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1. Introduction

In this paper we consider the nonlinear differential system with deviating
arguments of the form

(Sz) Yi() = pi(®)yis1(hiss (1)), i=12..,n—-1,

N
Vn=(=D" Y an®Ofuyi(gm®)), 20, n=2, Ae{l,2},

m=1
under the following standing assumptions:
(A;) p;i:[0, 0)—>[0, ), (i=1,2,....,n— 1) are continuous functions and
j p;)dt=00,i=1,2,....,n—1;

V]
(A,) a,:[0,00)—[0,0), (m=1,2,...,N) are continuous functions and
are not identically zero on any infinite subinterval of [0, co);
(A;) hi:[0,0)—>R, (i=2,3,...,n) are continuously differentiable func-
tions with h;(t) > 0 on [0, o), and lim,, h;(t) = o0 fori=2, 3, ....,
n;
(Ay) gn:[0,0)>R (m=1,2,...,N) are continuous functions and
lim,, g,(t)= o0 form=1,2,....,N;
(As) f.:R—>R (m=1,2,...,N) are continuous functions and uf,,(u) >0
foru#0,m=1,2,...., N.
By a proper solution of the system (S,;) we mean a solution y = (y;, ¥, ---,
y») € C'[[T,, ), R] which satisfies (S;) for all sufficiently large ¢, and

sup {ZLI |yi(0)]; t = T} >0 for any T > T,. We make the standing hypothesis

that the system (S,) does possess proper solutions.

A proper solution of (S;) is called oscillatory if each of its component
has arbitrarily large zeros. A proper solution of (S;) is called nonoscillatory
(weakly nonoscillatory) on [T, o) if each of its component (at least one
component) is eventually of constant sign on [T, o0) = [T,, ).

In this paper we shall study oscillatory properties of solutions of differen-
tial systems (S;) with deviating arguments of mixed type, which are in general
essentially different from those of ordinary (h(t)=ti=2,3,....,n¢g,0)=t,
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m=1,2,..., N) and retarded differential systems. The first results on oscilla-
tion of certain differential systems generated by deviating argument have been
obtained in the papers [3, 5].
In this paper we extend the results from the paper [1] to the system (S;).
Here we give conditions under which all proper solutions of (S;) are oscillatory.
Throught the paper we will use the following notations:

(B,) H,(t) = hy(t), Hi(t) = hy(H;_,(t)), i = 3, 4, ..., n; H'(t) is inverse function
to Hyt),i=2,3,...,n.

(B,) y(t)=sup{s=0h(t)<t}fort>0i=23,...,n p(t) =max {y(),...,
7a(2)} for t > t,.

(B3)  tp—y = max{ty, %(ty)}, s = max {s,—y, l(sx-1)}, k=2,3,...,n.

(B,) Letg,(t),(m=12,...,N)be fixed. We define the subsets /,, and %,, of
[0, o0) as follows: &, = {t € [0, 00); g,.(t)>1t}, R,, = {t € [0, ©); g () <t}.

2. Main results

The following three theorems are the main results of this paper.

THEOREM 1. Let n> 3, n+ A be odd and the assumptions (A;)—(As) hold.
Let

(Ag) HMO<ti=23..,n—1LH@®>t for t>t,>0.

Suppose that there are integers j, k and r, 1 < j, k, r < N and some positive
numbers K, ko such that the following conditions are satisfied:

gy(Hz' (s) H, 4@ H, (1)
(Cl) J af(s) f pl(t) pn—l(xn—l) f pn—Z(xn—Z)"'
o h

H'(s) ' (s) nl1(xn-1)

H,(@)
X f Pa(xy)dx,...dx,_, dx,_, dtds = o,

h3'(x3)

9i(H (5)) hy'(s) Ayt (x))
(Cy) a(s) Pl(t)j pn—l(xn——l)“'f Pi-1(%—1)
th-1 t

A Hy'(s) -1

Hy_»5(t) Ha(1)
X f p,_z(x,_z) pz(Xz) dX2...dxl_2 dx,_l.‘.dx,,_l dt ds = o0
hity(x1-1) h3'(x3)
foranyl:3<l<n—1,n+1+ iis odd,
Hy'(s) hyt(s) haty(xn-1)
(CB) j ar(s) j pl(t) f pn-l(xn—l) j pn—z(xn—Z)' t
o, to H

