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§1. Introduction

Let BO be the space which classifies stable real vector bundles. Then, its
mod 2 cohomology H*(BO; Z,) is the polynomial algebra over Z, on the
(universal) Stiefel-Whitney classes w; € H(BO; Z,), i = 1 (cf. [2], [6]). More-
over, the Steenrod squaring operation on H*(BO; Z,) is given by

. o fi—1—1t
(1.1) Sq’w; = Z{=0 <l i >wi+j_,wt for0<j<i,

where <Z> is the binomial coefficient and wy, = 1 (cf. [7]).

Let v; € H(BO; Z,) be the (universal) Wu classes (cf. [1], [4], [5]) defined
inductively by
(1.2) vo=wo=1 and w=Yi,S¢"v_, i=1.
Then, the Wu class v; is the polynomial
v; = v;(wy, w,, ...) with coefficients in Z,

on the Stiefel-Whitney classes w;’s, which can be described exactly by using
(1.1-2) and the properties of the Steenrod operations, but it is not so easy in
general to see the explicit form of this polynomial. In [8, Cor.], we find
all monomials w; ...w;, i; > - >i; 21, which appear in v;(w;, w,,...) with
coefficient 1.

The purpose of this paper is to study the monomials of the form w? or
w,wt, j 2 2, and to prove the following two theorems.

THEOREM 1.3. In the polynomial v,(w,, w,,...), the monomial w?, 2j =i,
appears with coefficient 1 when and only when
i=a=22, or i=a+b, a>b22,

where a and b are all powers of 2.
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THEOREM 14. In v(wy, w,,...), the monomial wwi™, i>j22, appears
with coefficient 1 if and only if
i=a=2 and a2<jZa, or
i=a+b, a>b=1 and b<j=Za,

where a and b are all powers of 2.

The authors are most grateful to Professor Masahiro Sugawara for his
valuable advices during this work.

§2. Proof of Theorem 1.3
The following result on the binomial coefficient is used frequently.

ProposITION 2.1 (cf. [3]).

a s (a
(b) =[]i=o (b.-) mod 2
fora=Y3_a2 and b=>3%, b2 with0<a; b <1
On the Steenrod operation Sq’: H'( ; Z,) » H'*( ; Z,), we use the following
properties in this paper:
Sq’ is a natural homomorphism with Sq° = id ,
2

S¢ix=0 if j>i, =x* if j=i, for xeH(;Z,),
Sq(xy) = Yi-0 (S¢*x)(Sq’*y) (the Cartan formula), and

; ok —1— .
SqiSq* =y U3 < =2 s> Sq/t*sSq* if 0 <j <2k (the Adem relations),
where [ ] is the Gauss symbol.

For a monomial x on wj’s, we say simply that x appears in 4 € H(BO; Z,)
when the coefficient of x is 1 in the polynomial representing A on w;s with
coefficients in Z,. Moreover, we mean in this section by the notation

A~B for A, BeH*'(BO;Z,), n=1,

that the monomial w? does not appear in A + B.

LEMMA 22. Lets=3andj, =+ =j,=21. Then

Sq'(w;,...w;) ~0 foranyi=0.
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Proor. The Cartan formula and (1.1) tell us the lemma by the above
definition. [

The following result is a special case of [8, Cor.]:

PROPOSITION 2.3. The monomial of the form w,_jw;, i>2j20 (wo=1),
appears in the Wu class v, if and only if

i=a=1 and 0=ZLj<a/2, or i=a+b, a>b=x1 and j=b,
where a and b are all powers of 2.
LemmA 2.4. Sq*(w,wy) ~ O for any powers a>b =1 of 2 and any o = 0.

Proor. By the Cartan formula, (1.1) and the definition of ~, we have

] o

; . a—1\/b—-1
Sq*(wawp) = Z?=o (Sq'w,)(Sq*'w,) ~ Z?=0 < . )( _ i>wa+iwb+a—i .

