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1. Introduction

Consider the regression problem on a set of p response variables y =
(y1,.--»y,) and a set of q explanatory variables x = (x,,...,x,). Let (y;=
(Pits -5 Vip)s Xi = (Xig» -5 X)), i =1, ..., n, be the n observations on (y; x).
The regression model assumed is

(1.1) yi=n(x)+ &,

where # = (1, ..., 7,): R > RP is a function of x whose shape is unknown but
its smoothness is presumed, and the errors & = (&;,...,¢;,), i=1, ..., n, are
independently and identically distributed with mean 0 and unknown covariance
matrix 2 = [0;],x,- Writing this model in matrix form, we have

(1.2) Y=H+E,
where
»i
Y= : =[y(l),'“ay(p)]5
[ Vn ]
[ |
H=|: = ["(1)! R 'l‘p)] s
[ _
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&
and E=|: |=[WD,...,&"].

&,
The measurements x;, i =1, ..., n, which are called the design points, are
expressed as

x}

X=|: |=[...,x9].
x,

It is assumed that x;,; = 1, fori=1, ..., n,ie, x =1, and rank (X) = q < n.

The regression analysis usually involves two important problems; making
inferences about the regression surface # and estimating the covariance matrix
2. These problems are closely related. It is easily seen that a good estimator
of # immediately yields a good one of X. Conversely, once an adequate
estimator of X is available, it will provide helpful information to explore a good
estimator of #. When a valid parametric model for s is at hand, some least
squares technique will yield a good result. However, in practical situation of
data analysis it is often difficult to chose a valid parametric model especially
when ¢ or p is large (see, e.g., Cleveland and Devlin [4], Silverman [20], Rice
[16], Ohtaki [13]). For such a situation, it may be a good strategy to start
the analysis by estimating 2 rather than # nonparametrically.

The simplest nonparametric estimator of 2 may be constructed by making
use of replicated observations. Suppose that there are g distinct sets of re-

plicated observations {(y,,x)|1<t<m}, I=1, ..., g, in data. Then, an
unbiased estimator of X is given by
(1.3) fPE = {Zlg=1 (m; — 1)}_1 Z?=1 Z:’g1 e — 7)) — .Y

where y,, = m;* Y ™, y,. This estimator Zpe is refered to as (Multivariate) Pure
error mean square (PEMS) estimator (see, e.g., Draper and Smith [7, Section
1.5], Weisberg [23, Section 4.3]). Unfortunately, this estimator often loses its
effectiveness because no or very few replicated observations are available in
most data. Daniel and Wood [5] suggested the use of an approximate PEMS
estimator. Their idea is to use a clustering algorithm to find the cases that are
almost replicates, and use the variation of the responses for the almost replicates.
An interesting application of their idea to logistic regression was given by
Landwehr et al. [12]. Recently, Gasser et al. [8] and Ohtaki [14] have
proposed a class of estimator of variance in univariate one-dimensional non-
parametric regression model, i.e., the case of p =1 and g = 2. Some properties
of the estimators have been studied by Gasser et al. [8], Ohtaki [14] and
Buckley et al. [3]. In this paper these results in univariate cases are extended
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to ones in multivariate situations. The outline of this paper is as follows: In
Section 2 we introduce a class of nonparametric estimators. The biases of
those estimators are studied and their upper bounds are given in Section 3. In
Section 4 we derive the exact formulas of covariance matrices of the estimators,
and assess the efficiency by comparing with the best linear unbiased estimator
under the linear regression model. In Section 5 we investigate some asym-
ptotic behaviors of the estimators and show the sufficient conditions for con-
sistency or asymptotic normality. In Section 6 we consider the case when
g =2 in detail;, we provide a multivariate extention of the estimators which
were proposed in univariate regression model by Gasser et al. [8] and by
Ohtaki [14], and show that the newly obtained estimators become a natural
extention of PEMS estimator. In Section 7 we propose a new type of test
statistics for assessing goodness of fit of linear models, and prove that the
asymptotic null distribution of the criterion is N(0, 1) under some mild reg-
ularity conditions. In Section 8, using the idea due to Rousseeuw [17], we
construct a robust alternative to the diagonal elements of covariance matrix,
and show that the robust estimator will have a positive breakdown point in
some situation.

2. A class of estimators

Suppose that there is a subset K of {1,...,n} such that every member i of
K has an index-set N; which specifies a neighborhood of the design point x;,
{x;lje N;}. Here it is assumed that i ¢ N;. This means that our estimation is
based on the cross-varidation technique which will make the resulting estimate
of covariance matrix more stable. Let p, (ie K) be a linear predictor of
yi= (i1>-.-» yip) which is based only on the neighborhood {(y; x;)lje N;}.
We write such a predictor as

(2.1 Ji=Y'w,

where w; is an n-component vector whose jth component w; is nonzero only
when je N;. As for the errors r; = $; — y;, it is easily seen that

(2.2) Elrrl=c?2 +&¢&, i€k,

where & =E[r,]=H'(w;—d;), ;= (d;,...,9,), 6; is the Kronecker delta,
¢ =1/1 + |w;|) and ||w;]| = (wiw;)".

The result (2.2) suggests that an estimator of 2 may be obtained through
averaging c?r;rj, ie K. Adopting the set of weights {c?}, we propose the
following class of estimators of 2

PN

(2.3) Ly = (ZisK )™ Ziel( cirri.
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The (j, [)-element of 2 - is expressed as
(2.4 é(j )= (ZieK )t ZieK C?’ij’u , 1<jl<p.

REMARK 2.1. The estimator £ v of (2.3) is expressed in a matrix notation

as

(2.5) 3 ,=(rVy) 'YV, Y,
where

(2.6) Vi = Yiex ctwi—6;)(w; — 8)) .

The matrix V- is non-negative definite and its («, f)-element v, is expressed as
(27) Upg = cgémﬁl{ueK} - C:Waﬂl{asl(} - cgwﬁal{ﬂel(} + ZyeK c‘;wyawyﬂ s
where Ijz) = 1 if the statement E is true, and 0 otherwise.

It is possible to use another set of weights instead of {¢?} in averaging
ctrr! (i€ K). For example, homogeneous weight ng' (ng is the total number of
elements of K) was adopted by Gasser et al. [8]. An advantage for using {c?}
as a set of weights is that the resulting estimator of X becaomes a natural
extension of PEMS estimator. This will be shown in Example 2.1.

Two important special cases of the estimator (2.3) are given in the follow-
ing examples.