Hy-1(s) n-2(5)

h3'(x3)
X f py(x3)dx,...dx,_, dx,_; dtds = oo .
Hy@®)



Differential systems with deviating arguments 199

(A7) gum(t), m=j, k, r, are nondecreasing functions for t > ty; fu(x), m=j, k, r,
are increasing functions for |x| > K,, in addition f.(x) is increasing for

|x| < ko, and
© dx T dx
(Cy) <o, < o0, m=j,k,r,
‘ Ko Jon¥) ) g
ko dx ~ko dx
(Cs) < o0, < 00.
’ o Si(x) o S

Then all proper solutions of (S;) with n + A odd are oscillatory.

THEOREM 2. Let n> 3, n+ A be even and the assumptions (A,)—(A¢) hold.
Suppose that there are integers j, k, r: 1 <j, k, r < N and some positive numbers
K, ko such that (C,), (C,), (A,), (C,) and (Cs) hold.

In addition suppose that

H'(s) hy'(s) hali(xn-1)
(C6) I a,(s) pl(t) f pn—l(xn—l) J‘ pn-Z(xn—Z) o
R, H H,

gr(H' (5)) n-1() n-2(t)
h3'(x3)
X pa(x;)dx,...dx,_,dx,_, dtds= oo .
Hy(1)

Then all proper solutions y = (yy, ..., y,) of (S;) with n+ A even are either
oscillatory or y,(t), i =1, 2, ..., n, monotonically tend to zero as t — 0.

THEOREM 3. Let the condition H,(t) >t in (Ag) be replaced by H,(t) =t
on [0, o). Let additional assumptions of Theorem 2 hold. Then all proper
solutions of (S;) with n + A even are oscillatory.

REMARK 1. Let hy(t)=---=h,(t)=t on [0, ), p;(t) >0 fori=1, 2, ...,
n—1, t>0. Then the system (S,) is equivalent to the n-th order scalar
differential equation

1 1 1 "\ ! N
(E ( ( ( y’(t))) ) =(-1 ;0 (1) fm(Y(gm(2))) »

Pn-1(2) p2()\p1(0)
and the conditions (C;), i = 1, 2, 3, 6, imply the following ones:
g(s) g;(s)
(Crl) J;{ aj(s) J pn—l(xn—l) j pn—2(xn—2)' .

g;(s)
X J pi(xy)dxy...dx,_,dx,_,ds= 0,

X2
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s x; gi(s) 9i(s)
() L{ a(s) j Pn-1(Xp-1) -+ f Pi-1(x-1) f Pi-2(x1-2) f Pi-3(x;-3). ..
e to to s X1_3

gi(s)
X J pi(xq)dxy...dx;_3dx,_,dx;_y...dx,_; ds = o0,

X2

(C,S) J‘ ar(s) J‘s pn—l(xn—l) -[x"l pn—Z(xn—Z)' ..
o, to to

X j pi(x,)dx,...dx,_, dx,_, ds = o,
T,

()

(C5) L 6® | PraCiu) | Pacalin)...

9,(s) gr(s)

X f Pi(xy)dxy...dx,_5dx,_; ds = o0 .
9r(s)
The following corollaries are immediate consequences of Theorem 1 and
Theorem 3.

COROLLARY 1. Let n>3, n+ A be odd and the assumptions (A,), (A,),
(A4), (As) hold. Suppose that there are integers j, k and r:1 <j, k, r < N and
some positive numbers K., ko, such that the conditions (C}), (C3), (C5), (A;),
(C4), (Cs) are satisfied. Then all proper solutions of (E;) with n + A odd are
oscillatory.

COROLLARY 2. Let n>3, n+ 1 be even and the assumptions (A,), (A;),
(Ay), (As) hold. Suppose that there are integers j, k and r:1 <j, k, r < N and
some positive numbers K, k, such that the conditions (C}), (C,), (Cs), (A,), (C,)
and (Cs) are satisfied. Then all proper solutions of (E;) with n + A even are
oscillatory.

