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ABSTRACT. We develop the theory of log homotopy exact sequences associated to
proper log smooth morphisms and morphisms whose characteristic sheaves are locally
constant with stalks isomorphic to the monoid of natural numbers. In the process of
developing this theory, we also show the existence of a logarithmic version of the Stein
factorization and develop the theory of algebraization of log formal schemes.

1. Introduction

In the study of the geometry of log schemes, the following objects often
appear:

(i) a proper log smooth fibration over a log regular base log scheme,

(i) a morphism (of log schemes) whose characteristic sheaf is locally

constant with stalk isomorphic to N.
In this paper, the behavior of the log fundamental group for such an object is
studied; in particular, it is shown that the homotopy sequence associated to
such a morphism is exact.

This paper is organized as follows.

In Section 2, we prove the existence of a logarithmic version of the Stein
factorization under some hypotheses (cf. Definition 3, Theorem 1, also Remark
3). In [5], Exposé X, Corollaire 1.4, the exactness of the homotopy sequence
associated to a proper separable morphism is proven. In this proof, the
existence of the Stein factorization plays an essential role. Therefore, to prove
a logarithmic analogue of the exactness of the homotopy sequence, we consider
the existence of a logarithmic analogue of the Stein factorization.

In Section 3, we prove a logarithmic analogue of [5], Expos¢ X, Corollaire
1.4, i.e., the exactness of the log homotopy sequence by means of the existence
of the log Stein factorization (cf. Theorem 2). Moreover, a logarithmic
analogue of the fact that the fundamental group of the product of schemes
is naturally isomorphic to the product of the fundamental groups of these
schemes (cf. [5], Exposé¢ X, Corollaire 1.7) is proven (cf. Proposition 3).
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In Section 4, we define the notion of a log structure on a formal scheme
and establish a theory of algebraizations of log formal schemes. One can
develop a theory of algebraizations of log formal schemes (cf. Theorem 3) in
a similar fashion to the classical theory of algebraizations of formal schemes
(for example, the theory considered in [2], §5). This algebraization theory of
formal log schemes implies a logarithmic analogue of the fact that the
fundamental group of a proper smooth scheme over a “‘complete base” is
naturally isomorphic to the fundamental group of the closed fiber (cf. [5],
Exposé X, Théoréeme 2.1, also [16], Théoréeme 2.2, (a)) (cf. Corollary 1). This
result is used in the next section.

In Section 5, we define the notion of a morphism of type N®" and consider
fundamental properties of such a morphism. Roughly speaking, a morphism of
log schemes is of type N®” if the relative characteristic sheaf is locally constant
with stalk isomorphic to N®”.  The main result of this section is the fact that
at the level of anabelioids (i.e., Galois categories) (determined by ket cover-
ings), certain morphisms of type N®”" can be regarded as “G,"-fibrations™ (cf.
Theorem 5). Moreover, as in [11], Lemma 4.4, we give a sufficient condition
for the homomorphism from the log fundamental group of the fiber of the “G,"-
fibration” determined by such a morphism of type N®” to the log fundamental
group of the total space of the ““G,,"-fibration” to be injective (cf. Proposition 4).

In Appendix A, we prove analogues for the étale site of the results given in
[9] for the Zariski site, since such analogues will be necessary in the present
paper.

Finally, in Appendix B, we prove the well-known fact that the category of
ket coverings of a connected fs log scheme is a Galois category; this implies,
in particular, the existence of log fundamental groups (cf. Theorem B.1, also
Theorem B.2). The log fundamental group has already been constructed by
several people (e.g., [1]; [6], 4.6; [15], 3.3; [16], 1.2). Since, however, at the
time of writing, a proof of this fact was not available in published form, and,
moreover, various facts used in the proof of this fact are necessary elsewhere in
this paper, we decided to give a proof of this fact. Moreover, although other
authors approach the problem of showing this fact by considering the category
of locally constant sheaves on the Kummer log étale site, we take a more direct
approach to this problem which allows us to avoid the use of locally constant
sheaves on the Kummer log étale site.

Notations and Terminologies

Sets:

We shall assume that the underlying topological space of a connected
scheme is not empty. In particular, if a morphism is geometrically connected,
then it is surjective.
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Numbers:

We shall denote by N the monoid of rational integers n > 0, by Z the ring
of rational integers, by Q the field of rational numbers, by Z (respectively, Z;)
the profinite completion of Z (respectively, pro-/ completion of Z for a prime
number /), and by Q,; the field of fractions of Z,.

Let 2 be a set of prime numbers, and » an integer. Then we shall say
that n 1s a X-integer if the prime divisors of n are in 2.

Groups:
Let G be a profinite group, and X a non-empty set of prime numbers.
We shall refer to the quotient

lim G/H
of G (where the projective limit is over all open normal subgroups H = G such

that the index [G: H| of H is a X-integer) as the maximal pro-X quotient of
G. We shall denote by G'*) the maximal pro-X quotient of G.

Log schemes:

For a log scheme X'°¢2, we shall denote by .#y (respectively, X) the sheaf
of monoids that defines the log structure (respectively, the underlying scheme)
of X2 For a morphism f'°¢ of log schemes, we shall denote by f the
underlying morphism of schemes.

Let 2 be a property of schemes [for example, ‘“‘quasi-compact”, “con-
nected”, “normal”, “regular”] (respectively, morphisms of schemes [for exam-
ple, “proper”, “finite”, “étale”, “smooth”]). Then we shall say that a log
scheme (respectively, a morphism of log schemes) satisfies # if the underlying
scheme (respectively, the underlying morphism of schemes) satisfies 2.

For fs log schemes X'°2, Y!°¢ and Z!°¢, we shall denote by X'°¢ xy 1. Z'°2
the fiber product of X'°¢ and Z!°¢ over Y'°2 in the category of f5 log schemes.
In general, the underlying scheme of X'°¢ Xy, Z'°¢ is not naturally isomorphic
to X xy Z. However, since strictness (a morphism f1°2 : ¢ — ylog g called
strict if the induced morphism f*.#y — ./#x on X is an isomorphism) is stable
under base-change in the category of arbitrary log schemes, if X2 — ylog jg
strict, then the underlying scheme of X'°¢ x ., Z'°¢ is naturally isomorphic to
X xy Z. Note that since the natural morphism from the saturation of a fine
log scheme to the original fine log scheme is finite, properness and finiteness are
stable under fs base-change.

If there exist both schemes and log schemes in a commutative diagram,
then we regard each scheme in the diagram as the log scheme obtained by
equipping the scheme with the trivial log structure.

We shall refer to the largest open subset (possibly empty) of the underlying
scheme of a log scheme on which the log structure is trivial as the interior of
the log scheme.
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We shall refer to a Kummer log étale (respectively, finite Kummer log
¢tale) morphism of fs log schemes as a ket morphism (respectively, a ket
covering).

Let X'°¢ and Y'°¢ be log schemes, and f°¢: X2 — ylo¢ 3 morphism of
log schemes. Then we shall refer to the quotient of .#x by the image of the
morphism f*#y — .y induced by f1°¢ as the relative characteristic sheaf
of f1°¢. Moreover, we shall refer to the relative characteristic sheaf of the
morphism X'°¢ — X induced by the natural inclusion O} — .#y as the
characteristic sheaf of X'°2.

2. The log Stein factorization

In this section, we show the existence of a logarithmic version of the Stein
factorization.

DerINITION 1. Let X'°¢ be an fs log scheme, and ¥ — X a geometric
point.

(i) We shall refer to the strict morphism x'°¢2 — X'°¢ whose underlying
morphism of schemes is X — X as the strict geometric point over
X —X.

(i) We shall refer to x°® — X'°¢ as a reduced covering point over the
strict geometric point x'°¢ — X'°¢ or, alternatively, over the geometric
point X — X, if it is obtained as a composite

—1 —1 —
XlOg—>X'lOg—>xlOg—>X10g,

where x°2 — X2 is the strict geometric point over X — X,
X'\ — x'g js a connected ket covering, and ¥°% — x| is a strict
morphism of fs log schemes for which the underlying morphism
of schemes determines an isomorphism ¥; ~ x| 4. Note that, in
general, )‘ciog — X2 is not a ket covering. (See Remark 1 below.)

REMARK 1. The underlying scheme of the domain of a strict geometric
point x'°¢ — X2 is the spectrum of a separably closed field. However, in
general, the underlying scheme of the domain of a connected ket covering
?iog — x°2 is not the spectrum of a separably closed field. On the other
hand, if we denote by )‘ciog the log scheme obtained by equipping X’ req With
the log structure induced by the log structure of x’ iog (i.e., the natural
morphism %% — X' is a reduced covering point over x'°¢ — X'°2)  then
the following hold.

(i) The underlying scheme of )‘c}(’g is the spectrum of a separably closed

field (cf. Proposition B.2).
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(it) There is a natural equivalence between the category of ket coverings
of )‘ciog and the category of ket coverings of x’ iog (cf. Proposition
B.6). In particular, 7;(x’ }Og) ~ 7;(x)¢). (Concerning the log fun-
damental group, see Theorem B.1.)

(i) The natural morphism ° —>?}Og is a homeomorphism on the
underlying topological spaces and remains so after any base-change
in the category of fs log schemes over ?iog. Indeed, this follows
from the fact that this morphism is strict, together with the fact that

the underlying morphism of schemes is a universal homeomorphism.
The following technical lemma follows immediately from Proposition B.6.

LemMA 1. Let X'°2 be an fs log scheme whose underlying scheme X is the
spectrum of a strictly henselian local ring. Then for a strict geometric point
xlog — Xlog for which the image of the underlying morphism of schemes is the
closed point of X, and any reduced covering point )‘ciog — X2 gper zlog — x'log,
there exists a ket covering Y'°% — X'°2 and a strict geometric point 7'°¢ — Y2
such that 7°% — Y2 — X2 fuctors as a composite 7'°% — )‘ciog — X2 where
the morphism 7'%¢ — )‘ciog is a reduced covering point over the strict geometric
point )‘C}Og — )‘ciog given by the identity morphism of )‘ciog.

LemMMA 2. Let X'°% be an fs log scheme equipped with the trivial log
structure, Y'°% an fs log scheme, and f°2: Y'°¢ — X2 g proper log smooth
morphism.  Then the morphism X' — X that appears in the Stein factorization
Y — X' — X of [ is finite étale.

Proor. By [5], Exposé¢ X, Proposition 1.2, it is enough to show that f is
proper and separable. The properness of f is assumed in the statement of
Lemma 2. Since the log structure of X'°2 is trivial, f°¢ is integral (cf. [8],
Proposition 4.1). Since an integral log smooth morphism is flat (cf. [8],
Theorem 4.5), f is flat. For the rest of the proof of the separability of f,
by base-changing, we may assume that X = Spec k, where k is a field whose
characteristic we denote by p. Then étale locally on Y, there exist an fs
monoid P whose associated group PP is p-torsion-free if p is not zero, and an
étale morphism Y — Spec k[P] over k (cf. [8], Theorem 3.5). On the other
hand, k[P] ®, K < k[P*] ®, K, and k[P®] ®, K = K[P*’] is reduced for any
extension field K of k by the assumption on P#®P; thus, k[P] ®, K, hence also
Y ®; K, is reduced. Therefore, f is separable.

LemMAa 3. Let X% be a log reqular log scheme (cf. Definition A.l),
Uy € X the interior of X'°¢, Y'° an fs log scheme, and f'°2 : Y'°¢ — Xlog 4
proper log smooth morphism. If we denote by Y xy Uy — V — Uy the Stein
Jactorization of fly, y,, then the following hold.
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(i) V — Uy is finite étale.
(i) The normalization of X in V is tamely ramified over the generic points
Of X\ Uy.

Proor. Since log smoothness and properness are stable under base-
change, assertion (i) follows from Lemma 2. For assertion (ii), since nor-
malization and the operation of taking Stein factorization commute with étale
localization, we may assume that X is the spectrum of a strictly henselian
discrete valuation ring R, and the log structure of X'°2 is defined by the closed
point of X (cf. Proposition A.6). Moreover, for assertion (ii), we may assume
that V' is connected. Let us write k for the residue field of R, g : X' — X for
the normalization of X in ¥, and R’ & I (X', 0x:). Note that since V — Uy
is finite étale, X’ — X is finite; in particular, R’ is a strictly henselian discrete
valuation ring. Let X2 be the log scheme obtained by equipping X' with
the log structure defined by the closed point of X', and k' the residue field
of R’

First, 1 claim that fl°2: ylg _ xlog factors through the morphism
g2 : x'log — xlog  Indeed, since Y'°¢ is log regular (cf. Proposition A.5),
Y is normal (cf. Proposition A.3). Thus, if we denote by ¥ — Z — X the
Stein factorization of f, then Z is normal; in particular, the morphism Z — X
factors through X’ — X. Therefore, it follows that the morphism f factors
as the composite ¥ = X’ — X. Moreover, since Y'°¢ is log regular, and the
interior of Y'°¢ is included in f'~!'(Uy/) (= f~!(Uy)), where Uy is the interior
of X'°¢ it follows from Proposition A.6 that the morphism f’ extends to a
morphism of log schemes, i.e., the morphism f'°¢ factors as the composite
Y log L]%) X'log Xlog.

Next, I claim that the field extension k = k' induced by ¢ is separable, i.e.,
the morphism k& — k’ is an isomorphism. Indeed, this follows from Lemma 4
below, together with the first claim.

Let e be the ramification index of the finite flat extension R — R’. Fi-
nally, I claim that e is prime to the characteristic of k. Indeed, assume that
e=0in k. Then the k-algebra R’ ®pk is isomorphic to k[z]/(¢¢), where ¢ is
an indeterminate, and by the definitions, the R’ ®yk-module Q}(,mg /x ®rk
is isomorphic to the quotient of k[f]/(°)dt ® k[t]/(t°) by the k[f/(t°)-
submodule generated by (nt"~! dt, —nt"), where n e N, i.e., the R’ ® k-module
Q}(,,Og /x ® rk is a free R’ ®k-module of rank 1 with basis consisting of an
element “dt/t=(0,1)". In a similar vein, the k-module Q)l(mg/x ®rk 18
isomorphic to k. Moreover, the morphism of R’ ®jk-modules

¢ k[1/(1°) = (i) x Ork) @k (R' ®pk) = Qyion)y @rk = kli]/(1)d1]1

induced by ¢'°® maps 1ek[f]/(t°) to e-dt/t+u" du=u"" du, where ue
(k[#]/(2¢))" is a unit of k[#]/(z°); thus, the image of the morphism ¢ ® g g, k
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vanishes. On the other hand, since the morphism 7'°¢ is log smooth, it follows
from [8], Proposition 3.12, that the natural morphism f *Q)l(log x = .Qi,k,g /x is
injective, and its image is locally a direct summand of Q;log Jx- Therefore,
since f1°¢ factors through ¢'°¢ by the first claim, it follows that the morphism
¢ @ gy k 1s also injective. Thus, we obtain a contradiction. This completes
the proof of Lemma 3.

LemMA 4. Let X'°2 be an fs log scheme whose underlying scheme is the
spectrum of a field k, Y'°2 an fs log scheme, and f1°¢ : Y'°¢ — X2 g Jog smooth
morphism.  Then the subset Sy,;y S Y of Y consisting of closed points y such
that the field extension k = k(y) is separable is dense in Y.

Proor. To prove Lemma 4, by base-changing, we may assume that k
is separably closed. First, observe that it is enough to show that for any
geometric point ¥ — Y of Y, there exists an étale neighborhood U — Y of
y — Y such that Sy,x € U is dense in U.

Let 7 — Y be a geometric point of ¥, and P — k a clean chart of X'°2
(cf. Definition B.1, (ii)). Then it follows from [8], Theorem 3.5, that there
exists a chart

P—— Q
k —— A4
of U — X' where U% Spec 4 — Y is an étale neighborhood of the
geometric point y — Y, U2 is the log scheme obtained by equipping U with
the log structure induced by the log structure of Y'°¢ and Q an fs monoid,
such that the morphism k®Z[p]Z[Q} — A induced by the above diagram
is étale; in particular, U —>Speck®Z[P]Z[Q} is open. Thus, to prove the
assertion, we may assume that Y'°2 is the log scheme obtained by equip-
ping Spec k ®@zp Z[Q] with the log structure determined by the chart Q —
k @zp Z[Q].

Let ky be the prime field which is included in k. Then since the chart
P — k is clean, this chart factors as P = ko < k. Let X,°® (respectively, Y,°%)
be the log scheme obtained by equipping Xy def Spec ky (respectively, Yo def
Spec ko ®zjp) Z][Q]) with the log structure determined by the chart P> ko
(respectively, Q — ko ®zjp)Z[Q]). Then we have a cartesian diagram

Y log Yol()g

|

log log
Xt —— X,
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Let Spec k(y9) — Yo be the natural morphism determined by a closed point
yo € Yo of ¥5. Then since the field k& is perfect, the morphism Spec k(o) X,
Y ~ Spec k(y0) Xx, X 22 x s étale. (Note that since yo€ Yy is a closed
point, the composite Spec k(yy) — Yo — Xp is finite.) Thus, the image of
Spec k(y0) Xy, ¥ — Y is included in Sy,;y = Y. Therefore, the assertion fol-
lows from the fact that the subset of Y, consisting of the closed points is dense
in Yy, together with the openness of the morphism Y — Y; (cf. [3], Corollaire
2.4.10).

DEFINITION 2. Let X'°¢ and Y'°2 be fs log schemes. Then we shall say
that a morphism /¢ : Ylog — Xxlo¢ is Jog geometrically connected if for any
reduced covering point X|°¢ — X% over any strict geometric point x'°¢ — Xl°g,
the fiber product Y™ x yis X° is connected.

