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1. Introduction

In this paper, we are concerned with a real system of n-+1 nonlinear
differential equations of the form as follows:

WX, 0,1, 6) (=1, 2, ., n),
1.1) ¢
do P
[ "%_ (x’ 9) 8)-{—8{”'(90, 9) t) 8)’
where

1°  &1s a parameter such that [&]<{ 1,

2° Xix, 0,1, & (=1, 2,..., n), O(x, 0, & and T(x, 0,1t & are twice con-
tinuously differentiable with respect to (x, 0, &) in the domain

D: x| =3fx| <M, — 0 <6, 1< + o0, [€] <5,

3" X, 0,1t 8 (=1, 2,...,n) and T(x, 0, t, &) are continuous with respect
to ¢t wn the domain D and are periodic in ¢ with period Ty>0,

4° X(x, 0,t, 8 (G=1,2,...,n), O(x, 0, & and ¥(x, 0, t, &) are periodic in
with period 2,

5° 6(x, 6, 0)+0 for any (x, 9) € D.

The system of the form (1.1) cannot have any periodic solution of the
proper sense, because 4(¢) is monotonous due to the assumption 5°. But it may
have a solution such that

\/ xi(t + lTO) =xi(t) (i: 13 2)‘ Tty n‘)>
(1.2) !
O+ 1To) =0(0) + 2mr,

where [ and m are integers. Such a solution represents a closed curve in the
cylindrical phase space, namely the space consisting of the points («, 8), 0
being considered modulus 2z. So the solution satisfying the condition (1.2)
can be called a periodic solution in the cylindrical phase space. In the sequel,
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for brevity, we shall call a periodic solution in the cylindrical phase space
simply a periodic solution.

The problem as to seeking a periodic solution of (1.1) and deciding its
stability can be solved by extending the so-called stroboscopic method due to
N. Minorsky [3, 4, 5, 7]. _

In this paper, the method to seek a periodic solution of (1.1) and to decide
its stability will be described. And the two-dimensional case will be dis-
cussed more in detail and, from its consequence, there will be derived the
results of A. M. Kay [1] and W. S. Loud [2] as the special cases of our results.

2. Existence of a periodic solution

Let

xi:xi(u,, P, t, 8) (i:]-) 27"'7 71-),
2.1)

0=0(u, ¢, t, &
be the solution of (1.1) such that

xi(u’ (2 0> 8):ui (L=1> 2)"') n)a
(2.2) {
0, @, 0, )=,

where |u] :il u;] <M. Then, as is seen from the form of (1.1), such a solution
i=1

exists in any finite interval containing =0 provided |&| is sufficiently small.
Further, by the assumption 2°, in such an interval, for any sufficiently small
|&], the functions x,(u, ¢, ¢, &) (i=1, 2,..., n) and 0(u, ¢, t, &) can be written as
follows:

( xi(u, P, t, 8)—_—xi(0)(u’ Py t)+8xi(1)(u’3 P t) +pi(u’ P, by 8) (i:l, 2""’ n)>
2.3)
9(”’7 P, t) E)=90(u, P, t)+891(u> (2} t)+77(u') P, t) E))

where p,(u, p, t, &)=0(8) (=1, 2,..., n) and 5(u, ¢, t, )=0(E) as 0.
In this expression, by the initial condition (2.2), it must be that

%O, @, 0)=u; (=12, ., n),
(2.4) (
I 90(1/:, q)a 0)-:@,
2P, @, 0)=pu, ¢, 0, &)=0 (=1, 2,., n),
(2.5)

01(u, P 0)=7)(u> P> 0, &=0.

On the other hand, the substitution of (2.8) into (1.1) yields the differential
equations as follows:
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(0)
0 =1,2, n),

idgtl = @(x(())s 009 0)3

dx,-(l)

dgl _ Ew% 0) Ien % ©
dt =1 axl (x ) 00; O)xl + 89 (x 3 90, 0)01

+ P2, b, 0)+F @, 0y, 1, 0).

