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ABSTRACT. We consider the initial value problem for a system of parabolic partial
differential equations modeling chemotaxis in R"(n > 1), and give the asymptotic
profiles for a specific class of solutions by space-time higher-order asymptotic expan-
sions.

1. Introduction

In this paper we are concerned with the large time behavior of solutions
to the initial value problem for the system of parabolic partial differential
equations:

ou=Au—V - (uVv), xeR", 1>0,
0w =dv—v+u, xeR" >0, (P)
u(x,0) = uo(x), o(x,0) = 1o(x), xeR".

This system is a simple mathematical model to describe chemotaxis which is a
biological phenomenon simulating the directed movement of an organism in
response to gradients of a chemical attractant (see [11]).

Let us now recall the previous results for (P). It is well known that the
possibility of blow-up of nonnegative solutions depends strongly on space
dimension: The finite time blow-up never occurs in the case n =1, while it
can occur in the case n > 2. For related results to these studies, we refer to
[2, 8 6, 18, 7].

Concerning the large time behavior of solutions to (P), it is known in [19]
that when n > 2, every bounded solution to (P) decays to zero as ¢t — oo and
behaves like the heat kernel with the self-similarity. Furthermore, it was
shown in [20] that the result obtained in [19] holds for the case n =1, and
the improved asymptotic profiles of bounded solution (u,v) to (P) are given
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as follows: Let 1 < g < 0. Then the following assertions hold under suitable
initial conditions.
(1) In the case n > 2, the integral fgo g uVv dyds converges and

lim ZJ1(1—1/q)/2+1/2
— 0

u(t) — J o dyG(1)

=0. (L1
0

+ <J yuo dy +J d J uVv dyds> -VG(1)
R "

(ii) In the case n=1, |[, [ udyv dyds| < Clog(l +1) (t>0) and

lim t<171/q)/2+1/2(10g t)71

—o0

u(t) — JR ug dyG(t)

=0. (12

t
+ (J yug dy + J J udyv dyds) 0xG(1)
R 0Jr .

(i) v has the same asymptotic behavior as u.
Here || - ||, is the usual LY(R")-norm and G = G(x,1) is the heat kernel, that is,

G(x, 1) = (4mr) e W /40, (1.3)

As noted above, we see that the logarithmic term appears in the
asymptotic rate of (1.2), because the L%-estimates of the solutions for n =1
might not decay faster than those for n > 2.

Kato [10] introduced a correction term to remove the logarithmic function
appearing in the asymptotic rate of (1.2), and obtained the improved asymp-
totic profiles of bounded solution (u,v) to (P) for n=1: Let 1 <g < o0.
Then, under suitable initial conditions, it holds that the integral [ [qudyv dyds
converges and

lim ((1-Va)/2+1/2

— o0

u(f) — JR wy dyG(1)

+ (JR yug dy + Jw JR ud,v dyds> 0xG(1) +w(r)|| =0, (1.4)

0

where the correction term w(x,t) is defined by

w(x, 1) = (JR U dy)zj(: JR G(x— y,t—15)0,(G(y,1+15)0,G(y, 1+ 5))dyds,
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and the upper and lower bounds of decay rates for |w(t) are given by

oo

a(l+0 <|w@l, <G+,  1>2

with some positive constants ci, C1. Also, v has the same asymptotic behavior
as u.

For a further study on the asymptotic profiles of bounded solutions to (P)
in the case n = 1, adjusting the center of the heat kernel by use of a shift which
is suitably determined by the initial data and the nonlinear term, Nishihara [21]
obtained the decay estimates of difference between the solution and the heat
kernel whose center is adjusted. The decay estimates obtained in this result are
rather sharp, though he imposed stronger assumptions on the initial data ug
than ones in [10].

Such an asymptotic profile with self-similarity was observed for other
nonlinear partial differential equations. We now refer to several works, closely
related to our study. Escobedo-Zuazua [3] proved that the solutions to the
heat convection-diffusion behave like the heat kernel as ¢ — oo if the diffu-
sion term is more dominant than the convection one. Carpio [1] gave the
asymptotic profiles of solutions to the incompressible Navier-Stokes equations
up to the second order in terms of the heat kernel. Moreover, it was shown
in [4] that under small initial data, a solution with the space-time decay
properties admits the higher-order asymptotic expansion in terms of the space-
time derivatives of Gaussian-like functions. This result improves essentially an
earlier one obtained in [1]. Here we note the fact that the solution treated in
[4] decays sufficiently faster because for the initial data in L'(R") space, the
average of initial data is naturally zero by virtue of the divergence free
condition for the initial data (see [15]). This is the reason why the logarithmic
term does not appear in the asymptotic rate of the expansion in contrast to (P)
in one-dimensional space. Ogawa [22] and Luckhaus-Sugiyama [14] discussed
that for a parabolic-elliptic system with degenerate diffusion modeling chemo-
taxis, a solution behaves like the Barenblatt solution as ¢ — oo, where its
solution is the self-similar one to the porous medium equation, and obtained
the convergence rates for the difference between these solutions. In [17], it
was proved that the solutions to generalized Burgers equations in the one-
dimensional space tend to nonlinear waves at the rate t~! log¢ in L*(R) as
t — oo. This asymptotic rate in L*(R) space was improved to the rate ¢!
by exactly giving the second asymptotic profile of the solution. For detail,
we refer to [9]. Recently, Kobayashi-Kawashima [12] showed that when
n >3, the solutions to the drift-diffusion system closely related to (P) ap-
proach asymptotically to the heat kernel. These asymptotic profiles decay in
LY(R"™) (1 < ¢ < o) space at the rate r"(!1=1/9/2-1/2 a5 t — o if n >4, and
at the rate r>U0-1/9/2-1/210g¢ as t — oo if n=23. As mentioned above,



366 Tetsuya YAMADA

the logarithmic term appears in the asymptotic rate for the case n=3.
The situation is rather similar to that of (P) in the case n =1. To remove the
logarithmic function, Ogawa-Yamamoto [23] gave a correction term on the
basis of the argument used in [10], and obtained the improved asymptotic
profiles for the solutions.

Our aim of this paper is to give the higher-order asymptotic expansions of
solutions to (P) in higher-dimensional case. More precisely, we shall prove the
three assertions for the solutions to (P) with the following space-time decay
properties:

sup (1 + [x])" (14 )" (|u(x, )] + [o(x, D)) < o0, (D)
xeR" >0
O<u<y
where y is either n or n+ 1. Under the appropriate moment conditions on the
initial data,

(i) in the case n > 2, the solutions to (P) satisfying (D) with y = rn admit
asymptotic expansions up to n-th order,

(ii) in the case n > 1, the solutions to (P) satisfying (D) with y =n+1
admit asymptotic expansions up to (n+ 1)-st order under the con-
dition [, uo dy =0,

(iii) there exists a unique solution to (P) with (D) for small initial data.

The proofs of the assertions (i) and (ii) are obtained by applying techniques
in [4], that is, some decay estimates for the solutions and Taylor’s formula for
the heat kernel. For the proof of the assertion (iii), we use the contraction
mapping principle. As mentioned in Section 2 below, in the assertion (i)
(Theorem 1), we need to introduce a correction term on the basis of the method
used in [10] because the logarithmic term appears in the asymptotic rates of
the expansions, and the desired asymptotic rates can not be obtained if we
do not add its term. Furthermore, under the influence of such a correction
term, there appears a difference between the expansions in the odd and even
dimensional cases. On the other hand, in the assertion (ii) (Theorem 2), the
logarithmic term does not appear in the asymptotic rates of the expansions
since the solutions decay sufficiently faster.

The plan of this paper is the following: In Section 2, we state our main
results in this paper. In Section 3, we prepare several lemmas which will be
used in this paper. In Section 4, we show some L7-estimates for the solutions
to (P) satisfying (D) with y =n. In Sections 5-7, we give the proofs of
Theorems 1, 2 and 3, respectively.

2. Main Theorems

We denote by || - ||, the usual LY(R")-norm, and by Wk4(R") the usual
Sobolev space. Z(R") is the Banach space of all bounded and uniformly
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continuous functions on R” with the essential supremum norm. We define the
weighted Lebesgue space LI(R") by

LiR") ={f e LYR") [ (1 +]- )| f] € LY(R")}.

The integer part of s is denoted by [s]. For simplicity, we use the notation

Z, =NU{0}, oa=(u,...,m)€Z], |of=o1+ - +oy,
5 a o o oy —
Gmg Bmg =L V=)

Throughout this paper, let y be either n or n+ 1, and for the initial
functions ug, vy, we always assume that

uo,vo, 0vo € L'(R") N AR NLI(R") (1< /j<n).

To give the definition of solutions to (P), we define e’f(x) by

() = j G(x — y, 0/ (y)dy,

where G(x,¢) is the heat kernel given by (1.3).

DEerNITION 1. A function (#,v) on R" x [0, 7] (0 < T < o) is said to be
a solution to (P) on R” x [0, T] if u, v satisfy

uv,0e C(0,TEL' (R)NC(0, TEBRY) (1< j<n),

and for all 0 <t < T,

t
u(t) = e"uy — J =AY . (uVv)(s)ds, (2.1)
0
t
v(t) = e ey + J e~ =) =94y (5) ds. (2.2)
0

Also, (u,v) is said to be a solution to (P) on R” x [0, 00) if (u,v) is a solution to
(P) on R" x [0,T] for all 0 < T < oo0.

REMaARK 1. Making use of the standard regularity argument for parabolic
equations (for example, see [13]), we see that (u,v) is a classical solution to (P)
on R” x (0, 7], which satisfies

u,ve C((0,T); W*I(R")) N C'((0, T); LY(R"))
for all 1 < g < oo, and

Gu, dve C((0,T);L*(R") (1< j<n).
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Before stating our main results, we introduce the following notation

MO:J Hodya

and the correction term R(z) mentioned in Introduction as

where

2

W (0) —2](2[2)AG(1 4o log(l+1) if n=2,

W) - M} (=1)? 40207 G(1 + 1)
if n is odd with n > 3,

(2.3)
M} (=1)? 40237 G(1 + 1)

2(871')”/2 |o|+p <[(n—3)/2] 2|°‘\*1oc'p'{(n - 2) - 2(|OC‘ + p)}
Mg (=D’
2(87)"" o1y Sy 2P

W(t) —

A0%3PG(1 + ) log(1 + 1)

if n is even with n > 3,

t

w(t) = MOZJ ey (GVG)(1 + s)ds. (2.4)
0

The first result gives us the space-time asymptotic expansions of the
solutions to (P) on R” x [0, 00) satisfying (D) with y = n under the condition
|x|"ug € L'(R™).

THEOREM 1. Assume that n>2 and 1 < g < o, and let (u,v) be the
solution to (P) on R" x [0, c0) satisfying (D) with y=n. Under the condition
|x|"ug € LY(R™), the following assertions hold:

(1)

If n is odd, then the integral

J J Y*(1 4+ 5)"uVv dyds
o Jr

converges for |o| +2p <n—1, and

lim tn(l—l/q)/2+n/2
t— w0

_ 1\l
u(t) — Z ( ;!) 07G(1 +1) JRny“uo dy

la|<n

(_1)\a|+p
+ 0> Tp,vagafc;(l +1)-

|ot[+2p <n—1

. J J y*(1 4 5)"uVo dyds + R(1)
o Jr

=0. (2.5)

q
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(ii) If n is even, then the integral

o0
J J Y1+ 9)"uVo dyds
0 n

converges for |o|+2p <n—2 and the one

J: J AU+ ){@V0)(3,5) = MF(GYG)(y, 1+ ) }dyds

is well-defined for |o|+2p=n—1, and

lim tn(lfl/q)/2+n/2

— o0

_ 1\l
u(t) — Z( ;!) 8;‘G(1+I)JRny“uo dy

o <n

1 oe|-+p 0
L s G

lo|4+2p<n-2

VorarG(1 + 1) - J

J Y*(1 + 5)"uVo dyds
o Jrr

Mg (="

— ———A0707G(1 + 1) log(1 + 1)
2(8m)" o+ p=(1-2)/2 20lalp!