Note that it follows from Remark 1, (iii), that this condition is equivalent
to the condition that for any connected ket covering x’ 8 glog of a strict
geometric point ¥°¢ — X102 ylog x . ¥' is connected.

REMARK 2. In log geometry, there exists the notion of a log geometric
point. In fact, one can regard a log geometric point as a limit of ket coverings
over a strict geometric point. Thus, one natural way to define log geometric
connectedness is by the condition that every base-change via a log geometric
point is connected. However, in general, a log geometric point is not a fine
log scheme. Hence we can not perform such a base-change in the category of
fs log schemes.

TurOREM 1. Let X'°2 be a log reqular log scheme, Y'°% an fs log scheme,

and fl°¢: Y2 — X2 g proper log smooth morphism. If we denote by Y L
X' L X the Stein factorization of f, then X' admits a log structure that satisfies
the following conditions.
(i)  There exists a ket covering X''°2 — X'°¢ ywwhose underlying morphism of
schemes is g¢.
(i) Y™ — X'°¢ is log geometrically connected.

Proor. Let Uy < X be the interior of X'¢. If we denote by Y xy
Uy — V — Uy the Stein factorization of Y xy Uy — Uy, then by Lemma 3,
V — Uy is finite étale, and the normalization Z of X in V is tamely ramified
over the generic points of X\Uy. Hence Z admits a log structure that
determines a ket covering Z'°2 — X'°¢ by the log purity theorem in [10].
(Concerning the log purity theorem, see Remark B.2.) Now Y'°¢ is log regular,
hence normal (cf. Proposition A.3); thus, X’ is normal. Therefore, X' — X
factors through Z. Since both X’ xy Uy and Z xy Uy are naturally iso-
morphic to ¥V, we have X’ ~ Z. This completes the proof of assertion (i).
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For assertion (ii), since the operation of taking Stein factorization
commutes with étale base-change, by base-changing, we may assume that
both X and X' are the spectra of strictly henselian local rings. Moreover,
by Lemma 1, it is enough to show that for any connected ket covering
Xllog — X'°2 and any strict geometric point X2 — X192 xy1 X ll°g for which
the image of the underlying morphism of schemes is a closed point,
Y102 % e X1°2 is connected.

Let us denote by Yllog the fiber product Y% x i, X, llog. Since log
smoothness and properness are stable under base-change, Yllog - X 11°g is log
smooth and proper. By assertion (i), if we denote by ¥; — X| — X; the Stein
factorization of Y; — X, then X| admits a log structure such that the result-
ing morphism Xl'log — X 11°g is a ket covering. Thus, we have the following
commutative diagram:

1 /1 1
Yl og Xl og Xl og

S

Ylog . X/log N Xlog.

Now I claim that the right-hand square in the above commutative diagram
is cartesian. Note that it follows formally from this claim that the left-hand
square is also cartesian. In particular, it follows from this claim, together with
the connectedness property of the Stein factorization, that Y102 x ., X8 =
Yllog Xy riog 72 is connected for any strict geometric point ¥'°¢ — X 1/10g whose
image of the underlying morphism of schemes lies on a closed point of X;'°%,
The claim of the preceding paragraph may be verified as follows. If we

base-change by Uy — X'°2, then we obtain a commutative diagram

1 /1 1
YIOg X x log UX —_— Xl o8 X ylog UX —_— Xlog Xy log UX

| | |

Y8 X iy Uy —— X102 x 0y Uy —— Uy.

Since Uy — X'°2 is a strict morphism, and the log structures of Uy and
X 1l°g Xywe Uy are trivial, the underlying scheme of Yllog Xye Uy 1S
Y) xx Uy. Moreover, Xllog X ye Uy — Uy is finite étale, hence flat. Thus,
the underlying morphism of schemes of Yllog Xytoe Uy — (X198 X yioe X 11°g) X ylog
Uy — X llog xy1e Uy 1s the Stein factorization of the underlying morphism
of schemes of Yllog X yoe Uy — Xllog X y1e Uy; in particular, X l'log X yioe Uy =~
(X718 X i X,°%) Xye Uy over Uy. Therefore, X|'°% > X'1°¢ x i, X/°¢ by
Proposition B.7.
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DErINITION 3. In the notation of Theorem 1, we shall refer to Y2 —
X'l s X102 a5 the log Stein factorization of f'°2. This name is motivated by
condition (ii) in the statement of Theorem 1.

PrROPOSITION 1. The operation of taking log Stein factorization commutes
with base-change by a morphism which satisfies the following condition ().

(%) The domain is a log regular log scheme, and the restriction to the
interior is flat.

(For example, log smooth morphisms satisfy (x).)

Proor. Let X'°¢ be a log regular log scheme, f1°¢: Y'°¢ — x19¢ 3 proper
log smooth morphism, and g¢'¢: X/°® — X'°¢ a morphism which satisfies
the condition (%) in the statement of Proposition 1. Let us denote by
S8 ¥ — X|°% the base-change of f'¢ by ¢t and by Y'oz — x'log
X'og (respectively, ¥,°% — X|'°¢ — X/°!) the log Stein factorization of flo¢
(respectively, fllog). Thus, we obtain the following commutative diagram:

1 /1 1
Y] 0g Xl og X] 0og

L

Ylog X/log Xlog.

If we denote by X, the fiber product X|°® xyu: X', then the above
commutative diagram determines a morphlsm X/t = X)°. Our claim is
that this morphism is an isomorphism.

Let U; = X; be the interior of X, 1°¢ " Since the log structure of U, is
trivial, U; — X'°2 is strict. Therefore, the underlying scheme of Y1 € x xloe U,
is Y xy U, and the factorlzatlon 1nduced on the underlying schemes by the
factorization Y £ % xoe U, —>X € % xloe U, — U; is the Stein factorization
of the underlylng morphlsm of Y x Xl Uy — U;. On the other hand, it
follows from the flatness of U; — X that the factorlzatlon induced on the
underlying schemes by the factorization Y Xl U — X X ylox U — U is
also the Stein factorization of the underlymg morphlsm Y X e Up — Uy
Thus, we obtain X;'® X e U > X,% X e Up. Now X’log] X\°® and
X,°8 — X% are ket coverm]gs thus, by Prolposmon B.7, X| llog ~ X,

REMARK 3. In this section, we only consider the log Stein factorization in
the case where the base log scheme is log regular. However, if a morphism
flog . ylog _, xlog of fs log schemes admits a cartesian diagram

log fre log
Y — X
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where

- X\° is a log regular log scheme,

£°%: ¥/ — X/°¢ is a proper log smooth morphism, and

- the right-hand vertical arrow X'°¢ — X% is strict,
then the factorization Y'°¢ — X/'°® x i X'°¢ — X't obtained by base-
changing the log Stein factorization Y% — X/t — X[°® of f°¢ via
X'z — x°¢ satisfies the following.

- yle  x/ log e X108 is log geometrically connected.

- x/Ex xoe X loz , xlog js a ket covering.

3. The log homotopy exact sequence

In this section, we prove a logarithmic analogue of [5], Exposé X,
Corollaire 1.4, i.e., the exactness of the log homotopy sequence.

PROPOSITION 2. Let X'°2 be a connected log regular log scheme, Y'°¢ an
15 log scheme, and f'°% : Y'°¢ — X'°¢ q proper log smooth morphism. Then the
following conditions are equivalent.

(1) fiOy ~ O.

(ii) If we denote the Stein factorization of f by Y — X' — X, then the
morphism X' — X is an isomorphism (ie., [ is geometrically con-
nected).

(iii) If we denote the log Stein factorization of f'°¢ by Y°¢ — x'log
X' then the morphism X'°¢ — X'°2 s an isomorphism (i.e., {12 is
log geometrically connected).

(iv) Y is connected, and f'°% induces a surjection mi(Y'°%) — m(X'°®).
( Concerning the log fundamental group, see Theorem B.1.)

Moreover, the above four conditions imply the following condition.

(v) Y is connected, and f induces a surjection m(Y) — 7 (X).

Proor. The equivalence of the first three conditions is immediate from
the constructions of the Stein and log Stein factorizations.

Assume the first three conditions. Then since f is surjective (by condition
(1)), geometrically connected (by condition (ii)), and proper, it follows that
Y is connected. Now let Xllog — X'°¢ be a connected ket covering, and
S ¥ — X|°% the base-change Y'°f xyus X% — X°!. Then fi is also
surjective and proper. Moreover, it follows from Proposition 1 that fi is
geometrically connected. Thus, Y| is connected. This completes the proof
that the first three conditions imply condition (iv).

Next, we show that condition (iv) implies condition (iii). Assume that
f°¢ induces a surjection m;(Y'°¢) — m;(X'°2). If we denote by Y&
X'log _ x'o¢ the log Stein factorization of f1°¢, then since Y is connected,
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and Y — X’ is surjective, X' is connected. Moreover, it follows from The-
orem 1, (i), that X"1°¢ — X°¢ is a ket covering. By condition (iv), ¥'°% x v
X'log _, ylog i also a comnected ket covering. However, this covering has a
section, hence Y'°2 x i, X'1°¢ ~ Y12 Thus, by applying the general theory
of Galois categories to Két(X'°8) and Két(Y'°2), we obtain X'°¢ ~ x'log,
(Concerning Két(X'°2), see Definition B.4, (i), also Theorem B.1.)

Finally, we show that condition (iv) implies condition (v). It is immediate
that the morphism X2 — X determined by the morphism of sheaves of
monoids Oy — .#y induces a surjection m (X logy _, 71(X). Thus, condition
(v) follows from condition (iv), the fact that 7 (X'°8) — 7;(X) is surjective, and
the existence of the commutative diagram

7.[l(Ylog) N 77,'1(X10g)

| |

m(Y) —— m((X).

REMARK 4. In the statement of Proposition 2, condition (v) does not
imply condition (iv). Indeed, let R be a strictly henselian discrete valuation
ring, K the field of fractions of R, L a tamely ramified extension of K, and
R, the integral closure of R in L. If we denote by (Spec R)'® (respectively,
(Spec R;)"°%) the log scheme obtained by equipping Spec R (respectively,
Spec R;) with the log structure defined by the closed point, then the
natural morphism (Spec R;)'°® — (Spec R)'°® satisfies condition (v) (since
71 (Spec R) = 1), but 7;((Spec R)'°¢) — 7;((Spec R)'°®) is not surjective unless
K = L (since (Spec R;)® — (Spec R)"¢ is a connected ket covering).

Next, we show the exactness of the log homotopy sequence.

THEOREM 2. Let X'°2 be a connected log regular log scheme, Y% a
connected fs log scheme, and f'°¢ : Y'°¢ — X'°2 g proper log smooth morphism.
Moreover, we assume one of conditions (i), (ii), (iii), and (iv) in Proposition 2.
Then, for any strict geometric point X'°¢ — X'°¢_ the following sequence is exact:

m(f1°8)
e

lim 7 (Y8 x e 5,°%) —— 7y (¥1°8) m (X8 —— 1.

. . e . . 1 —
Here, the projective limit is over all reduced covering points X,’* — xl°¢ and s
is induced by the natural projections Y'°% X yio )_c}log — Ylog,

Proor. Note that by condition (iii) in Proposition 2 and the connected-
ness property of the log Stein factorization, Y'°% Xy Sc/l{’g is connected for any
reduced covering point ¥°% — ¢ over %'°¢.

Next, observe that the surjectivity of m;(f1°¢) follows from condition (iv)
in Proposition 2. Moreover, the assertion that 7;(f'°%)os =1 is verified as
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follows. To prove this fact, it is enough to show that for any ket covering
X'l°g —, xlog there exists a reduced covering point %1% — X'°¢ over the strict
geometric point X'°¢ — X'°¢ sych that the ket covering

I —lo, /1 1 —lo,
(Y7 Xy X,%) Xyoe X% — Y78 X e X%

is trivial.  On the other hand, it follows immediately from Proposition B.2 that
there exists a reduced covering point X}f)g — X'°2 over the strict geometric point
xlog — xlog guch that

/1o —lo —lo, —lo,
X708 Xy X% > XF U LRSS

This completes the proof of the fact that 7;(f'°%)os = 1.

Hence it is enough to show that the kernel of 7;(f!°¢) is generated by the
image of s. By the general theory of profinite groups, it is enough to show
that for an open subgroup G of n;(Y'°?), if G contains the image of s,
then G contains the kernel of 7(f°¢). Let Y,°® — Y'°¢ be the connected
ket covering corresponding to G. Then since G contains the image of s,
there exists a reduced covering point )‘ci"g — x1°¢ such that Yllog X ylog )‘ci"g —
Y18 x yioe X% has a (ket) section. Since ¥)°* — Y'°¢ is finite and log étale, it
follows that ¥,°¢ — X'°% is proper and log smooth. Let ¥,°® — X% — X'lo
be the log Stein factorization of this morphism, and Y210g the fiber product
Y102 % g Xllog. Thus, we have a commutative diagram

Yllog Yzlog 1log

I

Y10g Ylog X]og
1 j’log ’

where the right-hand square is cartesian. Now it is enough to prove that
YI]Og — Y210g is an isomorphism. To prove this, it is enough to show the
following.

(i) Y, is connected.

(ii) Y, — Y,°® is a ket covering.

(iii) ¥, — Y,°® has rank one at some point. (We shall say that a ket
covering Y2 — X°¢ of an fs log scheme has rank one at some point
if there exists a log geometric point of X'°¢ such that, for the fiber
functor F of Két(X'?) defined by the log geometric point [cf.
Definition B.4, (ii)], the cardinality of F(Y'¢) is one.)

The first assertion follows from condition (iv) in Proposition 2, and the

second assertion follows from the fact that ¥|°® — Y'°¢ and ¥,°® — Y'°¢ are
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ket coverings and Proposition B.4. Hence, in the rest of the proof, we show
the third assertion.
By replacing the reduced covering point )‘ciog

_ 1 1 1
X8 — %% — x1°¢, where x/og X8

— xl°¢ by the composite
is a reduced covering point, if necessary,
we may assume that X X yog )‘clog splits as a disjoint union of copies of
‘]log. If we base-change the above commutative diagram by xlog X'¢ then

we obtain the following commutative diagram

n n

lo —lo; 1 =lo, 1 =lo, =lo; —10
Y% Xyioe X% — (Y1 Xyuoe X, %) U+ U (Y78 Xpoe X,7%) — X% U+ UK

t |

_l
X8

A0

1 =1 =1
Y% Xy XF — Y108 5 g X8 —

where the right-hand square is cartesian. By the general theory of Galois
categories, it is enough to show that

1 | ! .| I .|
Y% X yior X% Y1 X 1op F¥(= (Y18 x giog £1°%) Ll LU (Y198 X yioe X1°%) )

has rank one at some point.

Now Y £ X yiog x} Y1°g X yloe X, log has a (ket) section; thus, one of the
connected components of Y X yiog x}u is isomorphic to Y% x y 1o, xi €. Since
Y% — Y,°8 is a surjective ket covering,

V)% X yror 8 (Y198 X o T8) U - L (Y108 e 310%)

is surjective (cf. [12], Proposition 2.2.2). On the other hand, the number of
connected components of Yl10 X y log xig is n by the connectedness property
of the log Stein factorization ¥, — X°® — X2 Thus, Y% xyue X}

Y2l X yiox xi ¢ induces a bljeCthn between the set of connected components of
Y% X e X8 and that of ¥,% X yue X%, Since one of the connected com-
ponents of Y %8 X yloe x1 € is 1somorph1c to Y108 Xy x1 g Yllog X ylog )‘cf’g —
Y2l X yiox xig is an 1som0rph1sm on at least one connected component of
Yllog X ylog )‘c/lfg, which is isomorphic to Y% x i )‘c/ltog.
proof of the third assertion.

This completes the

PROPOSITION 3. Let k be a field, X'°¢ a log smooth proper log geomet-
rically connected fs log scheme over k, and Y'% a connected log regular log
scheme over k with the interior Uy. Let plog s X082 i, ylog s xlog (regpec-
tively, ng X2 i, Ylog  ylog) pe the 1st (respectively, 2nd) projection.
Then the following hold.
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(1) X' x; Y™¢ js connected.
(i) If Uy(k*P) # & (for example, k is perfect, and Y is locally of finite
type over k), then the natural morphism

T (Xlog X e Ylog) -7 (Xlog) X Gal(ks k) 7T1(Yl°g)
determined by p}og and péog is an isomorphism.

Proor. First, we prove assertion (i). Since Spec k has the trivial log
structure, the underlying scheme of X'°¢ x; Y'°¢ is naturally isomorphic to
X Xy Y, which is connected. Assertion (i) follows from this fact.

Next, we prove assertion (ii). By the assumption, there exists a k*P-
rational point of Uy. Thus, by Theorem 2, we obtain the following exact
sequence:

log
711(1'2%)
E—

(X8 @ k5P) —— my (X8 x Y'°¥) m (Y8 —— 1.

Therefore, we obtain a commutative diagram

1
al (ong)
_—

ﬂ](XlOg ®k ksep) P (Xlog Xk Ylog)

| |

] — 7Z|(X10g ®k ksep) — (XIOg) XGal(kscp/k) ﬂ](YlOg) —_— 7'C|(Yl°g) — 1

| | |

1 —— (X @, k*eP) —— 7y (X1o8) — Gal(k*P k) —— 1,

m(Yle) 1

where all horizontal sequences are exact. Then it follows from the injectivity
of the left-hand bottom horizontal arrow 7 (X'°8 ®, k%) — 7;(X'°%) that the
left-hand top horizontal arrow 7;(X'°¢ ®, k%P) — 71 (X8 x; Y'°%) is injective.
Thus, assertion (ii) follows from the “Five lemma”.

4. Log formal schemes and the algebraization

In this section, we define the notion of a log structure on a formal scheme
and establish a theory of algebraizations of log formal schemes. First, we
define the notion of a log structure on a locally noetherian formal scheme.