These equations can be solved successively by quadrature under the initial
conditions (2.4) and (2.5).
In fact, from the first equations follows

xi(O)(u’) P t):u’i (5:1’ 2,"" TL)

Consequently, substituting this into the second, we have

2.7 Z(u, 00)=t+ E(u, p),
where
- (e do’
Ew 6)= S o O, 0,0)
Since ,iai—(u 0):~’1——#=0 (2.7) can be solved as
20" O, 0,0) =

90:00(”’; P 1)3
which is a desired solution of the second of (2.6). Then the third equations
of (2.6) are readily solved as

2.8) x,.<1>:g” X, 0oty @, ), ¢ O)dE (=1,2,.. ).
0

Since O(u, 0o(u, @, 1), 0) is a solution of the linear homogeneous equation

46, _ o0

dt 20 (u, 00(”’3 Py t)) 0)01’

the fourth equation of (2.6) is solved by the method of variation of constants
as follows:

29) s, )= 0ut, 9, 0, O], g s
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X {i b (u) 00(”'7 Ps t/), O)St Xj(u) 00(”’) Ps t”), t”) O)dt"

j=1 Ox; 0
89 r / / /
+ 2 (a, 00t p, £, O+ T, 0, p, 0, 7, O}

Now let us seek a periodic solution of the form (2.1).
As is readily seen from the periodicity of the right-hand sides of (1.1), the
necessary and sufficient condition that the solution (2.1) may be periodic is

';/ xi(ua Ps L, ‘S):ui (Z:]-a 2,"') n)a

(2.10) {

L 0w, @, L, &)=¢+2mn,

where L=I[T,. This condition can be written by (2.3), (2.4) and (2.5) as follows:
I xi(l)(ua P L)+0(1):O (1'217 2, n)7

2.11)

l 0o(u, @, L)+ E01(u, @, L) +0(&) =@ +2mn.

When &=0, the above condition is reduced to

( xia)(u’, P> L)=0 (G=1,2,.,n),

(2.12) {

L 0o(u, p, )=+ 2mm.
The latter condition is rewritten by (2.7) as follows:
Ew, ¢ +2mn)—E(u, p)=L,

which can be rewritten as

(2.13) m2w)=L,
where
- 27 de

(2.14) 52@){0 T
Thus the condition (2.12) can be replaced by

1( xi(1)<u, P, L):O (LZI, 2)"'9 n),
(2.15) ‘

| m2w)=L.

Then, from derivation of (2.12), it is evident that, if there exists no real value
of (u, p) satisfying (2.15), there exists no real value of (u, ¢) satisfying (2.11),
or, in other words, there exists no periodic solution of the initial equation
1.1).

When there exists a set of real values of (u, @) satisfying (2.15), let it be
@, po). Then @, ¢,) evidently satisfies (2.12). Now, by the assumption 2°,
the left-hand sides of (2.11) are continuously differentiable with respect to u,
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@ and & Therefore, if the Jacobian J of the functions
2 P(u, p, L) and E&u, @, L)=00(u, ¢, L)—p—2mm

does not vanish for u=u® and @=q,, there exists a unique set of real values
(@, ¢) satisfying (2.10) such that

(@, @)= (&), p(&)} € C; and {u(0), p(0)} =™, po),

or in other words, there exists a periodic solution of the initial equation (1.1)
lying near the periodic solution

xizui(O) <i:1, 2,- cey n), 0=60<u(0), ¢0, t)

of the unperturbed system.

For the derivatives of ¢(u, @, L) with respect to u; i=1, 2,-.., n) and ¢,
we can derive the simple formulas from (2.7) as follows.

In fact, from (2.7), we have:

0 99 y 90
all;i 1 80 aui .
(2.16) —x o d0+77a£-:—8 — 40 (=1, 2, n),
vo 0
1 26, 1

@17) Wy 00,0) g Oty 9, 0)°

From (2.16), it readily follows that

860 — . 8@&, 6, O) 2, L
(2.18) %—W%ﬂLP~@AW@@ﬂ“ (=1, 2, ., n),

which implies
o+2mm
(219) 8/60‘(”(0), Pos L):@(U(O)a Pos 0) 897 [M/@Z(u’ 0, O)]u=u(0)d6
Qu; Po u;
= —mb®, po, 0) -9 =12, ).

The relation (2.17) evidently implies

(2.20) gg‘(u((’), @0, L)=1.
Thus we see that
_ &) 3
(2.21) J= agu @, @0, L) ?%—(u<°), ®o, L) ’
g |
\
o8
. (0) _ O (0) 0

mB (@, @, 0) o, @) ‘

@, ).
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The above results are summarized as

Theorem 1. Given a real system

[ Wi — X, 0,1, 0) (=1, 2., n),
1.1
de
1 —dt—:0<x’ 0, &)+ &¥(x, 0, t, &),

such that the right-hand sides satisfy the assumptions 1°, 2°, 3°, 4° and 5° of §1.
When there exists no real value of (u, @) satisfying (2.15), there exists no periodic
solution of (1.1). When there exists a set of real values (u, )=V, po) satisfy-
ing (2.15), of J given by (2.21) does mot vanish, there exists a periodic solution
of (1.1) lying mear the periodic solution

xi:u’i(O) (L:1, 2)"‘) n)) 9:00(11(0), Pos t)
of the unperturbed system.
Remark In our problem, due to the presence of the equation

%f—:@(x, 9, &)+&W(x, 0, 1, ©),
there appears the additional condition (2.13) compared with the case for which

the usual stroboscopic method can be applied directly.