ExaMpLE 2.1 (locally uniform weight (LUW) estimator). Let the weight-
vector w; in (2.1) be an n-component vector having the jth element

{l/n,-, ifjeN,,
Wij =

@8 0, ifj¢N,

where n; denotes the number of elements in N, Then p; =y, =Y ;cn Vi/ni 5O
that the resulting estimator can be expressed as

L= Diex M +n7) Yk A4+ n7)72(F — y) B — v
= Diex U+ ) Yk G — )T — 2
where 3. = (y; + Y jen,¥))/(n; + 1), i€ K. This estimator will be refered to as a
locally uniform weight (LUW) estimator.
Consider the situation where every ith set {x;|je N; or j =i} (i€ K) con-
sists of m; replicates and there are g distinct design points. Then, using the
notation in (1.3), we have

n; m
ZieKm = Zf’=1 z:=‘1 (my— Dmy=)7,(m—1),
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and

ZieK i = V)i —y) = )i Z;"='1 Wy = Y)Y — 1) -
This implies that 25 = Zpg. Thus, we see that the PEMS estimator defined by
(1.3) is a special case of LUW estimator. Even though PEMS estimator is
generally biased unless underlying regression function is exactly constant, it has
a computational convenience and may also provide satisfactory information on
2 in some practical regression situations.

ExAMPLE 2.2 (locally linear weight (LLW) estimator). It is noted that the
locally linear model may reduce effectively the possible bias in the resulting
estimator of X, as Stone [22] has suggested in general context of nonparametric
regression. Let §; = Bix;, where B; = [b"] is the g x p matrix which minimizes

tr [(Y — XB))D(Y — XB;)] = ZjeN,. (.Vj - Bj’xi)l(yj - B}xi) s
where D, = diag [d{’, ..., d?] and

oL e,
77700, ifj¢N,.

This linear predictor is based on the least squares estimators in fitting a linear
regression model to the data {(y;; x;)|je N;}. Then the predictor is written in
the form §; = Y'w;, and its weight-vector is given by

(2.9) W,- = DiX(X,DiX)_xi > iE K 3

where A~ denotes a general inverse of 4. We note that w/l, =1, since
xM = 1,. The resulting estimator of Xwill be refered to as a locally linear weight
(LLW) estimator and denoted by £,. Using a few algebras, we obtain that
2y = Zps when every ith set {x;ljeN; or j=i} consists of only replicated
design points which are identical to x; (ie K). Thus, we see that the LLW
estimator is also a natural extension of PEMS estimator.

3. Upper bounds for biases

Let 5, be a nonparametric estimator of X defined by (2.3). A few calcu-
lations yield the following formula for the expectation of 2,

3.1 ELEy] =2+ Qicx ¢)) ! Liek ciili -
where
(3.2) & =E[r]=Ep,—y]=Hw,.

It is easy to see that the second term of (3.1) is a non-negative definite matrix,
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and hence the estimator £, of X is always positively biased unless & = 0 for all
ie K. The following Lemmas 3.1 and 3.2 are fundamental in obtaining upper
bounds for biases of two estimators £ and £ .

LEMMA 3.1. Suppose that a function f: R?— R! is differentiable. Let 4, =
w.f —f(x;), where f=(f(x,),...,f(x,)) and the weight-vector w; is given by
(2.8). Then

(33) |4, < Ypd;,
d 212
where Y, = sup, {Z;Ll <5x_f(x)lx=t) } and d; = max;.y, [|x; — x;.
1

Proor. Using the Taylor expansion of f about x;, we have
1f(¥) = flx)l < Yl — xil
Since 4; = (1/n;) Y jen, {f(x;) — f(x;)}, we have
4] < Ym Yjen, 1% — xill < Ypd; -

LemMMA 3.2. Suppose that a function f: R? — R! is twice differentiable. Let
A, = wif — f(x;), where f = (f(x,),...,f(x,)) and the weight-vector w; is given
by (2.9). Then

(3.4) |4:] < 271y niP|willd?

where y; = Sup, SUpyy= |#'Hyu|, H, is the Hessian of f at x =z, and n; is the
number of elements in N;.

Proor. Using the Taylor expansion of f about x;, we have
f(x¥) = flx) + (x — x;)b; + 27H(x — ;) Hy(x — x;),

where b; = (0f/0x, ..., 0f/0X,)|x=x,, H;= H,, and z; = 1;x + (1 — 7;)x; for some
7;in (0,1),i=1,...,n Let

R =27"((xy — x)VHy(x; — %)), ..., (x, — X, Hy(x, — x;)) .
Since f = f(x;)1, + (X — 1,x])b; + R, and w/1, = 1, we have
wif = f(x;) + x;(X'D;X)" X'D;R,; .

Hence, 4,=wf — f(x;) = x{(X'D,X)" X'D;R;, ie K. Note that the largest
eigenvalue of D;R;R;D; can be evaluated as follows:

SUDPyy=y 4’ D;R;R;Dju = 47" sup,,—, {ZjeN, u;(x; — x;) Hy(x; — xi)}2

<471 tr D; supyu=y O jen, 47 {(x; — x;) Hi(x; — x))}?
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< 4711, SUPyy=y [Max; <, {SUPyy=y (V' Hy)?
X ZjeNi ujz(xj - xi),(xj - xi)}]z
< 47'n; sup, sup,u-, (W' H.u)*d}
<4 ind}.
Hence, we obtain
A? = x/(X'D,X)” X'D{D,R,R.D,)D,X (X'D,X)" x,
< 4 Yindix)(X'D;X) x;
= 47Yyin|lw;l|?d} .

Applying Lemmas 3.1 and 3.2 to (3.1), we obtain the following theorems:

THEOREM 3.1. Let L4 = [64(j,1)] be an LUW estimator of ~. Suppose
that the jth and the Ith components n; and n, of the regression function n are
differentiable, and that

a 2)1/2
wa = Supt {Z;Ll <Er’a(x)|x=t) } < +o s a= j, l .
1

Then

(3.5) |E[62(), D] — o3l < Y¥hiha

where

(3.6) ha = {Yiex U+ 7))} Ve {di(l + ni)}2.

COROLLARY 3.1. The (j, I)-element 64(j,1) of L4 is unbiased if the jth or
the Ith component of the regression function n is exactly constant; therefore, 24 is
unbiased if 5 is a constant function with respect to x.

THEOREM 3.2. Let £y = [64(j,1)] be an LLW estimator of X. Suppose
that the jth and the lth components n; and n, of the regression function n are twice
differentiable, and that

Yo = SUPy SUPyy=1 |u’H§:a)”| <+, a=jl,
where H® is the Hessian of n, for o = j, l. Then
(3.7) |E[62(j, )] — oul < ynhe,
where

(3.8) he = 4_1(ZieK Ciz)_l Ziel( C?"i" "’i||2di4 .
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COROLLARY 3.2. The (j, I)-element 64(j,1) of £ is unbiased if the jth or
the Ith component of the regression function n is exactly linear; therefore, Zqis
unbiased if n is a linear function with respect to x.

4. Efficiency

In this section, we assume that the distribution of ¢; (i = 1, ..., n) has finite
fourth moments about 0. To give an unified expression for all third or fourth
moments, we use the following notation:

“.1) us(j, k1) = E[aijeiksil] s
4.2 ua(j, k, 1, m) = E[eijsiksilsim] s
fori=1,...,n,and 1 <j, k I, m<p. First we give a general expression for

the covariances of linear functions of 2, .