0

(_1)\%\+P

+ alp!

la[+2p=n—1

VorarG(l +1) - J
0

J V(1)

x {(uVv)(y,s) — MG(GVG)(p,1 +5)}dyds + R(1)|| =0.  (2.6)

q

(i) The correction term R(t) defined by (2.3) is estimated as
IR(D)ll, < CMG(1+ o) "V for g > 0. (27)
(iv) v also has the same asymptotic profile as u.

ReEMARK 2. The decay estimate for (2.7) is shown in the assertion (ii) of
Lemma 5 below. Moreover, in the case n =2,
Mg
 2(8n)

2

| R(2) AG(1 + ) log(1 +1)|| =cMZ(1+16)>  for t>2,

Il =

o

0

where ¢ is a positive constant. For details, see the assertion (iii) of Lemma 5
below.

Now, we explain why the correction term (2.3) is needed in Theo-
rem 1. First of all, we see that when |o|+2p <n—2, the integral
I3 Jgr »*(1 + 5)"uVv dyds converges, but when |« +2p =n— 1, the estimate
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ij ny“(l +8)’uVv dyds| < C log(1 + 1) (t>0) (2.8)

0

is satisfied because from the L7-estimates of # and Vv we have the following
estimate (see (5.9))

sup(l + S)11/2+1/2—\oc|/2

s>0

J y*uVv dy‘ < for |o| < n.

If the asymptotic expansions up to n-th order are deduced without introducing
the correction term, then the logarithmic term appears in the asymptotic rates
of the expansions due to (2.8), and the asymptotic rate given in Theorem 1
can not be obtained. Therefore, to remove the logarithmic function, we have
introduced (2.3) as the correction term.

Next, it is observed in Theorem 1 that a difference between the asymptotic
expansions in the odd and even dimensional cases appears in the n-th order
term of the expansions.

Indeed, in the odd dimensional case, the integral [;° [gn ¥*(1 + ) uVv dyds
is well-defined for |o| +2p = n — 1 by means of (4.24), (4.25) (see Proposition 3)
and the equalities

J J V(1 +97(GVG)(y, 1 +s)dyds=0  (Jo| +2p=n—1).
o Jr
Hence the coefficients in the n-th order term of the asymptotic expansions are
determined by the well-defined ones [;” [gn ¥*(1 + ) uVv dyds (|o| +2p =n —1)
without adding an extra term.

On the other hand, in the even dimensional case, (2.8) does not assure the
convergence of the integral [ [, »*(1+s)"uVv dyds for || +2p =n— 1, but

[ s sr@ons - e+ oyms 29)

converges for |¢| +2p =n—1 by giving the following estimate (see (5.5))

j {70 (1.s) = MG(GVG)(y,1+ s)}dy\ < C(1 )2

for s > 0, || < n. Therefore, in order to avoid the logarithmic term appearing
in (2.8), it is necessary to add the extra term (see (5.15))

ol+p t
MY %Vﬁi‘@m(lﬂ)-]Jny“(l+s)"(GVG)(y,1+s)dyds

|
o] +2p=n—1 xp 0

M2 -1 P
- 2(“‘ ? $ 40707 G(1+ 1) log(1 + 1)
2(87m)"7 |y p Sy 2 2 P
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to the asymptotic expansions. As a result, the coefficients in the n-th order
term of the expansions are determined by the well-defined ones (2.9) under the
influence of such an extra term.

The next result gives us space-time asymptotic expansions of the solutions
to (P) on R” x [0, o0) satisfying (D) with y = n+ 1 under the conditions My = 0
and |x|""up e L'(R").

THEOREM 2. Assume that n>1 and 1 <gq < oo, and let (u,v) be the
solution to (P) on R" x [0, c0) satisfying (D) with y =n+ 1. Then, under the
conditions My =0 and |x|""'ug e L'(R"), the integral

J J y*(1 + s)’uVv dyds
0 n

converges for |u| +2p < n, and

: —1)
tlilg tn(lfl/q)/2+(n+l)/2 u([) o Z ( O(') 6i‘G(l +t)J yocuo dy
1<|o| <n+l ’ R"
|1\+P 0
Y p L vorerG(l+1) - J J V(1 + )P uVv dyds|| = 0. (2.10)
! o Jr”

lo|4+2p<n q

Also, v has the same asymptotic behavior as u.

In Theorem 2, we see that the integral [ [p» »*(1 + 5)"uVv dyds converges
for |a| + 2p < n because the solutions to (P) treated in Theorem 2 decay faster
than those in Theorem 1 (see (6.1) and (6.2)). Hence the logarithmic term
does not appear in the asymptotic rate of (2.10). The situation is rather
similar to that of the incompressible Navier-stokes equations (see [4]).

The final result gives us the existence of solutions to (P) satisfying (D).

THEOREM 3. Let n> 1. Then the following assertions hold:

(i) In the case y = n, there exists a unique solution (u,v) to (P) with (D)
if lluollys lluollz > Vvollp. are small enough.

(i) In the case y=n+1, let |x|lup e L'(R") and Jgrtto dy = 0. Then
there exists a unique solution (u,v) to (P) with (D) if ||u0HL11, ||u0||Lf,
Vool are small enough.

3. Preliminaries

In this section, we prepare several lemmas which will be used often in the
proofs of Theorems 1, 2 and 3. We begin with mentioning the poin‘ztwise
estimates and the LY-estimates for the heat kernel G(x, 1) = (4mr)~"/2e P/,
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LemMMA 1. Let n> 1. Then the following estimates hold:
(i) For each integer j with 1 < j<n and each k =0,1,

105G (x, 1)] < C|x| ™" Fe I/ (xeR" (> 0), (3.1)
105G (x, 1) < Cr/> K2 WG (xR 1> 0), (3.2)

where C is a positive constant depending on k, n.
(ii) Let oj,feZ, (1<j<n)and 1<gq<oco. Then

1020/ G(1)||, < Cr=VaR=RI2E - for 150, (3.3)
where C is a positive constant depending on o, f3, n, q.

The following lemma gives a version of Taylor’s formula for the heat
kernel G(x,f) to prove Theorems 1 and 2.

LEMMA 2. Let m>1 be an arbitrary integer. Then, for each integer
I <j<n,

_1yle+p
0iG(x—y,t—s) = %y“(l + )7 0;0207G(x,14 t) + Ry,
o +2p <m—1 o
where
o (=) ! det
Ru= 3 TLU — ) (1 4 570707 8,G(x — Oy, 1 + 1)d0
o|+2p=m, o
\ Ilzél ;
(_ ) (m—1)/2]+1

J (1 =)D ) =2

Fm =172

x o[ VAT 0.Gx — y, 1 + 1 — 1(1 + 5))dr.

The following lemma is concerned with well-known L’-L% estimates of
e'f, which are proved by Young’s inequality for convolution.

LemMA 3. Let 1<q<r<ow and aj,feZ, (1 <j<n). Then
130l e S|, < CmWamlDRZRIE p)| - for fe LYRY),  (3.4)
where C is a positive constant depending on o, f§, n, r, q.

The following lemma gives the asymptotic behavior of ef.
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LemMmA 4. Let n>1and 1 < g < co. Then the following assertions hold:
(i) Under the condition f e L}(R"),

sup (11-1/0/2+ (412 @]kerAf'_aj_kg(1+z)J )| <
t>1 ! q

(3.5)
for each integer j with 1 < j <n and each k =0,1.

(i) Let meZ,. Under the condition f e L. (R"),
\1\

lim ¢"(0=1/a)/2m/2] ol p Z G+ | yf(y)dy|| =0.
o lo| <m R" q

(3.6)

Proor. By using Taylor’s formula, we obtain

aj(cemf(x) _ aj{‘G(x, 1+ Z)J S (y)dy

n

1 1
= fJ f( y)dyJ Vol G(x — Oy, 1)d0 — J 7( y)dyj 0,0 G(x, 7+ 1)dr.
R" 0 0

R”

Hence (3.5) follows from Minkowski’s inequality and (3.3). For the proof of
(3.6), see [4]. O

The following lemma gives some estimates for W (¢) and R(¢) introduced
by (2.4) and (2.3), respectively. Here we recall My = [, uo dy.

LeEMMA 5. The following assertions hold:
(i) Let n>1and 1 <q<oo. Then

15w ()], < CMR(1 + V=602 (s gy (3)

for each integer j with 1 < j <n and each k =0,1.
(ii) Assume that n>2 and 1 < g < oo. Then

IR(1), < CMG(1+ o) "2 (5 0), (3.8)
(i) Let n=2. Then

M
IR(?) H /46 ~ 368 AG(1 + 1) log(1 + 1) )
>cME(1+10)7  for 1=2, (3.9)

where ¢ is a positive constant.
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Proor. First of all, we shall show (3.7). We write W(¢) as follows:

Al()2 ' —n/2 -
280" L(l +3)"PAG(t - 5/2+1/2)ds. (3.10)

Here we have used the fact that

W(t) =

G (s) = {(8n)"} (1 4+5) "Gl - 5/2+ 1/2).

Therefore, making use of Minkowski’s inequality and (3.3), we have
et W ol < € [ 10F 4G =572 +1/2)1, (1 + )"
< CMOJ([_S/2+1/2) /D222 (1 g gy g

< CME(1 4 1) 17102 <k+2>/2j (1 +s)~"/*ds
0

< CMZ(1 + ¢y "=V~

for each integer j with 1 < j<n and each k=0,1. Hence we get the
assertion (i) of Lemma 5.
Next, we are going to prove (3.8). Firstly, we use Taylor’s formula to get

W(l) =: Wl(f) + Wz(l),
where

t

M2 [(n— 2)/2 k

ok —nj2+k
W) =5t 3 2kk, Sk AG(1 + )L(l +5) g
M2 (1)) t o
Wi (i) = o( )n/z J(l 5 202241 g
21=2)/212(87) " ([(n — 2)/2])H o

1
x J (1 — 0)[(=2/2p[=22H 4G(1 41— 6(1 + 5)/2)d0
0

Minkowski’s inequality and (3.3) yield that

t
||Wz(t)\|q < CM02J (1 +S)fn/2+[(n—z)/2]+1ds
0

1
« J 100/ AG(1 4 £ — 0(1 +5)/2)]|,d0
0
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< CM(]ZJt(l _|_S)—n/2+[(n—2)/2]+1ds
0

1
XJ Q201+ 1) — 0(1 4 5)} "0~V 10-272-249
0
t

< CMOZJ (2 — s+ 1) "0 VO20-2/2-21 | gy=n/2Hn-D/2041 g
0

<M1+ )11/ ln-2/2 2 J’(l gy /D2 g
0

< CMoz(l + Z)*n(lfl/q>/27ﬂ/2.
Hence this estimate implies that
|W (1) = Wi (D), < CMG(1 + o) "7 Ha2nl2, (3.11)
Next, noting that for every integer satisfying 0 < k < [(n — 2)/2],

(3 -2()55

P

we obtain

M2 (n=2)/2] k (k- p+1
W, (1) = 40! "G(1 +¢
0= smy ; ,;( >2k k! =0

X Jt(l + s)*n/2+(k*p)+pds
0

M2 (n=2)/2] k ) k (_l)p
DI (=

2(87) k=0 p=0 |si=k—p

t

X 4020 G(1 +1) | (1 + ) 2rHED) g

—

0

2
2(8)" \othé[(an)/Z]zm olp '

t
x J (1 +4s) /2P g, (3.12)
0

Thus substituting (3.12) into (3.11), we have
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Mg (=D”

H W (1) — ; AP G(1 + 1)

2 o
(8m)""2 s STy ) 2P

< CMZ(1 + ry "= Va2mn2 0 (313)

« Jt(l + S)fn/2+|ot\+pds
q

0

from which (3.8) for n =2 directly follows since for |o| +2p < [(n —2)/2],

3
_ —— if nis odd,
- 2] —{ 2 (3.14)

—1 if n is even.