3. Proofs of theorems
To obtain main results we need the following lemmas.

LEmMMA 1 [2]. Let the conditions (A;)—(As) hold and let y = (¥1,..-, Vn)
be a regular nonoscillatory solution of (S;) on the interval [0, o).

I) Then there exist ty >0 and an integer l€ {1,2,...,n} with n+ A +1
odd or | = n such that for t > t,
(Nl) yl(t)yl(t)>0’ l=1’ 2y---,la

(_1)l+iJ’i(t)Y1(t)>0, i=l+19~":n-
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II) In addition let lim,_ , y,(t) = L;,,0 < L, < 0. Then

) I>1, L;>0=lm|y@®l=0, i=12..,1—1;

t—=

I<n, Ly < oo=1lim y,(t)=0, i=Il+1,...,n.

t—= o

LEMMA 2 [4]. Let the conditions (A,)—(As) hold. Let y =(y,,...,¥,) be
a regular solution of (S;) such that y,(t) # 0 on [t,, 0©) for some ke {1,2,..., n}.

Then there exists a t; > t, such that each component y, of y is on [t,, c0)
different from zero, monotone and the limit lim,. y,(t) = L; exists (finite or
infinite).

LEMMA 3. Let the conditions (A,)—(As) hold. Let y=(y,,...,y,) be a
regular solution of (S;) on [ty, ). Then there exist a t, > t, and an integer
le{1,2,...,n} withn+ 1+ A odd or | = n, such that

S1+1 Sn-2

Pt+1(xt+1)--~f Pn-2(Xn-2)

hp-a(xp-3)

@) @) > f pix)

hyv1(x)

X J‘ pn-—l(xn—l)lyn(hn(xn—l))| dxn—l dxn—Z . 'dxl+l dxl

hp-1(Xp-2)

fort, <t <5

t hiv1(x;) hy-2(x;-3)
(3 |y:(0)] = j pi(x;) pi+1(xi+l)~~~J Pi-2(%1-2)
t.

i tivy t-2

hy-y(x1-2)
X J Pi—1 () Vi) dxy -y dXp_ .. dX 4y dX;
t

1-1

fort>t,_,,i=12,...,1—1

ProoF. Integrating the k-th equation of (S,), k=1, 1+ 1, ..., n—1, from
t to s, (t < s;) and using (N,), we get

S

(4) ly(®)] = J' P Yier1 (Ars1(x))] dx .
t
Putting (4,-,) into (4,-,) and it into (4,-;), using nearby (B;), then repeating
this method n — [ — 3 times, we have (2,).
Integrating the k-th equation of (S,), k=1, 2, ..., I, from ¢, to t and using
(Nl)’ we get

t

(5%) [ye(®)] = J D) [ Yis1 (Brs1 ()] dx 121,

k
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Putting (5,_;) into (5,_,) and it into (5,_;), using nearby (B,), then
repeating this method I — k — 3 times, we get (3;).

Proor oF THEOREM 1. Suppose that (S;) has a weakly nonoscillatory
regular solution y = (y,, ..., y,). Then by Lemma 2 y is nonoscillatory. With-
out loss of generality we may suppose that y,(g,,(t)) >0 for m=1, 2, ..., N,
t >t,>0. Then the n-th equation of (S;) implies that (—1)*y,(¢) > 0 for t > ¢,
and it is not identically zero on any infinite interval of [ty, o). Then by
Lemma 1 and Lemma 3 there exist a t; > f, and an even integer I: 2 < [ < n, or
I = n such that (N,), (1), (2), (3;) hold for t >t,. Let T, >t, be so large that
gut) =t fort>T,, 1 <m<N.

1. Letl=n. Replacing ¢t with h,(¢) and I with n in (3,), we get

ha(1) h3(x2) hp-1(xn-2)
(6) y2(hy(8) 2 f p2(x3) j p3(x3).. J Pn—1(Xn—1)

t n-1

X | Yulhy(n-1)) Xy .. .dx3 dx,  fort = y(t,-,).
Integrating the n-th equation of (S;) from ¢, (=T,) to h,(t) and using
(Ny), (A2), (As), we have

hn(®

1> [ % anrtamon s

tn

hn(®)
> J ai(s)fi(y1(g;(s))) ds .