THEOREM 4.1. Let L be the estimator of X defined by (2.3). Suppose that
£, ..., &, are independently distributed with finite third and fourth moments given
by (4.1) and (4.2). If A =[ay] and B = [b;] are any p x p symmetric matrices,
then

(43)  Cov [tr (4Z,), tr (BX,)]
= (tr Vi) D var {2 X Xt Xom Gjbimbta (G, s 1, m)
—tr (AZ) tr (BX) — 2 tr (AZBX)} + 2(tr V) tr (AXBY)
+ 232k 2 2om Qb {na(k, L M) + ps(m, j, k)n™ } Vs
+4tr (AXBH'VZH)],
where V,, is given by (2.6) and v, is the column vector of the diagonal elements of

V.

Proor. Note that tr (4£,) = (tr V) ' tr (AY'V,-Y) and V- is symmetric.
Then the result follows from Theorem A.1 in Appendix.

COROLLARY 4.1. Let 8,(j, 1), 1 < j, I < p, be the (j, l)-element of 5. Then,
under the same assumptions as in Theorem 4.1
4.4) Cov [84(j, k), 64(I, m)]
= (tl' VJV)_Z[VJ'V‘W{HAJ', k9 l9 m) - ajkalm - ajlakm - O.jma'lk}

+ (tl' V})(ajldhm + o'jmo-kl) + “3(’(, l’ m)v‘/lV I.//V"(j) + NS(ja l, m)v.:V V./V"(k)
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+ ua(m, j, vy Vien® + ps(l, j, Ky Vien™

+ Z Za,ﬁel( C:C;uaﬂ(ajlékuémﬂ + O'jm*fkaéw + O'ktfjuémﬂ + Ukmﬁjaétﬁ)] s

where u,z = (W, — 6,) (Wg — ).

PrOOF. The result is obtained from (4.3) by letting A = (d;0; + 9,9;)/2,
B = (6,6,, + 6,,6)/2 and V = (tr V},)"'V, and using the identities # 'V, g =
Ziel{ C?Ctaitﬁ .

COROLLARY 4.2. If €,,..., &, are independently distributed according to
N,(0, X'), then
4.5) Cov [tr (A2 ), tr (BE )] = 2(tr V)" 2[tr VZtr (AXBXY)
+ 4 tr(AXBH'VZH)],

for any p x p symmetric matrices A and B.

Proor. The result is obtained from Corollary A.l1 by letting V =
(tr Vi) Wy

It is interesting to compare L4 (or £,) with the best linear unbiased
estimator g, e under the linear regression model. Let Vo and Vj be the
matrices obtained from the matrix ¥, in (2.6) by using the weight-vectors (2.9)
and (2.8), respectively. To compare £ with Ly g, consider the case when the
regression function # is exactly linear, and is given

E[Y]=H= X6,

where © is a q x p matrix of unknown parameters. Letting Py = X (X'X) ' X',
the best linear unbiased estimator is given by

Z\‘BLUE:.‘Z’ =YU,— P)Y/(n—gq.
As a criterion for the efficiency of £, we consider the ratio
pg(A) = Var [tr (AfBLUE:.?)]/Var [tr (AS.S?)] >
where 4 is a p x p symmetric matrix. Note that
(4.6) VoX = ZieK cH{D;X(X'D;X)"x; — 0} {D.X(X'D;X) x;,—6;}'X
= Onxg>»

and (I, — Px)X = 0,«,- Using these properties and Corollary 4.2, we obtain
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Var [tr (A2 )] = 2(tr V) 2 tr V& tr (AX)?,
Var [tr (AZg e, )] = 2(n — g)7* tr (AZ)?,

if ¢’s are normally distributed. Thus the ratio p»(4) does not depend on the
choice of A in this situation and is given by

pe = {(tr V) /tr VE)}/(n — q) = ve/n — q) .

As for the range of p, we have the following theorem:

THEOREM 4.2. Let py = ve/(n — q), v = (tr Vy)¥/tr V3, g, = max; g |w;|>
and

(47) Un = maxaeK #{ﬁ|NﬁnNa # Q} .
Then
-1, ng . ng
4.8) (n — ¢! max {————(1 +gn)Un,l}5p_gSmm {n—q’ 1} .

Theorem 4.2 is a direct consequence of the following lemma:

LEMMA 4.1. Let v, = (tr V),)?/tr V2, vo = (tr V)?/tr V& and vy = (tr V)?/
tr V2. Then

. ng

1 — 1< <
(@) max{(1+g..)U..’ }_vﬂ_nx,
(ll) V.?S”—q,

(iii) w<n—1.

Proor. Since ¢? = (1 + |w;]|?)™! < 1 for i € K, we have
trVE=Y,Y pcici{(w, — 8, (ws — 85)}>
= Za Zﬂ:N,nN,aeQ C:C;{(Wa - 6a)l(wﬂ - ‘Sp)}z
< Yack 2pnon, 2@ CaChL 4 W 12) (1 + [[wgll?)
=D ack Ca Zﬂ:NmNﬂ#Q cs
< min {(tr V)%, U, tr V- } .
Therefore, it follows that v,- > 1 and
vy = (tr V(U tr V) = Yiek ¢2/U,y = ng/{(1 + g,)U,} -

The remaining part of (i) is proved from the Cauchy-Schwarz inequality as
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follows:
tr Vi) =Qick I < Qiex VQiex ¢f) = ng(Qiex cf) < ng tr Vi .
For the proof of (ii), consider
(4.9) We =(n—q) (I, — Px) — (tr Vo) ' Ve .
Since tr (P Vy) = 0 yields from (4.6), we have
(4.10) tr Wé=(m—¢q)2tr(I, — Py)*> + (tr Vo) 2 tr V&
—2(n—q)7M(tr V)™ tr {(I, — Py)Ve}
=n—q) 1+ v —2(n—q) (tr Vo) tr Vg
=vgd —(n—q7".

Therefore, noting that tr W3 >0, we obtain vy <n—gq. Similarly (iii) is
proved by considering

(4.11) Way=(n—1)7", — P) — (tr Va) ' Va,
where P, =n"'1,1,.
Similarly the efficiency of £, may be measured by
pa(A) = Var [tr (AZgyup.a)]/Var [tr (425)],

where A4 is a p x p symmetric matrix and £y yg.q = (n — 1)71Y'(I, — P )Y It
is easily seen that if ¢’s are normally distributed, pz(A4) does not depend on A
and is given by

pa = {(tr Va)*/tr Vig}/(n — 1) = vg/(n — 1).

As for the range of pg, we have the following theorem:

THEOREM 4.3. Let py = vg/(n — 1) and vy = (tr Vy)?/tr Viz. Then

n n
4.12 -1t X i K .
4.12) (n ) max{zUn,l}SquSmm{ 1,1}

Proor. The result follows from Lemma 4.1 and n;|w;||> = 1 (i € K) for Zu
5. Asymptotic properties

It is easily expected that the asymptotic behaviors of £, depend sensitively
on the design of the explanatory variables as well as on the error distribution.
We first postulate the following conditions on them.