S+ p<-S+
2 P="3

We now consider (3.8) in the case n > 3 in order to complete the proof
of assertion (ii) of Lemma 5. If n is odd with n > 3, then the convergence
of integral [°(1 +5) MPHERP s is assured for |a| 4+ p < (n—3)/2 due to
(3.14). Hence, it holds from (3.3), (3.13) and

qu +5) P s = 2{(n - 2) = 2l + p)} ! (3.15)
0

for |a| 4+ p < (n—3)/2 that

RG], = H Wi M (~1)7 46207 G(1 + 1)
q Z(Sn)n/z i ST 2 =Tolp{(n — 2) — 2(|a| + p)} .
M? —1? )
= H On/z (\“I ') 'Aai‘“ﬁfG(l + t)J (14 5) /> PlPgg
2(8n) ‘a‘+ps<l173)/22 alp! ,

q

o LR SR = PG
2(87)"% |y p Sins) 2 0tP!

t
% J (1 +S)7;z/2+|oz\+pds
0

q

< CMG(1 + 1) " Vaznl2,

On the other hand, if n is even with n > 3, then we find that the conver-
gence of integral [;°(1 + 5) 2P s s assured for |of + p < (n —4)/2, but is
not assured for || + p = (n — 2)/2 because the equality [;(1 + 5) AR g —
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log(1 + ) is satisfied for |«| + p = (n —2)/2. Therefore, from (3.3) and (3.13)
we have

M2 (=1)P40%0P G(1 + 1)
RO, = || W(t) ——2 —
IR, = [wo z<8n>n/2,a‘+p§,4>/22\a\fla!p!{<n—2>—2<\oc|+p>}
2
2(87)™" s p = g

o0

2
SH Mon/z > (ml;); 40700 G(1 + )J (1) "G
2(87{) lo|+p<(n—4)/ 2 &p: t

q

M (-1’

20737 G(1 + 1)
2(8m)"? ol < (1—2),/2 20lalp!

+ H W (t)

t
% J (1 + S)fn/2+|o<\+pds
0

q
< CMZ(1 + )" Va)/2mn/2,

Here we also have used the fact that (3.15) holds for |a|+ p < (n —4)/2. As
a consequence, we obtain the desired estimate (3.8).
Finally, we shall show (3.9). Let r>2. A direct calculation gives

2 2
3 AG(x, 1) = t2G(x, 1) (Z P, <2fﬁ> +2]] P (Xﬁ)) . (3.16)
i=1 i=1

where P,(z) =22 —1/2 and P4(z) = z* — 322 +3/4. Hence it follows from
(3.16) that

t 1
|W5(0,1)| = cMOZJ dsJ 200 +1) = 0(1 +5)} d0 = cMZ(1 +1)2,
0 0

which implies that

2

M;
IR(2) HW 2(87[)AG(1+I) log(1+ 1)

0

= W) ~ Wi, = W2l = MZA+07 for 122, O
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Let X = LY(R") for 1 <g< oo or X = #(R"). The following lemma is
needed to get decay estimates of Vv (see [20]).

LEmMMA 6. Define v(t) by

t
U(t) _ eitemvo +J ef(tfs)e(t—s)Au(S)ds (t > O), U(O) = 1.
0

Then the following assertions hold:
(i) If vo, Ojvoe X and ue C([0,0); X), then v, d;ve C([0,0); X).
(i) Let 1<r<g<o and 1/r—1/q <1/n, and assume that vy, |Vuvy| €
LY(R") and ue C([0,00); L"(R")). Then,

IVo(n)lly < e [[Vuoll, + CT'(61) sup [u(s)],, (3.17)

O<s<t

IVo(n)ll, < eIVl + C e sup |lu(s)],
0<s<t/2

+ CI'(61) sup |u(s)],- (3.18)

1/2<s<t
Furthermore, under the additional condition |Vu| e C((0, c); L"(R")),

Vo), < e IVeoll, + Ce '™ sup [u(s)]],

0<s<t/2

+ CI'(02) sup ||Vu(s)|,- (3.19)

1/2<s<t

Here C is a positive constant depending only on q and r, I'(z) is the
gamma function and 6y =1/2 —n(1/r—1/q)/2, 6, =0, + 1/2.

Finally, we need the following lemma to show Theorem 3. This lemma is
obtained by an argument similar to that in the proof of Theorem 2 of [16].

LemMmA 7. Let y be either n or n+ 1, and assume that
S eLrR").
Then the following assertions hold:
(1) le e f ()] < Cllf Nl L+ [x) 7, fefe f ()] < Cllf e
(ii) In the case y=n, if f e L'(R"), then
e (Ol < CULA Ny + 1) (L + XD,

lef ()| < ULy + AN+ 072,



Higher-order asymptotic expansions 379
iii) In the case y=n+1, if [on f(x)dx =0 and f e L}(R"), then
R 1
—n—1
e )l < CUA N + 1 e DA+ XD,

e f () < CAA Ly + 1/l )1+ 022

4. Decay estimates of solutions in the case y =n

In this section, let (u,v) be the solution to (P) satisfying (D) with y = n.
Firstly, we begin with some L?-estimates for the solution.

PrOPOSITION 1. Let n>1 and 1 < g < co. Then the following estimates
hold.

sup(1 +0)" VO gy (1)), < oo, (4.1)
>1
sup(1+0)" VO g < o, (4.2)
>0
sup(1+ )"0 ()], < oo (4.3)
>0

Proposition 1 can be obtained by an argument similar to that in Section 4
of [20], but we give the outline of proof for reader’s convenience. We here
note that for every 1 < ¢ < oo, the estimate

Sgg(llu(l)llq +[Ve@)ll,) < (4.4)

follows from (D) with y =n and (3.17). Furthermore, the following decay
estimates of u and Vv are given by (D) with y =n, (3.18) and (4.4):

sup(l + 0" (u(®)]. + V(D)) < 0. (4.5)

The following claim is a key one to show Proposition 1.

Cram 1.  Under the assumption of Proposition 1, the following estimates

hold:
IVu(o)], < C(L+ )" VOB gy (1> 1), (4.6)
Vo(t)|, < C(1 + 1) "=V 0/2712 g (1>0), (4.7)
q

where € (1,2] and

1 f n>2,
B(t;p) = { 1242 ? Z: 1. 48)
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Proor. Fix t >4 and ¢€ (0,1/2), and take f§ such that
it follows from (4.4) and (4.5) that

sup(1 + 8)" PP (u(0)|l, + [Vo(o)|l,) < oo.

t>0

To estimate [[Vu(7)|,, by (2.1), we write Vu(z) as

(I—e)t
Vu(t) = Ve uy — J VV - e (uVo)(s)ds
0

t

pe(1,2]. Then

(4.9)

— Jz Ve (Vu - Vo)(s)ds — J Ve =94 (udv)(s)ds

(1-e)t (1—e)t
=Ve'luy — IF (1) — K(1) — I(2).
By (3.4) and (4.9), we have

(I—¢)t

nﬁumquj‘ (1= )" u(s) ||V o(s) | ds

0
(1—e)t

< Cgfn(lfl/q)/Zfltfn(lfl/q)/ZflJ (1 +S)7n(17[)’/2)ds.

0

Now we estimate the integral Jﬁouf‘s)t(l +s)7"(17ﬁ ) ds appearing in the

right-hand side of ||Z{(?)]],-

For n > 2, take f again such that

pe(1,3/2] if n=2, pe(l,2(mn—1)/n) if n>3.

Then a simple calculation yields that

0

Also, for n=1,

(1—e)t
J (1+95) "2 < cibl2.
0

Therefore,

1), < Com -1t 0212y )

where B(t;f5) is the one given by (4.8).
By use of (3.4) and (4.5), the estimates of || (?)]|
obtained as follows:

q

(=)t 1 ifn>3
1+s _”“_ﬁ/z)dsSCx{ =7
J ( ) 12 it n=2.

(4.10)

and |5(1)]|, are
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t
()l < CJ (1 =)' 2572 |Vu(s) | s, (4.11)
(1—¢)t

t
@ < €[ (s vt (4.12)
(1—¢)t

Therefore summing up (4.10), (4.11) and (4.12) implies that

IVu(e)l, < Ve ug|, + Co-1a2t =121 2y, )

13
+ CJ (l—s)_]/zs_"/2||Vu(s)||qu
(1—e)t

t
+cj (t— )57 du )] ds. (4.13)
(1—e)t
Define here M(¢) by
M(t) = sup s"ITVOPHR|7u(s))|

(['
I<s<t

Then the third term on the right-hand side of (4.13) is estimated as
t
J (t = 5 252 Vu(s) | ds < CeV PVl (0. (4.14)
(1—¢)t

We next consider the estimate of ||4v(s)||, on the right-hand side of (4.13).
Fix s > 2. To estimate it, by (2.2), we represent Av(s) as follows:
(I—¢)s

Av(s) = eV - Vg + J e ATy (1) de
0

+ J e 0TIV L Ty (1) dT
(I—¢)s
= eV - eMWVog + Ji(s) + Ji(s).
(3.4) and (4.4) imply that
(1—¢)s

i), < Ce j (s — )WV ) e

< Ce—mg—n(l/r—l/q)/2—1s—n(l/r—l/q)/2
< Ce—n(l—l/q)/2—3/2s—n(l—l/q)/2—l/2.

Here we have taken » such that 1 <r <¢g < oo. By an argument similar to
that in (4.14), we also have
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175 (s)]l, < Cs" VORI M (),
Therefore we find that

||AU(S)‘ . < Ce*SHVUOHq + C£7n(171/q>/273/2.3‘7n(171/9{)/271/2
+ G5~ I=Va2=12 pp ), (4.15)
Substituting (4.14) and (4.15) into the right-hand side of (4.13) gives
VDRFR |\ u()|, < € + Ce'/? 4 Ce"TVORTN (1 4 B(1; B)) + Ce' 2 M (1),

where a positive constant C is taken as C > 1. Here take ¢ such that
¢=1/(4C?). Then, by C > 1, we easily see that ¢ € (0,1/2). Hence we have

1
VIR IVU(r), < € + CB(; B) +5 M (1),

from which it follows that M(r) < C+ CB(t; ). As a consequence, we obtain
IVu()|, < Com-V9R72 4 ¢ IZVORZ2B(rB) - for 1> 4, (4.16)
which yields (4.6). Also, (4.7) follows from (3.19), (4.4) and (4.6). O

(4.1) and (4.2) for n > 2 follow from Claim 1. Before proving them for
n =1, we need the following estimate of ||u(?)||, for 1 < ¢ < co. This yields
the desired estimate (4.3).

lg

CLAaM 2. Under the assumption of Proposition 1, the following holds:

sup(1 + 1) "2 ()], < 0. (4.17)

t>0
ProOF. Let 1< g<oo and t>2. (4.7) reads as follows: For n>1,

sup(1 4 7)" (- VD2H2B gy

>0

< o0, (4.18)

g

where

B=p/2—-1/2€(0,1/2] if n=1, f=0 if n>2.