Putting the last inequality into (6), we obtain

ha(1) hp—1(xp-3) hp(Xp-1)
(7 y2(h2 () = J pa(x3)... f Pn—1(Xp-1) J

t2 n-1

x aj(xn)f}"(yl(gj(xn))) dx,, dxn—l . dxz .

Interchanging the order of integration in (7), we get

Hy (@) H,_(t) H()
B ya(ha(1) = J a;(x,) fi(y1(g;(x2))) Prn-1(Xp-1) ... f Pa2(x3) dx, ...

ty Bt (x,) hy(x3)

x dx,_, dx, for t > y(t,) .

Take any T >1t, and let T, = sup, .,.r max {g;(t), t}. Multiplying (8) by
p1(®)/f(y1(t)) and then integrating from ¢, to T;, using the first equation of (S,)
and the monotonicity of f;, y,, g; and (As), we have
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d 1 Ha(® Hpo1(0)
©) J y‘;? ,)t)— fpyfti)) &%) fi(y1(g;x,))) j Pos(Xrs)...

byt (%)

Hy()
X J Pa(x,) dx,...dx,_; dx, dt

h3'(x3)

. o Ji(r1(g5(x4))) J Hna®
> J;" a](xn) Holen) pl( ) f(yl(t)) KotGe) pn—l(xn—l)' .

Hy (1)
X J Pa(x,) dx, ... dx,_, dt dx,

h3'(x3)

N [0 (g, H (%))
= Jt.‘ 4xa) .L;'(x,,) P9 Si(r1(®)

n-1(1) H»(1)
X f p,,_l(x,,_l)...f Pa(x;) dx,...dx,_ dt dx, .
h

() h3'(x3)

Since | =n >3, lim,., y,(tf) = o, we may choose t, so large that y,(t) > K,
for t >, Because the functions f, y,, g; are nondecreasing on [t,, o),
Ji1(g;(H )/ fi(y1(9) = 1 for u = Hy ' (x,) <t < gj(u), u e .

From (9) we then have

T; L, J(HR (%) H,_1(1) H(t)
J yl(t) dt gj(Hy (Xn, n-1 2
(10) j T 2 aj(x,) p:(®) Pn-1(Xp-1)--.
th j;'(.h(t)) Ot T) ! H;,'(x,) ! hy (%) ! ! h3'(x3)

X pa(x3) dx,...dx,_, dtdx, .

Letting T — oo in (10) and using (C,), we get

9;(H (xp)) Hpoy (1) H (1)
aj(xn) p1(t) Pn-1(Xp-1)---
jN\[ty, ) Hy'(xy,) byt (xp) h3'(x3)

X py(x;)dx,...dx,_, dt dx, < oo,

which contradicts (C,).
2. Let3<l<nandk:1<k<N be fixed. Integrating the n-th equation
of (S;) from h,(t) to s, (s, > h,(t)), using (A,), (As) and (N,), we have

[ya(ha(E))] = J a(x)fil y1(gi(x))) dx
h(t)
Combining the last inequality with (2,), with t replaced by h(t), we get

(1) yu(hy(t)) = f " ). f P (incst) j "

hy(t) hp—y(Xp-2) hp(Xn-1)

X @, (X) fi(¥1(gx(x))) dx dx,_; ... dx; ,
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where s, = max {s,_;, l(s¢—1)}, k=1+1, ..., n, s, is sufficiently large. Putting
(11) into (3,), in which we replace t with h,(t), we have

ha () hy—1(x1-2) 51
(12) y2(hy(2) = '[ Pa(x5)... J pi—1(x-1) J‘h p(xy)...

ty 1-1 1(*1-1)

X JS’H Pn—1(Xp—1) J:: ) a (%) fi(y1(gx(x)))

hyp—1(xn-2)

Xdxdx, ;...dx,dx;_,...dx, .

Interchanging the order of an integration in (12) we get

Hy(0) iyt (xm) Byt )
(13)  y,(h, (1) = f (%) fe(y1(gi(xa))) | Pn-1(Xn-1) - f Pi-1(X1-y)

(s tn-1 -y
Hi-2(t) Ha()

x Pi-2(x-2)- .. P2(x;)
h2i(x)-1) h3'(x3)

X dx,...dx;_, dx;_(...dx,_; dx,,

where £,_; = t;4, b, = h(t-y) k=1 ..., n— L.