CONDITION 1. vy = (tr V/)?/tr V2 — 400, as n — +c0.
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CoNDITION 2. There exists a positive number G such that
max; g nfwil|> <G < +o0.

ConDITION 3. The errors ¢&;, &,... are independently distributed with
finite fourth moments.

REMARK 5.1. Condition 2 is fulfilled for an LUW estimator, since
n;lw;||> = 1 for all i € K in this case.

In this section the eigenvalues of several symmetric matrices will be fre-
quently operated; for simplicity, the eigenvalues of an m x m symmetric matrix
A will be denoted by 4,(4) > 1,(4) = -+ > 1,(A).

We now prove the consistency of £, which is given in the following
theorem:

THEOREM 5.1. Suppose that Conditions 1, 2, and 3 hold. Then the non-
parametric estimator 2, of (2.2) is consistent if

(51) ZieK él’él = 0("1() ’ asn— +oo s
where &, = E[r;] for ie K.

Proor. It is sufficient to show that tr(4Z,)—tr(4X) as n— +oo
in probability, for any symmetric p x p matrix A. First we show that

E[tr (AZ,)] - E[tr (AZ)] as n— +o. Since |&&| < max;|4;(A4)[&;&; and
1/(1 + G) < ¢ < 1 for any i € K, we obtain from (A.2) in Appendix that

|E[tr (424)] — tr (AZ)] = |(tr V) 'E[tr (AY'V;,Y)] — tr (AZ)|
= |(tr V)2 {(tr V) tr (AZ) + tr (AH'V H)} — tr (AZ)|
= (tr V)|t (AH'V H)|
= (Liek )7 Yiex ctEIAL
< max; | 4(A)|(1 + G)(}; &i&i/nx) -

Thus it follows from (5.1) that E[tr (45 )] = tr(AX) as n - +oo.
Next we show that Var [tr (4£,)] >0 as n— +o0. Since ¢? <1 and
V‘:VVJV <ftr V},

Y Vyvyl < @D VynPvy Vv )2
< (Ziex ct izj)l/z{'lx(Vm)"fv"/f}llz

S Qiex EE)H{AL (V) (tr V)12
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Letting A = [ay, ..., a,],
(5.2 [tr (AZAH'VEH) <Y ;Y |ajZanV ViEn®)
<Y, Y @ Za, (g9 VEngOn® vz g2
S M) Qiek €& i 2 lajZay] .
Therefore, using (4.3) we obtain
Var [tr (A2)] < VALY, Yu 0 Y ap@imita (i ky 1, m) — {tr (A2)}2
—2tr(A2)? + 2tr (42)*]
+2{(1 + Gy } 2 {A (Vi )/t Vi } 2 (Liek EiCifng)'?
X 2 2 2 2o |G| {| 3 (K, 1, m)] + |pa(m, j, K|}
+ 401+ G (Liex &i8i/mi) (A (Vy)nic} X5 Yo ajZa)
This implies that under Conditions 1, 2 and 3, Var [tr (A£,)] >0 as n— +oo.
Finally, using the Chebychev inequality, we obtain that for any ¢ > 0
Var [tr (42,)] + {E[tr {4Cy — 2)}1}*

&2 ’

Pr{|tr{A(Z, — D)} =&} <
as n— +o0o. This completes the proof.

COROLLARY 5.1. Suppose that Conditions 1 and 3 hold and that the regres-
sion function n is differentiable and satisfies

a 23)1/2
(53) l//a = Supl {Z;Ll (aT rla(x)lx=r) } < +00 ’ o= 13 <5 D
]

Then an LUW estimator 54, of X is consistent if
(5.4) YickdZ=o0(mg) asn- +o0.
Proor. For an LUW estimator, Condition 2 is automatically fulfilled (see,

Remark 5.1), and it yields from Lemma 3.1 that under assumptions (5.3) and
(5.4

0<Y ik &ili/ng < QL ¥2)(Yick d?/nk) -0,

as n—- +00. Hence the assertion follows from Theorem 5.1.

COROLLARY 5.2. Suppose that Conditions 1, 2 and 3 hold and that the
regression function g is twice differentiable and has the Hessian satisfying

(5.5) Yy = SUDPy SUPyyu=y W H®Pu| < +00, a=1,...,p.
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Then an LLW estimator £ '» of X is consistent if
(5.6) Yiexkdi =o(ng), asn— +o0.
Proor. For an LLW estimator, it yields from Lemma 3.2 that under the

assumptions (5.5) and (5.6)
0< ZieK Ei&i/ng < 4—lG(ZaP=1 )’f)(ZieK d?/"x) -0,
as n— +oo. Hence the assertion follows from Theorem 5.1.
To derive the asymptotic normality of £, somewhat stronger conditions

are needed on the error distribution and on the design; we now postulate the
following conditions:

ConprTioN 3!, The errors &, ¢,, ... are independently distributed accord-
ing to N,(0, X).

ConDITION 4. A,(Vy) = o(n¥?), as n —» + 0.

THEOREM 5.2. Suppose that Conditions 1, 2, 3" and 4 hold. If
(5.7) Ziel( é;é: = O(nll(/z) , asn— +o,

then the asymptotic distribution of Z = v¥{*(£, — X is normal with mean 0 and
covariances

(5.8) E[zyzZim] = 010im + Ojm0i -
Proor. It is sufficient to show that every linear function of Z, has an

asymptotic univariate normal distribution (see, e.g, Rao [15, Chapter 8a.2]).
Note that an arbitrary linear combination of Z, can be written as

tr (4Zy) = viP tr [A(Ey — 2)],

where 4 be a symmetric p x p matrix. A few algebras yield that the quantity
tr (AZ,) can be decomposed into the following three terms:

tr(4Zy) = tr (AZ}) + &4 (A) + 14-(A),
where
Zy =P {(tr V) 'E'VyE - 2},
r(A) = viP r [AH'Vy H1/tr V-,
o(A) =2y )2 tr [AH 'V E]/tr V) .
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Then under Conditions 1, 2 and (5.7) we obtain
I (A)] = viPItr [A Yiex ci&iid/tr Vy
< Yiex HIEAGN Y iex ¢
< max; |[4(A)I(1 + G) Yk E&i/n¥* — 0,

as n— +oo. Since @4 (A4) is a linear combination of &’s, ¢4 (4) is normally
distributed with mean 0 and variance

Var [@4(A)] = 4v,(tr V) 2E[{tr (AH'V, E)}?] .
Since (1 + G)™ < ¢? < 1 (i € K), it follows from (A.5) and (5.2) that
E[{tr (AH'V E)}*]1 = tr (AZAH'V}H) < (}; a; £ a))2,(Vy) Yicx &ii -
Hence, under Conditions 1, 2, 4 and (5.7) we obtain
Var [@4(4)] < 41 + G*(X;a; Za) (v /ng) Ay (Vi )/n?)(Licx Ei&i/ni?) > 0,

as n— +oo. This implies that ¢,(4) = 0 as n —» 400 in probability.