We now put I(¢) :f(;e“*SMV-(qu)(s)ds, and split this integral as
follows:

t t/2
I(t) = J Y (Vo) (s)ds + L =AY - (uV o) (s)ds

=: Il(l‘) + Iz(t).
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Then (3.4), (4.5) and (4.18) give

t
(D], < CJ/z(z — )" ()], IVo(s)l| ,ds
t
[ ~
< CJ (l—s)—l/Z(l _|_s)—n(l—l/q)/2—n/2_1/2+ﬁds
/2

< Ct_n(]—l/q)/Z—n/2+ﬂ_ < Ct_n(l_l/q)/z_

We next evaluate ||Lr(7)||,. Using (3.4), (4.9) and (4.18) implies that

g

t/2
1L, < cjo (£ — ) " VD2 (5|, IV o(s) || ds

2 i
< Crr-1/9/2-12 Jr/ (1 4 5) /2716282248 g
0
For n > 2, noting that —n(3/2 — /2)/2+ f <0, we have
/2
||12(Z)||q < CZ—n(]—]/q)/Z—l/ZJ (1 +S)71/2ds < Ct—n(l—l/q)/2.
0

On the other hand, for n = 1, by taking § again such that e (1,5/3], we
get
12

/
L0, < Cl—(l—l/q)/Z—l/ZJ (14 5) 130D/ g
0

< Cr=1/a)/2-1/243(8-1)/4 o o (1-1/9)/2,
Hence
1ol, < cr1-1/4)/2 for ¢t > 2,
which together with (2.1) and (3.4) yields that
sup(1 + )" V21|, < o0
t>2

Consequently, the desired estimate (4.17) follows from this estimate and (4.4).
O

PrOOF OF ProposiTION 1. We show only (4.1) and (4.2) for n =1 due to
Claims 1 and 2. Using (3.18) and (4.3) for n =1 yields that

sup(1+ )" 92| a0(r)]|, < oo

>0
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for 1 < g < 0. Therefore, repeating arguments in Claim 1, we obtain the
desired estimates (4.1) and (4.2) for n=1. O

The following proposition gives the decay estimates of [lu(7)|, and [lv(7)],
for 1 < ¢ < .

PrOPOSITION 2. For n>1 and 1 < q < oo, the following holds:

sup(1 + 0" VD2 (Jlu(o)]|, + [lo(r)ll,) < oo (4.19)

>0

REMARK 3. Once Proposition 2 is proved, we easily see that |lu(¢)||, and
|lv(£)]], are bounded on [0, c0).

To obtain Proposition 2, we need to show the following lemma by making
use of the decay estimates (4.2) and (4.3) of Proposition 1. The proof can be
obtained by applying an argument similar to that in the proof of Proposition
5.1 of [20].

LemMmA 8. Let n>1 and 1 < g < oo. Then

t
sup(1 + £)"1-VO2412 p gy J I L (o) (s)ds| < oo, (4.20)
>0 0 q
where
1 if n>2,
by = { (log2+ 1) if n=1. 4.21)

Proor ofF ProrosiTION 2. Let n>1 and 1 <g < o. To obtain the
Li-estimate of u, we prove only sup,. ||u(?)]|; < co due to (4.3). Using (2.1),
(3.4) and (4.20) with ¢ =1, we have

@l < e usll +]

t
J =9y - (uVv)(s)ds
0

1
< |luolly, + C(1 + 1) *D(1) ™",
where D(t) is the one defined by (4.21). Therefore this estimate implies that

sup ||u(?)||; < oo. (4.22)
>0

Next we consider the L7-estimate of v. Using (D) with y = n yields that
SuUp,-o(1 +t)"/2||v(t)| » < o0. |lo(®)|; is also estimated as follows:
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JI e~ =9 (=9)4y (5)ds
0

1@, < e lle +]
1

0

t
<e ol + | e Na)lds <€l + €| e d<c
0 0
Here we have used (2.2), (3.4) and (4.22). Hence interpolating between the L'
and L™ estimates of v yields that sup,(1 + l)"(lfl/q)/zﬂv(t)”q < o0. O

The following proposition is a key one to show Proposition 4 below.
Firstly we remark that (3.17) and (4.19) imply

sup [[Vo(1)]], < oo for 1 < ¢ < . (4.23)

>0

ProPOSITION 3. Let n>1 and 1 <q < owo. Then, under the condition
|x|ug € L' (R"), the following estimates hold:

sup(1 -+ 0)" VO (1) — MoG(1 + 1)]|, < o0, (4.24)
>0
sup(1+ 0)" VO 1vo(r) — MoVG(1 +1)]|, < o0, (4.25)
>0
sup(1 + 0)" VPR ) (1) — MGGV G)(1 + 1), < o0, (4.26)
>0

where My = [gn o dy.

Once the estimates (4.24) and (4.25) are proved, from these estimates, (3.3)
and (4.19) we see that

1@V0)(1) = MG(GVG)(1 + 1), < [[u(r)l|., [Vo(r) — MV G(1+ 1),
+ VG + 1) [[ur) = MoG(1 + 1),
< C(1 4 1)1/~ 0422

which implies the desired estimate (4.26). Hence we show only the estimates
(4.24) and (4.25) in Proposition 3. The proof can be done by calculations
similar to those in [10], but we give the outline of proof for reader’s
convenience. Now, we begin with the following claim in order to show these
estimates.

Cram 3. Under the assumption of Proposition 3, we have

sup(1+ )" VO D ) Ju(r) — MoG(1 + 1)]|, < o0, (4.27)

>0

where D(t) is the one given by (4.21), and My = [g.uo dy.
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Proor. First of all, we use (2.1) to get

u(t) — MoG(1 + 1) = {eug — MyG(1 + 1)} — Jte“—fﬂ‘v (uVo)(s)ds.  (4.28)
0

Since we easily see that

sup |leuy — MyG(1 + nll, < o,
t>0
it follows from (3.5) with k =0 that
sup(1 -+ ¢)" VO ety — MoG(1 + 1), < o0, (4.29)
>0
which together with (4.20) and (4.28) implies (4.27). O

Therefore we see that (4.24) for n > 2 follows from Claim 3. Next claim
is to give the LY-estimate of Vv — MyVG.

CLamm 4. Under the assumption of Proposition 3, we have

sup(1 -+ 0)" VO D(0)|[Vo(r) — MoVG(1 +1)]|, < o0, (4.30)

t>0
where D(1) is the one given by (4.21), and My = [gnuo dy.

Proor. Let r>4. To prove this claim, by (2.1) and (2.2), we write
Vo(t) — MoVG(1 + 1) as

Vo(t) — MVG(1 + 1)
= e 'Ve' vy — up) + {Ve"luy — MyVG(1 + 1)}

t/2 s
- J e () eli=9)4 <J ey . (uVu)(z)dr) ds
0 0

t s
- J e 1)y eli=94 (J eIy L (uVp) (r)dr) ds
t/2 0

= e*’Ve’A(vo - uo) + {Ve"'uo — MoVG(l + [)} — Jl([) - Jz(l).
By making use of (3.4) and (4.20), we have

/2

()], < Ce” j (1 — 5y M-/
0

ds

J DY . () (2)d
0

1

t/2
< Ce,t/ztfn(l—l/q)/zfl/zJO (1+S)—1/2(D(s))—lds

< Cr"=Y02(p()) e ? < ce!/4, (4.31)
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We next estimate [|/>(7)[|,. Let ¢e(0,1/2) be a constant to be specified
later. Then we rewrite J>(#) as follows.

t t

e =K, (5)ds + J eIV 9K (5)ds
t/2

Ia(f) = J

t/2

t s
- J e (179 t=9)y <M02 J Sy L (GVG) (1 + T)dr) ds
t/2 0

=: ng(l‘) + Jzz(t) +J23(l‘),
where

(1—¢)s
Ki(s) = JO YV - e (u7)(z) = MAGVG)(1 + 7)}dr,

K(s) = J:l >.V BT (Vo) (1) — MZ(GVG)(1 + 1) }d.

We here need to consider the estimates of || K(s)
estimate of ||J(¢)

ll, (k=1,2) to obtain the

l,- To give them, we prepare the following claim.

CLamm 5. Let n>1 and 1 < g < oo. Then it holds that for t >0,
1Vo)(1) = MG(GVG)(1 + 1), < C(1 4 1) "7V (p(y)) !
+C(1+ t)*"(lfl/lﬁ/zf("“)/z’ (4.32)
|@V0)(1) = MG (GVG)(1 + 1), < C(1+ 1) "V (7))

+ C(+ 0" |Vo(t) — MiVG(D),, (4.33)

q7
where D(t) is the one given by (4.21), and My = [g. uo dy.

PrOOF. We show only (4.32) because a calculation similar to that in the
proof of (4.32) gives the desired estimate (4.33). By using (3.3), (4.2), (4.19)
and (4.27), we have

1V o)(r) = M (GVG)(1 + 1),
< CIVGQA + 1l llu) = MoG(1 + )|, + [[u(D)]|[[Ve(z) = MoV G(1 + )],
< C(l + l)fn(lfl/q)/Zf(n+2)/2(D(t))fl + C(l + l)—n(l—l/q)/zf(nﬂ)/z.

Hence we obtain the desired estimate (4.32). O
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PrROOF OF CLAIM 4, CONTINUED. Fix s> 2. By applying (3.4) and (4.32)

with ¢ =1, the estimate of ||Ki(s)||, can be achieved as follows:

||K1(S)||q < Cgfn(lfl/q)/271s7n(171/q)/271

(1-¢)s
| 1w = MG a1+ 9 e

< Cgfn(l71/q)/271s7n(171/q)/271(D(s))fl ) (434)

Similarly, we see from (3.4) and (4.33) that
1Kl < ¢ | 0PI - MGV O + )l de
< Cgl/Zsfn(lfl/q)/2f(n+1>/2(D(S))*l
+ CJ; V)'(s—r)71/217"/2||VU(‘c) — MVG(1 +1)| dr. (435
The second term on the right-hand side of (4.35) is here estimated as follows.
J:l v)‘(s — 1) P2 Vo() — MV G(L + 1)) dr
% Ce!/2s (110 2=t /2 gy =124 () — MV G(1 + D,

I<t<s
which yields that
HKZ(S)Hq < C81/2S7n(171/q)/27(n+1)/2(D(s))71 + C61/2S7n(171/q)/27(n+1)/2

x sup "IV vu(r) — MV G(1 + 1)

I<t<s 1

Therefore the estimates of ||K(s)l[, (k=1,2) and (3.7) with k=1 give

t
HJZI([)”q < J/z e—(t—s)llKl (s)||qu < Cg—n(l—l/@/z—lt—n(l—l/(])/Z—l(DO))—],
t
t
(], < cj/z 9 (1 — )7 Ko )] ds
t

t
< Cgl/z,—n(l—1/q>/2—<n+1)/2(D(,))71J =9 (1 — 5) s
t/2

t
n Ce1/2t7n(171/q)/27(n+1)/2J =9 (1 — 5)7 24y
t/2

x sup t"I"VO2H u(t) — MV G(1 + 1)

q
I<t<t
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< C61/2t7n(171/q)/27(n+1)/Z(D(t))*l J% 672271/2 dz
0

L Cel /2 n1-1/g)/2-(n+1)/2 Juo IV
0

x sup "V |pu(z) — MV G(L+7),

I<t<t

< C81/2t—n(l—l/q)/2—(l1+1)/2(D(l))—l + C81/2t—n(l—l/q)/2—(n+1)/2

x sup t"7VO2Hu(r) — MV G(1 + 1)

1<t<t ”q’
ds

ol sc | e
q

t
t/2

V<M02 J =04y . (GVG)(1 + r)dr)
0

t )
< CJ ef(tﬁ\')sfn(lfl/q)/Zfl ds < thn(lfl/q)/Zfl ch e dz
t/2 0

< Cvlt—n(l—l/q)/Z—l7
which yield that for 7 > 4,
VDR Dy (1), < €+ CeVA(D() ™ + €110 () !

