Corrections to "On the Theory of Multiplicities in Finite Modules over Semi-Local Rings"

(This Journal Vol. 23 (1959) pp. 1-17)

Motoyoshi Sakuma (Received March 3, 1961)

The following corrections should be made:

P. 6, line 1, "*E* is also complete" should be added after the word "topology". P. 12, LEMMA 5 should be omitted.

P. 13, The PROOF of THEOREM 6 should be replaced by the following: Put $B = A_{\nu}/\mathfrak{q}A_{\nu}$, $C = \hat{A}_{\mathfrak{B}}/\mathfrak{q}\hat{A}_{\mathfrak{B}}$ and $F = E \otimes_A B$. Then we see easily that $\hat{E} \otimes_A C \cong F \otimes_B C$. Let $O = F_0 \subset F_1 \subset \cdots \subset F_l = F$ be a composition series of the *B*-module *F*. Since the functor $T(\cdot) = \cdot \otimes_B C$ defined on the category of *B*-modules is exact (cf. J. P. Serre, Ann. Inst. Fourier 6(1955–1956), 1–42), the sequence of C-modules $0 \rightarrow F_i \otimes_B C \rightarrow F_{i+1} \otimes_B C \rightarrow (F_{i+1}/F_i) \otimes_B C \rightarrow 0$ is exact. On the other hand, if *H* denotes a simple *B*-module, then $H \cong A_{\nu}/\mathfrak{p}A_{\nu}$ (as *B*-modules), and hence $l(H \otimes_B C) = l(\hat{A}_{\mathfrak{P}}/\mathfrak{p}\hat{A}_{\mathfrak{P}})$ (as *C*-modules). Therefore we have i), ii) and iii) follow from i) immediately.

P. 14, lines 5-6, "prime divisors" should read "radical".

P. 15, line 6 from the bottom, " $F'm'^nF'$ " should read " F'/m'^nF' ".

P. 16, line 10, " $E'' \cap F'$ " should read " $E'' \otimes F'$ ". Take off the lines 11-14.