Next we show that the asymptotic distribution of tr (4Z}) is normal with
mean 0 and variance 2tr (AX)%. Let ¢,(t) be the characteristic function of
tr (AZ}). Then

(59  ¢4(t) = E[exp {it-tr (4Z})}]

= E[exp {it(tr V3) V2 tr [A(E'VyE) — (tr V) tr (42)]}] .
Using an orthogonal transformation of V-, we have
(5.10) tr [A(E'Vy E)] = Yozy Au(Vi)ed Aet

where &;’s are independently distributed according to N,(0, X). Considering
the transformation uw, = X "Y2g* a =1, ..., n, we can write

(5.11) X Aex = Vb, (S 2AZ ),

where u,;’s are independently distributed according to N(0, 1). Hence, from
(5.9), (5.10) and (5.11) we obtain that

¢a(t) = E[exp {it(tr V)72 3, A,(Vy) j M(E P AZ Pyug; — itvif tr (A2)}]
= E[exp {—itv}?* tr (AZ)}
x [1a [T, Elexp {it(tr V2) 2 A,(Vyr) A2 2 AZ 2 )ug;} ]
= exp { —itv}* tr (42)}
x [T TT, {1 = 2it-(tr V) 24,V ) 4(E 1P AZ 1)1 |
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Note that Y ,4,(Vy) =tr Vi, Y {4(Vy)}> =tr VZ and Y ;{4,(Z2AX1?)}? =
tr (A2')%. Then, using the Taylor expansion of log ¢,(t), we obtain that for any
te(—o0, +©)

log a(t) = — 12 tr (AZ)* + Y, 3 Ryi(0),
where

(tr VA 2 {4 ) P {AE P Az )2
{1 = 2i6,e(tr V2) ™ 2A,(Vy)A(Z 24X 172)}3

b

R, (1) = —(4/3)i

for some 6, in (0, 1). Since
IRaj(t)' < (4/3)t3(tr V})_s/zll(VAf) max; |4,(Z 245 1/2)| {ia(V/V)lj(): 124X 1/2)}2 ’
it follows that under Conditions 1, 2 and 4

'Za Zj R,(t)] < Za Zj [R,(t)|
< (4/3)(1 + G){A,(Vy)/n¥?} - max; |A4(Z 2 AX 2)|tr (AX)? -0,

as n— +oo. Therefore we obtain that ¢,(t) = exp [—tr (42)%*t?] as n— +o0
for any t € (—oo, +00). This completes the proof.

Using the similar argument as in the proof of Corollary 5.1 or 5.2, we
obtain from Theorem 5.2 the following corollaries:

COROLLARY 5.3. Suppose that Conditions 1, 3" and 4 hold and that the
regression function n is differentiable and satisfies (5.3). Then the asymptotic
distribution of Zy = v§>(E4 — Z) is normal with mean 0 and covariances given by
(5.8) if Y.iex d? = o(n¥?) as n > +o.

COROLLARY 5.4. Suppose that Conditions 1, 2, 3" and 4 hold and that
the regression function n is twice differentiable and satisfies (5.5). Then the
asymptotic distribution of Zgy = v2(Ey — X) is normal with mean 0 and co-
variances given by (5.8) if Y ;. xdi = o(ng?) as n - +oo.

6. Some special cases when g = 2

We will now consider in more detail the case when g = 2. The data may
be described as {(y;, x;)|1 <i < n} with x; = (1, x;). Without loss of generality
we assume that x; < x, <--- <x, and the number of repeated observations
at x; is m;, ie, m;= #{jlx;=x;,1 <j<n}. For simplicity, we denote the
observations by (y;, x;) instead of (y;, x;) hencefoth. Let K, = {ilm; > 2},
Ky =1{2,...,n—1} ~K,. First we define a practical index set N; for each
ie K = K, u K which specifies a neighborhood of x;. Let
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{jlxj=xi’j¢i}9 lfiEK.l{a
{jlxj=xi-orx;=x.}, ifieKgy,

(6.1) N; = {

where i~ = max, ., | and i* =min,,, . For ie Ky, let N7 = {jlx; = x;-},
N = {jlIx; = xu}, m- = #N; and m. = #N;. It is possible to consider
a general estimator %, of 2 based on N;, ie K. However, it is natural to
consider a simple class of estimators which reflects on the characteristic of two
types of neighborhoods as follows: For ie K = K, U K and given 6, € [0, 1],
let

(6.2) Fi=0" Ly PYw

_ [my. = y)/m, - 1), ifieK,,
0 yi-. + (1 = 0)yi-., ifieKg,

where for ie K4, . =m; (3 + Y jcn,¥;) and for i€ K, y- =m;* Y ;. y-y; and
Y = mi_+1 Zjezv;'Yr
Using r; = §; — y; as in (2.3), we define a class of estimators of X by

63 So-(g¢) 5 et

ieK iek

where ¢Z = (1 + w/w,)™! and is given by

l—mi_l, lfleKJ[,
(64) Ciz = 03 1—6)*)!
{I+m—l+(——rn-i} . lflEKy

A special case of this estimator was introduced by Gasser et al. [8] and by
Ohtaki [14], and a slightly different estimator was proposed by Rice [16] in
univariate regression model. A simple algebra yields that

(6.5) So=t4lee+(1—14)5y,

where 74 = (Yicx, )/ Qi ) Zpg is the PEMS estimator (1.3) based on the
data {(y;, x;)|li € K4}, and

-1
s =( Y C,2> Y ctnr].
iceKg, ieKg
Thus we can see that £ is a natural extension of PEMS estimator. Note
that £, includes two important estimators as special cases; adopting 6; =
m;-/(m;- + m;.) yields an LUW estimator, which will be denoted by Zou
and adopting 6; = (x; — x;-)/(x;+ — x;-) yields an LLW estimator, which will be
denoted by 5S¢
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REMARK 6.1. The estimator £ is expressed in a quadratic form, 2 =
(tr V5) 1Y’V Y, where the (x, f)-element of V; can be expressed as follows:

(e (¢ + Ip(a)ct(1 — 6,-)% + Ig(at)ct 02 fo=BeKy,
(m, — 1)/m, , ifo=peKy,,
—mit + m;*{Igp(@ )ch-(1 — 60,-)* + Io(0*)ch 02},  if x,=xg and a # B,
T L@t — 0)met — Iy(ct)ct0,mot ifg=at,
Ip(@t)ct0,.(1 — 6, )ym*m7L | ifp=att,
kO s otherwise ,

where for W =M, S, I, =1ifieKyand 0ifi¢ K.

Since £ (or Lo Zsy) is a special one of £ (or £y, £¢), we can apply
the general theory of %, in Sections 3 ~ 5 to £¢ (or L4q, Z6e). However,
X is based on a special index-set N; and a special predictor §;, and so we can
expect that the assertions and the conditions in the general theory of %, can be
more strengthened and simplified. We shall look these in the following.

LEMMA 6.1. Let Sgq = [6ca(j, )] be an LUW estimator. Suppose that
the jth and the Ith components n; and n, of the regression function n are
differentiable, and that

(6.7) ¥, = sup, ;ld;'?a(x)h:: < 400, a=j1l.
Then |EL8Ga(j; D] — ol < Yjhhga
where

(6.8) how = (Viex )7 Yiek, ¢l — x)% .