3. Stability of the periodic solution

As is well known, the periodic solution obtained in the preceding para-
graph is stable if the iteration of the transformation

J( r'i=xt+r, p+o, L, E)—0 (=1, 2,..., n),
3.1
| o' =0@+r, -+, Ly &) —§—2mrn

converges for sufficiently small || and |o].
But, since (@, ) is a value satisfying (2.11), the above transformation can
be written as follows:

{ T/i :i axi (17, @, L, S)T]‘l_*axz (ﬁ, (ﬁ, L, (9)0"'"0(‘0), (Z:]-, 2)‘ Ty 72)3
j=1 81111 a@
(3.2) Y
;S 90 . o~ ~ ~
= &+ 2L [, &
L o ]% u; @, @, L, &)r;+ o0 @@, @, L, &)a +0(p),

where pznz.]ril' +]o]. Since
i=1

xi(u; Py L) 8)) e(u) Py La 8) € Ci,gp,b‘ (7':1; 2)"') TZ)
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by the assumption 2° of §1, it readily follows from (2.3) that

T iy L, ©)= 81,+eax‘ @ 3, )+ 0),
1
3.3) a”» 5 iy 1 €)= 5—~(u, &, L) +0(&),

(u, P, L, &= —mO®, po, 0) (u(°))+0(8)

(7'5]_1’ 2)"') )

The expression for gi @, @, L, &) is obtained in the following way.

In fact, from (2.17),
0, @, 0) ai‘; 9o —6(u, 0o, 0).

Differentiating both sides of this relation, we have

Lm0 0T
=0 0, 0)-+ -0, 0o, 0)- 0% =1, 2, n)
and
% (0 0 092 16 0)9"0 P4, 90’0)990.

20 " g

Then, since 0, =@, +2m= for (u, )=, @) and =L, we see from (2.19) and
(2.20) that

[ s oy (4% 20, )= =S, g, 0)- 52 =1,2,., n),
[ %0, TG0 (4O, g0, [)=0.
From this together with (2.19) and (2.20), we find that

<u, Py Ly = 1=m- 20w, g, 0>z <u<°>><u —u®)

+ 620, §, L)+ ol [a—u®[ + |5 —po| )+ o(e).

However, since (&, ¢)=w(€), (&) € C! satisfy (2.11), it readily follows from
the latter of (2.11) that
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3398 (o, )~ ot P o),

Thus we see that

(0)
01(11: 9 q)O) L) 8@ (u(())’ ¢0, O)

@4 0, 0, 0) 50

30 o - _ {_

a¢ (ua P L> 8)_1+8

+—%(u(°), Pos L)} -I—o(é).
9

Since (&, @)= (&), @(&)) € Ct and (w(0), (0))=w, ¢o), the expressions
(8.3) are rewritten as follows:

ax 3

o~ Om;
(u'a ¢7 L) 6):8ij +8a;z.(u’(0)s Po, L)+0(6)>
J

35) o r L =6 S5, g0 1) +0(O),

iy T =~ g, 5 ) +0(E),

(I'; ]:1a 2)"'a n)

Thus, substituting (3.4) and (3.5) into (3.2), we see that the matrix 4 of
the coefficients of the linear parts of the transformation (3.2) becomes

(3.6) A= Ox; £ 9%

S;j+¢ o, +0(8) ¢ +0(8)
— mBu, P, O)—+0(e) 1+e{ s 0 ) aa -9 (4, @, 0)
20,
+ a(p}+o(e)
G,

for (u, )=, @o) and t=L.
Then, since the characteristic roots of A4 are the multipliers of the vari-

ation equations, we have

Theorem 2. The pericdic solution whose existence is affiirmed in Theorem
1 is stable if the characteristic roots of the matrixz A are all less than unity in
absolute value.