Take any T >, and let T, = sup, .,<r (max {g,(t), t}). Multiplying (13)
by p.(t)/fi(y.(?)), then integrating from ¢z, to T, using the first equation of (S;)
and the monotonicity of g, y,, f; and (Ag), we have

'l (xn)

T o T Ho\(0) h
14) f yid j 2 10 a,,(xnm(yl(gk(xn)))f_ P (ot) .

L @) (1) Js, .

e H;-5(0) Ha()
X Pi-1(x;-1) Pi-2(x-2)... p2(x2)
t

oy hiy(xr-y) h3'(x3)
X dx,...dx,_,dx,_;...dx,_, dx,dt

jH"(Tk) * Jey1(gu(H 1 (x)))

Ho(i) %) Hy (%) P Sy (®)

byt (x) Ay (x)) Hi2()
O Pn—1(Xp—1)... _ pl—l(xl—l)J K Pi-2(%-2). ..
[} 1-1(%)-1)

tiy h

>

n-1

Hy(t)
X f Pa(xy) dxy...dx;_p dx,_y ...dx,_; dt dx, .
h3'(x3)
Since [ > 3, lim,,, y,(f) = o0, we can take t, so large that y,(t) > K, for
t >1, Because the functions f,(y,(t)), g.(t) are nondecreasing on [f,, o), it
is easy to see that fi(yi(gu(H, (x,)))/fi(y1(1)) = 1 for u=H.'(x,) <t < g,(u),
u e «,. The inequality (14) implies
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T (Hp' (xp)) By (xp)

y (t) dt gr(Hy (x5 (X

(15) ! = _ ak(xn) pl(t) _ pn—l(xn—l)’ ..
ANy Hy(Tio)] Thos

i, il (®) — H;'(x,)
hyt (xp) Hi5() Hy()
X J_ pi—1(x—4) j Pt—z(xz—z)-'-J‘ pa(x2)
-y h2i(x1-1) h3'(x3)

X dxy...dx;_,dx,_;...dx,_, dt dx, .

Letting T — oo in (15) and using (C,) we get a contradiction to (C,).
3. Letl=2and r:1<r<N be fixed Integrating the n-th equation of
(S;) over [h,(2), s,], using (A,), (A;5) and (N,), we have

1ya(a(®))] = f " @010, dx

h’l(

Putting the last inequality into (2,) and replacing ¢ with h,(t), we have

(16) yz(hz(r»zfz Pa(x)... j T peiGnna) f( 406,69

ha(1) Bp-1(Xp-2)

X dx dx,_y...dx, , t>y9(Ty)=T;.

Interchanging the order of integration in (16), we get

Sn

hy' (%) h3'(x3)
a,(x,) £, (y1(g,(x1))) f Pn-1(Xn—1). .. J p2(x;)

n-1(1) H(1)

(17)  y2(ha(9)) 2 J

H,(0)
X dx,...dx,_; dx, ,

where 5, = h,(h,_,(...(h5(s3))...)).
Take any T > Ty and let T, = supy, .,y max {g,(t), t}. Multiplying (17)
by p,(t)/f.(y,(t)), then integrating from T; to T,, using the first equation of (S,)
and the monotonicity of g,, y,, f, and (Ag), we get
T, yrl(t) dt - T, Pl(t) H,(T,) Byt (xp)

1 1 (ey).
( ) I f;(yl(t)) = z _f;(yl(t)) B ar(xn)f;(yl(gr(xn))) Pn (X )

Hn—l(t)

h3'(x3)
X J pa(xy) dx,...dx,_; dx, dt

Hy(®)

it (0 (%))
= .[d,f\[ﬂ,,(T;,),H,,(T,)] a/(xa) jr;, Pt £ (1)

hy ! (x) h3'(x3)
X f pn_l(xn_l)...J pa(x,)dx,...dx,_, dt dx, .