DEeriNITION 4. Let X and 9 be locally noetherian formal schemes.

(1) Let .#x be a sheaf of topological monoids on the étale site of
X. (Concerning the étale site of a locally noetherian formal scheme,
see [4], 6.1.) We shall refer to a continuous homomorphism of
sheaves of topological monoids .#x — Ox (where we regard Ox as a
sheaf of topological monoids via the monoid structure determined by
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the multiplicative structure on the sheaf of topological rings (x) as a
pre-log structure on X.

A morphism (X, #x — Ox) — (9, .4y — Oy) of locally no-
etherian formal schemes equipped with pre-log structures is defined
to be a pair (f,#) of a morphism of locally noetherian formal
schemes f: X — 9 and a continuous homomorphism / : f‘l./%g) —
My such that the following diagram commutes:

Pty —s

I

10y —— 0Ox.
via f
We shall refer to a pre-log structure o : .#x — Ox on X as a log
structure on X if the homomorphism ¢ induces an isomorphism
N (0F) = 0.

We shall refer to a locally noetherian formal scheme equipped
with a log structure as a log locally noetherian formal scheme. A
morphism of log locally noetherian formal schemes is defined as a
morphism of locally noetherian formal schemes equipped with pre-
log structures.

For simplicity, we shall use the notation ¥!°¢ to denote a log
locally noetherian formal scheme whose underlying formal scheme
is X. Then we shall denote by .#x the sheaf of monoids that
determines the log structure of X'°2. Note that by a similar way
to the way in which we regard the category of locally noetherian
schemes as a full subcategory of the category of locally noetherian
formal schemes (by regarding a scheme S as the formal scheme
obtained by the completion of S along the closed subset S of §),
we regard the category of locally noetherian schemes equipped with
log structures as a full subcategory of the category of log locally
noetherian formal schemes.

Let o : .4y — Ox be a pre-log structure on X. We shall refer to the
log structure determined by the push-out in the category of sheaves
of topological monoids on the étale site of X of

al(03) 25 0%

|

My

as the log structure associated to the pre-log structure o : My — Ox.
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Let {: X — 9 be a morphism of formal schemes, and .#Zy a log
structure on ). We shall refer to the log structure associated to the
pre-log structure f_l,ﬂey — T_I&D — Oy as the pull-back of the log
structure .y, or, alternatively, the log structure on X induced by f.

Let X'°2 be a log scheme, and F = X a closed subspace of the
underlying topological space of X. Then we shall refer to the log
formal scheme X'°¢ obtained by equipping the completion X of X
along F with the pull-back of the log structure of X'°2 as the log
completion of X'°% along F.

Let X2 be a log locally noetherian formal scheme. Then we shall
say that X'°% is an fs log locally noetherian formal scheme if étale
locally on X, there exists a discrete fs monoid P and a homomor-
phism Py — Ox (where Py is the constant sheaf on the étale site of
X determined by P) such that the log structure of X'°% is isomorphic
to the log structure associated to the homomorphism Py — Ox.
Let X2 be an fs log locally noetherian formal scheme, P a
topological monoid (respectively, a discrete fs monoid), and Py
the constant sheaf on the étale site of X determined by P. Let
Py — Oy be a continuous homomorphism such that the log structure
of X°¢ is isomorphic to the log structure associated to this homo-
morphism. Then we shall refer to this morphism Py — (x as a
chart (respectively, an fs chart) of X'°¢. By the definition of an fs
log locally noetherian formal scheme, an fs chart always exists étale
locally on X°¢.

Let X — X be a geometric point of X (i.e., X = Spec k for some
separably closed field k). We shall say that an fs chart Py — Ox
is clean at X — X if the composite P — .#x ; — (Mx/0%); is an
isomorphism. It follows immediately from a similar argument to
the argument used to prove the existence of a clean chart for an fs
log scheme (cf. Definition B.1, (ii)) that a clean chart of X'°¢ always
exists over an étale neighborhood of any given geometric point of X.
Let X'°¢ and 9'°% be fs log locally noetherian formal schemes, and
jlog . xloe _ 9le 3 morphism of log locally noetherian formal
schemes. Let Px — Ox be an fs chart of X', Qg — Oy an fs
chart of 9", and QO — P a morphism of monoids such that the
diagram

i'0y = 0x —— Px

L

'rl@‘g) — O
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commutes. Then we shall refer to the collection of data consisting
of Px — Ox, Qy — Oy, and Q — P as an fs chart of the morphism
f°2. Moreover, in the above data, for a geometric point ¥ — X, if
Py — Ox (respectively, Qg — Oy) is a clean chart at X — X (respec-
tively, at the geometric point of 9) determined by the geometric
point ¥ — X), then we shall refer to such a chart as a clean chart of
the morphism §'°¢ at x — X.

LemMmA 5. Let A be an adic noetherian ring, I an ideal of definition of A,
and [ : X — Spec A a proper morphism. If a subspace F of the underlying
topological space of X contains the underlying topological space of X ® 4 (A/I)
and is stable under generization, then F coincides with the underlying topological
space of X.

ProoF. Assume that F does not coincide with the underlying topological
space of X (and that X is non-empty). Then there exists an element x of
X\F. Since F is stable under generization, for any element a of F, there exists
an open neighborhood U, of ¢ in X such that x does not belong to U,. Thus,
the open set U &f Uae 7 Ua of the underlying topological space of X contains
the underlying topological space of X ®,(A4/I), and x does not belong to
U. Tt thus follows from the properness of f that f(X\U) is a non-empty
closed subset of the underlying topological space of Spec 4 and does not
intersect the underlying topological space of Spec(4/I). However, since A
is an adic noetherian ring, Spec(A4/I) contains all closed points of Spec 4.
Thus, there exists no such set; hence we obtain a contradiction.

LEMMA 6. Let
A — A’

|

B—— B

be a commutative diagram of commutative rings with unity. Suppose that the
following conditions hold.

(1) The morphism A — B is faithfully flat.

(ii) The morphisms A — A’ and B — B’ are injective. [Let us regard A

(respectively, B) as a subring of A’ (respectively, B').]

(iii) The natural morphism B® 4 A’ — B’ is injective.

Then the natural morphism from A to the set-theoretic fiber product of
A/

|

B—— B

is surjective.
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ProOOF. By condition (iii), it is enough to show the assertion in the case
where B' = B®,A'. Thus, assume that B = B®,A’. Leta’e A" and be B
be elements such that the images in B’ coincide. Now let us denote by ¢ the
morphism of A-modules

ADA— A
(a1,a2) — a; + a' - ay,

and by I the image of ¢. Then we obtain inclusions 4 = I = A’ (cf. condition
(ii)). On the other hand, the fact that the images of a’€ A’ and he B in
B’ coincide implies that the image of idz®,¢: B®B— B’ is BS B/, ie.,
B=B®,1. Thus,

0=(B®,I)/B=B®,(I/A).

Since 4 — B is faithfully flat (cf. condition (i)), I/4 =0, ie., a’ € A. This
completes the proof of Lemma 6.

LEMMA 7. Let R be a henselian excellent reduced local ring, R the
completion of R with respect to its maximal ideal m of R, and R — R the
natural morphism. Then if a Kummer morphism P — Q of fs monoids (cf.
Definition B.3) fits into a commutative diagram

P . R

|

Q—)R

%0
of monoids, then the morphism ag: Q — R factors through R.

ProOF. Let ¢ be an element of Q. Our claim is that the image op(q) of
g via og is in R. Let py,...,p, = R be the associated primes of R. Then by
the fact that R is reduced, the natural morphism R — R/p, @ ---@® R/p, is
injective. We denote by K; the field of fractions of R/p;, Now since R is
excellent, R/p; is excellent.  Therefore, by [3], Corollaire 18.9.2, the completion
(R/p;)(~ R/p; ®r R) of R/p; with respect to its maximal ideal is an integral
domain. We denote by K; the field of fractions of (R/p;). Thus, we obtain
a commutative diagram

R—— R/p® @OR/p, — KD DK,

| | |

R—— R/p)® - ®R/p,) — K@ @K,

where all morphisms are injective.
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Now the assumption on P — Q implies that op(¢g)" € R. Therefore, the
image of ogp(g)” in K; is in K;. On the other hand, by the excellentness of
R/p; and [3], Corollaire 18.9.3, K; is algebraically closed in Kj; it thus follows
that the image of up(g) in K; is in K;. Thus, by Lemma 6, ap(q) € R. This
completes the proof of Lemma 7.

DEFINITION 5. Let {°2: %% — 9!¢ be a morphism of fs log locally
noetherian formal schemes.

(i) We shall refer to §'°¢ : X!°¢ — 9% a5 a swrictly Kummer morphism if
for any geometric point X — X of X, there exists a positive integer
n which is invertible in Oy ; such that the morphism of monoids
(My[0y)yz) — (Mx]0%); induced by i'°¢ is injective, and, moreover,
the image of this morphism contains n - (.#x/0%);, where the geo-
metric point j(¥) — 9 is the geometric point determined by the
composite X — X — 9.

(i) We shall refer to f°¢: X1°¢ — 9°¢ a5 an exact morphism if for any
geometric point ¥ — X of X, the morphism of monoids (.Zy/0y); )
— (Mx/0%); induced by f'° is exact, ie., for ae (.My/Oy)fF,, if
the image of a in ((Mx/0%);)® satisfies that ae (Mx/0%); =
((Mx/0%);)®, then ae (My/Oy)ys).-

LEMMA 8. Let X'°% and 9'°% be fs log locally noetherian formal schemes,
and §'°% : X'°¢ — 9'° 4 serictly Kummer morphism.  Then strict étale locally on
X'°2 and on Y%, the morphism {°¢ admits a clean chart.

Proor. It follows immediately from definition that any Kummer mor-
phisms of fs monoids are exact. Thus, the assertion follows from a similar
argument to the argument used in the proof of [7], Corollary 2.3, together with
the fact that the order of the stalk, which is a finite group, of the relative
characteristic sheaf of {'°¢ at any geometric point X — X of X is invertible in
Ox ; (cf. also [7], Lemma 2.2).

The main result in this section is the following theorem.

THEOREM 3. Let A be an adic noetherian ring, and I an ideal of definition
of A. Let §'°¢ be an fs log scheme whose underlying scheme S is the spectrum
of A, X'°¢ a noetherian excellent fs log scheme, X'°¢ — S'°2 g morphism that
is separated and of finite type, and X' (respectively, S'°%) the log comple-
tion of X'°¢ (respectively, S©°¢) along X /1% X ®, (A/I) (respectively, ST
Spec(A/I)). Let Gywe be the category of reduced fs log schemes that are finite
and strictly Kummer over X'°2 and proper over S'%, and Gye the category of
reduced fs log formal schemes that are finite and strictly Kummer over X'°¢ and
proper over S'¢.
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Then the functor determined by the operation of taking the log completion
along the fiber over S/I induces a natural equivalence between the category €y
and the category Gy

Proor. Note that if Y'°2 — X'°2 is an object of the category %y, then
the excellentness of X implies that the completion ¥ of ¥ along Y ® , (4/I)
is reduced. Therefore, the functor is well-defined. Moreover, it follows from
definition that any morphisms in %y.e and %y are strictly Kummer.

First, we prove that the functor is fully faithful. Let Y,°¢ — X'°¢ and
Y,%8 — X2 be objects of the category Gyu.

Let flog gloz . y/°¢ _ y)°% be morphisms in the category @y such that
flog = glog| where f1°¢ glog; ¥1°¢ _, ¥1°¢ are the morphisms induced by /o
and ¢'°¢, respectively. Then since f'°¢ = §'¢, we obtain / =g. Thus, by [2],
Théoréme 5.4.1, we obtain /' =¢g. To see that f1°¢ = g2 we take a geometric
point y, — Y, of Y; whose image lies on Y1/Id:ef Y1 ®4(A4/I). Then it
follows from the assumption that f log g% and a similar argument to the
argument used in the proof of Proposition B.9 (note that Oy, j; — @yl.;]
is faithfully flat, where Oy, j 1is the completion of Oy, ; with respect to
10y, ;) that the homomorphism .#y, j, — .#y, 5 induced by f'°¢ (where
we denote by y, — Y, the geometric point determined by the composite
yy— 1 = Y>) coincides with the homomorphism .#y, 5, — .y, 5 induced
by ¢'°¢. Therefore, f!°¢ coincides with ¢'°¢ on an étale neighborhood of
the geometric point y; — Y. Moreover, by Lemma 5, this implies that f'°2
coincides with ¢'°¢ on Yllog. This completes the proof that the functor in
question is faithful.

Next, let {2 : f/llog — f’zlog be a morphism in the category %y... By (2],
Théoréme 5.4.1, there exists a unique morphism f : Y} — Y, such that f
coincides with the underlying morphism f of formal schemes of {'°2. Note that
it follows from the proof of the faithfulness of the functor in question that it is
enough to show that an extension of f to a morphism of log schemes exists
¢étale locally on Yllog. Moreover, by Lemma 5, it is enough to show that for
any geometric point of Y; whose image lies on Y;/I, there exists such an
extension of f on an étale neighborhood of the geometric point. To see this,
let y, — Y; be a geometric point whose image lies on Y,/I, j, — Y, the
geometric point determined by the composite ¥, — Y; — Y, and

P2 — Pl

l l

0y - s (Ov - s YOy -
0Y2‘Yz (CYI«,.VI )(QYIJ)I
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a clean chart of the natural morphism (Spf (Eyljl)log — Y210g at p; — Spf Oy, 5,
where Oy, j, is the completion of Uy, ; with respect to its maximal ideal, and
(Spf @Yl‘ yl)log is the log formal scheme obtained by equipping Spf (Dyl’ 7, with
the log structure induced by the log structure of f’llog. (Indeed, by Lemma
8, the morphism (Spf Oy, 5,)'% — Y,°® admits a clean chart.) Then since
Py — Py is Kummer, by Lemma 7, the morphism P; — Oy, ; factors through
Oy, 5,; moreover, the resulting morphism P; — Oy, ; is a chart at y; — Y of

the log structure of Y,°. In particular, the diagram

P, —— P

I

0 - 5 _
OYz,}’z (QYI-,M

is a chart of a morphism from an étale neighborhood of 7, — Y, to ¥,% for
which the morphism f’llog — Yzlog determined by this morphism coincides with
f°2. This completes the proof that the functor in question is full.

Finally, we prove that the functor is essentially surjective. Let glog _, yloz
be an object of %yue. By [2], Théoréme 5.4.1 and Proposition 5.4.4, there
exists a unique noetherian scheme Y that is finite over X, and proper over S
such that the completion ¥ of Y along Y /I Ty® 4(4/I) is isomorphic to
9). (Note that then the reducedness of 9) implies that Y is reduced.) Now it
follows from the proof of the full faithfulness of the functor in question that it
is enough to show that an fs log structure of the desired type exists étale locally
on Y. Moreover, by Lemma 5, it is enough to show that for any geometric
point of Y for which the image lies on Y /I, there exists such an fs log structure
on an étale neighborhood of the geometric point.

By replacing X'°¢ by the log scheme obtained by equipping Y with the log
structure induced by the log structure of X'°2 via the morphism Y — X, we
may assume that the morphism Y — X is the identity morphism of X; thus, we
may assume that the underlying morphism of formal schemes of Y'°¢ — X'°g jg
the identity morphism of X. Let X — X be a geometric point of X whose
image lies on X/I. Then we obtain a diagram

Spf @X,Sc Em— Spec @X.fc

l l

X — X

)

where (53@ ¢ is the completion of Oy ; with respect to its maximal ideal. Now
we obtain a clean chart of the morphism (Spf Oy, 2)1°8 = Xxlog (where the log
structure of (Spf Oy ;) is induced by the log structure of ¥'°2)
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P — 0

L]

(OX‘)Z' —_— (9)(‘)3.

Thus, by Lemma 7, the chart Q — @ x,x factors through Oy ;. It thus follows
that the log structure of Y'°¢ can be descended to an étale neighborhood of
the geometric point ¥ — X.

By applying Theorem 3, we obtain the following corollary. Note that the
corollary generalizes [16], Théoréme 2.2, (a). (In [16], Théoréme 2.2, (a), the
underlying scheme of the base log scheme is assumed to be the spectrum of a
complete discrete valuation ring.)

COROLLARY 1. Let S'¢ be an fs log scheme whose underlying scheme S
is the spectrum of a noetherian complete local ring A whose maximal ideal
(respectively, residue field) we denote by m (respectively, k), X'°¢ a log regular
log scheme, and X'°¢ — S'¢ g proper morphism. Then the strict closed im-
mersion XOlog &l ylog Xgoe 1°¢ — X2 induces a natural equivalence of the
category of ket coverings over X' and the category of ket coverings over
Xolog, where s'°% is the log scheme obtained by equipping Spec k with the log
structure induced by the log structure of S'°% via the closed immersion s — S
induced by the natural projection A — A/m ~k. In particular, if X% is

connected, then X% is also connected, and m (X, °%) = m(X'°2).

PrROOF. We may assume that X'°¢ is connected. Moreover, since the
assertion is independent of the log structure of S'°¢, we may assume that the
log structure of S'°¢ is trivial.

First, we prove that the functor is fully faithful. Let Y2 — X'°2 be a
connected ket covering. Then if we denote by ¥ — S’ — S the Stein factoriza-
tion of the underlying morphism of the composite Y'°¢ — X2 — S then the
connectedness of Y and the surjectivity of ¥ — S’ implies that S’ is con-
nected. Since S is the spectrum of the complete ring and S’ — S is finite, it
thus follows that Y xg s, hence also Y'°¢ xg s, is connected. Therefore, by the
general theory of Galois categories, the functor in question is fully faithful.