4. Two-dimensional case

In this paragraph the two-dimensional case is discussed more in detail.
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Let the given system of two equations satisfying all the assumptions of
§1 be

dx
[ B X, 0,1, 8)

(4.1)

[ -%%2@(96, 0, &)+ (x, 6, 1, ©).

Then, by §2, the equations by which the first approximations @, ¢,) of
the initial values of a periodic solution are determined become

I x(l)(u> P L):()a
4.2) |
| m2w)=L,

where
L
P (u, @, L):S X[u, 0(u, @, ), t, 0]dt.
0

Also the Jacobian J of (2.21) becomes

(1 (1)
J:det %‘(M(O)y Pos L) %(U(O)) Po, L)
—mOu®, po, 0) 2'(u*) 0

But, by (4.2) and (2.17),

1) L
2 WO, oy D= ZHTH, 0, g, 0, 01T, g,

@[u((», go(u(o), Po, t): 071 di

:SL ———8X [:u(o) Go(u(o) Po t) 12 O:]
0 80 ’ ’ > @(u((J)’ Do, 0)

Consequently it follows that
_oeon|” X o © O, () )
4.3) J=m2' @) , %?[u , 0@, @o, t), t, 01O[u'?, 0o, po, t), 0]de.

Thus, from Theorem 1 follows

Theorem 3. The real system (4.1) has a periodic solution if (4.2) has a real
solution (U, @o) and J given by (4.3) does not vanish.

For detailed study of stability, the assumption 2° about the differ-
entiability of the right-hand sides of (4.1) is not sufficient. So, for (4.1), the
assumption 2° is replaced by the stronger assumption:

2/0 X(x) 6’ t’ 8), @(x’ 0’ 8)’ w‘(x, 0’ t’ 8) E C:,oye[D]'
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Then
x(u’ D, I, 8), 0(”” P, Ly 8) € Cz,g:.s,

consequently (3.5) and (8.4) can be written as follows:

(1
—gg—@, Py L, ©)=1+6%2 @, g0, )+0(e),
(ua Py L 8) 8 (u(O)’ Po, L)+0(82),

_gg_@, 7> I, )= —mO?, g, 02W) +0(@),

20 . ~ . Hl(u(O)a Po, L) 06 )
Sty 1 D=1 +e{ el P2 0L T, g0, 0)

+ g—z;@«», - L)} +0().

Then the matrix 4 given by (3.6) becomes
(4.4) A=E+ [&a+ O(&%) &b+ 0(&%
(— +038) &d+0(&) )
=E+4,
where E is a unit matrix and

1)
a= ax (u'(O), ?0, L)’

(1)
= aaﬂ; (u(0)3 Pos L)a

8=mOu®, po, 0)2' (),

01u®, o, L) 26

0
0D, g0, 0) o0 P O+ 5, @ o D).

d= —

As is readily seen from (4.4), the characteristic equation of 4 is of the
form

4.5) ,ﬂ—2,u%(a-i—d+0(6))+8(b8+0(6)):0.
Solving this quadratic equation, we have

o= = — Ebd + %(a+d) +0o(8).
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Consequently the characteristic roots \ of the matrix 4 becomes
(4.6) =1 +%(a+d) +0(8).

Now, for the periodic solution affirmed in Theorem 3,

consequently, from (4.6), it follows that

1° when &b3<0, in their absolute values, one of \'s is less than 1 and the
other is greater than 1 provided |&] is sufficiently small;

2° when &3>0,

N :1+%(a+d+b8)+o(8),

consequently, provided |¢&] is sufficiently small,
(i) [N >1 when &la+d+b5)>0,
(ii) |»] <1 when &a+d+b8)<0.
Thus we have

Theorem 4. The periodic solution of (4.1) affirmed in Theorem 3 is
(i) conditionally stable when &J <0,
(ii) stable when &J>0 and &la+d+J) <0,
(iii) wunstable when &J>0 and &a+d+J)>0.
The stability is undecided when &J >0 and &la+d+b8)=0.

The quantities J and a+d+J are expressed in terms of 0,=0,u”, ¢, t) as
follows:

@ J:bB:—SZQ 2, 00, 1, 00t - S: glt 29w, 60, 1, 00
(4.8) a+d+J=SOL 6, [a%( x >+§§(%)]§Z§go>dz,
where _
[ 00="00t)2L00(u”, po, 1),
“49) | 6,=60, 65, 0),
’K?F T (x, 0, 1, &) 2 "efag(x’ %0, 8) 4 (s 0, 16).