+Ce'? sup VO Vu(e) — MoV G(1 + 1)

I<t<t ”q

This together with (3.4), (3.5) with k=1 and (4.31) implies that for ¢ > 4,

VO V(1) — MoV G(1 + 1),

< C+ Ce'2(D(0) ™ + ce -V (p(g)) 7!

+Ce'? sup "V V() - MVG(1 4 7)), (4.36)

I<t<t
In (4.36) we take a positive constant C as C > 1, and ¢ such as
¢=1/(4C?). Then, by C > 1, we find that ¢e (0,1/2). Thus (4.36) gives

VD2 () — MoV G(1 + N, <C+ c(D(r)™

for 1>4. Consequently, by noting that sup,.,[|Vv(r) — MVG(1+ 1), < o0
because of (4.23), the desired estimate (4.30) is obtained. O

Hence we find that (4.25) for n > 2 follows from Claim 4. Now, we shall
prove (4.24) and (4.25) for n=1. First of all, we give an improvement of
estimate (4.32) for n =1. The proof is given by applying (3.3), (4.19), (4.27)
and (4.30).
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CLamM 6. Let n=1and 1 <qg<oo. Then
(ud0)(2) = M3(Ga:G)(1 + 1),
< C(1 +1)" VDR S32160(2 4 1) (4.37)
for t>0, where My = [g.uo dy.

By using the estimate (4.37), we can remove the logarithmic function in
D(t) from (4.27) for n =1, and get the desired estimate (4.24) for n = 1.

Cram 7. Let n=1and 1 <q<oo. Then

sup(1+ )" 9P 2 () — MyG(1+ 1)), < oo, (4.38)

>0
where My = fRn uy dy.

Proor. Let 1t >2. We now show that

Sup(l + Z) (1-1/q)/2+1/2

t>0

t
J =940 (ud ) (s)ds
0

< . (4.39)
q

Once (4.39) is shown, (4.38) is obtained by making use of (4.28), (4.29) and
(4.39). To show this, we divide fée("s)dﬁx(uaxv)(s)ds into three parts:

t
J =45 (ud,)(s)ds
0

_ Jz/2 943 (udv)(s) — ME(GoxG)(1 + 5))ds
0

+ Jt/ =949, (ud,0)(s) — MZ(G3,G)(1 + s))ds + W (1)
t/2

= 1i(t) + L(t) + W (1),

where W(1) = M¢ fote(H'M&x(GﬁxG)(l +s)ds. The estimates of [[/;(7)||, and
[L2(7)]|, can be achieved as follows.

t/2
@l < CJO (1 =) VO (ud,0) (5) — MG (GOLG)(1+ )], ds

< C‘Z*(I*I/‘1>/2*1/27

1L, < CJI/Z(I —5)" | (udx0)(s) = MG (GoG)(1+ )| ds

< C[_(l_l/‘l)/z_l/z.



Higher-order asymptotic expansions 391

Here we have used the estimates (3.4) and (4.37). As a consequence, (4.39) is
obtained by using these estimates and (3.7) with k =0 and noting that

sup
0<t<2

< 0. Ol

t
J =945 (ud,)(s)ds
q

0

Finally, to finish the proof of Proposition 3, we need to show (4.25) for
n=1. Before proving this, we give the following claim which is an improve-
ment of (4.33) for n=1.

CLamm 8. Let n=1and 1 <qg<oo. Then
|(u0:0)(1) = Mg (GO G)(1 + 1),
< C(1+ o) VPSR L (14 07 P |ow(t) — Med G(1+ 1)), (4.40)
for t>0, where My = [p.uo dy.

PrROOF. (4.40) easily follows from (3.3), (4.19) and (4.24). O

PROOF OF PROPOSITION 3.  We shall show (4.25) only forn =1. Letn=1
and 1 < ¢ < oo, and use the same notation as in Claim 4.

Fix ¢€(0,1/2) and ¢t > 4. Using (4.37) to remove the logarithmic func-
tion in (4.34), we obtain

1—
1K (s)]l, < CJ( E”(s_ 7)Y 4 )73 log(2 4 1)dr
0

oo
< Cgfufl/q)/zflSfafl/q)/zf1J (1 +17) log(2 + 1)dx
0

< Ce-U-1/a)/2-1~(1-1/9)/2-1 (4.41)
Also, it follows from (4.40) that
< Cel/24-(1=1/9)/2-1 1/2 ~(1-1/g)/2-1
[Ka(s)]l, < Ce''=s + Ce'/=s

x sup tVORH0.0(1) — Mod G(1 + 1), (4.42)

I<z<t

Therefore, by (4.41) and (4.42), calculations similar to those in Claim 4 yield
the following estimate of ||J>(¢)

g
12(0)]l, < Cr YRty el 2 (-2t g (o121 (1) /21
+ Ce! 2 VO qup (2VO2H 16,0 () — My, G(1 + 1),

I<t<t
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This estimate together with (3.4), (3.5) with k=1 and (4.31) implies that for
t> 4,

(VDR 0 0(r) — Moo G(1+ 1)),
< C+ Ce'? 4 cem -1/

G sup TR 00(e) - Md G(1 + 7)),

I<z<t

As a consequence, we obtain (4.25) for n=1 by repeating arguments in
Claim 4. O

5. Proof of Theorem 1

The aim of this section is to prove Theorem 1. We begin with the
following decay estimate which is needed to get the asymptotic behavior of v.

LEMMA 9. Let n>=1 and 1 <q< ow. Then

sup(1 + 1) "R () — o (h)]), < oo (5.1)
t>0
Proor. This lemma can be proved by using arguments similar to those in
[10], but we give the outline of proof for reader’s convenience.
Let r>2 and 1 < ¢ < o0, and put w(x,?) = u(x,t) — v(x, ). Since (u,v)
is the classical solution to (P) on (x,7) e R" x (0,00), w(x,?) satisfies the
following equation:

ow=dw—w—-V-(uVv), xeR" >0,
w(x,0) = up(x) — vo(x), xeR".

Then we represent w(t) as

w(t) = e e (ug — vg) — wi(t) — wa(t) — wa(2),

where

t/2
wi (1) = J e~y A (u) (5)ds,
0
t
wa(t) = J eIV AL (u70) (s) — ME(GVG)(1 + 5)}ds,
t/2
t
wi(1) = ng e 179294y (GV G)(1 + s)ds,
t/2

where My = [p.uo dy. By (3.4), (4.2), (4.19), (4.26) and
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sup(1 + )" VORI y GV G) (1 + )], < o0,
s>0
the estimates of [|wy(?)|l, (k=1,2,3) can be achieved as
t/2

I (1)l < Ce™72 JO (t =) VDR u(s) |, | Vo(s) | ds < Ce,

a0l = €[] e 90— o)) = MY G)1 + )]
t/2

t
< Crr-1/0)/2-(42)/2 J =) (1 — 524
t/2

< thn(lfl/q)/Zf(nJrZ)/Z JOC 872271/2 dz
0

< Crr-1 /a2 wi2))2,
t

Iws()ll, < CJ Y - (GVG)(1 + )| ds
t/2

t
< CJ o~ (1=8) g—n(1=1/9)/2—=(n+2)/2 4.
t/2

< Cr(1=1/0)/2=(142)/2
Hence, using these estimates and |le~"e™ (uq — vo)|| ;< Ce™', we obtain

SEIZ) l‘n<171/q)/2+(n+2)/2|‘W(l)Hq < o0,
t=>

which together with sup,. [[w(7)|, < oo yields the desired estimate (5.1). [J
The following proposition is a key one to show Theorem 1.

PROPOSITION 4. Let n>2 and 1 < g < oo. Then the following holds:

— o0

t
lim (1-1/a)/2+n/2 J =AY (V) (s)ds
0

(-, TR
Ia\+2p5n—1TplvaxofG(l - Joj V(48 (Vo) (p,9)
— M3(GVG)(y, 1+ 5)}kdyds — W(1)|| =0, (5.2)

q
where Mo = [gnto dv and W(t) = M7 [y "4V - (GVG)(1 + s)ds as before.
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Proor. Let t>2. Then we split f(;e(”s)"V- (uVv)(s)ds as follows:

t
J =AY (Vo) (s)ds
0

= J/ =94y L(uVv)(s) — ME(GVG)(1 + 5)}ds
t/2

+ Jt/z ey L(uVv)(s) — ME(GVG)(1 + 5)}ds
0

t
+ M; J =94y (GVG)(1 + s)ds
0

= 0L()+ L)+ W(). (5.3)

Applying Lemma 2, for all integer m > 1, we can rewrite >(¢) as follows:

(_I)Mﬂi
|| +2p <m—1 xp:
t/2
| ] o 5,9) - MEGVG) .1+ )
1 lo+p pt/2
vy BET [T s iww o)
o] +2p=m, wp: 0 !
Ja[>1
1
— M2(GVG)(y, 1+ 5)}dyds - J (1= 0)H'a%37 G(- — O, 1 + 1)dO
0
t/2
*A’”J J (1+9) "D 7o) (v,5) = MG(GVG)(9,1 + ) }yds -
0o Jrr
1
: J (1 — )=y DR Gy 1 41— 2(1 + 5))d,
0
(_1)[(m—1)/2]+1
where A4,, = Substituting this equality into (5.3) implies that

([(m—1)/2])

for all integer m > 1,
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! (t—s)4 (71)\“|+P o
Je AT OO SR I
0 e[ 4+2p <m—1 P

. Jo JRny‘l(l +5){(uVv)(y,s) — Moz(GVG)(y, 1+ s)}dyds — W(1)

_1)l#+p !
=NL(1) - Z %V@;‘%G(l +1) J J ny“(l + ) {(uVv)(p,s)

|
|t +2p <m—1 xp /2 JR

— MZ(GVG)(y,1 + s)}dyds

o (=)™

+ alp!

|| +2p=m,
o =1

["] w09t

0
1

— M2(GVG)(3, 1 + 5) }dsdy - J (1= 0)F-'V6%37 G(- — Oy, 1 + 1)do
0

t/2

+ Am J

J (1+ )" o) (v, 5) — MF(GVG)(p,1 + 5)}dyds-
o e

1
: J (1 — o)lm=D2gplm= VAT Gy 14— 1(1 + 5))dr
0

= 0(0) + Ly (1) + I (1) + 13(2),

Hence using this representation with m = n, we obtain

t ‘ (_1)|a\+p
Je<H>Av-(qu)(s)ds— S B Cvarare 4

!
0 o[ +2p <n—1 xp

. L: JRny“(l + )’ {(uVv)(y,s) — Mg(GVG)(y, 1 + s)}dyds — W (1)

= N1(0) + Iy (1) + 15 (1) + 135(2).

By using Lemma 3 and (4.26), we have

h@ll, < CJ}/Z(I =) l@Vo)(s) - MG(GVG)(1 + )] ds

t
< CJ (t_S)*1/2S7n(171/q)/27(n+2)/2 ds < thn(lfl/q)/Zf(nJrl)/Z’
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which implies that

lim "=V L (1)) = 0. (5.4)

t— o0

To estimate |15 (1), (k=1,2,3), we here claim that for |«| <n,

|, 009 = MEGVG .1+ 9y

< C(1 )22 (55 0). (5.5)

Indeed, we prove (5.5) only for |x| >0 since the estimate (5.5) for |o| =0
follows from (4.26). For this purpose, we write |y||uVv)(y,s) — MZ(GVG)
(y,1+s)| as follows:

I @V) (3, 5) = MG (GVG)(p, 1+ )|
< "y, )| Vo(p,5) = MoV G(p, 1+ )|
+ 9" MV G, 1 + 5)| [u(p,5) — MoG(p, 1 + )]
= Li(y,8)+ La(p,s).
Then, by (D) with y =n, Li(p,s) is estimated as
Li(y,3) < A"y, )}, )| V() = MoV G, 1 +5)
< Clu(y, )" " Vo(y,s) = MV G(p,1 +35)|.
Similarly, by (3.1) with k=1,
Ly(y,s) < CIVG(y, 1+ )" ™Dy, 5) — MoG(p,1 + 5)].