LEMMA 6.2. Let 44 = [664(j, )] be an LLW estimator. Suppose that
the jth and the lth components n; and n, of the regression function n are twice
differentiable, and that

d? .
(69) Yo = SUP; W"a(x)|x=t <+, a=J l.
Then |E[662(Jj, D] — 0'jt| < ?szhG.? s
where

(6.10) hey = 4_1(21'51( Ciz)—1 Ziel(y ci4(xi+ - xi)z(-xi - xi‘)2 .
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LEMMA 6.3. Let V; be the matrix given in Remark 6.1 and let vg =
(tr Vg)?/tr V&. Then it holds that

n—2

6.11 > ,
(.11 6= 24 r a0 —2)"

Proor. Note that

(6.12) Vg = (ZieK ciz)z/[ZieK ct {1 + 2I4(i%)ct(1 — 6, + 6,.)?

0%.(1 — 6,)?
+ 2Ly (i )t l—(m—z—")“} + Yiek, Cz{' .

i+1

Since 27! < ¢? < 1 for all i € K, a straightforward calculation yields that

5 -2
V6 2 (Liek ¢1)/2 Liex € +5m) = Lick Ciz)/<2 + Z.-ez 012) 22 +r;0/(n —

Hence we obtain the desired result.
From Lemma 6.3 it follows that vg — +00 as n - +00, and Condition 1 in

Section 5 is satisfied; therefore, we obtain from Theorem 5.1 the following
results:

THEOREM 6.1. Suppose that Conditions 2 and 3 in Section 5 hold. If
Yick Ei&i=o(n) as n— +oo, then the nonparametric estimator 2 defined by
(6.3) is consistent.

COROLLARY 6.1. Suppose that Condition 3 holds, and that the regression
function n is differentiable and satisfies ) , 2 < +o00, where Y,’s are the quantities
given by (6.7). Then an LUW estimator L4 is consistent if

ZieKy (xi+ = x;-)* = o(n), asn-— +o.

Proor. Using 27! < ¢? < 1 (i € K), we obtain from Lemma 6.1 that
(6.13) 0<Yiek&i&i 20001 ¥2) Yiek, (X — x:-)* .

Hence the assertion follows.

COROLLARY 6.2. Suppose that Condition 3 holds, and that the regression
function n is twice differentiable and satisfies Y ,7Z < +co, where y,’s are the
quantities given by (6.9). Then an LLW estimator Xy is consistent if

Yiek, (X — X)) — x;-)> =o(m), asn— +oo.
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Proor. Using a similar argument as in the proof of Corollary 6.2, we
obtain from Lemma 6.2 that

(6.14) 0< ZieK gidi < 2_1(ZP=1 V%) ZieKy (e — %)% (6 — x-)% .
Hence the assertion follows.

COROLLARY 6.3. Suppose that Condition 3 holds, and that there exist two
numbers a and b such that —0 <a<x;<b < +oo for alliec K. Then £y is

consistent if the regression function y is differentiable on [a, b]; so is also Sgq if
n is twice differentiable on [a, b].

ProoF. Let t; (je Kg) be the jth design point on which no replicated
observation lies, and assume that ¢, <t, < <t, and s = # K, without loss
of generality. Then we have

(6.15) Yick, (Xie — Xi-)? < Y525 (Ger — 4-4)?
<2555 {te — )7 + (4 — 54)*} <4 350 (e — 1)
<4(t,—t)* <4(b —a)’ < +0,
and
(6.16) Y iex (s — X020 — X;-)> <274 Y e, (e — x;-)*
<SG — )< (b—a)* < +.
Hence the assertion follows from Corollaries 6.1 and 6.2.

Following similar lines as in the general theory in Section 5, we obtain the
following theorem:

THEOREM 6.2. Suppose that Condition 3' in Section 5 holds. Then the
asymptotic distribution of vi§*(X; — X) is normal with mean 0 and covariances

(5.8) if Ziel(y &i&i=on'?)asn— +oo.
In the proof of Theorem 6.2 the following lemma is essential.

LEMMA 6.4. Let Vg be the matrix given by Remark 6.1, and let 1,(Vg) be
the largest eigenvalue of V5. Then

6.17) 271 — 7l < A, (V) < 17/4.

PROOF. Note that A;(Vg) = SUPgy=y D 2 pVapliatis, Where v,5's are given
in Remark 6.1. After some straightforward calculations, we can show that
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A1(Vg) < 17/4.  The left hand part of (6.17) follows from
27—t <27 = 2)n <Y g cin=tr Vg/n < A, (Vg).

PrROOF OF THEOREM 6.2. From Lemma 6.4, we see that Condition 4
in Section 5 is automatically satisfied. Hence, the assertion follows from
Theorem 5.2.

Using arguments similar to the ones in deriving Corollaries 6.1, 6.2 and 6.3
from Theorem 6.1, we obtain the following corollaries of Theorem 6.2:

COROLLARY 6.4. Suppose that Condition 31 holds, and that the same condi-
tions as in Corollary 6.1 hold. Then the asymptotic distribution of vi3(Eca — %)
is normal with mean 0 and covariances (5.8) if Y ek, (x; — Xi-)> = o(n*?) as
n— +0oo.

COROLLARY 6.5. Suppose that Condition 3" holds, and that the same condi-
tions as in Corollary 6.2 hold. Then the asymptotic distribution of viAZcqy — 2)
is normal with mean 0 and covariances (5.8) if ) ;cx, (s — X)*(x; — x;-)* =
o(n*?) as n - +oo.

COROLLARY 6.6. Suppose that Condition 3" holds, and that there exist two
numbers a and b such that —o0 <a < x; <b < +oo for all ie K. Then the
asymptotic distribution of v};’%,()fgq, — X)) is normal with mean 0 and covariances
(5.8) if n is differentiable on [a, b]; so is also that of vi3(Ese — Z) if n is twice
differentiable on [a, b].

7. Testing goodness of fit of linear models

In this section we propose a criterion for testing goodness of fit of linear
models in multivariate regression. Assume that the regression relation can be
described as in the model (1.1) and that the errors ¢, ¢,... are independently
distributed according to N,(0, 2).

Suppose that a hypothesized model, say f-Model, is expressed as

(7.1) H=X,0,

where X, is an n x r design matrix induced by a function f=(f,...,£):
R? - R", that is,

Six,)
(7.2) Xf = : = [f(1)9 "'af(r)] s

S
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where the function f is known, rank (X;)=r and @ is an unknown r X p
coefficient matrix. When there are enough replicated observations in data set,
it is possible to test the hypothesis H,: “f-Model is true” by using Wilks’
A-statistics (Wilks [24]) derived below.