Here, if b>a — i, then b+a—i<2b<a=<a+i since a>b are powers
of2. O

LeEmMA 2.5. (i) Let a be a power of 2. Then
Sq**w2) ~ w2, for0OZLa<a.
(ii) Let a > b be powers of 2. Then
w2 forO0<a<b or afa<a+b
S, 20(y,,2 ~ atb+a = = s
g (ars) {0 forb<a<a.
i— 1
PrROOF. Since Sq?*(w?) = (Sq°w;)* ~ (l . >w,-2+a, we see the lemma by
Proposition 2.1. [
LEMMA 2.6. Let a = 2 be a power of 2. Then

Sq?P,, ~ w2, forl<a<a/2,
0 fora2<a<a,
where Py, =Y {21 wy, W,

PROOF. In S¢**P,, = Y 421 Y 22, (Sq'w,,-;)(Sq** w;), the coefficient of w2,
is seen by (1.1) to be equal to

2a—i—1 i—1
cla, ) = Yozt , . . .
@9 =2 <a+z—a><a—l+a>

Thus it is sufficient to prove that
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2.7 cla,0)=1 forl<a<a2, =0 forag2=<a<a,

where = means = mod 2. We can show (2.7) easily when a = 2, 4.
We assume (2.7) for a = 4 inductively, and study c(24, @) by putting

m=2a—i—1, my=a+i—2a, my=i—a—-1, my=a—i+2a

forl£a<2aand 2a—a<i<2a
Case I: 1 <a<a/2. In thiscase, 0 <m, <aforall k. Therefore,

da—i—1\ (2a+m\_(m\_f(a+m\ (2a—j—1
a+i—2a) \ m, “\m)  \m, ) \a+j—a)’
i—1 _f(atmy\_[(m3\ [ j—1
a—i+2a) \m, ) \m) \a—j+a
for j = i — a, by Proposition 2.1, because a is a power of 2. Thus,

cRa,0)=c(a,a)=1 flsa<a/2.

Case 2: a/2 £ a <a. In this case, 0 < m, < a hold except for m, < a.
If a + & < i < 2a, then m, < a also holds, and the above proof shows that

4a—-i—1 i—1 my\ [(m;
, . = =0,
a+i—2a)\oa—i+2a m, ) \my,

because m, = m, implies my <my +a—20—2<m,. If 2a—a<iZ<a+a,

+
then 0 £ m, — a < a and (a m3> = ( e > Thus we have
m, m, —a

c(2a,0) = 3023, . dy(i)dy (i) for

N (m\_(2a—i-1 N _ [ m3 |\ _[i—a-—1
dl(l)_<m2>_<a+i—2a>’ dZ(l)—<m4—a>—<a—i+a>'

’ — . —_ 1
Put @’ = a/2. Then d,(3a’ +j) = (“ =7
a—a +]j

and d,(3a’) = d,(3a’) = 1 since a’ is a power of 2. Therefore

>= d,(3a’ —j) for any integer j,

cRa,a)=1 ifa2<a<a.

Case 3: a=<a<2a Inthiscase, 0 <m, <2afork=1,2. Hence

cQa, @) = Y2550, ("")(“ + '"3> -0 ifa<a<2a,

m; my

because m, = m, implies a + m3 S my + 2a — 200 — 2 < m,.
Therefore, (2.7) and the lemma are proved by induction. []
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Now, we prove Theorem 1.3 which is trivial for odd i and is restated by
the above notation ~ as follows:

2.8 v,;~w? if ieN;UN,, ~O0 otherwise,

where N; = {2*|k 2 0} and N, = {2* + 2|k > 1 2 0}.

This holds for i = 1, because v, = w, + w? ~ wZ. We prove it for i =2
by induction in the following way, where the inductive assumption is denoted
simply by (2.8) and Lemma or Proposition 2.n by 2.n.