Therefore applying Holder’s inequality, (3.3), (4.19), (4.24) and (4.25) yields
that

|, (o0 - MGV + )y
< Cllu(s)|l;™""|[Vo(s) — MoVG(1 + 5)l] 1
+ CIVGA+ )V luls) — MoG(L+ )l i1y

S C(l + S)fn/271+\a|/2.

This implies the desired estimate (5.5).
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We now estimate |} (7)||, (k=1,2,3). It follows from Minkowski’s

inequality, (3.3) and (5.5) that

I,
t

ol s Y cnva;‘afcmr)qu (1 +5)7ds
|o[+2p <n—1 1/2

||y @009 - MGG 0.1+ )

t
< ¥ Ct*"(1*1/41)/2404/2*1771/2J (1 )2 14/ 240 g

|o|+2p <n—1 12
< Ct"’<"'/q)/2‘(”“)/27

which implies that

lim (010202 13 ()] = 0. (5.6)
Similarly,

/2
||12"2(t)||q < Z Ct—n(l—l/q)/Z—\al/Z—p—l/ZJ (1 + s)"ds
o[ +2p=n, 0
=3

||y @09 - 36T )01 + )|

/2
< thn(lfl/q)/Zf(nJrl)/Zj (1 +S)7ldS
0

< Ct—n(l—l/q)/2—(n+l)/2 10g 1,
I/2 1)/2]+1
0l < € [ (1907 s
x j (W@V0)(3,5) — MA(GVG) (7,1 +3)}dy

1
< | 161V~ p 14t —2(1+9))|| de
0

2
<cC g (1 = ) M1 D/232g gm0/ g
0
2
< Crr-1/0)/2-(n=1)/2-3/2 J g (1 4 5) /2012 g
0

fn(1-1/q) 2 (n+1)2 if nis odd
<Cx 7
=1a2=40/2 1og ¢ if 5 is even,
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which yield that

tim VOR8], + [ EA(0)],) = 0. (57)
As a consequence, (5.2) follows from (5.4), (5.6) and (5.7). O

PrROOF OF THEOREM 1. Let 1>2 and 1 < ¢ < o0. Once the asymptotic
behavior of u is shown, that of v is obtained by Lemma 9. Hence we prove
only the asymptotic behavior of u.

First of all, by (5.5), we directly see that the convergence of integral

J: J U+ ) (V0) (v,5) = M(GVG)(9,1+5)}dvds— (58)

is ensured for |a|+2p <n—1. The integrals

0

J J y*(1+s)’uVodyds  and J

J y*(1+ )7 (GVG)(y, 1+ s)dyds
0 o Jr

also converge for |o| + 2p < n — 2 because using arguments similar to those in
the proof of (5.5) gives

sup(1 + )"/>H1/2- 172 J y*uVo dy‘ < 0, (5.9)
5>0 "
sup(1 + )"/ /27172 J VX (GVG)(y,1+s)dy| < (5.10)
>0 R”

for |a| <n. Hence we use these fact and (2.1) to get

1\l
u(t) — Z ( ;!) 07G(1 +1) JR”y“uo dy

-1 |o[+p x

n Z %V@j@fG(l +1) J J y*(1 + 5)’uVv dyds
i P! 0 Jr”

(_1)\“|+P t

+ Ap!

VorarG(l +1) - J

J Y*(1 + 9)’uVo dyds
0 Jr

lo|+2p=n—1

{ (_I)WHP
W) - Mg > VGl + 1)

alp!
o] +2p<n—2 P
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. J; J 1497 (GVG) (3,1 -+ )dyds

(_1)\0<I+p
-M; N Tplva;afG(l +1)-

|ot|+2p=n—1

. JZJ Y (1 +5)7(GVG)(p,1 +s)dyds}
o Jre

la]<n

[od
_ A (_1) o o
_{et uy — E o 6XG(1+I)JR”y U dy}

(_1)\OC|+P oAp
+ > Tp!\mx-alc;(lﬂ).

lo|+2p<n—2

J@J Y1+ o) (,5) — ME(GVG)(y, 1+ 5)}dyds

t

|
0 la[+2p <n—1 xp

t |eel+p
- { J ey . (uVv)(s)ds — Z #V&j@f’G(l +1)-

) J;J "ya(l + )7 {(uVv)(y,s) — MOZ(GVG)(y7 1 + 5)}dyds — W(t)}

=: M](l) + Mz([) + M3(Z),

where My = [gnuo dy and W (1) = MZ [;e94V - (GVG)(1 + s)ds as before.
Next, we estimate ||M(1)|l, (k=1,2,3). Since ¢"!=1a/2t/2|| a1 (1),
and "(I=VO/22| My(1)]|, tend to 0 as ¢ — oo by making use of (3.6) with
m=n and Proposition 4, respectively, we consider only the estimate of
[Ma(2)]|,- The estimation of [[M>(7)||, can be achieved as follows:

M), < D VG + 1,

la|-+2p<n—2

llg

X

ij ny“(l + )P {(uVv)(p,s) — MZ(GVG)(y,1 + s)}dyds

t

o6}

< ¥ C,fnu71/q>/27|«\/27p71/2J /2124 g

lo|-+2p<n—2 4

< C[—n(l—l/q)/2—(n+l)/2’
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which yields that lim,_., ¢"0=1/9/25/2|| My (1)||, = 0. Here we have used (3.3)
and (5.5). Therefore,

tn(l—l/q)/2+n/2

_ 1)
u(t) — Z ( ;!) 07G(1 +1) JRny“uo dy

la|<n
(_1)|0t\+p ©
+ ———V0lorG(1 +1) - J J Y*(1 + 9)"uVo dyds
la[+2p<n—-2 0 "
|%\+P t
+ Z ———VarrG(1 +1) - J J y*(1 + 5)’uVv dyds
la[+2p=n—1 ' 0 JR"

lo]+2p <n—2

) (=P
IRAOESAY Tp!va;a,ﬁ(;(1+z).

J:J V(149 (GVG) (v, 1+ s)dyds

(71)\fxl+p
-M§ Y Vol G(1+ 1)

Ip!
lot|+2p=n—1 xp:

=0 (5.11)

q

0

” 4GV (3] +s)dyds}

as t — oo0.
Now we shall prove the following claim in order to obtain the higher-order
asymptotic expansion of u# in more detail.

CLAIM 9. For any integer | with 1 <[ <n, we have

(_I)I“Hp

M} :
|e|+2p=1—1
0 if | is odd,

={ M (=1)?402*07G(1 + 1)
2(87)"2 14 )57 2y 27 P (= 2) = 2(lel + p)}

Vo%orG(l +1) - J

J V(1 + $)P(GVG)(3, 1 + s)dvds
0 R”

(5.12)

if 1 is even.

Furthermore, if n is odd,

(_1)|a\+p
Mg > Tp,va‘:a;’G(l +1)-

|o|+2p=n—1

” V(1 + )" (GVG)(y, 1 + s)dyds = 0 (5.13)
o
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and
(_I)IOCHP
Mg ~———VolrG(l +1)-
alp! ¥
|| +2p=n—1
: J J Y1+ 9)"(GVG)(y,1 + s)dyds = 0, (5.14)
0 n
and if n is even,
(_I)I%HP
M} VLI G(1 + 1)
la[+2p=n—1 P

) JIJ Y1+ 9P (GVG)(y,1 + s)dyds
o Jrr

2‘402 (_l)p 200 Ap
=1 STy 140707 G(1 4 1) log(1 +1). (5.15)
208m)" 7 1y 2 e HP

ProoF. Since we can show the desired equalities (5.13), (5.14) and (5.15)
by using arguments similar to those in the proof of (5.12), we show only the
equality (5.12). A direct calculation gives

(71)|%\+1'
My > a'—p'Vﬁja;”G(l +1)-

Jo|4+2p=I-1

2 _1)le+p
__My D ponar G141y

|
o] +2p=I—1 xp

. J J w*(1 +s)71+pG2(y, 1 + s)dyds
0 n

Mg (—1)l*r
=0 L 5,0%07G(1 + 1)
2(4r) /:Zl It alp!

0 2
1%(1 —n—l+p _ |y|
- Jo Jnny‘/y (145) exp( 2(1+5) s
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M§ oy (—1)"
= 9P G(1 + 1)
2(4n) /:Zl IaH;p:l. alp! !
% #0

o0 2
%] —n—1+p _ |y| dvd
- Jo JR”y (143) exp( 2(1+5) e

n (1 led+p
Mi 5 o5~ HEDT Gy

2(47z) PRl alp!
9{/#0
X J v(l + s)7"/2+‘“‘/2+p71dsj yre 2 gy, (5.16)
0 "

If / is even, then it follows from (5.16) that

-1 |o[+p
vy G
|o|+2p=1—1

Vo erG(1 + 1)-

' r J V(1 +9"(GVG)(p, 1 + s)dyds

0
Mo2 - 205(=1)" ,
- a6 (1 + 1)
S 2 2 G
O(/io

y Joc(l +S)7n/2+|o:\+p71dsj

2710172 gy,
0 R"

- "/ZZ Z 2\“| Tyl la%hpGU*-t)J (1 4 5) /2P g

=1 Jal+p=1/2, 0
o; #0
_ Z Z (_1) 62’\20(01) (1—|—l) OO(I_FS)*'!/ZH%HPdS
n/2 2\9%(' 17X 0
J=1 |a+p=(
M (=1)? 40207 G(1 + 1)

2(87)"2 s )57 2y 2 P (= 2) = 2(led + )}

Here we have used the fact that for me Z,,

0 if m is odd
m,=y*/2 g _ 7 1
JRy ¢ dy {(m—1)(m—3)...3.1-(27z)1/2 if m is even. (517)

On the other hand, if / is odd, then (5.16) is zero due to (5.17). As a
consequence, we obtain the desired equality (5.12). O
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PrOOF OF THEOREM 1, CONTINUED. First, by applying Claim 9, the
following term appearing in (5.11) is calculated as

) (=D
W -M; > Tp'va;a;’c;(l +1)-
|a|+2p <n—2 e

J:J 149 (GVG) (1 + )dyds

(71)|0—\+p
-M; > a'—p'Vé)jaf’G(l+t)-

|| +2p=n—1
t
J J Y1+ 9" (GVG)(y, 1 + s)dyds
0 n
Mg
W) = 3@

AG(1+1) log(1 + 1) if n=2,

M} (=1)? 40207 G(1 + 1)
n/2 ld=Lolplf(n —2) —
(87)"% i p Son-3)21 2 alp{(n —2) = 2(Ja| + p)}

W(t) — 5

if n is odd with n > 3,

M} (=) 40207 G(1 + 1)

w(r) -

Mg (-1”
PN
2(8m)" |oc\+p:(n72)/22‘a‘a!p!

40707 G(1 + 1) log(1 + 1)

if n is even with n >3
= R(?), (5.18)

where R(7) is the one defined by (2.3).
Next, for the n-th order term of asymptotic expansion of u in (5.11), we
show the following: If n is odd,

(71)|a\+p t
"=V a)/24n/2 VG4 J J Y1+ 9) uV dyds

op 0

|| +2p=n—1

0

(_l)la\ﬂf

i —0 (5.19)

q

p>

lo|+2p=n—1

VorarG(l + ) - J

J y*(1 +5)’uVv dyds
o Jr

as t — oo, and if n is even,
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(,DIQHP p
(1=1/g)/24n/2 Tp'vajafG(l +z).J J V(1 +5)7uVo dyds
1! o

|o|4+2p=n—1 0
_1)le+r
- > %Va;‘a;’c;(l +1)-
|ot|4+2p=n—1 op:

J:OJ M1+ @V0)(,5) = MG(GVG)(y, 1 + 5) }dyds

Mg (—1)”

- A0FA!G(1 + 1) log(1 + 1)
2(8m)"? ol +p=(n—2)/2 2lalp!