Next, we prove that the functor is essentially surjective. Let Yolog — Xolog
be a connected ket covering. Then it follows from [17], Théoréme 0.1 that
there exists a unique connected ket covering Y°& — Xxlog & ylog w o S, such
that Y1°¢ xg s ~ Y% where S, & Spec(4/m"™1). We shall denote by 9
the noetherian formal scheme obtained by the system {Y,},. Now I claim
that ¥ admits an fs log structure, and there exists a natural isomorphism
Pt xS, ~ Ynl"g, where 92 is the resulting log formal scheme. Indeed, this
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claim is verified as follows. Let X — X be a geometric point whose image lies
on Xp, and (Spec R — X, P — R) a clean chart at the geometric point X — X
such that for any connected component Zy** = Spec(R/mR)"E x i ¥,
(where Spec(R/ mR)lOg is the log scheme obtained by equipping Spec(R/ mIO{) with
the log structure induced by the log structure of X'°2), the ket covering
obtained as the composite

Z%% < Spec(R/mR)"E X s ¥, — Spec(R/mR)'"

1
X,
admits a chart

P — 0

|

R/MR —— (g,

and, moreover, this chart induces an isomorphism (R/mR) ®zp Z[Q] = (g,
(cf. Proposition B.2). Then it follows from [17], Théoréme 0.1, together with
the fact that the ket coverings over Spec(R/mR)log obtained by the ket
coverings

Spec((R/m"R) ®zp Z[Q))'*® — Spec(R/m"R)"°®
and

Y°¢ — Spec(R/m"R)"¢

xloe ¥y

Z°¢ <, Spec(R/m"R)"% x
(where

7%t = Spec(R/m"R)"°® X e Y08

is the connected component of Spec(R/m”R) log o Yle¢ corresponding to the
connected component Z® < Spec(R/mR)"¢ x Xmgn Y,°®) are isomorphic that
Spec((R/m"R) ®@zp) Z[0])'¢ is isomorphic to OZ,LOg; in particular, the log
scheme Z'°¢ admits a chart Q — )z, for any n. Thus, we obtain a morphism
0—R ®, Oy (where R is the completion of R with respect to mR < R, and
X is the m-adic completion of X), i.e., we obtain an fs log structure on an
étale neighborhood (Spf R) ®9 — 9 of 9 such that (Spf R ®1x9)"% x5 S,
is isomorphic to (Spec R)log Xy.oe Y12 Since these log structures on étale
neighborhoods of 9 descend to a log structure of ¥ by the construction, we
obtain a log structure of ) of the desired type. This completes the proof of
the above claim.

We denote by X'°2 the log completion of X'°¢ along X;. Now it follows

from the properness of X — S and the fact that A4 is complete that X is
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excellent. Now since Yolog —>Xol°g is strictly Kummer, 9"°% — X'°¢ is also
strictly Kummer; moreover, since Y, — X, is finite, 9 — X is also finite. On
the other hand, the reducedness of 9)'°¢ is verified as follows. Let y— 9 be
a geometric point of ), and X — X the geometric point of X determined by
7 — 9. Then by the construction of the log structure of 9'°¢, there exists a
clean chart (Spec R — X, P — R) at the geometric point X — X such that the
restriction of the morphism (Spf R)'°¢ x o 9'°¢ — (Spf R)"¢ to the connected
component in which the image of y — 9 lies is isomorphic to the morphism
which is of the form

Spf(R ®zp Z[Q])"** — (Spf R)',

where Spf(R ®z(p Z[0))"® (respectively, (Spf R)™®) is the log formal scheme
obtained by equipping Spf ER ®zp Z[Q]) (respectively, Spf R) with the log
structure induced by Q — R®gyp Z[Q] (respectively, P — R), and P — Q is
a Kummer morphism of fs monoids such that n-Q < Im(P — Q) for some
integer n invertible in R, and, moreover, the chart Q — fe@Z[P] Z]Q] is clean
at y — 9 (cf. the proof of the above claim). Let R be the completion of the
strict henselization of R at the geometric point of X determined by ¥ — X
with respect to its maximal ideal, and (Spec R) ¢ the log scheme obtained by
equipping Spec R with the log structure induced by the morphism P — R.
Then since X'°¢ is log regular, it follows from the definition of log regularity
that (Spec I~{) log js log regular at the geometric point of Spec R determined by
X — X; thus, it follows from Proposition A.4 that (Spec ﬁ)log is log regular.
Therefore, since the natural morphism Spec(R ®Z[P]Z[Q])l°g — (Spec R)"°¢
is a ket covering by Proposition B.2, it follows from Proposition A.5
that SNpec(R ®Z[P]Z[Q])1°g is also log regular. Thus, by Proposition A.3,
Spec(R ®z,p Z[Q]) is normal; in particular, ?) is normal, hence reduced.

Therefore, by Theorem 3, there exists a unique finite strictly Kummer fs
log scheme Y'°2 over X'°¢ whose log completion along Y xgs is naturally
isomorphic to 92, The assertion that the morphism Y02 — X'°2 js a ket
covering is verified as follows. Since the property of being a ket covering
is strict étale local on X'°¢, it follows from Lemma 9 below that it is enough
to show that the base-change of Y'°¢ — X'°2 via the natural morphism
(Spec O X, g)log — X'°2 is a ket covering, where X — X is the geometric point
determined by a geometric point ¥ — Y whose image lies on Yy, O x,% 1s the
completion of Uy ; with respect to its maximal ideal my ;, and (Spec 0 Xﬁx)log
is the log scheme obtained by equipping Spec @ x,& with the log structure
induced by the log structure of X'°¢. On the other hand, it follows from
the proof of the above claim that there exist compatible charts with respect
to n
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P — 0

| |

@X,)}/Tlln(ﬁx_j _— (9){];/111"(9)/’)7

(where P — Q is a morphism of clean monoids such that n- Q < Im(P — Q)
for some integer » invertible in Oy ;) which induce compatible isomorphisms
with respect to n

Spec(@y7f/m”(0y7;)1°g ~ Spec((Ox,:/m"Ox ;) ®zp| Z[Q])log;
in particular, we obtain compatible isomorphisms with respect to n
SPCC(@Y,ﬁ/m;',x@Y,ﬁ)log =~ Spec(((ﬁ“x,g/m}?i) ®zp) Z[Q})log-
By taking the inductive limits, we obtain an isomorphism
Spec(Oy 5 ®o, . @X,;C)log ~ Spec(@x,x ®zp Z[Q])log-

Therefore, it follows from Proposition B.2 that Y'°¢ — X°¢ is a ket covering.
This completes the proof of Corollary 1.

Lemma 9. Let X'°¢ be an fs log scheme whose underlying scheme is the
spectrum of a strictly henselian local ring A, X'°% the log scheme obtained by
equipping the spectrum of the completion A of A with respect to its maximal
ideal with the log structure induced by the log structure of X'°2, Y% an f5 log
scheme, and Y'°¢ — X'°¢ ¢ finite strictly Kummer morphism. Then if Y'°¢ e
Y108 % pie X192 — X192 s g ket covering, then the morphism Y'°¢ — X'°¢ js g ket
covering.

Proor. It is immediate that we may assume that Y is connected; thus,
assume that Y is connected. Let B=TI(Y,Cy), and

P—— 0

|

A —— B

a clean chart of the morphism Y2 — X°¢ (cf. Lemma 8). Then we obtain a
morphism Y '°8 — Spec(4 ®zp) Z[0])"°¢ over X'°¢ where Spec(4 ®zp) Z[0])"8
is the log scheme obtained by equipping Spec(4 ®zp Z[Q]) with the log
structure induced by the natural morphism Q — A ®gzpZ[Q]. Now by
the assumption on the morphism Y'°¢ — X'°¢  together with the proof of
Proposition B.2, the morphism Y2 — Spec(A ®Z[p]Z[Q])l°g is an isomor-
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phism; thus, it follows from the faithful flatness of A4 — A that Y& —
Spec(4 ®zp| Z[Q])10g is an isomorphism. Therefore, the assertion follows
from Proposition B.2.

5. Morphisms of type N®”

In this section, we define the notion of a morphism of type N®" and
consider fundamental properties of such a morphism.

DEFINITION 6. Let X'°2 and Y'°¢ be fs log schemes, fl°¢: Ylog — xlog
morphism of log schemes and n a natural number. Then we shall refer to
flog . ylog _, xlog as a morphism of type N®" if étale locally on X, f'°2 is a
morphism obtained as a base-change of the natural morphism (Spec Z)log —
Spec Z, where (Spec Z)log is the log scheme obtained by equipping Spec Z with
the log structure induced by the chart

N®" 7
(my, ..., my,) — QmMttm,

REMARK 5. A typical example of a morphism of type N is as follows.
Let X be a regular scheme, and D < X an irreducible divisor of X such that
the closed immersion D <— X is regular immersion (of codimension 1). We
denote by X'°¢ the log scheme obtained by equipping X with the log structure
associated to the divisor D, and by D'°2 the log scheme obtained by equipping
D with the log structure induced by the log structure of X'°¢ via D — X.
Then the morphism D'°¢ — D induced by the natural inclusion Op — Mp is
of type N.

REMARK 6. In this section, we often use the notation X'°¢ — Xg¢ to
denote a morphism of type N®”.  Moreover, we often identify the underlying
scheme of X'°¢ with X via the underlying morphism of schemes of the
morphism of type N®”.

REMARK 7. Let fog: xlog _ xlog be 3 morphism of type N®”, X — X a
geometric point, and o : P — Oy a clean chart of X'°¢ at the geometric point

X — X. Then by the definition of morphisms of type N®”  there exists a chart
of fl°¢ which is of the form

P —— 0% ppNer

| l

Oy —— Oy,
f*=id
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where the top horizontal arrow is the morphism given by mapping p to
(p,0,...,0), and the right-hand vertical arrow is the morphism given by
mapping (p,my,...,m,) to a(p) - 0™+ -+,
Now it is immediate that there exists a splitting Q — P @ (Q/P); more-
over, it is canonical. Indeed, this is verified as follows. The quotient Q/P of
0 by P is isomorphic to N®” non-?ztlhnonically. We denote by ¢; the element of
Q/P that corresponds to (0,..., 1,...,0) under the non-canonical isomor-
phism Q/P ~N®" Then, by the existence of the isomorphism Q — P @ N®",
there exists a unique element e; of Q such that;
e; modulo P is ¢;,
e; is an irreducible element of Q, i.e., if g1 + ¢» = e; (Where ¢; € Q), then
q1=0 or ¢ =0.

Thus, the section

o/P—Q

e e

of the natural projection Q — Q/P induces a canonical splitting Q ~ P @ (Q/P).
Moreover, the image of e; via the morphism Q — Oy which appears in the
above chart is 0.

Lemma 10. A morphism of type N®" is stable under base-change in the
category of fs log schemes.

Proor. This follows immediately from the definition of morphisms of
type N®”.

DEeriNITION 7. Let X be a scheme, and .#; — Oy and .#, — Ox fs log
structures on X. Let X, llog (respectively, leog) be the log scheme obtained by
equipping X with the log structure .#, — Oy (respectively, .#, — Ox). Then
the natural morphism X llog Xx leog — X induces an isomorphism between the
underlying schemes of X llog Xx leog and X. We shall denote by .# + 4> —
Oy the log structure of X, llog Xx leog on X. Note that by the definition, the
log structure .#, + .#, on X is the direct sum of .#, and .#, in the category

of fs log structures on X.

REMARK 8.

(1) In the notation of Definition 7, for any geometric point ¥ — X, there
exist an étale neighborhood U — X of X — X, fs monoids P; and
P;, and morphisms of monoids «; : P — Oy and o, : P, — Oy such
that o) : Py — Oy (respectively, o, : P, — Oy) is an fs chart of .
(respectively, .#,) at x — X. Then there exists an fs chart of the log
structure 4, + #>, — Oy at X — X that is of the form
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Pi® P, — Oy
(p1, p2) = o1 (p1) - 02(p2)-

In particular, (M) + 4b)/Oy ~ (M1 ]0%) @ (M) OF).

(ii) In the notation of Definition 7, for any morphism of schemes
[ Y =X, [+ b)) = f*(A) + f5(AMr) (wWhere f* denotes
the pull-back of log structures, not of sheaves).

(iii) Let X be a regular scheme, and D=3 ", D; = X a divisor with
normal crossings. If we denote by .# (D) (respectively, .#(D;)) the
log structure of X defined by the divisor with normal crossings D
(respectively, D), then .# (D) =>.", .4 (D).

(iV) Clearly, (<ﬂ1 + .ﬂz) + M = M+ (ﬂz + %3).

REMARK 9. Let X' be an fs log scheme, and f'og: x'¢ _ xlog 5
morphism of type N®”. Then we have a diagram

O, —— My —— My]O

| |

Oy —— My —— Mx/0Ox

| J

%X/ﬂz\’ — (gf'loga

where % is the quotient of .4y /Uy by the subsheaf .#x/Uy. Then, by the
definition of a morphism of type N®”, %y1e 1s locally constant, and the stalk at
any geometric point of X is non-canonically isomorphic to N®”. (Indeed, this
follows from the existence of the chart in Remark 7.) Moreover, by Remark
7, the sheaf .#y/Oy admits a canonical splitting (Mx[Ox) @ Grios.

Now the group Aut(N®") is isomorphic to the symmetric group on n
letters, hence, in particular, is finite. (Indeed, this follows from the fact
that any automorphism of N®” preserves the irreducible elements of N®”,
together with ;Lge fact that the irreducible elements of N®” are the e¢;’s [where
e;=(0,...,0, 1,0,...,0)].) Since e is locally constant, and the stalk at
any geometric point of X is isomorphic to N®” it thus follows that there exists
a finite étale covering X' — X such that the pull-back of %p.. to X' is
constant. (Indeed, this follows from the fact that since the sheaf of sets of
isomorphisms between %ji: and Ng}a” on the étale site of X is locally constant,
and has finite stalks, there exists a finite étale covering X’ — X such that the
restriction of the sheaf to X’ is constant.) Moreover, since Aut(N) is trivial,
if n=1, then 6. is always constant.
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On the other hand, in the diagram

0 0

0 —— O ——  ME  —— M)y —— 0

0 —— O ——  MF  —— POy —— 0

%igp/'ﬂ)%p ~ (ggp

flog

0 0

)

all vertical and horizontal sequences are exact. Now the sheaf #5 is locally

f‘log

constant, and the stalk at any geometric point is non-canonically isomorphic

to Z$".
(A" 0%) @ B,

By Remark 7, the sheaf .#{"/0; admits a canonical splitting
e

DEerFINITION 8. Let X!°¢ be a connected fs log scheme.

(1)

(i)

(iii)

(iv)

Let flog. x'o¢ _, xlog be a morphism of type N®". Then we shall
refer to f1°2 as a morphism of constant type N®" if @y (in the
notation of Remark 9) is constant. Let f'°¢ be a morphism of
constant type N®". Then we shall refer to an isomorphism
T:N$" = G as a trivialization of f1°¢. Note that, by the portion
of Remark 9 concerning the case “n = 1", any morphism of type N
is of constant type N; moreover, such a morphism has a canonical
trivialization.

For pairs (f/°,7,) (i =1,2), where £°¢: X/°¢ — X'°¢ is a morphism
of constant type N®” and 7; is a trivialization of filog, we shall say
that (f,°%,7) is equivalent to (f,°, ) if there exists an isomorphism
of fs log schemes ¢'°2 : Xllog — X21°g over X'°¢ such that the trivial-
ization of f;° induced by the isomorphism (g'°%)* : .#y, = .#y, and
75 coincides with 7.

We shall denote by My the set of pairs (f1°2,7), where f'°¢ is a
morphism of constant type N®” to X'°2 and 7 is a trivialization of
f'°¢ modulo the equivalence defined in (ii).

We shall denote by : the morphism My — Pic(X)®" defined as
follows.
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Let (f'2: X' — X'°2 7) be an element of Myw. Then the
middle horizontal sequence in the second diagram in Remark 9
determines a connecting morphism

HQ (X, 4 | 03) — Hy (X, 0).

Now since one has a canonical splitting .#/05 ~ (MF/05) @
%% and a natural isomorphism HJ (X, 0}) ~ Pic(X), we obtain a
morphism

HY (X, .48 | 0%) ® HE (X, %58,) — Pic(X).

ct 'flog
i-th o
For the element ¢; = (0,..., 1,...,0) of Hél(ZA@") =79 let us
denote by .%; the image of e; via the composite

via 8P

Hgt(X’ Z)C?n) — Hgt(X’ (gfglgg)

- Hgt(Xv 'ﬂ)%p/(p)*() @ Hgt(Xa (gfglgg) - PiC(X)a

where the second arrow is x +— (0,x), and the third arrow is as
above. Then we shall write 1(f'°¢,7) = (&,..., %,).

We shall denote by x the morphism Pic(X)®" — My defined as
follows.

