, we have

0,G(x,y) = (=1 H1a2M [<sgn<x — ) barrs (le yl) b (x%

0 i (5= 55 ) = ) st )b (5 - 5]

O<x,y<l,x#y,0<i<2M). (3.22)
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(3.16) is shown by putting i = 2M in the above equality. For 0 <i< M —1
we have

i 1 X - X+
Y G(x, y) = (—1)MH14200-1-041 {bzwi) (M> - bzw,»( y)

1 x+ 1 |x-—
+ baar—i) (5 i y) — byar—i) (5 - 2 y|>} (3.23)

Putting x =0 in (3.23), we have

aiiG(xay”x:() =0 0<y<l,0<i<M-1).

For 0 <i< M —1 we have

i 1 X —
a,%HG(x: y) = (—1)M+142(M ! )[sgn(x = V)bar—1-iy+1 <| y>

4
X+y I x+y
- bZ(M—l—i)Jrl 4 - bZ(Mflfi)Jrl 27 "4
1 |x-
+sgn(x — y)bar—1-41 (5 | 2 ylﬂ : (3.24)

Putting x =1 in (3.24), we have
G, y) =0 (0<y<l1,0<i<M-—1).

Hence we have (3.17). Putting y = x F 0 in (3.22) and taking their difference,
we have

.G (x, )] .G (x, )]

y=x-0 " y=x+0

= (=DM = (=) by 1(0) — (=1) bapr—i(1/2)]

:{o (0<i<2M—2)

(DM (i=2M-1) (0<x<1), (3.29)

where we have used (2.3) and (2.4). This completes the proof of Theorem
3.1(2), (3).

ProoF oF THEOREM 3.2(5). We start with the expression (3.6). Noting
that

o< Xy _xty 1o 1 xdy 1 -yl

1
=73 5 <7 274 2T a1 =3

0<x,y<])

and using (2.13), we have Theorem 3.2(5).
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From Theorem 3.1(2), it is easy to see the following remark:

REMARK 3.1.
G(x,0)=0 (0<x<1l). (3.26)
MG(x,1)=0 (0<x<1). (3.27)
G, ) _p=0 (0<k<M-1). (3.28)

0 O0<k<M-2)

(=DM (k=M —1). (3:29)

%“WuAmlz{

We here list concrete forms of the functions G(x,y) = G(M;x,y) (M =
1,2,3,4) and related functions.

1
G(laxvy)zi[x+y_|x_y|]7 G(l’yvy):ya G(lvlal)zl
1
G(2;x,y)ZE[—[(X+y)3—Ix—y|3]+3[(x+y)2—Ix—y\z]L
s 1

G(353,3) =55 [0+ 3)° = b= 3f* = Sl 2)* = b= 21"

+20[(x + )% — [x — »I7]],
1

. _ 5 <. 4 2 ) _“
G(3,y,y)—15[2y 5"+ 5y7], G(3;1,1) 5
G(4;x,y) = m[—[()H ) = lx ="+ 7[(x+ »)° = x = y[%]
—70[(x + »)* = |x = »[*] +336[(x + ¥)* — |x — y|*]l,
. _ 1 7 6 4 2 . _i

4. The method of reflection

In this section, we derive the solution to BVP(M) starting from Dirichlet
boundary problem BVP(D, M). We call this procedure “the method of reflec-
tion”. The latter half, we show that the relationship between BVP(D, M) and
BVP(M).

In [5, 6], we have proved the following theorem:
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THEOREM 4.1.  For any bounded continuous function f(x) on an interval
0 < x < 1, Dirichlet boundary value problem

BVP(D, M)
{en f() (0<x<1)
C0)=u®)(1)=0 (0<i<M-1)

has a unique classical solution u(x) expressed as
= [ 6D <x<.
Green function G(D;x, y) is given by
G(D;x, y) = (—1)M+1p2M-1 {sz(PC; y|> — by <x—;—y)] 0O<x,» <(41)1)

If we extend the domain of definition 0 < x <1 to 0 < x <2, then we
have the following theorem.