—0 (5.20)
q

as t— o0.
Indeed, since the integral (5.8) is well-defined for |o| +2p =n— 1, we see
from (3.3) and (5.5) that

(_1)Ia\+p ., ‘
o VoG 1) J J Y*(1 + 5)"uVv dyds
. -

trz(lfl/q)/2+n/2
Ip 0

|o|+2p=n—1

(_1)\°<|+17 .
Tp!vaxat G(l+1)-

|o[4+-2p=n—1

J: J Y1+ 9 {WV0)(.5) — MG (GVG)(y, 1 + 5) }dyds

(_1)Ia\+p
-M; Y VG ).

: JIJ (1 +9)P(GVG)(1 + s)dyds
o Jrr

q

_ tn(lfl/q)/2+n/2 V@aé\{)G(l n t) .
alp! x

|| +2p=n—1

. JOO JRnyoc(l + )P {(uV0)(p,s) — MZ(GVG)(y,1 + s)}dyds

t

q

< Z C[n/27|1\/27p71/2 Jw an/271+|oc\/2+p ds < Ct71/2 0 (521)
|ot|+2p=n—1 t
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as t — oo. If mis odd, (5.21) gives (5.19) by (5.13) and (5.14). On the other
hand, if »n is even, (5.21) implies (5.20) because of (5.15). Hence (2.5) is
obtained by combining (5.18) and (5.19) with (5.11). Also, (2.6) follows
from (5.11), (5.18) and (5.20). As a consequence, the proof of Theorem 1
is complete.

6. Proof of Theorem 2

In this section, let (u,v) be the solution to (P) satisfying (D) with y =n+ 1,
and let n>1 and 1 < ¢ < oo. We repeat arguments similar to those in Sec-
tion 5, and use the same notation as in the section. First of all, we give
L7-estimates for the solution in order to prove Theorem 2. Using Proposition
3 with My =0 gives

sup(1 + 1)V ()| < o, (6.1)
>0
sup(1+ )" VO vu(n)]), < oo (6.2)
>0

Next we show only the asymptotic behavior of u because that of v
is obtained by Lemma 9. From (2.1) the following equality holds:

1 A
ut)— Y ( ;) 55G(1+0J y*uo dy
I<[a]<ntl R
(71)\1\% w
+ 2 TV@@?G(HZ)'L J"y“(1+s)”qudyds
lo|+2p<n

e
={ e uy — Z ( oc!) 8_ifG(l—|—t)JR”y“uo dy

1<|o|<n+1

¢ (_1)\“\4-/7
_ J 91y (47 ) (s)ds — VorarG(l +1)-

Ip!
0 lo]+2p<n xp:

J J Y1+ 9)"uVo dyds
0 n

Therefore it is sufficient to prove the following proposition due to (3.6) with
m=mn-+1 and M, =0:
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PROPOSITION 5. Let n>1 and 1<qg<o. Then the convergence of
integral [ [an y*(1+ 5)"uVv dyds is assured for |o| +2p <n, and

! _1)lle
1=1/0)/ 2+t )2 J eIV - (W) (s)ds — Y %Vagag’c;(l +1)-
0 alp!
lo|+2p<n
. J J y*(1 4 s)?uVo dyds|| — 0 (6.3)
o Jre

q

as t — oo.

Proor. Fix t>2. Firstly, we easily observe that the convergence of
integral [;° [gn ¥*(1+5)"uVv dyds is ensured for |of +2p <n since it follows
from (6.1) and (6.2) that

Sup(l + s)n/2+3/27‘0(‘/2

s>0

J Y uVv dy’ <
R

for 1 < j<nand |o| <n+1 by using arguments similar to those in the proof
of (5.5).
Next, as in the proof of Proposition 4, the following holds:

/ (_l)lmHﬁ
[[evr-wooas— > D vraran o
0 la|+2p<n xp:

J J y*(1 4+ 5)"uVo dyds
0 n

(_l)ww
= L)+ B ()= Y —=—ValG(1+1)-
le|+2p<n o

: J J Y (1 +5)’uVv dyds 3 + L5 (¢) + L5 (2).
0 Jr

Hence calculations similar to those in the proof of Proposition 4 give the
following estimates:
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Hll(t)H < CU=1/q))2=(n+2)/2
q - )

(_1)\0(|+p 0
- S U CvararGa+ o). J

Ip!
la|+2p<n xp: 0

J y*(1 + 5)’uVo dyds

q

S - Jx (14 5)7ds
la|+2p<n 12

IA

J y*uVo dy.
R

< 3 crmtmyadze JOO (1 4 5) 23220 4

la[+2p<n 12

< len(lfl/q)/Zf(thZ)/Z,

/2
B, < S crni-vae) j <1+S>Pdsj yauvvdy‘
|| +2p=n+1, 0 R”
lo| > 1

IA

/2
Ct—n(l—l/q)/2—(n+2)/2j (145) ds
lo|+2p=n+1, 0
|| > 1

< Crn1=1/0/2=(m42)/2 150 ¢
t/2

2 O], < thn(lfl/q)/273/27[n/2]J (1 4 )2+ g
0

J uVo dy‘

2
< Ct—n(l—l/q)/2—3/2—[n/2]JI/ (1 4 5) 21240 g

0

< Cx 0=102=042)/2 og ¢ if 5 is odd,
(1=1/9)/2-(n+2)/2 if n is even.

As a consequence, (6.3) follows from these estimates.

7. Proof of Theorem 3

In this section, we shall show the existence of solutions to (P) satisfying
(D) by applying the contraction mapping principle. The proof consists of
several steps.

Step 1. Let us define the space X, by
Xo = C([0,0); L'(R")) N C([0, 0); B(R"))

and consider the Banach space
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X ={ueXo|llully <o}
with the norm

lully = sup (14 |x[)"Ju(x,5)[ + sup (1+t)7/2|u(x,t)|+Sugllu(1)lll,
n 1>

xeR", >0 xeR",1>0
where y is either n or n+ 1. We here note that u € X implies
JuCx, )] < (14 [x])7(1+ 1)
For K > 0, we define the closed subset Bx of X by

B = {ue X||uly <K}

1E7113% for 0 <o <. (7.1)

Given u € By, define v by

t
v(t) = e ey + J e~ (=9 (1=94y (5)ds
0

=: [V()l() + [T ()](1) (7.2)
and then &(u) by

[D(u)](1) = e"ug — J;V eV p) (s)ds

=1 [U(uo)](2) = I[(u, V)](2).

We now put [[o0]linz- := loolly + looll - Veollin = Vool + Vo]l
and

luolly + lluoll. — if v =n,
L, (uo ={ } (7:3)

luolly + ol e if 7=+ 1.

Using Lemma 7 and U(uo), V' (v9),VV (vo) € Xo, we easily see that U(ug), V' (vo)
and V'V (v) are in X, and satisty

1U(o)llx < Cly(uo), (7.4)
1V @o)llx < Gllvollinrz: VYV (o)lly < GlVoollpinge, (7.5

where C; (k =1,2,3) are positive constants. Furthermore, Lemma 6 gives v,
Vv € Xy, which together with Lemma 2.2 of [19] implies /(u,Vv) € X;. There-
fore we see that @(u) belongs to Xj.

Step 2. We show the following claim.
Cramm 10.  There exist positive constants Cy, C, such that for u e B,
[olly < Cilllvoll Lrazy + [lullx), (7.6)
Vol < CZ(”VUO”LlnL;f + [lullx)- (7.7)
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Proor. First of all, we show (7.6). By (7.5), it suffices to prove that

I @)llx < Cllullx- (7.8)
Since J(-) is linear on X, we can assume [lu||, = 1. Thus (7.1) gives
lu(x, )] < (1+ X)) 70+ for 0<a<y. (7.9)
We now prove that
sup (1 + |x])"|J(u)] < o0. (7.10)
xeR", >0

For this purpose, we split J(u) as follows:
J(u) = Ji(u) + Jo(u),
where

t
Ji(u) = J J e IG(x — y,t — s)u(y, s)dyds,
0 JIyI<lxl/2

t
Jo(u) = J J e UIG(x — y,t — s)u(y, s)dyds.
0 J|yl=]xl/2

From (7.9) with o =0 we obtain

t
()] < J e dsj Glx— y.t—5)(1+ ) 7dy
0 [y]=]x]/2
t
< C(l+ \x|)7}'J e (=9 dsJ G(x— y,t—s)dy
O n
< C(l+|x])™7

for (x,7) e R" x (0, 00), which implies that
sup (1 + |x])"|J2(u)| < 0. (7.11)

xeR", >0
Assume that |x| > 1. Then we estimate |J;(u)|. For y=n, (3.1) with
k =0 yields that

t

11 ()| SCJ

o (-9) dSJ I — [ eI )y
0

[y[<Ix]/2
t

< C|x|7"J e (1=9) dsJ lu(y,s)|dy
0 R”

<C(+|x)™"

since |x — y| = |x|/2 for |y| < |x|/2.
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For y=n+ 1, we need to rewrite Jj(u) as follows:

J1 (u) =: Jll(u) + le(u),

where
/2
=[] G pe- ur. v,
o Iyl
t
Jio(u) = J J e "G (x — y, 1 — s)u(y, s)dyds.
/2 J|y|<|x]/2
By using (3.1) with £k =0 and |x—y| > |x|/2 for |y| <|x|/2, we have
/2 5
[J11(w)| < Ceil/zj J |x — y|_"e"x’y‘ /{8(”‘Y)}|u(y, s)|dyds
0 Jyl<|x|/2

t/2
< C\x|7”e_’/ze_‘x‘z/(32’) J dsJ lu(y,s)|dy
0 R”

< C(1+|x])™ "

(7.9) with o =n+1 and (3.2) with &k =0 also give

t

()] < cj

(¢ — )21 4 5) "2V J PP B g,
t/2

IyI=<Ixl/2

n

t
< Cr/ 12/ 62) J

97— S)—n/zdsj P69 g,
/2

t
< Clx| ™! J e 9 ds < C(1 4 |x))™" ",
/2

where we have used |x—y| > |x|/2 for |y| <|x|/2. Therefore from these
estimates we see that

() < C(1+x)7  for |x| > 1. (7.12)
On the other hand, (7.9) with o« =0 implies that for (x,7) € R” x (0, o0),

t
= | e IGer = = luly.sldys

0 JIyI<Ixl/2
t

= J e "G(x =yt —s)(1 + |y]) " dyds
0 n
t t

< J e~ (=) dsJ G(x— y,t—s)dy < J e ds < C.
0 " 0
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Hence using the boundedness of |J;(u)| on R” x (0,00) and (7.12) yields that
sup (1 + |x])"|J1(u)] < oo. (7.13)

xeR", >0
Consequently, combining (7.11) and (7.13), we obtain (7.10).
Next we show that

sup (142" (u)| < 0. (7.14)

xeR", >0
To prove this, we again divide J(u) into two parts:
I () = J5(w) + Ja ),

where
t/2

o) = J

J e_(t—s)G(x -yt — S)l/[(y7 s)dyds,
O n

t
Jy(u) = J J e UG (x — y,t — s)uly, s)dyds.
t/2 JR"

