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1. Introduction

Let F,(x) be the distribution function of a random variable X, depending
on some parameter n, not necessary a sample size. A typical form of the
asymptotic expansion of F,(x) around the limiting distribution function G(x)
of F,(x) as n— o0 is

1 1
(1.1 Fy(x) = G(x)+g(x){;a1(x) +Faz(x)+ },

or the one with n replaced by \/r_z, where g(x) is the density function of G(x),
and a,(x), a,(x), etc. are suitable polynomials. When F,(x) is approximated
by a function of the form

k—

Gin(x) = G(x) + g(x) ; ajxyn™t,

it is well known that the error R, ,(x) = F,(x) — G, ,(x) satisfies
Rin(x) = 0(n7)

under suitable regularity conditions (see, e.g., Bhattacharya and Ghosh [1]).
This means that there exists a positive constant C, such that for large n

|Rin(x)] < Gn™*

However, such C, and n have not been obtained except for some special
statistics (see, e.g., Fujikoshi and Shimizu [3]).
On the other hand, it is also important to find out x,(#) such that

(1.2) F(x,()) = G(u) .

Based on the expansion (1.1), we can formally expand x,(u) as
1 1
(13) xn(u) =u-+ ;‘bl(u) + ?bz(u) + .

This is usually done, first by finding out u,(x) of the form
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1 1
(1.4) u,(x) = x +;dl(x)+n—252(x)+

which satisfies
(1.5) F,(x) = G(u,(x)),

and then by solving the equation (1.4) of x (see, e.g., Hill and Davis [4]). Ex-
pansions (1.3) and (1.4) are called Cornish-Fisher expansions. The quantile
x,(u) of F,(x) is usually approximated by a function of the form

X (W) = u + kil b(uyn™’ .
=1

However, it is little known about the error estimate of this approximation.
An ideal result is to find out an upper bound I,(«) and a lower bound I,(u)
of x,(u), such that

(1.6) L(w) < x,(u) <1,
and
(1.7) 0 < I,w) — I,(u) < D",

where D, is a positive constant. In general, it will be difficult to have an
error estimate of the form (1.7). So, as a more feasible form we will consider
upper and lower bounds such that

(1.8) 0 <10 — b < 2 Jul,

where D is a positive constant. In fact, Wallace [5] obtained upper and
lower bounds in the forms (1.6) and (1.7) with k=1 and (1.8) for u,(x) of
Student’s t distribution.

It may be noted that Wallace’s results are for u,(x), not for x,(u) of
Student’s ¢ distribution. In this paper, we give an approximation, which has
an error estimate in the form (1.8), for x,(u) of t and F distributions. Our
approximations will be proposed with the help of Cornish-Fisher expansions.
The proofs are based on the method of Wallace [5].

2. Preliminary results

Let F and G be absolutely continuous distribution functions with density
functions f and g, respectively, and let x(u) be the solution of the equation
F(x) = G(u) for x in terms of u.

Assume throughout that the density g(u) are positive and continuous for
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¢ <u< oo and that an approximation z(u) to x(u) is a continuously differen-
tiable, strictly increasing function for ¢ < u < o0. Here ¢ is any appropriately
chosen constant which can be —oo. Further, assume that the density f(x)
is continuous for lim,_ z(¥) < x < 0. Let
_ fGw)z' W)

g(u)
The following theorem and lemma were proved by Wallace [5].

THEOREM 2.1. If

2.1 R(u)

() lim,., z(u) =
(a2) limu—'c G(u) = F(limu—’c Z(u))
(a;) sgn{R(u) — 1} is monotonic function of u for ¢ <u < oo,

then x(u) > z(u) or x(u) < z(u) for all ¢ < u < oo according as the function in
(a;) is increasing or decreasing.

LemMa 2.1. For all y >0, hy(y) = (¢’ — 1)/(ye?) is monotone decreasing
for d > 1, monotone increasing for 0 < d <% and not monotonic for 1 <d < 1.

3. Student’s ¢ distribution

Let F,, f, be respectively the distribution and the density functions of
Student’s ¢t with n degrees of freedom, let @, ¢ be respectively the standard
normal distribution and the density functions, and let x,(u) be the solution
of the equation

(3.1) F,(x) = G(u)

for x in terms of u. It is well known that x,(u4) can be formally expanded as

(5u® + 16u> + 3u) + .