THEOREM 4.2. For any bounded continuous function f(x) on an interval
0 < x < 2, Dirichlet boundary value problem

(—D)MuM = f(x)  (0<x<2) (4.2)
uPh(0) =u®(2)=0 (0<i<M-1) (4.3)

has a unique classical solution u(x) given by

2
u(x) = Jo 22M1G(D;g,%>f(y)dy (0 <x<2). (4.4)

We impose the following additional condition on inhomogeneous term

f(x):
f)=f2-x) (I1<x<2). (4.5)

For this f(x) (0 <x <2), the solution u(x) to (4.2) and (4.3) is given by
(4.4). If 0<x< 1, we have

S f)dy =16 + b,

2
u(x) = 2”41G(D;
0

N
N[

<

Y

| =

1
I = 2”41G<D;
0

N <

f(y)dy.

)

| =

)
)roa
)

2
L= 2”41G<D;
1
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Applying (4.5) to I, we have

2 1
12=J 2M-1G( Dt 2 f(z—y>dy=J 2M1G(Di2 1 -2 r(3)dy.
| 272 0 2 2

Thus we have

where G(x,y) is given by

G(x, y) = 22M-1 [G(D;%%) + G(D;g, 1 _gﬂ 0<x,y<1). (46)

For the second term of the right-hand side of (4.6), we have

1 M+127(2M71)G DE 172
(=1) 2’ 2

1 x+ 1 x-—
:b2M<2_ 4y>_b2M<2‘L 4y>
I x+vy I |x—y
b2M<§— 4 >_b2M(§_ 4 (0<x<y<1)
I x+vy I |x—y
b2M<§— 2 >_b2M(§+ 4 (0<y<x<1)

B I x+vy 1 |x—y
—sz(z— ) >_b2M<2_ 1 0<x,y<1)

where we have used by;(1/2 — x) = byj(1/2+ x) from (2.1). So we have
X _ X — X+
G(Qz%) (—1)MHip2M {b2M<| ) y|> —bom (Tyﬂ’
XYY MM 1 x4y
(D51 2) = etz [y (1 5)

I [x—yl
—b2M<§— 2 ):| (0<x,y< 1)

This shows that (4.6) is equivalent to (3.6). Therefore, (4.6) satisfies (3.16),
(3.17) and (3.18) of Theorem 3.2. So we have the following relation:
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_ M-I XY XY
G(x, ) =2 [G(D,z,z)-i-G(D,z,l 2)}
_ (_1)M+142M71 |:b2M(|x; y|> _ sz(x—: y)

I x+y 1 |x—y
+b2M(§_T>_b2M<§_ ) 0<x,y<1). (47)

Next, we investigate the diagonal values of Green functions G(D;y, y)
and G(y, y), which are given by

G(D;y,y) = (=) 122 by (0) — bans ()],

_ 92M-1 DY A
G(y,y)=2 [G<D,2,2>+G(D,2,l 2)]

= (—1)MHIg2M-1 [sz(O) — by (%) +bau (é - %)

—szGﬂ 0<y<l).

From Lemma 2.1, it is shown that G(D; y, y) attains its maximum at y = 1/2
and G(y, y) attains its maximum at y = 1. As a conclusion, we have obtained
the following theorem:

THEOREM 4.3.

C(DﬂM) :OIEJ?EI G(D;% y) = G(D, 1/2v 1/2)

= (=) M2 by (0) = bane (1/2)]
_ (_1)M+1(22M . 1)b2M(0) _ 27(2M71)(22M o l)nszC(ZM),

C(M) = max G(y,y) = G(1,1) =2*"G(D;1/2,1/2)
<y<

= (=) 4M 1202 (0) = bave(1/2)]
= (=1)MTI2M(2M _ 1)py 1 (0) = 222 — V)2 2M{(2M).
From this theorem, we obtained the relation C(M) = 2?*C(D, M).

5. Reproducing kernel

In this section, it is shown that Green function G(x,y) is a reproducing
kernel for a set of Hilbert space H and its inner product (-,-),, introduced in
section 1.
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THEOREM 5.1. (1) For any u(x)e€ H, we have the following reproducing
relation:

1
u(y) = (u,G(-, ¥))y = JO M) Glx, ydx  (0<y<1).  (51)

This means that Green function G(x, y) is a reproducing kernel for H and (- ,-),,.