Then the estimations of J3(u) and Js(u) can be achieved as follows: For
(x,1) e R" x (0, 00),

s J

G(x = y,t = s)(1+5) " dyds

n

J 1+5) y/zdsj G(x— y,t—s)dy
J )Pds < C(1+ 1),

n

|Ja(u)| < J =1 +5)” ’/zdsJ G(x — y,t —s)dy

t/2

t
<C(1+ z)—y/zj e ds < C(1+0)77,
/2

where we have used (7.9) with o« =p. Thus these estimates give (7.14).
Finally, from (3.4) we have

t t
wwmsjﬂwamwmﬁsjf“memsc (1>0),
0 0

which together with (7.10) and (7.14) implies (7.8). As a consequence, the
desired estimate (7.6) is obtained.
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We are going to show (7.7) by arguments similar to those in the proof
of (7.6). By (7.5), it is sufficient to claim that

VI @)l x < Cllul x- (7.15)

Here we can assume ||u||, =1 since VJ(u) is linear with respect to u e X.
We now prove that

sup (1 + [x))"|VJ(u)] < 0. (7.16)
xeR" >0

First of all, we divide VJ(u) into two parts:

VJ(u) =:VJi(u) + VJy(u),
where
t

VJi(u) = J J e VG (x — y,t — s)u(y, s)dyds,
0 JlyI<lxl/2
t

VJr(u) = J J eIV G(x — y,t — s)u(y, s)dyds.
0 J|yl=]xl/2

Fix |x| = 1. Since (3.1) and (3.2) with k=1 give
VG(x — y,t— )| < Clx — y|/ =0 (1 — 5) PRl /(80=)
< Clx _y|/f—('1+1)(l _ S)—/f/Z

(7.17)

for f with 0 <f <n+1, using (7.17) with f=n+1—y implies that for
x| =1,

t
VJi(u)] < CJ e (=91 - s)7"/271/2+y/2dsj
0 Iyl<Ixl/2

t
< C|x|’yj e =91 — S)—n/zfl/zw/zdsj
0 -,

Ix =y u(y,s)|dy

|u(y, s)lds

t
<C(1+ |x|)_yJ e ) (1 — 5) A g
0

< C(1+|x|)7. (7.18)
On the other hand, (7.9) with « =0 gives that for (x,7) e R” x (0, o0),
t
Vit < | | e WG )l slds
0 Jiyl<|x|/2

t
< Jo JRn e INVG(x — y,t—s)|(1 + |y|) Tdyds
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t
< J e (=9) dsJ VG(x — y,t —s)|dy
0 R"

t
< CJ e (1 —5)V2as < C.
0

Therefore, putting together the boundedness of |VJi(u)] on R" x (0,00) and
(7.18) yields that

sup (1 + [x))’|VJi(u)] < o0. (7.19)

xeR" >0

Furthermore, by (7.9) with o =0, we obtain

Vs (u jdj VG(x— vt — $)|(1+ |y]) 7dy
[y[=1x]/2

<C(+|x)~7 J (= )V ds < C(1 4 |x|) 7

for (x,f) e R" x (0,00). Hence the desired estimate (7.16) is obtained by
combining this estimate and (7.19).
Next we claim that the following holds:

sup (14 2)"|VJI(u)| < oo. (7.20)

xeR", >0
In fact, VJ(u) is again represented as follows:

VJ(u) =:VJ3(u) + VJs(u),

where
t/2
VJs3(u) = J J eIV G(x — y,t — s)u(y, s)dyds,
o Jr
t
VJi(u) = J J eIV G(x — y,t — s)u(y, s)dyds.
t/2 JR"

Then the estimations of VJ3(u) and VJ4(u) can be achieved as follows: For
(x,1) e R" x (0, c0),

/2
VJ3(u)| < Jo J ) e INWVG(x — y,1—9)|(1+5) " *dyds
t/2
<e ' J (1+ s)_y/zdsj VG(x — y,t —s)|dy
0 R"

t/2
< ce*f/zj (t—s5)"2(145)7ds < C(1 + 1),
0
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|VJ4(u J (I4s)" ’/stJ VG(x — y,t —s)|dy

<Cc(1+ )WJ eI —5) Vs < (1 +1)72,
1/2

where we have used (7.9) with « =y. Hence from these estimates we get
(7.20).
Finally, from (3.4) we have

VI ||1_j 9| ey (s)]), ds

<c| e Pl sc 1> 0),
which together with (7.16) and (7.20) yields (7.15). Consequently, the desired
estimate (7.7) is obtained. O

By Claim 10, we see that (u,v) is a solution to (P) on R" x [0, c0)
satisfying (D) if u € Bg is a fixed-point of @.

Step 3. The following claim is a key one to prove Theorem 3.
Cram 11. Let ¢o,Viy € Bx. Then
10, V0)ly < Collol IV, (7.21)
where Cj is a positive constant independent of ¢ and .

ProOF. Assume that ||¢||y = [|[V||y =1 because I(-,-) is bilinear on
Bk x Bk, and note that for every 0 < 4 <2y and every 0 < u <y, ¢,Viy € Bk
satisfy the following estimates:

(V) (9] < (1+ [9) (1 +5) 72, (7.22)
Ve (y,s) < (14 [p)"7(1+5) 2 (7.23)
We now divide I(p,Vy) into two parts:
I(p, V) = Li(p, V) + L(p, V),

where

t

ho.v) = |

j VG(x— y.t—s5) - (o) (. s)dyds,
0 Jy[<]|x]/2

~

L(p, V) = VG(x =yt —s)- (9VY)(p,s)dyds.
0 Jiy= /2
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Firstly, we estimate |[1(p,V{)|. Fix |x| > 1. In the case y=mn, by

applying (7.17) with f=1 and (7.23) with g =1, we have

t

(9. 7)] < j

| WGt = 9o, ) 3,9l
0y =|x/2

t
< O [ (=97 2000 s | (1 1) o)l

t
< C|x|*"j (1—5) 2512 dsj (3. )ldy < C(1+|x]) ™",
0 R'X

where we have used |x —y| > |x|/2 for |y| < |x]/2.

In the case y =n+ 1, from (7.17) with f =0 and (7.22) with A =n+ 3/2

we obtain

t

(g, 79| < J

j VG(x — y. 1 — )] [(9V) (3, 5)ldyds
0 Jiyl<x]/2

t

< C|X|7”71 J

(1+ s>*"/2*3/“dsj 1+ |y) ™y
0 R"

< C(1+|x)™

Therefore it follows from these estimates that for |x| > 1,

[1i(p, Vi) < C(1+ [x])™".

(7.24)

On the other hand, (7.22) with 4 =1 implies that for (x,) € R" x (0, o),

t

(o, V9| < j

j VG — 3,1 — )] [(9V) (3, )ldyds
0 Jiyl<x]/2

t
< J (1 +s)_1/2dsJ VG(x— y,t—s)|(1+ |y)) > dy
0 R”

t
< CJ (t—s) V2512 g5 < C.
0

(7.25)

Hence, it follows from the boundedness of |[;(p,Vy)| on R" x (0,00) and

(7.24) that

sup (1 +[x[) |11 (p, V)| < o0.

xeR", >0

(7.26)

Next we estimate | (p,Vi)|. By using (7.22) with 1 =1, the estimation

of |L(p,Vy)| can be achieved as follows: For (x,?) € R" x (0, o),
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(0. V)| j J VG(x — y.1— )] [(9V) (3, 5)\dyds
[y]=]x]/2

%

b9 | () WG e o)y
[yI=[x[/2

< (14 |x)) 2/+1L(1—s)*1/2s*1/2dsgc<1+|x|)*y

This together with (7.26) implies that
sup (1 + [x))"|1(p,V¥)| < co. (7.27)

xeR", >0
Here we again split the integral I(p,Vy) as follows:
1(% Vl//) = I3(¢7 Vl//) + I4(¢7 V‘//)a
where
t/2

Li(p,Vy) = J

0 J VG(x =y, t=3)- (oV§)(y,s)dyds,

novw) = | [ vty @ s

First of all, we estimate |I3(p,Vi)|. Assume that > 1. In the case
y =n, by using (7.17) with f=n+1 and (7.23) with x =1, we have

/2
Bevwls | | W6t =) ln(r o) V(59 dvds

/2
<[ Cumg g s | ) o)y

< 12 & 12 gy | —n/2
< p(y,s)|dy < C(1 +1) )
0 R"

In the case y =n+1, (7.17) with f =n+1 and (7.22) with 1 =n+ 3/2 imply
that

t/2
Bevl < [ ] 96— s =167 0. olays
/2 3
S CJ (t— s)fn/zfl/Z(l +S)7n/27\/4dsk[ (1 + |y|)7}171/2dy
0 R’X

< Ct‘”/z‘l/zr(l )P Ay < (1 4 )R
0
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Thus,
\Lip, V)| < C(A+0)7  for 1> 1. (7.28)

Since |(p,V)| is bounded on R” x (0,00) by making use of the argument
similar to that in the proof of (7.25), from this boundedness and (7.28) we see
that
sup (140" |I(p, V)| < 0. (7.29)
xeR", >0
Next, we estimate |I4(p,Viy)|. It follows from (7.22) with 1 = 2y that for
(x,1) e R" x (0, c0),

t

oVl < | | WGyt = o) (0F) (3,9)ldres

/2

t
< J (1+ s)_}'dsJ VG(x — y,t—s)|dy
/2 R”

t

< CJ (t—s) V(1 45)7ds < C(1+ 1) 72,
/2

Therefore this estimate and (7.29) yield that

sup (1 +0)"2|I(p, V)| < 0. (7.30)

xeR" >0

To finish the proof of Claim 11, we estimate ||[(¢,Vy)||;. It follows from
Minkowski’s inequality and (7.23) with g =y that

(2, V)l

IA

t
OdsJR” lo(y, )| [V (p,s)|dy JR" VG(x — y, t —s)|dx

t
a—w”%vmrmmj|m%mw
0 R"

IA

t
< |-+ as<C for >0,
0

which together with (7.27) and (7.30) implies (7.21). O
Step 4. We begin with the following claim.
Cramm 12. For u € By,
1D() ]l < Coly (o) + CollVooll izl + Collulz (7.31)

and for uy,u; € By,
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1@(u1) = P(a) ||y < CollVoollpinge + llwrlly + [uzll )l = wally,  (7:32)
where Cy = max{C}, C;Cs} and [,(uo) is the one defined by (7.3).
Proor. First, we shall prove (7.32). A direct calculation gives
D(u)) — D(up) = —I(ug — up,Vor) — I{up, Vv, — V)
=1+ 5.

For I, making use of (7.7) with v = vy, u =u; and (7.21) with ¢ = u; — u,
Viy = Vv, we have

Iilly < Gllur — wal y[[Vor ]|y

< GG([Veoll iz + )l — w2l

< Co(IVeoll iz + [l )ffer = wally-

For L, applying (7.7) with v =v; — vy, Vop =0 and u = u; — uy gives
||V01 — VUzHX < C2Hu1 — quX. (733)

Therefore (7.21) with ¢ = uy, Viy = Vv, — Vv, and (7.33) imply that
L[y < Gsllua]ly|[Vor = Voa x
< GGlluz yllur — ually < Collual|x flur — wa| -

Consequently, (7.32) follows from these estimates.
The estimate (7.31) is also obtained by (7.4) and (7.32) with u; = u, u, = 0.
O

Step 5. We shall prove Theorem 3. Assuming

Cil(ug) <1/16  and  Co||Vvollpanz- < 1/2,

Ko = (% - %— 4c§1y(u0)>/(2c0). (7.34)

Then, by Claim 12, u € By, implies that

we define Ky by

1
H@[u]HX < Coly(uo) +§K() + C()I(O2 = Kp.

Therefore ®[u] € Bk, if ue Bg,. Since 2CoKy < 1/2 by (7.34), there exists
d e (0,1) such that

@[] — Plua]||y < d||ur — ua| y for every uy,us € Bg,.
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Hence, @ is a contraction mapping in the closed subset Bg, of X, which implies
that @ admits a unique fixed-point u# in Bg,. As a result, there exists a unique
global solution to (P) satisfying (D). The proof of Theorem 3 is complete.
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