Let (Z,...,%,) be an element of Pic(X)®". We denote by V;
the geometric line bundle defined by the invertible sheaf f,@(*l) (ie.,
the spectrum of the symmetric algebra of %, over X), by p;: V; = X
the natural morphism, by s; : X — V; the 0-section of p;, by p: V e
Vi Xx -+ Xx V, — X the natural morphism, and by s: X — V' the
section (sy,...,s,) of p. Let V!¢ be the log scheme obtained by
equipping V' with the log structure .#y =p*dlx + .#(Dy)+- -+
A (D) (cf. Definition 7), where D; is the divisor on V" defined by the
following cartesian diagram

p—— V

D
J/ prl

x 2y,

and #(D;) is a log structure defined by the divisor D;. (See
Remark 10 below.) Then we obtain a natural morphism of log
schemes p'og : 1l°¢ — x'°¢ whose underlying morphism of schemes is
p. If we denote by X'°¢ the log scheme obtained by equipping X
with the log structure s*.#y, then it is immediate that the composite
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1 log 3 1rlog P ylog : ®n log :
flog X8 s pieg — xog is of type N, where s'°¢ is the strict
morphism whose underlying morphism of schemes is s. On the
other hand, since

My = §*(p"lly + M(Dy) + - - M(D,))
= My + s*M(Dy) + -+ s*M(D,),
it follows that
G = (s"(D))]O3) ® - @ ("M (D,)/03)

(cf. Remark 8, (i)). Now, by the portion of Remark 9 concerning
the case “n=1", s*"#(D;)/0y is constant, i.e., there exists a
canonical isomorphism t; : Ny — s*#(D;)/0%. Thus, %y 18 CON-
stant. Let us define a trivialization 7 of f1°¢ = plog o slog by

T

N§" = (s"A(D1)/Oy) © -+~ @ (s"4 (D) Oy)
(my,...,my) — (1(my),...,te(my)).

Then we shall write x(%,...,%,) = (p'°¢ o 5"°2 7).

REMARK 10. For a positive Cartier divisor D on a scheme X, we denote
by .#(D) the log structure on X that is defined as follows.
Let us denote by %p € He!t(X , Gy) the G,-torsor sheaf on (the étale site of )
X that is determined by —D, and by %}, € Hélt(X ,Gp,) the Gy-torsor sheaf on
X that is obtained by applying a “‘change of structure of group” to ¥, via the
morphism
G, — Gy,
f=r
Write .# (D) =|],.x %). Then the natural morphisms %} x 9} — %7 de-
termine a natural structure of sheaf of monoids on .#(D)’. Moreover, the
composite ¥p — Oy (—D) — Oy (the first inclusion arises from the fact that
the invertible sheaf determined by the G, -torsor sheaf %p is naturally
isomorphic to Oy(—D)) induces a homomorphism .#(D)" — Oy of sheaves
of monoids. Then we define the log structure .#(D) as the log structure
associated to the above pre-log structure .#(D)" — Oy.
Note that if X is regular, and D is a smooth divisor, then this log structure
A (D) coincides with the log structure defined in [§8], 1.5, (1).

REMARK 11. Let X'¢ be a connected fs log scheme, f'°¢: x'og — xlog
a morphism of constant type N®”, and 7:N%" = %y a trivialization. We
write 1(f1°8,7) = (A,...,%,). If we denote by %; the subsheaf of .#y defined
by the following cartesian diagram
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g,j _— 0®{ei.X}

| |

zﬂz( e (%X/(f;, ’i) (%X/@;) @(gflog
(where {e; x} is the subsheaf of N¢” whose sections correspond to e; =

i-th T
(0,...,1,...,0)eN®" % %p.:), then %; is a Gy,-torsor sheaf on X. More-
over, it is a tautology that the invertible sheaf determined by the G,,-torsor
sheaf ¥; is naturally isomorphic to %.

LEMMA 11. Let X' be a connected fs log scheme, f1°2: X8 — xlog 4
morphism of type N®".  Then the following hold.

(i) There exists a unique morphism g'°¢ : é’bg — X of type N®" and a
unique morphism X'°% — X o2 such that the resulting morphism X'°% —
/:Yl"g Xy X'°¢ is an isomorphism, i.e., My = My + M.

(i) Assume, moreover, that f'°¢ is of constant type. Then the morphism
gloe X ot _, X (obtained in assertion (i)) is also of constant type.
Let t© be a trivialization of ¢'°%. Then there exist morphisms
groe : X;'°¢ — X of type N (1 <i<n), whose canonical trivialization
(see Definition 8, (1)) we denote by t,, such that the following hold.
(1) The morphism X'°¢ — X factors through g\°¢ : X;'¢ — X, and the

resulting morphism o
Xlog N Xl log Xy -+ Xy anog

is an isomorphism, i.e., My = My + 3L, My,
(2) The composite o

11®-@1, via(1)
Ne” Cx @+ D G G,1oe

coincides with t.
1
(3) 19" 1) = (g%, 71), - -, 1(g0% W)

Proor. First, we prove assertion (i). By Remark 9, we have a canonical
section Gz — .4y /CUy. We define the sheaf of monoids .#x by the following
cartesian diagram: -

My —— G

My —— My )0,

Then since the inclusion Oy — .#x factors through .#y, the composite
My — My — Oy (where the second morphism .#y — Uy is the log structure
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of X l°g) is a log structure on X; moreover, the injection .#y — .4y induces
the morphism X'°¢ — X log(where X log s the log scheme obtained by equip-
ping X with the log structure .#y — Ox). On the other hand, it follows from
the fact that the stalk of %y at any geometric point of X is isomorphic to
N®" together with the fact that the image of ¢; via the morphism Q — ( is
0 in the notation of Remark 7 that the morphism X'°¢ — X induced by the

natural inclusion Oy — .#x is of type N®  Now, by construction and the
fact that f'°¢ is of type N®”, the resulting morphism X'°¢ — X082 x, xlog jg
an isomorphism. B

Next, we prove assertion (ii). Let us denote by .#; the subsheaf of .#Zx
defined by the following cartesian diagram N

,ﬂi E— OG')NX

| |

My —— (My |0y —— (Mx|03) @ Cyos ——)(Mx|O3) DNT",
where the right-hand vertical arrow is

0@ Ny — (My]0y) ®NY"
(0,my) — (0,m - €f,X)~

Then the composite .#; — .4y — Oy is a log structure. Moreover, if we de-
note by &k’g the log scheme obtained by equipping X with the log structure
AM; — Ox and by gl°¢ : X;'°¢ — X the morphism determined by the inclusion
0% — M, then gl°% satisfies conditions (1), (2), and (3) in the statement of
Lemma 11, (ii).

THEOREM 4. Let X'°2 be a connected fs log scheme. Then 1 is a bijection.
The inverse of 1 is k.

ProorF. By Lemma 11, (i), the morphism My — My, induced by the
morphism X'°¢ — X (determined by the natural inclusion O} — .Zx) is a
bijection. Therefore, we may assume that the log structure of X'°¢ is trivial.
Moreover, by Lemma 11, (ii), we may assume n = 1.

First, we prove that x o7 is the identity morphism. Let f'o¢: X' — X
be a morphism of type N. If we denote by ¥ the G,,-torsor sheaf defined in
Remark 11, then it is a tautology that the restriction to X of the G,,-torsor
sheaf on V' that corresponds to the invertible sheaf ¢y (—X) (where we regard
X as a Cartier divisor on V via the 0-section X — V) is naturally isomorphic
to the G,,-torsor sheaf that corresponds to the conormal sheaf of X in
V (=1(f'®)), i.e., 4. Therefore, the pull-back to X of the log structure on
7 associated to the divisor X (cf. Remark 10) is naturally isomorphic to .Zy.
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Next, we prove that rox is the identity morphism. Let ¥ be an
invertible sheaf on X. If we denote by ¥ the G,,-torsor sheaf that corresponds
to &, then it is a tautology that the restriction to X of the G,,-torsor sheaf
that corresponds to the invertible sheaf ¢y (—X) (where we regard X as a
Cartier divisor on V' via the 0-section X — V') is naturally isomorphic to the
G,,-torsor sheaf that corresponds to the conormal sheaf of X in V (= %), i.e.,
%. Thus, the assertion follows.

REMARK 12. In the notation of Remark 5, the invertible sheaf on D
which corresponds to the morphism D'°¢ — D of type N is the conormal sheaf
%p/x of D in X by the definition of .

DEFINITION 9. Let X'°2 be a connected fs log scheme, f'o¢: x'os —, xlog
a morphism of constant type N®", 7:N$" 5 @ a trivialization of f1°¢,
and 1(f'°¢, 1) = (&,... %,). We shall denote by 7;: P; — X the P'-bundle
associated to the locally free sheaf % @ Oy, by s:X — P; (respectively,
s : X — P;) the section of 7; induced by the projection %; @ Oy — Oy
(respectively, % @ Oy — %) (see Remark 13 below), by 7 : P def Py Xy Xy
P, — X the natural morphism, and by s”: X — P the section (s),...,s%) of
n.  We shall denote by P'°¢ the log scheme obtained by equipping P with the
log structure .#p ety + M(DY) + -+ M(DY) + M(DYF) + -+ M(DF),
where D! (respectively, D) is the divisor on P defined by the following
cartesian diagram

(respectively,
D) —— P Dy — P
I R T
X — P; X LN P,‘),

and .#(D?) (respectively, .4 (D)) is the log structure defined by the divisor
D? (respectively, D). Then we obtain a natural morphism of log schemes
nlog . plog . xlog whose underlying morphism of schemes is 7; moreover, by
Theorem 4, the log scheme obtained by equipping X with the log structure

. . . . A,O log log
(s°)*p is isomorphic to X'°¢ and the composite X log 007 plog ™, ylog

is flo¢ where (so)IOg is the strict morphism whose underlying morphism of
schemes is s°. We shall refer to #'°2: Pl°¢ — x1°¢ ag the log G"-torsor
associated to (f'°%,7) or, alternatively, to (Z,....%,). Note that n'°¢ is pro-
jective and log smooth.

REMARK 13. Let & be a locally free sheaf of rank n on a scheme X,
V' — X the geometric vector bundle associated to &, and P — X (respectively,
P’ — X) the P"-bundle (respectively, the P"~!-bundle) associated to the locally
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free sheaf &Y @ Oy (respectively, &) (where &Y = #om(&,Cx)), and P' — P
the closed immersion over X determined by the projection &Y @ Oy — &.
Then V is naturally isomorphic to the complement of P’ in P.

Indeed, it follows immediately from construction that P\P' — X is a
vector bundle of rank n over X. Moreover, for an open subscheme U — X of
X, a section of (P\P')|;, — U corresponds to the isomorphism class of the
following data.

An invertible sheaf ¥ on U.
A sugjection n: 68|, ® Oy — &£ such that the composite Oy —
&y ® Oy = £ does not vanish on U. (We denote by se I'(U, %)
the section of ¥ determined by the above composite Oy — Y|, ®
Oy > &)
It is immediate that then Oy — % is an isomorphism, and if we denote by
¢u(s) the section of I'(U, &) determined by the composite 67|, — 67|, @
Oy = & 2 Oy for the above data, then the assignment

(Zn: 6"y @ Oy — L) = ¢y(s)

determines a bijection between the set of sections of (P\P')|, — U and
I'(U,é|,); therefore, P\P' — X is naturally isomorphic to V' — X. More-
over, by the above correspondence, 0e I'(X,&) corresponds to the pair
(Ox, 8" @ Ox 22 0y).

The main result of this section is the following theorem.

THEOREM 5. Let X'°2 be a locally noetherian connected fs log scheme,
flog s xlog — xlo¢ g morphism of constant type N®", 7 : N§" = @pe a trivial-
ization of f1°%, and 7'°% : P°¢ — X1°2 the log G"-torsor associated to (f'°8, 7).
Then (so)log:X log _, plog induces a natural equivalence between the Galois
category of ket coverings of P'°¢ and the Galois category of ket coverings of

X2 e m((s°)'°%) is an isomorphism.

ProoF. (Step 1) If X is the spectrum of a field k, and the log structure
of X'¢ is trivial, then m((s°)'%) is an isomorphism.
Since the horizontal sequences in the diagram

1 — ﬂl(Xlog ®kksep) N nl()_(log) - Gal(ksep/k) G |

l | |

I —— m(PE@ k) —— m(P) —— Gal(k*®/k) —— 1

are exact, by base-changing, we may assume that k is separably closed. More-
over, by Proposition 3, together with Proposition B.5, we may assume n = 1.
Then it follows from Lemma 12, (ii), below that 7;((s°)'¢) is an isomorphism.
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(Step 2) If X is the spectrum of a strictly henselian local ring A whose residue

field is k, and the log structure of X' is trivial, then m((s°)'%) is injective.
Let us write ¥ & Spec k = X for the closed subscheme of X determined

by the natural surjection 4 — k. Then we have a commutative diagram

log def log def
X

= Plogxyx ——

xloe = xlexyx —— P x
Xlog Plog .

(50"

Now it follows immediately from the proof of Lemma 12 that any ket cover-
ing of P\°® extends to a ket covering of P'¢; thus, m;(P\%) — m;(P¢) is
an injection. Therefore, the assertion follows from the fact that 7y (x'°%) —
7 (X'"%) and 7("°¢) — 7;(PX®) are isomorphisms (cf. Proposition B.6 and

Step 1).

(Step 3) If X is the spectrum of a separably closed field k, then nl((so)log) is
surjective.

We denote by o: M — k a clean chart of X'°¢. We write Rdéfk[[M]],
and S & Spec R. Let S'°¢ be the log scheme obtained by equipping S with the
log structure associated to the chart given by the natural morphism M — R.

Then, by Proposition A2, S"¢ is log regular. Write (S8 — Slg r5) %

k(0s,...,0s), and denote by P;"g — S the log G)"-torsor associated to
(Gs,...,0s), and by (s°)¢ the closed immersion S'°¢ — P, We denote

by K the field of fractions of R, and by Spec K — S!°¢ the strict morphism
whose underlying morphism corresponds to the natural inclusion R — K.
Then we obtain a commutative diagram

ylog (s)' plos
! 1
§ og PSOE

,‘\ (so)lsog I

log

YO
(Spec K)'°¢ &l glog (e Spec K O PE =] ?g X gioe Spec K,

where the two squares are cartesian.
Now, in the above diagram, the following hold.
(i) m((Spec K)'¢) — 7 (PR®) is an isomorphism. (This follows from
Step 1.)
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(i) 7 (PRE) — 7 (PLE) is surjective. (This follows from the fact that if
we denote by 7,  the generic point of Pg [note that since Sz is log
regular, P;Og is also log regular], then 7 (17p,) — nl(P?g) is surjective,
together with the fact that 7, — Pg’g factors through P%.)

(i) 7 (S"°8) — 7 (PLE) is surjective. (This follows from (i) and (ii).)

(iv) 7 (X'°8) — 7;(S"8) is an isomorphism. (This follows from Propo-
sition B.6.)

(v) m(P"*®) — m (P}gog) is an isomorphism. (This follows from Corol-
lary 1 to Theorem 3.)

Therefore, by (iii), (iv), and (v), 7;((s°)'°%) is surjective.

(Step 4) If X is the spectrum of a strictly henselian local ring A whose residue
field is k, then m;((s°)'°%) is an isomorphism.

We denote by X &ef Spec k = X the closed subscheme of X determined by
the natural surjection 4 — k, and by %'°¢ the log scheme obtained by equipping
% with the log structure induced by the log structure of X'°2. First, we prove
that 7;((s°)'%) is surjective. Let Q' — P2 be a connected ket covering of
Pt If we denote by Q — X’ — X the Stein factorization of the composite
Q — P — X, then since Q is connected, and Q — X' is surjective, we obtain
that X’ is connected. Now since X is the spectrum of a strictly henselian local
ring, and X" is finite over X, X’ Xy X, hence also Q xy X, is connected. Thus,
by base-changing by x°¢ — X'°2 we may assume that X is the spectrum of a
separably closed field. Then the surjectivity in question follows from Step 3.

Next, we prove that 7;((s°)'°%) is injective. Now it follows from Lemma
11 that there exists a morphism X'°¢ — X of constant type N®" with trivial-
ization 7’ such that the pair obtained as the base-change of (X' — X, 7')
via the natural morphism X'°¢ — X is isomorphic to (X' — X'0¢ 7). Let
P8 — X be the log G:"-torsor associated to the pair (X'%¢ — X,7’), and
(s9)1°% . x'o¢ — P°® the morphism “(s°)'°# for the log G-torsor P\ — X.
Thus, we obtain a commutative diagram

1 —— Ker(o) —— nl(XIOg) LN nl(gl(’g) — 1

l m((fo)'”g)l lﬂl((f?)'”g)

Ker(oy) —— m(PPg) —2 7,(P}%)

)
| J J
| — Ker(a) — m(X'®) — m(X) — L

It follows from Proposition B.5 that the top sequence is exact; moreover, it
follows from Step 2 that m((s?)log) is injective. On the other hand it follows
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immediately from Proposition B.5 that the composite Ker(a;) — Ker(oy) —
Ker(as) is an isomorphism; in particular, Ker(o;) — Ker(o,) is injective. Now
the assertion that 7;((s°)'°%) is injective follows from the injectivity of
w1 ((s9)'°%) and Ker(o;) — Ker(a).

(Step 5) The general case.