H,_,(t) Hy(1)

i) Let lim,., y,(t) = 0. Then proceeding analogously as in the corre-
sponding part of the case 2, we obtain a contradiction to (C,).
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ii) Let lim,,, y,;(t) = y0. If T > o0, then from (18) in view of (Cs)
we have

Hy'(xp) by (xn) h3'(x3)
J ar(xn) J‘ pl(t) J pn—l(xn—l)""[ p2(x2)
A, N[Hnp(T3),0) T3 Hy,-1(0) Hy (1)

Yo du

X dXy...dx,_; dt dx, < , 7,(—uj< ©,

which contradicts (C;).
The proof of Theorem 1 is complete.

Proor OF THEOREM 2. Suppose that (S;) has a weakly nonoscillatory
regular solution y = (y,,...,y,). Then by Lemma 2 y is nonoscillatory. Pro-
ceeding exactly as in the proof of Theorem 1, we find that (N,), (1), (2,), (3;) hold
for t > t, and there exists an odd integer I: 1 <I<n (n+ A is even) or [ =n.
Let T, > t, be so large that g,,(t) > ¢, fort > Ty, m=1,2,..., N.

1. We suppose that ] =n and then 3 <l <n. The proofs in these cases
are the same as in the corresponding parts of the proof of Theorem 1.

2. Now we consider [=1. Let r, 1 <r<N, be fixed. Replacing ¢ in
(2,) with h,(¢) and using (N,), we obtain

(19) —yamu»zj'zpﬂxnn.f"d pmqumqyﬁw‘ Pral)
n-1(Xn-2

ha(t) hp-3(%p-3)
X yn(hn(xn—l)) dxn—l dxn—z . 'dx2 ’ T3 = y(tl) <t< Sz -
Integrating the n-th equation of (S;) over [h,(t),s,], s,=max {s,_;,
hn—l(sn—l)} and USing (AZ), (A5)9 (Nl), we get

S,

WMmMZJ"mmmnmama.

hn(?)

Putting the last inequality into (19) we have

(20)  —y,(h, (1) 2 P2(x2).. J Pn-1(Xn-1) J a,(x)f(y1(9,(x)))
Jha() By 1(*n-2) hn(xXp—1)
x dx dx,_,...dx,
(5n Bt (xn) h3'(x3)
= ar(xn)f;())l(gr(xn))) f pn—l(xn—l)"'\[ p2(x2)
JH(1) Hyp-1(1) H» (1)

x dx,...dx,_, dx, ,

where 5, = h,(h,—((...(h5(s;))...)).
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Take any T > T; and let T, = supr, ., .r max {g,(t), t}. Multiplying (20)
by pi(®)/f.(y1(g,(t))), then integrating from Ty to T,, using the first equation of
(S;), the monotonicity of g,, y,, f, and (N,), we get

Fy@de [T pie) [P
21) —
@) =) 700 2 ), f,(yl(t))f

iyt (xn)

a,(xa)f(¥1(9-(x4))) J Pn-1(Xp-1) -

Hn—l(')

Hy(1)

h3'(x3)
X J pa(x3) dx,...dx,_, dx, dt

Hy()

_ Bl Gen) £ (1(9,(x))
- L,nmm,mn %0 | e PO 0 H ()

by (%) h3'(x3)
X J‘ Pn—1(xn—1)---f pa(x;) dx,...dx,_, dt dx, .
H, @) Hy(1)

Since y,(¢¥) > 0, yi(t) <O for t > t,, there exists lim,,, y,(f) =b > 0. Let
lim,,, y,;({) =b>0. Then

a0
, Lol _
(22) o 0 @ H, 0)

Letting T — oo in (21), using (22) and (Cs), we obtain a contradiction
to (Ce).

If lim,,, y,(t) =0, then by Lemma 2 y;t), i=1, 2, ..., n, tend mono-
tonically to zero for t — co.

The proof of Theorem 2 is complete.

PrROOF OF THEOREM 3. To prove Theorem 3, in addition to the proof of
Theorem 2 we must show that lim,_, y,(t) = 0 is impossible.

Let H,(t) =t. Then £,(y1(g.(0))/ fi(y1(g.(H (1)) = 1. If lim,.,, y,(t) = O,
we may choose Tj so large that |y, (t)] < k, for t > T;.

Letting T — oo, from (21) in view of (Cs) we get a contradiction to (Cg)
with H;1(t) = t.

The proof of Theorem 3 is complete.
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