In fact, the formula (4.7) is derived in the following way.
From (2.8) and (2.17), it readily follows that
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L
(4.10) b =0LOSO 0, %}g W, 8o, 1, ).

On the other hand, from (2.14),

, 2mx 1 20
2 )= — SO P 60 o W 0, 0.

This can be rewitten as

1 _a@—<u'(0)s 603 O)dt7

L

because df,=0, dt and 6, is periodic in : modulus 2m= with period L. Then,
by the definition of 8,

L
4.11) 5= —aog L 96 o, g, 0)ds.
o O, Ox
From (4.11) follows readily (4.7).
The formula (4.8) is derived in the following way.
First, from (2.8) and (2.18) follows

4.12) a=ay+ay,

where

L
al:S 2&(11’(0)’ 60) Z O)dt
0o Ox

(4.13) . )
=\ 62w, 005 0[] 2 2w, o), O)ar
0 Jo O, Ox

20
On the other hand, since
0@, @, L)=q¢ +2mn
for any ¢ as is seen from (2.13), from (2.9), we see that
(4.14) 0., @, L)
— 60, ¢, 0) g

L (] t
01 *g%(u(o), 0o, 0) [So X@®, 04(7), 7, 0) dT]dt

0 t

L1

o 0,

+mwa@mg P @, 0o, 1, 0)ds,

but, here alone, 6, means
Jr 90:00(111(0)’ (2 L))
| 9,=6w®, 6o, 0)=6[u®, 6, W, ¢, 1), 0].

Then, making use of (2.17), we have:
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20 !
(4.15) a—@l(u(o), Po, D=2’
where

A L ¢
=20, g, 0| %&(u@), 0, 0] || X@®, o), 7, 03 |as

L t
Bo=={ 2 2w, 6,00 2w, 0, o, X@®, 6, 7, 0yar|a
t 0

L 12
fy= © ©
¢a= g 0 000x (u > 0o, 0>[So X@™, 8o(r), m, O)dT]dta

;o L1 o6 (0) ¢
(4.16) d4—go 2w, 6, 0) [SO@

E 2w, 00(r), 7, 0) dr |,

TW®, 6, ¢, 0)dt,

!
6

o U,

r 99 (0 S
d5 20 (u’ s Pos 0)

L
d’6=—go 01 99 gy, 0) T, 0y, 1, 0)i,

o
d/7=SO %%(u(o), 0y, 1, O)d.

But, since
d 1 (0)
dt[@ aX( 9°’O>]
1 u®, © o0 (0
== 2, 00, 0 2, 00, 0) + 50w, 00, 0),

it readily follows by integration by parts that

y , ("1 98, o ©

(417) do+d3=— 0 0— o ( 00 0) X(u 60, t, 0) dt,
for

L

S XU, B0, 1, 0)de=2Du®, o, L)—0

0

by (2.15).
Also, by integration by parts, it readily follows that

(418) ay +dl4 +]:O

Thus, by the definition of d, we have:

atd+J=a,+(dy+ds)+d s +d7.
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This implies (4.8) evidently.

5. Example

As an example, let us apply our method to the second order differential
equation

(5.1) &+ g(a) =&f (w, &, 1),

where

1° & 1s a parameter such that |&| ({1;

2° g(x) and f(x, «', t) are four times continuously differentiable with
respect to (x,x") in the domain:

D:—oco<ux, &, t<<+o0;

3 f(x, «';t) is continuous with respect to ¢t in the domain D and s periodic
wm t with period Ty >0;

4° g(0)=0, g'(0)=£0 and xg(x)>0 for any x+0V;

The equation of the form (5.1) was discussed by A. M. Kay [1] for the
analytic case and also by W.S. Loud [2] in detail for special case where f=f(z).

At first, by means of the transformation employed by M. Urabe [6] for
discussion of the unperturbed equation

(6.2) " +g(x)=0,

we shall reduce the equation (5.1) to the system of the form (4.1).
Writing (5.1) in a simultaneous form as

dx
E
56.3) {

%}t_/,z —g(x)-l—t?f(x, b t)!

we consider the transformation of (x, y) to (X, y) where

, — X()det i %

(5.4) X=Xyt )/ 250 o(w)du (n ke )

For the function X(x), it readily follows from the assumptions 2° and 4° that
(5.5) X(x) € Ctand X'(0)=4g’(0) >0.