. 1
x,(u)=u +%(u + u) + 96,2

Let I,(u) and I,(u) be two approximations to x,(u) defined by

(3.2) L(w) = n*?(ew/" — 1)!2
=u+iu3+ s+
4n 96n?
and
(33) Zn(u) - nl/2{C(I/n)(l—l/(Zn))‘lu2 _ 1}1/2

1 3 1 5
= 18u3
u+ 4n(u +u) + 96n2(5u + 18u° + 9u) + s
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respectively. We note that these two approximations can be intutively pro-
posed by looking the first two terms in an expansion of x,(u). Then,

THEOREM 3.1. For all u >0,

(i) x,w) =L  (n>0);
() x,) <@ (@n>3).

PrOOF. Let z,(u) = n'/?(e**™ — 1)'/2 with a positive constant 4. Then it
is easily seen that z,(u) is continuously differentiable, strictly increasing for
0<u< oo. We can write R,(u) = f,(z,(w))z,(u)/¢(u) as

_ I'((n+ 1)/2) (ey - 1>_1/2
W= w7\ e )

where y = Au*/n and d = 1 — n(1 — 27'). Note that y is a monotone increas-
ing function of u for all 4 > 0. By Lemma 2.1 we have that R,(u) is monotone
increasing for d =1 or A =1 and decreasing for d = 1/2 or A = (1 — 1/(2n))™".
Hence inequalities (i), (ii) follows from Theorem 2.1. Q.E.D.

Let X, be a random variable whose distribution is Student’s ¢t with n
degrees of freedom. We consider a transformed random variable

1 1 1/2 1
(3.4) Y, = {(n - §> log (1 + ;X,f)} sgn(X,), for n > 3

This variable has a rapid convergence to the standard normal distribution,
in a sense of
P(Y,<y)=®(y) + O(n™?)

for all real y. Let y,(u) be the solution of the equation
P(Y, <y) =P
for y in terms of u. Then,

THEOREM 3.2. For all u> 0,

N AN 1\
(i) ~ 3 u<y,u)<u n>§>,
(i) 0Su—<1-—$)1/2u5n0{1—<1—2—:1()>1/2}% <n2no>%>.

Proor. We have

= D tog (1 + Lxzp )}
yal) =3 (n =3 ) log (1 + - x2(w)
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for all u > 0. Therefore, (i) follows immediately from Theorem 3.1. Inequal-
ity (ii) follows from

1 1/2 "o 1 1/2
1—(1—5) Sﬂ“(“z—no) }

1
for all n>ny > 3 which has been proved in Wallace [5]. Q.E.D.

4. F distribution

Let F, and f, be the distribution and the density functions of a random
variable X, = x2/(x?/n), respectively, where x2 and y? are mutually independent
chi-square variables with g and n degrees of freedom, respectively. Let G
and g be the distribution and the density functions of xf, respectively. It is
well known (see, e.g., Fujikoshi [2]) that

1/1 1 111 1
4.1) F,(x) = G(x) — g(x) [ﬁ(ixz — E(q — 2)x> + F{Rx“ — E(9q —2)x3

1 1
+ E(q —2)(99 — 4)x* — ﬁ(q —2)(g—4(3q — 2)x} + ]

First, let u,(x) be the solution of the equation
(4.2) F,(x) = G(u)

for u in terms of x (i.e., u,(x) is the chi-square deviate corresponding to the
argument x of F,). Then

4.3) uy(x) = x — %(%xz - %(q — 2)x>

11, 7 L1

Let w, ,(x) and w, ,(x) be two approximations to u,(x) defined by

x?2  x

X
(44) wl_,,(x)=n10g<1 +;)=x_“§}—l+ﬁ—

3

and

@4.5) wy,(0) = {n + %(q - 2)} log<1 + ;)

_ 1/r, 1 /1, 1 R
=X ;(ix i(q 2)x>+p<§x Z(q 2)x>— ,
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respectively. We note that the right-hand sides of (4.4) and (4.5) are closely
related to the one of (4.3). Then

THEOREM 4.1. For all x >0,

(1) up(x) < wy (%) 0<gqg<2 and n>0)

u,(x) = wy ,(x) 0<g<2and n>(2—q)2);
(i) uy(x) =wy (x) =wy,(x)  (@=2 and n>0)
(i) wy (%) < u,(x) < wy (%) (g>2 and n>0);
lg —2|x

W) 1Wya0) — o) < (¢ >0 and n>0).