We show that the functor Két(P'°2) — Két(X'°#) induced by the mor-
phism (s°)'¢ : x'°¢ —, plog js an equivalence. First, we prove that the functor
is fully faithful. It is immediate that the functor is faithful (indeed, this follows
from the existence of a log geometric point of P'°¢ that factors through
X'°2 and the general theory of Galois categories). Thus, it is enough to show
that the functor is full. Let O, — Pt and Q)% — P be ket coverings
over Pl°g and glog: yee & gloe | ylos _, yledd ploe | ylog  Then,
by Step 4, there exists a strict étale surjection X'°¢ — X'°2 gych that
the morphism g/°¢ ; ¥/ & yloe s, xrlox , y/loe & yloe L xoe gyer
X'log & ylog o . X7 obtained as the base-change of gl°t by X'z xlo
extends to a morphism §/°¢ : Q[°¢ & glog ¢\ yloe _, glloe & plog - yloe
over Ploe & plog ., ¥7loe (Indeed, by Step 4, for any geometric point
of X, there exists an étale neighborhood U — X of the geometric point such
that if we denote by U!°¢ — X!°¢ the strict morphism whose underlying
morphism of schemes is the morphism U — X, then the base-change of
g'¢ by U — x'°¢ extends to a morphism Q) Xy U'°¢ — Q;Og X yiog U%,
Thus, if we denote by X’'°¢ the disjoint union of such U'“®’s, then
X'loe —, xlog gatisfies the above condition.) Let us denote by q}og (respec-
tively, qéog) the 1st (respectively, 2nd) projection P'°¢ x pio; P12 — P2 Now
it follows immediately from the fact that the functor Két(P''¢ x pi; P'108) —
Két(X "¢ x yioe X9 induced by the morphism (s°)'°% is faithful that the

following diagram commutes

log * ~/log qiog*gllog log* ~/log
9 1 T 4 2

l l

| nog BT l
og * og 12 og * og
p) 1 — 9 2

log *

where ¢;°®" denotes the pull-back of each object over P'°¢ to an object over

P92 5 pioe P02 via q}og, and the vertical arrows are the isomorphisms that
arise from the fact that Q"% — P'°¢ is induced by Q°® — P, Thus, by
Proposition B.8, §''°¢ extends to a morphism §'°¢ : Qiog — éog. Since the
base-change of §'°¢ by X'°¢ — Plog js gl we conclude that §°¢ is an

extension of gl°g.
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Next, we prove that the functor is essentially surjective. Let Y'og — xloe
be a ket covering over X'°¢. Then, by Step 4, there exists a strict étale

- : def
surjection X'1°2 — X'o2 gych that the ket covering Y''°2 = y'og x \\,, X'log

x'loe & yrlog o\ ¥7log extends to a ket covering Q'1°¢ — prlog &I plog
X''°¢ Let us denote by qiog (respectively, qiog) the 1st (respectively, 2nd)
projection P12 x pi,, P18 — P'lo2 - Now it follows from the fact that the
functor in question is full that the isomorphism over X''°¢ (that arises from
the fact that Y'°¢ — X'°¢ is induced by Y'°¢ — X'°¢) extends to an iso-
morphism qiog*Q”Og = qé“g*Q”Og; moreover, the fact that the functor in
question is faithful implies that this isomorphism qiog*Q”Og = q;"g*Q’log sat-
isfies the cocycle condition for being a descent datum. Thus, by Proposition
B.8, the ket covering Q¢ — P'l°¢ extends to a ket covering Q'°¢ — Plog,
Moreover, it follows from the construction of Q2 that Q'€ x pi; X'°2 is
naturally isomorphic to Y'°2 over X'°g,

Lemma 12. Let k be a separably closed field, whose (not necessarily
positive) characteristic we denote by p, (P,},)10g the log scheme obtained by
equipping the projective line P,l with the log structure associated to the divisor
{0,c0} € P}, U< P} the interior of (P,i)log (so U=G,), and (Spec k)¢ —
(P,l)log the strict morphism for which the image of the underlying morphism
of schemes is {0} = P.. Then the following hold.

(i) The morphism m(U) — 7 ((P))'°%) is an isomorphism.

(ii) The morphism m((Spec k)'%) — 7, ((P})'°%) is an isomorphism.

Proor. First, we prove assertion (i). If we denote by # the generic point
of P}, then it follows from the fact that the natural morphism 7 — (P})"¢
induces a surjection 7;(7) — 7, ((P})"), together with the fact that the na-
tural morphism 5 — (P})'°® factors through U, that z;(U) — m;((P})"°%) is
surjective. Moreover, since any connected finite étale covering over U is of
the form

U=G,,—G,=U
f"_>f'l‘l

for some positive integer n that is prime to p, it is easily seen that any finite
étale covering over U extends to a ket covering over (P})°¢; thus, 7, (U) —
m1((P})'°%) is injective. Therefore, 7;(U) — 7;((P})'%) is an isomorphism.

Next, we prove assertion (ii). We denote by (A})'°¢ — (P})"°¢ the strict
morphism whose underlying morphism of schemes is the natural open immer-
sion A, — P} (where we regard A as P}\{oo}). By assertion (i), the
restriction to (A})'°® of any connected ket covering over (P})'°® is of the
form (A})°® — (A})°® whose underlying morphism of schemes is the mor-
phism determined by the morphism
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klt] — k[

Z'_> ZJ1

for some positive integer n that is prime to p. It thus follows immediately
from this fact and Proposition B.2 that 7;((Spec k)'°¢) — 7 ((P})'®) is an
isomorphism.

The following corollary follows immediately from Theorems 2 and 5.

COROLLARY 2. Let X2 be a connected log regular log scheme, and
flog . xloe _, xlog y morphism of constant type N®".  Then for any strict geo-
metric point X°¢ — X102 of X2 the following sequence is exact:

m(f)
_

lim 71 (X' X o %,%) —— 71 (X °%) m (X8 —— 1.

e xloe and s

Here the projective limit is over all reduced covering points )_cio
is induced by the natural projections X'°% Xy )_ckog — X' In particular, by

means of a natural isomorphism
lim 7y (X% x e %°%) = 27 (1)®"
obtained in Remark 14 below, we obtain the following exact sequence

(S8
——

200 (1) s gy (xor) Ly (xler) —— 1

)

where p is the characteristic of the residue field of the image of the underlying
morphism of schemes of the strict geometric point X'°¢ — X'°¢ and Z'7)(1) is
the pro-prime to p quotient of Z(1).

REMARK 14. Let k be a separably closed field, whose (not necessarily
positive) characteristic we denote by p, and S'°¢ an fs log scheme whose
underlying scheme S is the spectrum of k. Let flog:s'e  glog pe g
morphism of constant type N®” and 7 a trivialization of f'°2.

Let P — k, O — k be respective clean charts of S'°¢, S'°¢ given in Remark
7. Then it follows from Proposition B.5 that the log fundamental group
71 (S%2) (respectively, 7,(S'°2)) is naturally isomorphic to Hom(P&,Z")(1))
(respectively, Hom(Q#, Z(?)(1))), where Z?")(1) is the maximal pro-prime to
p quotient of Z(1). Moreover, the morphism 7;(S"°¢) — 7;(5'¢) induced by
f1°2 is the morphism

Hom(0#®,Z")(1)) — Hom(P%,Z")(1))

induced by P — Q in Remark 7. In particular, the kernel of 7;(S"%) —
71(S8'2) is naturally isomorphic to Hom(Q% /P Z()(1)). Now the trivial-
ization 7 induces a natural isomorphism Z®" = Q% /P Therefore, we
obtain a natural isomorphism
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(lim 701 ("8 x g0 S;)) = Ker(m (8'°%) — m1 (%)) = Z)(1)®",
where the projective limit is over all reduced covering points Siog — Slog,

PROPOSITION 4.  Let X'°% be a connected log regular log scheme over a field
k, whose (not necessarily positive) characteristic we denote by p, Uy < X the
interior of X'°%, and 4, ..., %, invertible sheaves on X. Let n'°% : P2 — X'log
be the log G, -torsor associated to (&,...,%,). If the condition (%) below

is satisfied, then, in the following exact sequence obtained in Corollary 2 to
Theorem 5

~ my (n'°8)
—_

(ZP)(1)®" o) Tim 7y (P'°F X yioe X3°8) — 7 (P1°8) 5y (X°8) —— 1,

the first morphism is injective.

(%) For any integer i such that 1 < i < n and any positive integer N that is
prime to p, there exists a covering V — Uy tamely ramified along X\Uy and
an invertible sheaf A" such that NN = |,

Proor. First, observe that it is enough to prove the assertion in the case
where the image of the underlying morphism of schemes of the strict geo-
metric point X¥'°¢ — X1°¢ lies on Uy. Indeed, this follows from the fact that a
surjective endomorphism of Z”)(1)®" is an automorphism. Assume that the
image of the underlying morphism of schemes of the strict geometric point
xlog  xlog lies on Uy.

If we denote by P}Og — X2 the log G,,-torsor associated to % (1 <i < n),
then there exists a natural isomorphism P'"°¢ ;Piog X ytos  ++ Xy P18 over
Xlog Thus, if the assertion in the case where n =1 is verified, then the

composite

: [T e
71 (P8 Xy ) —— [ [ m1(PI% % yos ) —— 1 (P8 i )

v=1

al (pr/)
—

- (Plog) nl(P/‘log)

is injective (respectively, zero) if i=j (respectively, if i #j). Therefore, to
complete the proof of Proposition 4, we may assume that n=1. Write
2 #. Let N be a positive integer that is prime to p. Note that it is
enough to show that the N-th (cyclic) ket covering over P'°¢ x yi; X (cf. Lemma
12) lifts to a ket covering Q'°¢ — P!°¢ over P to complete the proof of
Proposition 4.

We denote by Ql,?g — V the log G,,-torsor associated to ./ (in the
condition (*)), and by Qp — P Xy V the morphism determined by the fol-
lowing composite:
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N — NN S 2|,
[ fen

Then it follows from the definition of a log G,,-torsor associated to an
invertible sheaf that the morphism Q) — P xy V' extends to a morphism of

log schemes Qlog P2 x 1, V; thus, we obtain the following commutative
diagram
O X piog Up —— Up
e Pl V —— Plfx, Uy — Plog
Vv — Uy —— Xlog,

where Up is the interior of P'°2, and the three squares are cartesian. It fol-
lows immediately from the construction of Qlog that the log structure of
QV X poe Up 1s trivial, and that the top horizontal arrow Qllfg X prog Up =
Oy xp Up — Up is finite étale.

Now I claim that the normalization Q of Up in Qp Xp Up is tamely
ramified over P along P\Up. Indeed, this claim may be verified as follows.
Every point a of P\Up with dim Op , =1 is either

(i) the generic point of a (reduced) divisor on P determined by s° or s*

(see Definition 9), o
(i) the generic point of a (reduced) divisor on P which is the pull-back of
a reduced divisor on X whose generic point x is a point of X\Uy
with dim Oy , = 1.
Thus, it is easily verified that the claim holds. Therefore, by the log purity
theorem (cf. Remark B.2), the covering extends to a ket covering Q'°¢ — Plog,
Moreover, by the construction of the morphism Qp — P xy V, the restriction
of the ket covering Q"¢ X yie ¥ — P'°% X y1; X to any of the connected compo-
nents of Q'°¢ x v, X is the N-th (cyclic) covering over P2 x yi X.

DerINITION 10. In the notation of Proposition 4, we shall refer to the
extension of 7;(X'°¢) by Z7)(1)®"

i (n'°8)
_—

1 —— lim 7 (P X yuoe 5,°%) —— 71 (P"%) a(xE) 1

as the extension of m(X'2) by ZP)(1)®" associated to (&L, ..., %,). More
generally, let X' be a set of prime numbers which does not contain p, and N
the kernel of the composite of the natural isomorphism
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. 1 Zlogy ~ Z(p’ ®n
lim 7y (P'°F x e X,%) = ZP)(1)

and the surjection Z?)(1)®" — Z®)(1)®" induced by the natural projection
Z7)(1) — Z¥)(1). Then we shall refer to the extension of 7j(X'°2) by
Z(E)(1)®"

via nl(nl"g)

1 ——— lim 7y (P8 Xy X°%)/N —— my(P'°%)/N (X8 —— 1

O associated

naturally obtained from the extension of 7z;(X'°2) by Z(#)(1)
J(1)®" associated to

to (LA,...,%,) as the extension of m (X'°¢) by Z*)(1)
(gla"wgn)'

REMARK 15. If we denote by & (m(Uyx)) (respectively, (Ux),,) the clas-
sifying site of 7;(Uy) (i.e., the site defined by considering the category of finite
sets equipped with a continuous action of n;(Uy) [and coverings given by
surjections of such sets]) (respectively, the étale site of Uy), then the natural
morphism of sites

(Ux)g — & (m(Ux))
induces a natural morphism
H" (71 (Ux), 277 (1)) — H4(Ux, 277 (1)).

If the morphism H?(z;(Uy), Z")(1)) — HZ(Uyx,Z?)(1)) is an isomorphism,
then, by a similar argument to the argument used in the proof of [I11],
Lemma 4.3, any invertible sheaf on X satisfies the condition (%) in Proposition
3. Moreover, if the morphism

H? (m (X1°%), 27 (1)) — H(m (Ux), 217 (1))

induced by the natural surjection 7;(Uy) — 71 (X'°8) is an isomorphism, then,
by a similar argument to the argument used in the proof of [11], Lemma 4.4,
the extension of 7;(X°¢) associated to % is isomorphic to the extension of
m(X'°¢) by Z)(1) determined by the (étale-theoretic) first Chern class (cf.
[11], Definition 4.1) of the invertible sheaf ¥ via the isomorphisms

H? (m (X°%), Z17) (1)) = H(m (Ux), Z7)(1)) = Hg(Ux, Z(1)).

(Now, by means of the natural bijection in [13], Theorem 1.2.5, we identify
the set of equivalence classes of extensions of 7j(X'2) by Z(*)(1) with
H?(7;(X'°¢), Z(P)(1)).) Moreover, then the extension of 7;(X'°%) associated
to (#,...,%,) is isomorphic to the fiber product of the extensions of 7;(X°%)
by Z”)(1) determined by the (étale-theoretic) first Chern classes of the
invertible sheaves %; (1 <i <n).
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Appendix A. Etale analogues of the results in [9]
In this section, we prove étale analogues of the results in [9].

DEerINITION A.1 (cf. [9], Definition 2.1). Let X'°¢ be a locally noetherian
fs log scheme.

(1) Let X — X be a geometric point of X, and Iy 3 Oy ; the ideal of
Oy x generated by the image of .#y :\Uy ;. Then we shall say that
X'°¢ is log regular at X — X if the following hold.
(1) Oy x/Ix 5 is a regular local ring.
(2) dim(COy ) = dim(Ox 5/Ix 5) + rankz (43" /O ).

(i) We shall say that X'°¢ is Jog regular if for any x e X, there exists
a geometric point X — X for which the image of the underlying
morphism of schemes is x € X such that X'°¢ is log regular at ¥ — X.

PROPOSITION A.l. Let X'°¢ U2 be locally noetherian fs log schemes,
Ue — X' g strict étale morphism, and X — U a geometric point of U. Then
X2 js log regular at the geometric point obtained as the composite X — U — X
if and only if U'¢ is log regular at X — U.

Proor. This follows from the definition of log regularity.

PrOPOSITION A.2 (cf. [9], Theorem 3.2, (1)). Let X'°¢ be a locally
noetherian fs log scheme, X — X a geometric point of X, and P — My a clean
chart of X'°¢ at X — X (cf. Definition B.1, (ii)). Assume that Ox /Iy is a
regular local ring, and the natural surjection Oy 5z — k(X) admits a section. Let
t,...,t- € Ox 5 be elements whose images in Oy 3/Ix z form a regular system
of parameters of the regular local ring Oy 3/Iy . Then X log js log regular at
X — X if and only if the surjection

kD[P, .., T — Ox s

given by T;—t; (i=1,...,r) is an isomorphism.

Proor. This follows from a similar argument to the argument used in the
proof of [9], Theorem 3.2, (1).

ProposITION A.3 (cf. [9], Theorem 4.1). A log regular log scheme is
Cohen-Macaulay and normal.

Proor. This follows from Proposition A.l; [9], Theorem 4.1, and [14],
Lemma 2.3.

PROPOSITION A.4 (cf. [9], Proposition 7.1). Let X'°¢ be a locally noetherian
5 log scheme, and X, 7 — X geometric points of X such that the image of X — X
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is contained in the closure of the image of ¥ — X. Then if X'°¢ is log regular
at X — X, then X'°¢ is log regular at y — X.

Proor. This follows from Proposition A.1; [9], Proposition 7.1, and [14],
Lemma 2.3.

PROPOSITION A.5 (cf. [9], Theorem 8.2). Let X'°2, Y'°2 pe fs log schemes,
and flog: yloe  xlo¢ g log smooth morphism. Then if X2 is log regular,
then Y'°2 is also log reqular.

Proor. This follows from Proposition A.l; [9], Theorem 8.2; [8], Prop-
osition 3.8, and [14], Lemma 2.3.

PrROPOSITION A.6 (cf. [9], Theorem 11.6). Let X'°¢ be a log regular log
scheme, and Uy = X'°% the interior of X'°%. Then the log structure of X'°¢ is
isomorphic to the log structure which is of the form

@Xﬂ(UX;)X)*(Q(*]X <—>(9)(.

Proor. This follows from [14], Proposition 2.6.

Appendix B. Existence of log fundamental groups

In this section, we prove the well-known fact that the category of ket
coverings of a connected fs log scheme is a Galois category; this implies, in
particular, the existence of log fundamental groups. The assertion that the
category of ket coverings is Galois essentially follows from the assertion in the
case where the underlying scheme of the base log scheme is the spectrum of
a strictly henselian local ring (cf. Proposition B.5), together with the descent
theory for strict étale surjections (cf. Proposition B.8).

DEerFiNITION B.1.

(i) Let P be a monoid. We shall say that P is clean if P is an fs monoid
and P* = {0} (where P* is the set of invertible elements of P).

(i) Let X'°¢ be an fs log scheme, ¥ — X a geometric point of X, and
P — Oy an fs chart of X'¢. Then we shall say that the chart
P — Oy is clean at X — X if the composite P — .#y y — (Mx/0%);
is an isomorphism. Note that a clean chart of X'°¢ always exists
over an étale neighborhood of any given geometric point of X. (See
the discussion following [10], Definition 1.3.)

DrrmniTION B.2.  Let P be a torsion-free fs monoid. We shall denote by
(1/n)P the monoid {p e P ®zQ|np e Im(P — P¥® ®,Q)}. Note that the
natural inclusion P — P& ®, Q factors through (1/m)P. Thus, we always
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assume that (1/n)P is a P-monoid via the natural inclusion P — (1/n)P.
Moreover, the morphism

(1/n)P — (1/n)P
pr—=np

factors through P (< (1/n)P). On the other hand, the resulting morphism
(1/n)P — P is an isomorphism. We shall denote by (1/n), the inverse iso-
morphism P — (1/n)P.