Let pr = Y'Vpr Y/(n — g) be the PEMS estimator defined by (1.3), where g
is the total number of distinct design points in the data. Here we assume that
n—g = p, and let ff =Y'(I, - P)Y/(n —r), where P, = X(X;X;)"'X;. From
the general theory of multivariate linear model (see, e.g., Anderson [1], Seber
[19], Siotani et al. [21]), the likelihood ratio criterion is based on

Ao 1 —g) 3l _ _mln-g
(n—g)2pe + {(n —1)2p —(n—g)Zpg}| |2, n—r

Under H;, (n— g)pr and (n — r)ff —(n— g)f‘,,E have independent Wishart
distributions W,(n — g,2) and Wy,(g —r,Z), respectively. Then A has a
A-distribution with degrees of freedom p, g —r, and n — g. For the tables of
the upper quantile values for the A-distribution, see, e.g., Seber [19]. If the
ratio IfPEl/lffl is very smaller than the expected value under H,, that is, if |ff|
is much greater than | Zegl, we reject H, and may suspect that there exists some
lack of fit in f-Model. It is noteworthy that the test based on the A-statistic of
(7.3) is equivalent to the well-known classical F-test when p = 1 (see, e.g., Seber
[18, Section 4.4]).

The A-test mentioned above, unfortunately, can not be applied if there are
few replicated observations in the data set. This is the situation we now
consider. One possible approach to such a situation is to use the A-statistics
defined by replacing S bya nonparametric estimator % ,; however, no simple
expression of the exact distribution even when H, is true is available for the
resulting statistics. We now consider the asymptotic distribution of Iffl/lf v
when n is large. It is seen that after multiplying a suitable normalizing
constant, log {Iffl/lf‘ |} and tr (fff +!)— p have the common asymptotic
distribution. So we study the distribution of the latter statistics.

(7.3)

THEOREM 7.1.  Suppose that &, &,, ... are independently normally distributed
with mean 0 and covariance matrix X. Let

(7.4) K =2p) v —(n—n7"}71,
where v, = (tr Vy)?/tr V2. Then under H, the asymptotic distribution of
(7.5) T, = k2 {tr (£,2;") — p}

is N(0, 1) if the following conditions are fulfilled:

() vy =(tr Vy)?/tr V2 — +00, as n— +00, and lim sup,,, vy /(n—r) < 1.
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(ii) There exists a positive number G such that
max; g n; W’ <G < 4.

(iii) MVy)=0m?) asn-> 4.
(iv) There exists a positive definite matrix Q; such that

X;X;/n—Qp, asn— +o .
(v) Lete;=X;(w;,—9),icK. Then

Yiek€ie;=0my?), asn- +oo.

Proor. Note that T, = x}? tr [(£, — £,)Z I, + (&, — £)Z~*}!] and

from Theorem 5.1 £, — X as n— +co in probability. Hence, the asymptotic
distribution of T; is the same as that of T;r =P tr (T4 — Zy)}. Letting

(7.6) Wp=(n—r7""I,— P)—(tr V)V,

we have T’\—xl/2 tr (Z'Y'W,Y). When the null hypothesis is true, there
exists an r >< p matrix @ such that H = E[Y] = X0, and hence TJr can be
expressed in terms of E =Y — X0 and decomposed as follows:

(1.7) T =4, + 2t + T

where 4; = —ik2(tr V) Tt (02O XV X)),
T, = —Kk2(tr V) tr (ET\O XLV, E),

and T* =k} tr (X 'E'W,E)

First we show that 4, —0 as n— 400 and 1, -0 as n— +oo in prob-
ability. Note that tr V- =Y ;. (1 + |w]|*)™ > ng/(1 + G) from (ii). Using a
similar calculation as in (5.2), we obtain from (v) and Lemma 3.1 that

n—r
|4, <2p) ™21 + G) }; 3., 16,2716) (ﬁ) ik eie/n?) >0,
as n— +oo, where @ =[6,,...,0,]. We also obtain from (A.5) and (5.2) that
under (i), (ii), (iii) and (iv)
E[t}] = x,(tr V)2 tr (2 'O X;VEX,0)
<@p) A+ {4 (W)L 210270 (Lick eie/nd?) > 0,

as n— +oo. This implies that 1, — 0 as n —» + o0 in probability.
Finally we show that T;* is asymptotically distributed according to N(0, 1).
Let ¢,(t) be the characteristic function of T*. Then following similar lines as



86 Megu OHTAKI

in (5.9), we can obtain
#,(t) = E[exp {itx}* tr (X 'E'W,E)}]
=[1. {1 — 2itx}P2,(W;)} 772

Hence
log ¢,(t) = —27"p ), log {1 — 2itx;22,(W))} .

Using the Taylor expansion, we have for any t € (—o0, +00)
log {1 — 2itk}2A(W))} = —=2ii}2 A, (W)t + 2{k;}?A,(W;)}*t* + RP(t),

where

1/2 3

RO = 89Ty b
for some 6,(t) in (0, 1). Note that tr W, = 0 and

tr W2 =vt —(n—n)7" + 20— r)7tr V)7 tr(Pr V).
Letting Q, , = X;X,/n, we have

tr (P Vy) = tr {(X; X)) ' X; Ve X} = n7 ' tr (7, XV X)

=n"t Zj Zl for ZieK c?eijeil s

where wj is the (j, I)-element of the inverse of ,,. Hence, we obtain from (i),
(i), (iv) and (v) that

2 _ (rp)l] — 24 .
(18) 115 W2 = Q) = et (B )

1+G .
= +1/2( i >(Zj2!lwr{ll)(ZieKe;ei/nll(/z)

T opngt \n—r—vy,
= ofmy?),
as n— +oo. Therefore, letting 6,(t) = 27'p Y., R™(¢), we obtain
log @,(t) = ipx;"?(tr W))t — k,p(tr W)t2 + 6,(t)
= —{27' + o(ng')} 2 + 5,(¢) .
Since, under Conditions (ii) and (iii),
e max, | (W)l < w12 {4 (V)tr Vi + (n — )7}
< (1 + G, /ng) P (A4 (Vy)/ng?) + 12 f(n — 1)
= 0() (AL (Vy)/m¢*) + O(n™?) >0,
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as n - +o0, it follows from (7.8) that
10,1 < (4/3)p (Yo | 2(W)) )23
= (4/3){px,(tr W)} (/> max, |4,(W,)) -0,

as n— +o0. Hence, we have that ¢,(t) > exp (—t2/2) for any fixed t. This
completes the proof.

COROLLARY 7.1. Suppose that every component of f=(fi,...,f,) is dif-
ferentiable and satisfies

0 2)1/2
‘/Ia = Supt {Zg=l <a—'f;¢(x)lx=t> } < 4+ ’ a= 1: e Iy
X;

and that Conditions (i), (iii) and (iv) in Theorem 7.1 are fulfilled. Let fq,
be an LUW estimator of X, and let kg, = (2p) 'vg(n — r)/(n — r — vg) and vy =
(tr Va)2/te V. If Y.k d? =o(n¥?), as n— +oo, then the asymptotic distri-
bution of Ty, , = ki {tr (£,£4') — p} is N(0, 1) when the hypothesis H, is true.