Consequently (5.3) can be solved reversely in x as

1) The assumption that xg(x) >0 for x50 implies g’(0) >0.
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(56.6) x=x(X) € Cs.
Then, since

dX(x)_ g(x) dx
dt X(x) dt

by the definition (5.4), we see that the system (5.3) is transformed to the
system

dX _hX)
f X
(5.7 4
L T{: —h(X)+EF(X, v, t),
where
{ WX)=g[x(X)] € Ci,
(5.8)

N F(Xa Ys t):f[x(X)a Y t] € Ci,y-
Further, let us put
X=R cos 0, y=R sin 6,

then, after simple calculations, we see that the system (5.7) is reduced to the
system

f ﬁ:ew(zz, 0, t) sin 6,

dt
®9) deo X) 1
__h
1 i X + ET{ @(R, 0, t) cos 6,
where

P(R, 0, t)=F(R cos 0, R sin 0, t) € Ck,q.
But, from (5.7),

(X)

e €C%

and moreover, from the assumption 4° and (5.4),
~—]——lr(?£)‘=i(9i>>0 for any X.

Thus we see that the system (5.8) is the system of the form (4.1).

For the system (5.9), 8o=00(u, o, t) is a solution of the equation
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d0 _  h(ucos 6)

(5.10) dt  wucosd
such that
(5.11) Oo(u, @, 0)=0p.

And the equations by which the first approximations (@”, ¢,) of the initial
values of the periodic solution are determined become

L
f S DLu, 0o(u, @, t), t] sin Godt=0,
0

o l Sz’i—” €08 0 19+1,—0
o h(u cos 0) )

The quantities J and a+d-+J are easily found by means of (4.7) and (4.8)
after elementary calculations as follows:

(1R cos 0)/ 20 . )
(5.13) J—- S‘O [m(aT sin 0"*‘@ COoSs H ]gzgsﬂ)dt
L1 B(R cos O)R cos §— h(R cos 0)
x So [ " RA(R cos ) ]é‘:a‘ﬁ“’dt’
L
(5.14) at+d+J= So [%I(/){ sin 6+ % %g cos e]{;:;(o)dt,

where 0, means
90:90(10(0); Po, t).

Now evidently the unperturbed system (5.2) has a periodic solution x=x(z)
with period 7,=1 T, such that the values (u”, ¢,) determined by

)/ X[ 20(0)]=u? cos ¢y,
(56.15)
L 20(0) =2 sin ¢,

satisfy (5.12), if and only if there exists a real solution (»”, @) of (5.12) such
that u(®>0.
Thus, from Theorms 3 and 4, we have

Theorem 5. The equation (5.1) has a periodic solution if the unperturbed
equation (5.2) has a periodic solution x==xy(t) with period T, commensurable
with T, such that the values W®(>0), po) determined by (5.15) satisfy (5.12) and
moreover if J given by (5.13) does not vanish for these values @™, ¢y). Such a
periodic solution is conditionally stable when &J<0, and it is stable or unstable
according as &a+d+J) given by (5.14) s negative or positive & >0.

In the special case where f(v, »' t)=f(¢) as in the case studied by W. S.
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Loud [27,
DR, 0, t)=f(1),

consequently the first equation of (5.12) turns out

(5.16) [} oo,
because
(517) y=x'0(t)=u(°) sin 6.

Further, since
% o()) = — hw? cos )

follows from (5.17) and (5.10), in the present case, (5.13) and (5.14) turn out

L [u(") cos Ok’ W cos o)
0

h(w® cos 6,) B l]dt’

a+d+J=0.
In the present case, for simplicity, let us assume further
(5.18) 2 (u)=-0.
Then, as is seen from derivation of (4.11), (5.18) is equivalent to

SL [ u'” cos o h'(u” cos 0p)
0

h(w® cos 6y) 1Jdt#0’

consequently the condition that /=20 is equivalent to
L
(56.19) SO J@)x" o(£)7=0.

Thus we have

Theorem 6. The equation (5.1) where f(x, x', t)=f(t) has a periodic solution
if the unperturbed system (5.2) has a periodic solution x=uxo(t) with period T
commensurable with T, such that it satisfies (5.16), (5.18) and (5.19) and the
values u® determined by (5.15) satisfy the latter (5.12). Such a periodic solution
18 conditionally stable when &J<O0.

When &7>0, the stability of the periodic solution affirmed in this theorem
is not yet decided by our theorems. For decision of the stability, the calcula-
tion of the terms of the order higher than those calculated here will be
needed.

In conclusion, the author whishes to express his hearty gratitude to Prof.
M. Urabe for his kind guidance and constant advice.
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