PROOF. Let z,(x) = An-log (1 4+ x/n), where A is a positive constant to be
chosen. Then consider the function R,(x) = g(z,(x))z,(x)/f,(x) which can be
written as a function of y =log (1 + x/n) as follows:

1 1
y¥?* 1 exp [{iq -1+ in(l - A)}y]
R,(x) = C, A9 = :

where

_ I(n/2)(n/2)"

(“46) "= T(q+ D

First, set A =1. Then z,(x) = w, ,(x) and

e’ — 1\1-92
Rn(x) = Cn (W)

which is monotone decreasing for 0 < g <2 and increasing for g > 2 from

Lemma 2.1.
Next set A =1+ (q —2)/(2n). Then z,(x) = w, ,(x) and

_ q__z 92 ey _ 1 1-q/2
R,(x) = c,,<1 + ) ST

which is monotone increasing for 0 < g <2 and decreasing for g > 2.
Hence inequalities (i), (ii) and (iii) follow from Theorem 2.1. Finally, (iv)
follows immediately from the definitions of w, ,(x) and w, ,(x). Q.E.D.

Next we consider the quantile x,(u) of F,, i.e., the solution of the equation
(4.2) for x in terms of u. Then
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@47 x,w=u+ %(% u — %(q - 2)u>

11, 11 , 1
P{Eu ﬁ(q 2u” + ﬁ(q —-2)(7q — lO)u} +
Let I, ,(u) and I, ,(u) be two approximations to x,(u) defined by

2 3

= u/n _ = u_ _u__ e
(4.8) I, () =n(e )=u+ - + — +
and
4.9) I, () = n{elini+@=2/2m) 7 _ 4y

11, 1
—-u+ﬁ<§u —E(q-—Z)u>

11, 1 , 1 5 .
+F{Eu —E(q—Z)u +Z(q 2) u}+ ,

respectively. These approximations may be proposed by comparing the ex-
pansion (4.7) with the expansions (4.8) and (4.9). Then,

THEOREM 4.2. For all u >0,

(1) x,u) =1y () O0<qg<?2 and n>0)

x,(u) < 1 (1) 0O<qg<2and n>12-9q),
(i) x,w)=1,w=10,m (g=2 and n>0)
(i) 1y ,u) < x,w) <1, () (g>2 and n>0).

ProOF. Let z,(u) = n(e*™ — 1), where A is a positive constant to be
chosen. Then we can write R,(u) = f,(z,(u))z,(u)/g(u) as

(ey _ 1)4/2-1

y¥271 exp [{—;—q —1+ %n(l — l'l)}y]

where y = Au/n and C, is defined by (4.6). Hence inequalities (i), (i) and (iii)
follow from Theorem 2.1 and Lemma 2.1 Q.E.D.

R,(u) = C; 49"

Consider a transformed random variable

Y,,={n+1(b—2)}log<l +1X,,),
2 n

where n > max{0, (2 — b)/2}. We note that this transformation is based on
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a Bartllet adjustment for a log-likelihood radio statistic in a linear model. It
is known that

P(Y, <y)=G(y) + 0(n™?)

for all real y. Let y,(u) be the solution of the equation

P(Y, <y) =G

for y in terms of u. Then,

THEOREM 4.3. For all u >0,

(i) <1+q2_n2)u5y,,(u)3u 0<g<?2 andn>%(2—q));
(i) y,u)=u (g=2 and n > 0),

(iii) usy,,(u)s<1+q2_nz)u (@>2 and n>0).

Proor. It holds that

yalt) = {n +lq- 2)} log (1 + 3x,,(u))
2 n

1
for all u >0 and n > max {2(2 - q), O}. Hence, inequalities (i), (ii) and (iii)

follow immediately from Theorem 4.2. Q.E.D.
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