We note that ~ is an equivalence relation preserved by +. Now,

(29)  in vy = wy + Y2y Sq*vgio ~ 07 + Y Fi1 Sq¥ T v; of (1.2),
v} ~w?ifie Ny, ~O0 otherwise;  Sq*Jv;~0 ifj¢ NyUN,,

by 2.3, 2.2 and (2.8), and the other terms are seen by 2.4-6 as follows:
Case I: i=2a for aeN,. In this case, {jeN,UN,|i<j<2i}=
{2a + t|t € Ny, t < a}, and then 2.2-4, (2.8) and 2.5(ii) show that

Sq** Y (wy,w;) ~ 0 ift=1,

San—tvz by~
T 8g* T (W, + Wiip) ~0 if2<t<ateN,.

Thus v,, ~ w2, by (2.9).
Case2: i=2a+b for a, be N;, a=b. In this case, {je N, UN,|i<
j<2i}={4a,4a+t|te N,,t <b}u{2a +s|seN,;,2b <s<a}. Then

qubv4a ~ Squ(W4a + w%a + P4a)
~(1+ew?fore=1 ifb<a, =0 ifb=a,

by (1.1), 2.5(1) and 2.6. Also Sq?*"'v,,,, ~ 0 in the same way, and

2a+2b-s
Sq Vagss ™~ {

by 2.5(il). Thus vg,.,, ~ Wi,4p by (2.9).

Case 3: i=2a+b+rfora,beN;,a=b>r. Inthiscase {je N, UN,|
i<j<2}={4a,4a +t|te N;,t £2b}Uu{2a +s5|2b <s<a}. Then. in the
same way, we have

0 if s>2b,
Sq**wk, ~w? ifs=2b<a,

Sq** 2y, ~ (1 + e)w? for the above ¢,
S 2 4ary ~0 it b, =8¢%vguus ~w ift=2b,
Sq2at2t2r=sy ) s ~0 ifs>2b, ~w? ifs=2b=<a;

hence vag+ 2542, ~ 0.
Thus, Theorem 1.3 is proved completely. [
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§3. Proof of Theorem 1.4

We mean in this section by the notation
Ax~B for A, Be H"BO;Z,), m=2,

that the monomial w,w™* does not appear in A + B for any 2 <i <m. This
is also an equivalence relation preserved by +, and moreover satisfies the

following
LemMMA 3.1. If A ~ B, then Sq'A ~ Sq'B for i 2 0 and w; A ~ w, B.

Proor. The Cartan formula and (1.1) tell us easily that

Sqiw;, .. wwh~0 ifs=2, 22,22, k20,
. A
Sq'(w{‘):(i)w{‘*'zo k=1, i+k=2,

by the definition of ~. Thus we see the lemma. [

We put

(3.2) 0n(k) = Y23 w,_iwi foranym>k2>1.

LEMMA 3.3. Let a = 1 be a power of 2. Then

SanZa(a) ~ Q2a+a(a) for 0 é a<a, zQ2a+zz(2a) for a é a<2a.

Proor. The lemma holds trivially for a = 0, and so does if a =1 since
0,(1) = w, and Sqg'w, = w3 + w,w; = Q5(2).
Let a 2 2. Then we see the lemma for a = 1, because

Sql(Wza—in) = w2a—i(Sq1W{) + (Sqlw2a—i)w{
= iy Wit + Wy Wit + (20 — i — Dy, Wi

=Wy Wit + wy,_;ywi ifiiseven, =0ifiis odd.

In general, the Cartan formula and (1.1) imply that

(B4)  Sq*(Wn-iwi) = Xj-0 (54" Wn_i)Sq’(w})

m—i—1-—1)(i i+j . (m—i=2
zZ:‘l=02tl=o< a—j—t )(.)wm+a—i—j—¢wtwi+la by puttmg< 1 >=0.