PrOOF. For an LUW estimator £, we have that n;|w;)|> =1 for all i e K,
and obtain from Lemma 3.1 that

0< ZieK e;{ei/”}(/z < (Z;=1 lpaz)(ZieK diz/n}(a) -0,

as n— +00. Hence the assertion follows from Theorem 7.1.

COROLLARY 7.2. Suppose that every component of f=(f1,...,[,) is twice
differentiable and has the Hessian satisfying

Yo = SUPx SUPyy=1 lw' Hu| < +o0, a=1,...,r,

and that Conditions (i), (ii), (iii) and (iv) in Theorem 7.1 are fulfilled. Let by 1%
be an LLW estimator of X and let kg, = (2p) 've(n — r)/(n —r — vy), where
Ve =(r Vo) /tr Ve, If Y.k df =o(n¥?), as n— +oo, then the asymptotic
distribution of Ty , = ki {tr (fff_{p‘)—p} is N(0,1) when the hypothesis H,
is true.

Proor. From Condition (ii) and Lemma 3.2 we obtain that
0< Ziel( eie;/m? < 4—IG(Z;=1 V:)(Ziex di/mg?) -0,
as n— +oo. Hence the assertion follows immediately from Theorem 7.1.
8. Robust estimators of diagonal elements of X

A disadvantage of 2, is that 5, has a lack of robustness because one
single outlier may have an arbitrary large effect on the estimator. For diagonal
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elements of 2, i.e., variances of the components of y, using the jth components
r; of r, =y, — y; (i € K), and applying the idea due to Rousseeuw [17], we may
construct a robust alternative estimator d4(j,j). The derivation of the robust
estimator is based on an averaging procedure through taking the median
of ¢?r¥s (i€ K) rather than the arithmetic mean of them (see, Hampel [10,
p- 380]). When errors are normally distributed, the robust alternative may be
given by

(8.1) 8#(j, j) = 2.198 median; . x(c?r3) .
Here {1/®7!(3/4)}* ~ 2.198 is an asymptotic correction factor, because
median, . ¢(c7r]) - 0;; median(x}) = 0;;,{®71(3/4)}2,

as n —» +o0, where @ denotes the standard normal distribution function.

Another robust alternative may be given by an M-estimator which was
introduced by Huber [11]. The scale M-estimator for the jth element of 2 is
defined in our case as follows. Let p be a real function satisfying the following
assumptions.

@ p0)=0;

(i) p(—u) = p(u)

(iii) 0 < u < v implies p(u) < p(v);

(iv) p is continuous;

(v) 0<a=supp(u)< +o0;

(vi) if p(u) < a and 0 < u < v, then p(u) < p(v).

Then, the M-estimator of g%, say {d4(j,j)}"? is defined as the value of s
which is the solution of

ng' ZieK P(Ci"ij/s) =b,

where b may be defined by E¢[p(4)] = b.

The degree of robustness of an estimator in the presence of outliers may be
measured by the concept of breakdown-point which was introduced by Hample
[9). Donoho and Huber [6] gave a finite sample version of this concept which
will be used here. The finite sample breakdown-point measures the maximum
fraction of outliers which a given sample may contain without spoiling the
estimator completely.

THEOREM 8.1. Let 64(j,j) be the estimator given by (8.1). Let U, be the
quantity given by (4.7), and let g be the number of distinct design points in data.
Then the breakdown-point of é4(j,j) is not less than

[Lg/21* /1 + U)] /n,
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where [t]* and [t]™ denote the operations of rasing to a unit and of omitting
fractions on a real number t, respectively.

Proor. Let m' be the total number of outliers. Then the number of
affected elements of {c?r}|i € K} is at most (1 + U,)m'. From the definition we
see easily that 64(j,j) can not take arbitray large value when (1 + U,)m' <
g/2 — 1 or (9 — 1)/2 according as g is even or odd. Now the assertion follows
immediately.

In one-dimensional regression, i.e., the case of g =2, with no replicated
observations in the data, the breakdown-point of é4(j,j) is [n*/6]* /n, where n*
isn—2ifniseven,n —1if nis odd. Hence the asymptotic value is 1/6.

Appendix. Covariances of some quadratic forms

Let Y=1[y,...,»,) be an n x p random matrix such that y,, ..., y, are
independently distributed with means #,, ..., n,, common covariance matrix X
and common third and fourth moments about their means. The common
third and fourth moments are expressed by u,;(j, k, 1) and u,(j, k, I, m) for
1<j, k, I, m < p, respectively, as in (4.1) and (4.2).

THEOREM A.1. If A =[a;] and B = [b;] are any p x p symmetric matrices,
V = [v,4] is any n x n symmetric matrix, then

(A.1) |
Cov [tr (AY'VY), tr (BY'VY)]

=vo{}; Y Y Y m aubimpa(j, kI, m) — tr (A42) tr (BX) — 2 tr (AZBX)}
+20tr VA tr (AZBE)+ 23 ;Y Y0 Y m apbim{ sk, I, myy?
+ us(m, j, '} Vv + 4 tr (AXBH'V?H) ,

where H = (9, ...,1,) and v is the column vector of the diagonal elements of V.

Proor. Letting E = (¢y,...,&,) = Y — H, we have
tr (AY'VY) =tr [A(H + EYV(H + E)]
=tr(AH'VH) + 2tr (AH'VE) + tr (AE'VE).

Note that E[E] = O,,, and E[¢P"'] = g;1, for 1 <j, | < p, E[g,5] = 6,5%
for 1 <a, B <n, and the third and fourth moments are given by (4.1) and (4.2),
respectively. The expectations are calculated in terms of E and their com-
putations are straightforward. Here we list some fundamental results in the
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following:
(A.2) E[tr (AY'VY)] = (tr V) tr (AZ) + tr (AH'VH).
(A3)  E[tr(VEAE) trt (VEBE)] = vv{Y,; Sk Y Y om @icbimtta (s e, 1, m)
— tr (AZ) tr (BX) — 2 tr (AXBX)}
+ 2(tr V2) tr (AZBY)
+ (tr V)*{tr (AX) tr (BX)} .
(A4)  E[tr (AHVE)tr BEVE)] =Y ;3303 aubimpts(k, I, myy' Vg .
(A.5) E[tr (AH'VE) tr (BH'VE)] = tr (AXBH'V*H).

CoRrOLLARY A.l. Ify,, ..., y, are also normally distributed in Theorem A.1,
then us(j, k, 1) = 0, ps(js k, I, m) = 6301 + 0,0 + OjmOy, and

Cov [tr (AY'VY), tr (BY'VY)] = 2(tr V2) tr (AZBX) + 4 tr (AXBH'V*H).

COROLLARY A.2. Let p=1 in Theorem A.l1. Then we obtain the following
well-known expression of variance of a quadratic form (see, e.g., Atiqullah [2],
Seber [18, Chapter 1.4]):

Var [Y'VY] = v'v(uy — 30%) + 2(tr V?)o* + dusn’'Vv + 4a?n'V3y .
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