1
@) G(m)zjo 0MG(x,y)2dx  (0<y<1). (5.2)

ProorF oF THEOREM 5.1. For functions u = u(x) and v = v(x) = G(x, y)
with y arbitrarily fixed in 0 < y <1, we have

Integrating this with respect to x on intervals 0 < x < y and y<x <1, we
have

M-1
(=) D (1)1 (1) — 1) (0)0PM =127 (0)]
Jj=0
(M=1)/2
= (=DM @ (1) pPM=1=D5D (1) — @) (0)pPM=1=0+1 ()]
j=0
(M=2)/2]
+ (=) M @D (1)pPM=1=0) (1) — @D (0)p2M=1-0) ()]
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Using (3.16), (3.17) and (3.19) in Theorem 3.2, we have (1) (0 < y<1).
Using (3.26) in Remark 3.1, we have (1) (y =0). Using (3.27), (3.28) and
(3.29) in Remark 3.1, we have (1) (y=1). (2) follows from (1) by putting
u(x) = G(x,y) in (5.1). We have proved Theorem 5.1.

6. Sobolev inequality

In this section, we give a proof of Theorem 1.2, from which Theorem 1.1
is derived simultaneously.
Applying Schwarz inequality to (5.1) and using (5.2), we have

1 1
|wwﬁsjw%a%wwahNWmfw
0 0
1
=G(»,y) JO ) (x) | dx.

Noting that Cy =  max G(y,y) = G(1,1), we have following Sobolev inequal-
. <y<
1ty:

0<y<l1

2 1
<wpwm>s@mem&m (6.1)

This inequality shows that (-,-),, is positive definite. It should be noted that it
requires Schwarz inequality but does not require ““positive definiteness” of the
inner product for the purpose of proving (6.1).

In the second place, we apply this inequality to u(x) = G(x,1) e H and
have

2
1
( sup |G(y,1)|> < COJ 101 G(x,1)|2dx = C2.
0<y<l 0

Together with a trivial inequality

2
Cy =G*(1,1) < ( sup |G(», 1)I> ,

0<y<l
we finally obtain

2
<sup |G(y,l)> =c0J1|a§4G(x,1)|2dx, (6.2)

0<y<l1 0

which completes the proof of Theorem 1.2.

7. Discrete Sobolev inequality (M = 1)

In this section, we consider a discrete version of the result obtained in
previous sections.
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We assume that N =2,3,4,.... We consider the following set of simul-
taneous equations:

—u(i+1)4+2u(i) —u(i—1)= f(i) (1<i<N)
{u(O) =0,u(N+1)—u(N)=0,

which are regarded as a discrete version of BVP(1). This is rewritten
equivalently as

Au=f

where

Let d; be a vector defined by
J
9;="00,...,0,1,0,...,0) (1<j<N).

We also introduce an ordinary unitary inner product

(u,v) = v'u="ou= ZE(])M(])
=

Sobolev inner product

N

(u,0) 4 = (Au,0) = v" Au =Y 5(i)agu(j)

ij=1
and Sobolev energy

N

a1 = (.00, Z Daiju(

(-,-), is proved to be an inner product of C" afterwards.
The conclusion of this section is as follows:

TurOREM 7.1.  For any ue CV, there exists a positive constant C which is
independent of u such that the discrete Sobolev inequality [8]

2
(max, (1) < ()

1<j<
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holds. Among such C the best constant is Cy = N. If we replace C by Cy,
then the equality holds for u= Gy where G = A~' is given by the following
expression.

1 11 -+ 1
1 2 2 .. 2

G =(gy) = (min{i,j})=[1 2 3 3 (7.2)
1 2 3 ... N

(7.2) is easily proved by using Gauss’s sweeping-out method.