DermNiTION B.3. Let f: P — Q be a morphism of monoids. Then we
shall say that f is Kummer if f is injective, and there exists a positive integer
n such that n- Q < Im(f).

ProposiTION B.1.

(i) Let P, Q be clean monoids. Then for any Kummer morphism
f:P— Q, there exists a positive integer n such that the natural
inclusion P — (1/n)P uniquely factors as a composite PLQi
(1/n)P, and, moreover, g is Kummer such that n-(1/n)P < Im(g).

(ii) Let P be a clean monoid, n a natural number, and G < ((1/n)P)*" / P&
a subgroup of ((1/n)P)¥ /P&,  Then the submonoid Q < (1/n)P ob-
tained by pulling back the subgroup G < ((1/n)P)¥ /P& via the
natural morphism (1/n)P — ((1/n)P)® /P is fs.

Proor. First, we prove assertion (i). Since f is Kummer, there exists a
positive integer n such that n-Q < Im(f). Thus, it follows from the injec-
tivity of f that for any ¢ € O, there exists a unique element p, € P such that
ng = f(pqy). Now define g: Q — (1/n)P by q— (1/n)p(p,). It is immediate
that g is a homomorphism of monoids and go f(p) =p for any pe P.
Moreover, for any (1/n)p(p)e (1/n)P, n((1/n)p(p)) =p=go f(p); hence
n((1/n)p(p)) € Im(g). It remains to show that g is injective. If g(q) = g(q’),
then ng = ng’. Since Q is integral and torsion-free, ¢ = ¢’; thus, ¢ is injective.

Next, we prove assertion (ii). Since Q is a submonoid of (1/n)P, Q is
integral; moreover, since P is finitely generated, and G is a finite group, Q
is finitely generated. Thus, it remains to show that Q is saturated. To prove
the saturatedness of Q, it follows from the saturatedness of (1/m)P that it is
enough to show that the natural inclusion Q — ((1/n)P)N Q% (in ((1/n)P)*)
is surjective. On the other hand, the surjectivity of the inclusion Q —
((1/n)P)N Q% follows from the construction of Q, together with the fact
that the natural morphism Q — G factors through Q — Q#P.

PROPOSITION B.2. Let X'°¢ be an fs log scheme whose underlying scheme
X is the spectrum of a strictly henselian local ring A. Let us fix a global
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clean chart P — Oy. Then any connected ket covering of X'°2 is of the form
(X ®zp| Z[0])°8 — X't where P — Q is a Kummer morphism of fs monoids
such that n-Q < Im(P — Q) for some integer n invertible on X, and the
log structure of (X ®Z[p]Z[Q])1°g is induced by the natural morphism Q —
A®gzp Z[Q].  Conversely, if a morphism of log schemes Yy'log — X2 has this
form, then it is a ket covering.

Proor. The last assertion is immediate from the definition of ket cover-
ing. Let Y — X'¢ be a connected ket covering. Then since ¥ — X is
finite, Y is affine. Let us write ¥ = Spec B. Since 4 — B is finite, and Y is
connected, B is a strictly henselian local ring. By [8], Theorem 3.5, there exists
an fs chart Q — B of Y'°¢ and a chart

T
B

of Y2 — xlog guch that the following conditions hold.

(i) P — Q is injective, and the cokernel of P — Q%P is finite and of

order n invertible in A.

(ii) Spec B — Spec(4 ®zp Z[Q]) is étale.

(i) P— Q/(Q — B)"'(B*) is Kummer.
Since Z[P] — Z[Q] is finite, 4 ®gp Z[Q] is a strictly henselian local ring.
Thus, since the morphism 4 ®z,p Z[Q] — B is finite and étale, this morphism
is an isomorphism. Moreover, since it is immediate that the chart Q —
A®ygzp Z[Q] ~ B is clean (ie., (Q— B)"'(B*) = {0}), it follows from con-
ditions (i) and (iii) that P — Q is Kummer and satisfies n- Q < Im(P — Q).

N N

—_—

ProrosITION B.3. A ket covering is an open and closed map. In partic-
ular, a non-empty ket covering over a connected fs log scheme is a surjection.

Proor. This follows from Proposition B.2 and [6], Proposition 3.2.

PROPOSITION B.4. Let X'°¢, Y'°2 and Z'¢ be fs log schemes, and
flog . xlog _, ylog  gud  glog . ylog  zlog ynorphisms. Then if ¢'°¢ and
g% o f18 are ket coverings, then so is f°%.

Proor. The finiteness of f is classical; moreover, the log étaleness of f1°¢
is formally showed as in the non-log case. On the other hand, the Kummer-
ness of f1°¢ follows from the definition of the Kummerness.

DEFINITION B.4. Let X'°2 be an fs log scheme, and %2 — X'°2 a log
geometric point of X2,
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(i) We shall denote by Két(X'°2) the category of ket coverings of X'°¢
and morphisms over X'°¢. Note that it follows from Proposition B.4
that any morphisms in the category Két(X'°¢) are ket coverings.

(i) We shall denote by Fioe the functor defined by

Két(X'°¢) — (The category of finite sets)
Ylog — X108 s Hom yio (X1°8, Y1o8).

(Note that it follows from Proposition B.2 that the set
Hom yie (X2, Y1°%) is finite.)

PROPOSITION B.5.  Let X'°¢ be an fs log scheme whose underlying scheme X
is the spectrum of a strictly henselian local ring A whose residue field we denote
by k, p the characteristic of k, o.: P — A a (global) clean chart of X'°¢,

P < lim (1/n)P,

where the inductive limit is over all natural numbers n prime to p, X'°¢ a log
scheme obtained by equipping x &ef Spec k with the log structure induced by the
morphism P — k given by mapping a € P\{0} to 0 € k, and 5'°¢ — X'°¢ the log
geometric point obtained by the natural morphisms A — k and P — P. Then
the functor Fgo induces an equivalence between the category Két(X'°2) and the
category of finite sets equipped with continuous actions of the profinite group

7 Hom(P# /P, 4*) ~ lim Hom(((1/n)P)*/P®, 4") ~ Hom(P®, Z(1)(k)),

where the projective limit is over all natural numbers n prime to p. In par-
ticular, the pair (Két(X'°%), Fye) forms a Galois category with a fundamental
Sfunctor.

ProoOF. First, we verify that 7 acts on the finite set Fyo:(Y'°%) for a ket
covering Y'°¢ — Xxlog  Let Y, 11°g be a connected component of Y!°¢. Then it
follows from Proposition B.2 that ¥,° is of the form Spec(4 ®zp) Z[0])"¢,
where P — Q is a Kummer morphism of fs monoids which satisfies the
condition in the statement of Proposition B.2. Now it is easily verified that
the group Autxlog(Yllog) is naturally isomorphic to Hom(Q#® /P& A4*). Since
Autyi(Y{%) naturally acts on Fyu:(Y,°®), and the inclusion Q < P obtained
by Proposition B.1, (i), induces a continuous morphism 7 — Hom(Q®% /P& A*),
we obtain an action of 7 on F)"Clog(Yllog); in particular, we obtain an action of
7 on Fae(Y08).

Next, we prove the full faithfulness of the functor in question. Let
Y% — X2 be a connected ket covering of X'°¢ (where i=1,2). Then it
follows from Proposition B.2 that Y;°¢ is of the form Spec(A4 ®zp) Z[0]]) ",
where P — Q; is a Kummer morphism of fs monoids which satisfies the
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condition in the statement of Proposition B.2. Our claim is that the natural
morphism

Hom s (Y%, Y2°8) — Homy (Fyue(¥,°%), Faoe(Y2°%))

is bijective. Now it is immediate that if O, ¢ Q) (in P), then the both sides
are empty; thus, we may assume that O, = Q;. Then it is easily verified that
the both sides are Hom(Q5? /P&, A*)-torsors. Thus, it follows that the above
morphism is bijective.

Finally, we prove the essential surjectivity of the functor in question. Let
S be a finite set equipped with a continuous action of n. By taking a
“connected component” of S (i.e., the orbit of an element of S), we may
assume that the action on S is transitive. Let sp €S, and Stab(sy) =7 the
stabilizer of sp. Then since = is abelian, the subgroup Stab(sy)) =7 is
normal;, moreover, the morphism 7 — S given by mapping ¢ to g(sy) deter-
mines a bijection 7/Stab(sy) — S of (n/Stab(s))-torsors. Let Q = P be the
submonoid obtained by pulling back the subgroup Hom(z/Stab(sy), 4*) =
Hom(z, A*) ~ P /P via P — P% /P2 Then it follows from the continuity
of the action of 7= on S that there exists a natural number » which is prime
to p such that Q = (1/n)P (= P). Moreover, by the construction of Q,
together with Proposition B.1, (ii), the monoid Q is an fs monoid; on the
other hand, since Q < (1/n)P, the natural morphism P — Q satisfies the con-
dition in the statement of Proposition B.2. Therefore, by Proposition B.2,
yoe & Spec(A4 ®zp) Z[0])°8 — X' is a ket covering. Moreover, again by
the construction of Q, Fyi:(Y'°2) is isomorphic to S. This completes the proof
of the essential surjectivity of the functor in question.

ReMark B.1. The assertion proven in Proposition B.5 (i.e., the assertion
that the category Két(X'°2) is a Galois category for an fs log scheme X'°2
whose underlying scheme X is the spectrum of a strictly henselian local ring)
can be also proven by means of the log purity theorem (cf. Proposition B.7
below). Indeed, it follows from Proposition B.6 below that we may assume
that X is the spectrum of a separably closed field k. Let P — k be a clean
chart of X'°¢, and X'°¢ the log scheme obtained by equipping Spec k[[P]] with
the log structure induced by the natural morphism P — k[[P]]. Then since
X'°2 is log regular (cf. Propositions A.2 and A.4), again by Proposition B.6
below, by replacing X'°¢ by X'°2, we may assume that X'°¢ is log regular.
Then it follows from Proposition B.7 below that Két(X'°¢) is naturally
equivalent to the category of coverings of the interior U of X'°¢ tamely
ramified along D oy \U; in particular, Két(X'°¢) is a Galois category.

The following two propositions (i.e., Propositions B.6 and B.7) and one
remark (i.e., Remark B.2) are not logically necessary for the proof of the
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assertion that the category of ket coverings is Galois, but these were used in
the argument of Remark B.1.

PROPOSITION B.6. Let X'°¢ be an fs log scheme whose underlying scheme
is the spectrum of a strictly henselian local ring A, whose residue field we denote
by k, and X'°¢ — X'°¢ the strict morphism whose underlying morphism of schemes
is the morphism obtained by the natural surjection A — k. Then X'°¢ — X'°2
induces an equivalence between the category of ket coverings of X'°¢ and the
category of ket coverings of X'°&.

Proor. It follows immediately from Proposition B.2 that the functor in
question is essentially surjective and full. Moreover, by considering the graphs
of morphisms, the faithfulness of the functor in question follows from Prop-
osition B.3. (Note that any morphisms in “Két(—)” are ket coverings by
Proposition B.4.)

PROPOSITION B.7. Let X'°2 be a log reqular log scheme, and Uy < X the
interior of X'°2.  Then the morphism Uy — X'°¢ induces an equivalence of the
category of ket coverings of X'°¢ and the category of coverings of Uy tamely
ramified along Dy = X\Uy.

Proor. Note that the assertion that the morphism Uy — X'°2 induces a
functor from the category of ket coverings of X'°¢ to the category of coverings
of Uy tamely ramified along Dy follows immediately from the definition of
ket coveringness. Moreover, the essential surjectivity of this functor follows
immediately from the log purity theorem in [10] (cf. also Remark B.2 below).

Finally, we show that this functor is fully faithful. Let Yilog — X'°¢ be
ket coverings (where i =1,2), and Uy, the interior of Y/°!. Then since it
is immediate that the natural strict open immersion Uy, — Y/°¢ induces an

1

. . ~ 1 . . .
isomorphism Uy, — Y;°® Xyie Uy, our claim is that the natural morphism

1 1 ¢ 1 1
HOmxlog(YIOg, YZOg) — HOInUX(YIOg X x log U)(7 YZOg X x log UX)

= HOI’I]UX(UY], Uyz)

is bijective. To show the injectivity of ¢, let f1°2 g2 : ¥/°® — ¥,°¢ be mor-
phisms of ket coverings over X'°¢ such that f'°g|, Y = g1°g| oy : Uy, — Uy,.
Now since X'°¢ is log regular, and ¥;°% — X'°¢ is log étale, Y; log is log regular
(cf. Proposition A.S); therefore, Uy, = Y; is a dense open subset of ¥; (cf.
Proposition A.3). Thus, f'¢[, = g1°g|U implies f =g¢g. Moreover, since
Y% is log regular, the log structure of YOg is Oy, N (Uy, = Y3),0f, — Oy, (cf.

Proposition A.6); therefore, a morphism of log schemes from Ylog to Ylog i
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determined by the underlying morphism of schemes. In other words, f =g
implies /'°¢ = g'°2; we thus conclude that ¢ is injective. Next, we prove the
surjectivity of ¢. Let fy: Uy, — Uy, be a morphism over Uy. Since the
normalization of X in Uy, is isomorphic to Y;, the morphism fy extends to
a morphism f: Y, — Y,. By a similar argument to the argument used to
prove the injectivity of ¢, a morphism of log schemes from Yllog to Yzl°g is given
by the underlying morphism of schemes. Therefore, f : Y} — Y, extends to
a morphism /¢ : ¥/ — Y% of log schemes. We thus conclude that ¢ is

surjective.
ReMARK B.2. In [10], Theorem 3.3, it is only stated that

Let X' be a log regular log scheme, and Uy < X the interior of
X2 Let V — Uy be a finite étale morphism which is tamely ramified
over the generic points of X\Uyx. Let Y be the normalization of X in V,
and Y% the log scheme obtained by equipping Y with the log structure
OyN(V — Y), 0, — Oy. Then the following hold.

Y'°e is log regular.

The finite étale morphism V — Uy extends uniquely to a log étale

morphism Y8 — X'log

However, in fact, this log étale morphism Y'°2 — X'°2 ijs Kummer by the
proof of the log purity theorem in /loc. cit. (More precisely, in the notation of
loc. cit., the inclusions P < Py < (1/n)P imply this fact.) Moreover, since
V — Uy is finite étale, it follows that the normalization Y — X is finite, i.e.,
Ylog _ xlog js a ket covering.

We return to the proof of the assertion that the category of ket coverings is
Galois.

PROPOSITION B.8. Let X'°¢ be an fs log scheme, and f'°¢ : Y'°¢ — Xxlog ¢
strict étale surjection. Then f'°% induces a natural equivalence between the
category of ket coverings of X'°% and the category of ket coverings of Y'°2
equipped with descent data with respect to f°%.

Proor. This follows immediately from the fact that the property of being
a ket covering is étale local, together with [17], Proposition 4.4.

PROPOSITION B.9. Let X2 and Y% be fine log schemes, and
flog glog . xlog _, ylog porphisms of log schemes such that f =g. Then if
there exist a fine log scheme X''% a morphism h'°® : X' — X2 and a
geometric point X' — X' (we denote the image by x' € X') such that the
following conditions hold, then f'°¢ coincides with ¢'°% on an étale neighborhood
of the geometric point X — X determined by the geometric point X' — X'.
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(i) his flat at x' e X'.

(ii) The homomorphism (Mx|0Oy); — (Mx']O%))z induced by hlog ¢
injective.

(iii) f°2 o hl°2 coincides with g'°® o h'°® on an étale neighborhood of
X=X

ProoF. We denote by y — Y the geometric point determined by the
composite X — X = Y. Then the fact that the log structures are fine
implies that it is enough to show that the homomorphism .#y ; — #x
induced by f'°¢ coincides with the homomorphism My 5 — My ; induced by
g'¢. Now, in the diagram induced by A'°¢

(D}x I f/%X,x . («WX/(Q)*()X

L] |

@;//_’)E/ e ﬂ){gg/ e (ﬂ){//@:{/;)

X

since the left-hand vertical arrow is injective (by assumption (i)), and the right-
hand vertical arrow is injective (by assumption (ii)), we conclude that the
homomorphism .#y 3 — .4y 5 is injective. Therefore, by assumption (iii), the
homomorphism .#y 3 — My, ; induced by f log coincides with the homomor-
phism .4y ; — My ; induced by g'°¢.

ProrosiTION B.10. A strict étale surjection is a strict epimorphism in the
category of fine log schemes.

PrROOF. Let X'°2, Y'°2 and Z'°¢ be fine log schemes, f1°2 : ylog — x'log 5
strict étale surjection, and pi°® (respectively, pi®) the Ist (respectively, 2nd)
projection Y1°¢ x i, Y12 — Y12 Note that our claims are

(i) the morphism Hom(X™°¢ Z°2) — Hom(Y'°¢, Z!°¢) induced by f'°¢ is

injective; and

(i) if a morphism g'o¢: yY'£ — Zl¢ satisfies the equality ¢'°fop, =

g'% o pi® then ¢'°¢ descends to a morphism X'of — Zlog,
Assertion (i) follows immediately from Proposition B.9. Assertion (ii) may be
verified as follows. Since ¢g'°% o pl°f = gl°2 0 pl°% we obtain that g o p; = g o ps.
Since a surjective étale morphism is a strict epimorphism in the category of
schemes, it thus follows that there exists a morphism g: X — Z such that
go f=g¢g. Moreover, since .#y is a sheaf on the étale site of X, and
ylog  xlog strict étale surjection, it thus follows from the fact that the
morphism (g o pl)_lﬂz — M (where .# is the sheaf of monoids which
determines the log structure of Y'°% x i, Y'°2) coincides with the morphism
(gops) 'ty — . that the morphism g~'.#; — .4y descends to a morphism
g 'y — My. This completes the proof of assertion (ii).
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PROPOSITION B.11. Let X'¢ be an fs log scheme. Then, for a morphism
f1°¢ in the category of ket coverings of X'°%, f1°¢ is a strict epimorphism in the
category of ket coverings of X'°2 if and only if f'°¢ is a surjection.