J
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If « = m — 1, then the coefficient in (3.4) is O for i #j. Hence,
(3.5) Sq™ 7 Wi Wi) R Wom—2i-1 Wi + Wam—2i-2W{' T,
89" Qu(k) = Y 25 Wam—1 Wi = Qom-1(2K)
and the latter for m = 2a and k = a is the lemma for « = 2a — 1. Moreover,

(3-6) 54%Q2m(2k) & 5q*{Wrm + Wom-2Wi* + wy - Sq" 710, (k)}

by (3.2), (3.5) and Lemma 3.1.
In (3.6) for m = a = 2k and a = 2a — 2, we have

Sq** Wy R Wa-z 5772 (w,wi) & Wau_, Wi by (3.4).
Since Sq2*738q*~! = 0 by the Adem relation, we have also
Sq* 2 {w,-Sq°7'Q,(a/2)} = wy - Sq**728q°71Q,(a/2) = W, - 54> 72Q5,-4(a)
R Wy Qaa-3(20) = Q40-2(20) + Wag—p + Wy o Wi*,

by (3.5) and Lemma 3.1. Thus the lemma holds for a« = 2a — 2 by (3.6).
Therefore the lemma is proved for « = 0, 1, 2a — 2, 2a — 1; in particular, it
holds if a=2. Now, assuming the lemma for a =2 inductively, we study
89°Q44(2a) by (3.6) for m = 2a = 2k as follows.
Case I: a=2nfor1 <n=<2a-—2 Then,in (3.6), we have

2 .
Woas2nWi® ifn<a,

Sq W, X W, Sq (W w. ) ~
4 4a+2 2 .
a at+2n > a1 W4a f > ,

by (3.4). To study Sq*"(w,-Sq**"'Q,.(a)) by the Cartan formula, we note that
the Adem relation and the dimensional reason tell us

2a —2—j

San—eSan—lQZa(a) = ;';8 <2n e 2]

) Sq*** "1 778q'Q.(a)

2a — 2 —
_ ( a ) n+ 8) Sq2a+n—1Sqn—£Q2a(a) fore=0,1,
which is (2a — n — 1)(Sq""1Q,.(a))? ~ 0 if e = 1. Therefore,
Sq>"{wy-$q**71Qx,(@)} = wy - Sq***" 159" Q,,(a)
~ Wl : Sq2a+n—1Q2a+n(a’) ~ 212:11 W4a+2n—i Wi s

where a’=a for 1=n<a, a’=2a for a<n=<2a-—2, by the inductive
assumption, (3.5) and Lemma 3.1. By adding these, we have

507"Q44(20) ® Quu424(2a'),  as desired .
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Case 2: a=2n+1for 1 £n<2a—2 Note that Sg*>"*! = Sq*Sq>" by
the Adem relation. Then the above result implies that

S¢12"+1Q4a(20) ~ Sq1Q4a+2”(20’) = Q4a+2n+1(2a’) >

by Lemma 3.1 and the proof for « = 1 stated in the first place.
Therefore, Lemma 3.3 is proved by induction. []

LEMMA 3.7. Let a = b = 1 be powers of 2. Then

Q2a+b+a(2a, b) f0r 0 fa< b ,

8q°Q14a+5(2a,b) & < Qaa4p14(2b,0)  forb o <2a,
Qsarp+a(4a,2b)  for2a<a<2a+b,

where Q,,(k, 1) = Y =} w,,_;wi foranym >k >1=0.

Proor. By definition, we see that Q,,(k, 0) = Q,,(k) and
Qm(k’ l) = w{lQm—n(k —n, I— n) = Qm(k’ n) + Qm(l’ n)

for | 2 n=0, where Q,,(,]) = 0.
If b = a, then the lemma is proved by Lemma 3.3, because

59°Q34(2a, a) = Sq*(W{Q24(a)) = Wi~ 59°Q;,(a) + wi*- Sq°~*Q2,(a) .