THEOREM 7.2. (1) For any ue CV, we have the following reproducing
relation:

u(j) = .G3),  (1<j<N). (7.3)
2) g5=1(Gé;,Go),  (1<j=<N). (7.4)
Proor oF THEOREM 7.2. Noting that G* = G, we have
(u,Go)) 4 = (Au, Go;) = 0, G" Au = 6;u = u(j).
Applying u = G; € CV to (1), we have
(G9;, Go;) , = (AG9;, Goy) = (9, Go;) = 6; G"0; = 0; GI; = ;.
This shows Theorem 7.2.

PrOOF OF THEOREM 7.1. Applying Schwarz inequality to (7.3) and using
(7.4), we have

N2 2 2 2
(DI < llaellg| GOyl = gllaelly-

Taking the maximum with respect to 1 < j < N, we have the following discrete
Sobolev inequality:

1<j<N 1<j<N

2
( max u(])|> < Collul?, Co= max g; =gyy = N. (7.5)

This inequality shows that (-,-), is positive definite.
In the second place, we apply this inequality to u = Goy € CV. Then we
have

2
( max |g_;N) < Gol|Gaxll = 2.

I1<j<N

Combining this and trivial inequality
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2
C?=g3, < | max gin
0 = 9NN ISjSNL]]‘ )

we obtain

2
_ 2
(max, Lol ) = GllGav 76

which completes the proof of Theorem 7.1.

Acknowledgement

The author would like to express his sincere gratitude to Professor

Yoshinori Kametaka and Professor Atsushi Nagai for giving him valuable
comments and discussions. Also, the author is supported by the 21st Century
COE Program named “Towards a new basic science: depth and synthesis”.

[1]

(2]

[3]

[4]

[5]

[6]

(9]
[10]

(11]

References

T. Arakawa, T. Ibukiyama and M. Kaneko, Bernoulli number and Riemann zeta function,
Makino, Tokyo, 2001 [in Japanese].

Y. Kametaka, K. Watanabe, A. Nagai and S. Pyatkov, The best constant of Sobolev
inequality in an n dimensional Euclidean space, Sci. Math. Jpn. e-2004 (2004), 295-303.
Y. Kametaka, K. Watanabe, A. Nagai, H. Yamagishi and K. Takemura, The best constant
of Sobolev inequality which correspond to a bending problem of a string with periodic
boundary condition, Sci. Math. Jpn. e-2007 (2007), 283-300.

Y. Kametaka, H. Yamagishi, K. Watanabe, A. Nagai and K. Takemura, Riemann zeta
function, Bernoulli polynomials and the best constant of Sobolev inequality, Sci. Math. Jpn.
¢-2007 (2007), 63-89.

Y. Kametaka, H. Yamagishi, K. Watanabe, A. Nagai and K. Takemura, Riemann zeta
function and the best constants of three series of Sobolev inequalities, Transactions of the
Japan Society for Industrial and Applied Mathematics 18 (2008), 29-40 [in Japanese].

Y. Kametaka, H. Yamagishi, K. Watanabe, A. Nagai and K. Takemura, The best
constant of Sobolev inequality corresponding to Dirichlet boundary value problem for
(=1)M(d/dx)*™, Sci. Math. Jpn. e-2008 (2008), 439-451.

Y. Komatsu, Special functions, Asakura, Tokyo, 1967 [in Japanese].

A. Nagai, Y. Kametaka, H. Yamagishi, K. Takemura and K. Watanabe, Discrete Bernoulli
polynomials and the best constant of discrete Sobolev inequality, Funkcial. Ekvac. 51
(2008), 307-327.

G. Talenti, The best constant of Sobolev inequality, Ann. Mat. Pura. Appl. 110 (1976),
353-372.

K. Watanabe, T. Yamada and W. Takahashi, Reproducing Kernels of H"(a,b) (m=
1,2,3) and Least Constants in Sobolev’s Inequalities, Appl. Anal. 82 (2003), 809-820.

I. Yamaguchi, Sympathetic Number Theory, Sangyou, Tokyo, 1994 [in Japanese].



442 Hiroyuki YAMAGISHI

Hiroyuki Yamagishi
Faculty of Engineering Science
Osaka University
1-3 Matikaneyamatyo
Toyonaka 560-8531, Japan
E-mail: yamagisi@sigmath.es.osaka-u.ac.jp