PrOOF. Let Yllog — X'log, Y2log — X2 and Z'°¢ — X°¢ be ket coverings,
and flog . log Yzlog a morphism over X'°¢. Now it is immediate that if
f1°¢ is not surjectlve, then f1°¢ is not a strict epimorphism Thus, assume that
f°¢ is surjective. Let piog (respectively, p ) be the Ist (respectively, 2nd)
projection ¥°® x i ¥, — Y|°.. Note that our claims are

(i) the morphism Hom ys (Y,°%, Z'°2) — Hom yioe ( Y,°%, Z'°%) induced by

o2 is injective;

(i) if a morphism ¢'f: Y°¢ — Z't satisfies the equality g'%¢ o p°¢ =

geo plog then glog extends to a morphism Ylog Zlog,

First, we prove assertion (i). Let glog and glog Y, log _, 7log be mor-
phisms over X'°¢ such that giog o flog — ;"g o fl2 Then, by Proposition B.5,
together with the definition of Galois categories, there exists a strict étale
surjection X'°¢ — X'°¢ such that the morphism J’ obtained by base-changing
of glog by X''°¢ — X2 coincides with the morphism g'log obtained by base-
changing of glOg by X'°¢ — X2, On the other hand, since a strict étale
surjection is a strict epimorphism by Proposition B.10, we conclude that
g}"g = qéog. This completes the proof of assertion (i).

Next, we prove assertion (ii). By Proposition B.5, together with the
definition of Galois categories, there exists a strict étale surjection X'°2 — X'log
such that the morphism ¢’°¢ obtained by base-changing of g'°¢ by X'z — X'log
extends to a morphism ¢''°¢: Yz’log def Y% Xy Xl Z7l02 € L 7108 g
X'°2. Now if we denote by ql ¢ (respectively, q;"g) the 1st (respectively,
2nd) projection Y, X y o Y;°8 — Y], then the composite

log
q
Yy X ¥y 8 2 vy R L 9 griow __, gloe
2

coincides with the composite

log log
/ q ! J
Y, log 12 Y2 log Z/log Zlog

/1o,
Y2 g XYzlog 2

log
Therefore, by Proposition B.10, the composite Y, flog 7 = Z'ee __, 72 extends
to a morphism §'¢: ¥,°% — Z'°¢. (Note that YZ'log — Y,° is a strict étale
surjection.) This completes the proof of assertion (ii).

DEerFINITION B.5. Let € be a category with fiber products and finite sums,
A; and A, classes of morphisms in %, X an object of ¥, Y and Q objects of
% over X, G a finite group of automorphisms of Y over X, and f: Y — Q a
G-equivariant morphism in 4 over X with respect to the action of G on Y and
the trivial action of G on Q.



(1)

(iii)
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We shall say that f is a quotient in € via the action of G over X for
Ay which is universal for A, if for any morphism Z — X belonging to
A,, any morphism W — Z belonging to A;, and any G-equivariant
morphism Y Xy Z — W over Z with respect to the natural action of
G on Y Xy Z and the trivial action of G on W, there exists a unique
morphism Q xy Z — W over Z such that the morphism Y xy Z —
W factors as the composite ¥ xy Z — Q xy Z — W.

If A, consists of the identity morphism of X (respectively, all
morphisms in %), then we shall refer to a quotient in ¥ via the
action of G over X for A; which is universal for A, as a quotient
(respectively, universal quotient) in € via the action of G over X for
A;. Moreover, if A; consists of all morphisms in %, and 4, consists
of the identity morphism of X, then we shall refer to a quotient in
via G over X for A, which is universal for 4, as a quotient in € via
the action of G.

We shall say that f is Galois with Galois group G if f is an
epimorphism, and the top horizontal arrow in the commutative
diagram

ec(9,id)
L Y By xo Y

Y _ )’7

where the right-hand vertical arrow is the 2nd projection, is an
isomorphism.

REMARK B.3. Note that it is immediate that if f is Galois with Galois
group G, then the action of G on Y is faithful. Moreover, it is also immediate
that if ¥ is a Galois category, then f is Galois with Galois group G in the
classical sense (i.e., the action of G is faithful, and f is a quotient in % via the
action of G) if and only if f is Galois with Galois group G in the sense of
Definition B.5, (iii).

PROPOSITION B.12.  Let X'°¢ be a connected fs log scheme, and Y'°% a ket
covering of X'°% equipped with an action over X'°¢ of a finite group G.

(1)

(ii)

Let X°2 — X'°2 pe a log geometric point of X'°¢. Then the action
of G on Y% is faithful if and only if the natural action of G on
Faoe (Y18) is faithful.

Let Q°2 — X'°¢ e a ket covering of X' equipped with the trivial
action of G, and f'°¢:Y"°2 — Q¢ q G-equivariant morphism over
X'¢ Assume that the action of G on Y'¢ is faithful. Then f'°% is
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Galois with Galois group G if and only if ¢ is a universal quotient
in the category of fs log schemes over X'°¢ via the action of G over
X' for ket coverings, ie., for any morphism Z'°% — X8 of fs
log schemes, any ket covering W'°¢ — Z'°¢ and any G-equivariant
morphism Y'°% X yip Z192 — W2 gper Z'°¢ with respect to the trivial
action on W2 there exists a unique morphism Q' X iy Z'°¢ —
W2 over Z'°% such that the morphism Y'°2 x oy Z19¢ — W2 fuctors
as the composite Y'°% X yie Z1°2 — Q1% x 10y Z108 — log,

(iii) There exists a ket covering Q% — X'°¢ of X'°¢ and a morphism
Ylog — Qlog pper X2 such that the morphism Y% — Q"¢ js a
universal quotient in the category of fs log schemes over X'°¢ via the
action of G over X'°¢ for ket coverings.

Proor. First, we prove assertion (i). The “if part” of the assertion is
immediate; thus, we prove the “only if part” of the assertion. Let g¢ € G.
Then it is enough to show that if the action of gy on Y'°¢ is not trivial, then
the action of gy on Fye(Y'°%) is not trivial. By replacing G by the subgroup
of G generated by ¢go, we may assume that G is generated by go. Let N = G
be the kernel of the composite G — Aut(Y'°8) — Aut(ro( Y'°2)), where mo(Y'°%)
is the set of the connected components of Y'°¢. Then it is immediate that if
go ¢ N, then the action of gy on Fyie(Y'°) is not trivial; thus, we may assume
that go € N. Moreover, since the action of gy on Y!°¢ is not trivial, there
exists a connected component of Y!°¢ on which the action of gy is not
trivial. By taking such a connected component, we may assume that Y02 is
connected. Let %2 — Y'°2 be a log geometric point of Y'°¢ which belongs
to Feoe(Y'°%). Then it is immediate that there exists a natural G-equivariant
isomorphism Fjue (Y18 x ye Y1) = Frioe(Y'°¢) with respect to the action of
G on Fj’,log(YlOg Xyie Y1°2) induced by the action of G on the Ist factor of
Yo% x 1o, Y102 and the natural action of G on Fye(Y'°8). On the other hand,
it follows from Propositions B.3 and B.4 that the top horizontal arrow ¢'°¢ in
the commutative diagram

¢s ) (g,id)
L) Yloe T =07 yloe oy, Ylog

! It
ylog —0 Ylog,

induces an isomorphism Y2 x yi, Y12 ~ Im(¢1°%) U Z°¢ over Y2 where
Im(¢'°8) = Y™ Xy Y12 is the open and closed log subscheme of
Yo % i Y102 obtained as the image of ¢'°¢, and Z'°¢ — Y'°¢ is a ket cover-
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ing of Y. Now I claim that ¢"% induces an isomorphism ||, Y'¢ =
Im(¢'°¢). Note that it follows from this claim that the action of G on
Faog (Y1) < Fyioe (Y198 X yiog Y'8) > | | Fyioe(Y1°8) L Fjioe (Z'°8) is faithful.

The claim of the preceding paragraph may be verified as follows. Let
Ylog ; ylog ) ylog , ylog » ., Y2 be the morphism over Y'°¢ induced by
(id,id) : Y2 = ylog | gy — YO8 x 11, Y2 and  (go,id) : Y8 = @11 Y'e —
Y02 % vy Y102, Then to prove the above claim, it is easily verified that it
is enough to show that the morphism % induces an isomorphism Y'°¢ ]
Yot 5 Im(y'°¢). Now it follows from Propositions B.3 and B.4, the surjec-
tivity of Y2 ) ylog — Im()'°%), together with the connectedness of Y'°¢, that
if the morphism Y™ ] Y2 — Im(y'°%) induced by /'°% is not an isomorphism,
then the structure morphism Im(y)'°¢) — Y2 is an isomorphism. Assume that
the structure morphism Im(y'°) — Y'°¢ is an isomorphism. Then by Prop-
osition B.2, it is verified that for any geometric point ¥ — X, there exists
an étale neighborhood U — X of X — X such that the action of gy on
Y02 x e U2 is trivial, where U'°2 is the log scheme obtained by equipping
U with the log structure induced by the log structure of X'°¢; thus, it follows
that the action of gy on Y'°¢ is trivial. Therefore, we obtain a contradiction.
This completes the proof of assertion (i).

Next, we prove assertion (ii). First, assume that f!°¢ is a universal
quotient in the category of fs log schemes over X'°2 via the action of G over
X'¢ for ket coverings. Then it follows from Propositions B.5, B.11, and
Remark B.3, together with assertion (i), that there exists a strict étale surjection
U'e — x'°2 such that Y% x 4 U2 — Q092 x4, U2 is Galois with Galois
group G; thus, it follows that f£'°¢ is also Galois with Galois group G. Next,
assume that f1°2 is Galois with Galois group G. Since Galoisness is stable
under base-change by the definition of Galoisness, together with Proposition
B.11, to prove that f1°¢ is a universal quotient in the category of fs log schemes
over X'°¢2 via the action of G over X'°¢ for ket coverings, by base-changing, it
is enough to show that for any ket covering W'¢ — X°g of X1°¢ and any G-
equivariant morphism ¢'°¢ : Y12 — Wlog over X'°¢ with respect to the action
of G on Y™ and the trivial action of G on W2 there exists a unique G-
equivariant morphism £1°¢ : Ql°2 — %2 gver X'!°2 such that 42 o flog = glog,
Then it follows from Proposition B.5, Remark B.3, together with assertion
(i), that there exist a strict étale surjection U!°® — X2 and a G-equivariant
morphism A€ : Q9% x o, U°F — W8 x 11, U2 over U2 such that 4% o
(f1°8 x idyie) = g'°8 x idy1e; moreover, since a morphism which is Galois with
Galois group G is an epimorphism by the definition of Galoisness, such a
morphism “4'°2” is unique. Therefore, it follows from Proposition B.10 that
there exists a unique G-equivariant morphism /'°¢ : Q'°¢ — o2 over X2 of
the desired type.
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Finally, we prove assertion (iii). To prove assertion (iii), it is immediate
that we may assume that the action of G on Y2 is faithful. Then it follows
from Propositions B.5, B.11, and Remark B.3, together with assertion (i),
that there exists a strict étale surjection U® — X2 and a ket covering
Y18 % iy U2 — Q9% over U2 which is Galois with Galois group G. Then
it follows from assertion (ii) that this ket covering Y02 x i, U2 — 08 is a
universal quotient in the category of fs log schemes over U'*2 via the action of
G over U2 for ket coverings. Thus, by the definition of universal quotients,
assertion (ii), together with Proposition B.8, there exists a ket covering
yloe — Qlg over X2 such that Q% x i, U2 is isomorphic to Q% over
U™ ¢; in particular, this ket covering Y'°¢ — Q!°2 is Galois with Galois group
G. Therefore, it follows from assertion (ii) that ¥'°¢ — Q'°¢ is a universal
quotient in the category of fs log schemes over X'°¢ via the action of G over
X'°¢ for ket coverings.

THEOREM B.1. Let X' be a connected fs log scheme, and X'°% — X'o¢
a log geometric point of X'°¢. Then the pair (Két(X'°2), F@Fxlog) forms a
Galois category with a fundamental functor.

We must verify that (Két(X'°2), F) satisfies the conditions (%),...,(%s),
and (%) in the definition of Galois categories in [5], Exposé¢ V, 4.
(91) Két(X'°2) has a final object and there exist fiber products in
Két(Xog).
id 1og

ProOF. It is immediate that X'°2 =5 X'°¢ is a final object of Két(X'°¢).
Next, we prove the existence of fiber products. Since any object Y'°¢ of
Két(X'°2) is an fs log scheme, for the existence of fiber products, by Prop-
osition B.4, it is enough to show that finiteness, log étaleness, and Kummerness
are stable under composition and base-change. The assertion for finiteness is
classical; moreover, the assertion for log étaleness and Kummerness follows
immediately from definitions.

(%,) There exist finite sums in Két(X'°8). Moreover, if f'°¢: Yl —
X'°2 is an object of Két(X'°¢) and G is a finite group of automorphisms of
Yo in Két(X'°2), then there exists a quotient Y'°¢/G of Y!°¢ by G in
Két(X'oe),

Proor. The existence of finite sums (respectively, quotients) follows
immediately from the definition of a ket covering (respectively, Proposition
B.12, (iii)).

(%3) Any morphism £ : ¥ — ¥,°® in Két(X'°¢) admits a factoriza-

. frlog g]og ) A . A .
tion Yll"g LN Y2'1°g SN Yzlog, where f'1°¢ is a strict epimorphism and ¢'°¢ is a

monomorphism. Moreover, then ¥,% = ¥;'°¢ Lj Z'°¢ (disjoint union) for some
object Z!°¢ of Két(X'og).
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Proor. This follows immediately from Propositions B.3 and B.11.
(94) F is left exact.

Proor. This follows immediately from Proposition B.5, together with the
definition of Galois categories.

(95) F commutes with the operation of taking a finite sum and the
quotient by an action of a finite group (cf. (%,)). Moreover, if f1°¢ is a strict
epimorphism, then Fyi:(f1°%) is surjective.

Proor. The assertion for finite sums is immediate. The assertion for
quotients follows from the fact that a quotient in Két(X'°¢) is universal (cf.
Proposition B.12, (iii)), together with Proposition B.5 and the definition of
Galois categories. The assertion for strict epimorphisms follows from Prop-
osition B.11 and the definition of a log geometric point.

(%) If f°2 is a morphism in Két(X'°2), then f'°¢ is an isomorphism
if and only if Fe(f'°%) is an isomorphism.

Proor. The “only if part” of the assertion is immediate; thus, we prove
the “if part” of the assertion. To prove this assertion, it is immediate that it
is enough to show the following assertion.

Let flo2: yloe — xlo¢ pe g ket covering such that Fye(Y'°®) is of car-
dinality 1, then f'°% is an isomorphism.

Moreover, let 7'°¢ € Fyu(Y'°8), and Y,°¢ the connected component of Y™°¢ in
which the image of the underlying morphism of schemes of 7'°¢ lies. Then
since surjective ket coverings are strict epimorphisms by Proposition B.11, and
there exists a natural bijection Fyue(¥'% 3y ¥Y\°%(%> ¥\°%)) = Fooe (Y'°2), by
replacing Y'°¢ (respectively, X'°¢; respectively, /1°¢) by Y'°2 x i, ¥[°% (respec-
tively, Yllog; respectively, the 2nd projection), we may assume that the ket
covering f1°¢ in the statement of the above assertion admits a section.
Then it follows from Propositions B.3 and B.4 that the section X2 — Yy'og
of fl°¢ induces an isomorphism Y'o2 = Xlog ) Zlog where Z0¢ — X2 js a
ket covering of X'°¢, Thus, we obtain a bijection Fyi(Y'°8) ~ Foo (X12) LI
F0:(Z'°%).  On the other hand, since Fii:(Y'°%) and Fyoe(X'°2) are of car-
dinality 1, we obtain that Fyo(Z'°%) is empty; in particular, Z'°¢ is empty by
Propositions B.2 and B.3. This completes the proof of the above assertion.

THEOREM B.2. Let X'¢ and Y'¢ be connected fs log schemes, and
flog s xlog , ylog g4 morphism of log schemes. Then the functor

~log ) *
Két(vloe) L e xtoe)
(Y/log N Ylog) (Y/log X ylog Xlog N Xlog)
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induced by f'°% is exact. In particular, (by [5], Exposé V, Corollaire 6.2) for
any log geometric point X'°¢ — X102 of X2 the functor (f'°%)" induces a
continuous homomorphism

o) (flog) . nl(Xlog7)~clog> N nl(Ylog7flog()~clog))7

where f108(x1°2) — Y2 5 the log geometric point obtained as the composite
j'log

xlog — ylog 2, ylog,

PrOOF. Let x!°¢ — X°¢ be a log geometric point of X'°¢. Then, by [5],
Exposé V, Proposition 6.1, it is enough to show that the composite of functors

log)* F.log .
Két(Y'o¢) v, Két(x'°g) LN (the category of finite sets)

is a fundamental functor on Két(Y'°#). Now, by the definitions of (f°¢)*
and Fyo, for any ket covering Y'°¢ — Y198 o\, o (f108)" (Y12 — ylog) —
Ef‘lcg(i]og)(Y’lOg — YIOg), i.e., Filog (¢] (flOg)* - P}"lng(xlog). By Theorem B.l, the
functor Fjie(zie) is a fundamental functor on Két(Yl"g). This completes the
proof of Theorem B.2.
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