In particular, the lemma holds if a = 1.
Now, we prove the lemma for a>b =1 by induction on a. Since

Q2a+b(2a’ b) = waZa(a) + wilQa+b(a, b)9 we see San2a+b(2a’ b) by addlng
Sq*(W1Q24(a) = Wi - S4°Q2,(a) + wi** 5q°7*Q5,(a) ,
Sq*(WiQa+s(a, b)) = Wi Sq*Qus(a, b) + Wi*-Sq*~*Q,14(a, b) ;

and these are seen by Lemmas 3.1, 3.3 and the inductive assumption and by
separating into the following cases:

0a<b, bfa<a, aLa<a+b, a+b=La<2a, 2afa<2a+bhb.

Then, we can certify easily the conclusion for $¢°Q,,.,(2a, b). [

Now, we prove Theorem 1.4, which is restated by the above notation = as
follows:

2520 Waa—w{ = Q1,(a) ifi=2aeN,,
(3.8) v; R 212:-;1 w2a+b—jw{ = Qza+b(2a, b) ifl = 2a + b € N2 s
0 otherwise ,

where N, and N, are the sets given in (2.8).
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(3.8) holds for i=2, because v, =w, + w? ~ w,; and we prove it by
induction on i.
Case 1: i=2a€N;,a=2 Then, we can study

v =w,+ 32 Sqiv,_;  of (1.2)

by using the inductive assumption and Lemmas 3.1 and 3.7 as follows:
If i — j¢ N, UN,, then Sq'v;_; ~ 0.
If i — je Ny, then j = a and Sq“v, = v? ~ 0.
Ifi—jeN, theni—j=a+tforteN, with1 =<t <a/2, and

quUZa—j = Sqa-—tva+t ~ Sqa—tQa+t(a’ t) X Q2a(2t’ t)

since t Sa—t<a Thus vy, ® wy, + Yozl wyu W = Q,,(a), as desired.
Case2: i=2a+b, azb=1, a, be N,. Then, in the same way as
Case 1, we see the following by using also Lemmas 3.3 and 3.7:
If i — je N,, then j = b, Sq°v,, ~ $4°Q,,(a) and

$q°0,.@) ~ Q,(a) when b<a, =~Q)2a) when b=a.
If i — j € N,, then either i —j = 2a + t for t e N, with 1 <t < b/2, and
80" 0204: ® 84" 7' Q2a1e(2a, 1) = Qi(21, 1)
ori—j=a+ sfor se N, with b <s5=<a/2, and

_ _ 0:(2s,s) for2b<s=<a/2,
atb—s ~ a+b-s ~
Sq Ug+s ~ Sq Qa+s(a9 S) ~ {Qi(za, 2b) fors=5b.
Thus v; & w; + Q;(2a) + Q,(b, 1) = Q;(2a, b) if b = a, and
v; & w + Qia) + Qu(b, 1) + Qy(a, 2b) + Q,(2a,2b) = Qi(2a,b) if b<a.

Case 3. i=2a+b+r,azb>r,a,beN,. Then:
Ifi—jeN,, thenj=b+r Sq°*v,, ~ $4°*"Q,.(a) and

$q°*"0,.(@) ~ Q;(a) whenb<a, =~Q;2a) whenb=a.
If i —je N,, then either i —j=2a + tforte N, with 1 <t < b, and

0.(2t,1) fort<b,

b+r—t ~ b+r—t ~
Sq Vg4t X Sq Q2a+t(2a, t) I~ {Qi(za, b) fort = b,
ori—j=a+sforseN, withb <s=a/2, and

0i(2s, 8) for 2b < s < a/2,
0:(a,2b) fors=b.

Thus v; ® w; + Q;(2a) + Q;(b, 1) + Q;(2a,b) = 0 if b = a, and

Sqa+b+r—sva+s ~ Sqa+b+’—sQa+s(a, s) ~ {
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v & W+ Qi@ + Qib, 1) + Qi(2a, b) + Qi(a, 2b) + 0i(2a,2b) = 0

ifb<a.

[1]
[2]
[3]

[4]
[5]

[61
[7]1

[8]

Thus, Theorem 1.4 is proved completely. []
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