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Introduction

Let k& be an algebraically closed field of arbitrary characteristic and let
GL(n, k) be the group of all automorphisms of an n-dimensional vector space
V over k. As usual, we introduce the Zariski topology on the space of all endo-
morphisms of V. For a subgroup G of GL(n, k), we denote by G* the closure of
G in GL(n, k). Then G* is the smallest algebraic subgroup of GL(n, k) containing
G. In [8], by considering the fact that, for any connected complex linear Lie
group H, the derived group of a group H™* is contained in H, we introduced
the notions of D~-subgroups and C~-subgroups of GL(n, k) in the following
way. A subgrup G of GL(n, k) is called a D~*-group (resp. C*-group) provided

D*G*CG (resp. C*G*CG)

where D*G* (resp. C°G*) is the intersection of all members of the series of
the derived groups D'G* (resp. the descending central series C'‘G*) of a group
G*.

In [7 and 8], we introduced two kinds of “splittability” into subgroups
of GL(n, k). It is well known that an element x of GL(, k) can be decomposed
into the Jordan product, that is, x is uniquely expressed as x=x,x, in such a
way that x, is semisimple, x, is unipotent and x,x,=x,x,. A subgroup G of
GL(n, k) is called splittable [ 7] provided every element of G can be decomposed
into the Jordan product in G. Then a connected D~-subgroup of GL(n, k) is
splittable if and only if one of its maximal solvable connected subgroups is
splittable [ 8, Theorem 4.9]. A D~-subgroup of GL(n, k) is called to have the
(S)-property provided one of its maximal solvable connected subgroups, say R,
satisfies the condition that R=TR, for any maximal torus (that is, any maxi-
mal connected commutative subgroup consisting of semisimple elements) T
and for the invariant subgroup R, of all unipotent elements of R (see[8,
Definitions 7.1 and 7.27]). These two kinds of “splittability” are possessed by
an algebraic linear group [1, (9.2) and (12.9)] and are equivalent for a con-
nected C”-group [8, Theorem 11.4]. But each of them does not imply the
other for a connected D~-group generally [9, Examples 1 and 27.

A Cartan subgroup of a group G is a maximal nilpotent subgroup H such
that any invariant subgroup of finite index of H is of finite index in its nor-
malizer in G [3, p. 199]. C. Chevalley [3, Chapitre VI] and A. Borel [1,
Chapitre V] investigated Cartan subgroups of a connected algebraic linear
group and, in [8, Sections 9 and 127, we studied more generally Cartan sub-
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groups of a connected D~-group having the splittability and the (S)-property.

The main purpose of this paper is to study Cartan subgroups of a con-
nected D~-subgroup of GL(n, k) satisfying two conditions which are respec-
tively weaker than the splittability and the (S)-property.

In Section 1, we shall give some definitions and some fundamental proper-
ties of subgroups of GL(n, k). In Sections 2 and 3, we shall generalize the
fundamental results, known as the structure theorems, on a connected
nilpotent and a connected solvable algebraic subgroups of GL(n, k) given in
[1, Theorems 11.1 and 12.97] to a connected nilpotent splittable subgroup and a
connected solvable splittable C~-subgroup of GL(n, k). Namely, a connected
nilpotent splittable group is the direct product of a unique maximal torus
and the invariant subgroup of all its unipotent elements (Theorem 2.4), and
a connected solvable splittable C=-group has the (S)-property (Theorem 3.5).
In [8] we proved these results by using the corresponding results of alge-
braic linear groups, but we shall give the proofs of these results which cover
the proofs of the algebraic cases.

In Section 4, being based on the results of Sections 2 and 3, we shall
show the conjugacy of maximal solvable connected subgroups of a connected
D=-group G and a result on the connection of the maximal solvable connected
subgroups of G and those of G* (Theorem 4.3), and we shall also show the
conjugacy of maximal tori of a connected C~-group H (Theorem 4.6) and the
connectedness of the centralizer of a torus of H (Theorem 4.8). In Section 5,
we shall recall some known facts on the relation of the splittability and the
(S)-property (Theorem 5.3).

In Section 6, we shall introduce the following two conditions for a con-
nected D ~-subgroup G of GL(n, k):

(a) For one of the maximal solvable connected subgroups R of G, the closure
of any maximal torus of R is a maximal torus of R*.

(b) All maximal nilpotent connected subgroups of G are splittable.

The (S)-property implies (a) but not conversely. The splittability implies (b)
and, if G is a connected C~-group, (b) implies the splittability (Proposition
6.15). We shall prove that, for a connected D~-group G satisfying (a) and (b),
a subgroup H of G is a Cartan subgroup of G, if and only if H is the centralizer
of a maximal torus of G, and only if H is the intersection of G and a Cartan
subgroup of G* (Theorem 6.9), which is a generalization of [1, Theorem 20.4
and 8, Theorem 9.3]. We shall also prove that, for a connected C~-group G
satisfying (a), a subgroup H of G is the centralizer of a maximal torus of G,
if and only if H is the intersection of G and a Cartan subgroup of G*, and
only if H is a Cartan subgroup of G (Theorem 6.12), which is a generalization
of [8, Theorem 12.27.

1. Preliminaries

We here recall some definitions and fundamental properties of linear
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groups given in [1 and 8], and we note some lemmas and notations which
will be used through the paper.

1.1. Let k be an algebraically closed field of arbitrary characteristic and
let GL(n, k) be the group of all automorphisms of an n-dimensional vector space
V over k. Let M(n, k) be the space of all endomorphisms of 7, which may be
considered as the space of all square matrices of degree n with coefficients
in k. The elements of GL(n, k) are the non-singular matrices of M(n, k). We
introduce the Zariski topology on M(n, k) as usual. For a subgroup G of
GL(n, k), the closure of G in GL(n, k) is the smallest algebraic subgroup of
GL(n, k) containing G. We call the closure of G in GL(n, k) the closure of G for
simplicity and denote it by G*. We mean by the dimension of G the dimension
of G*. We always denote by e the identity automorphism in GL(n, k).

1.2. For a subgroup G of GL(n, k), we denote by G, the connected component
of the identity element e of G. Then G, is an invariant closed subgroup of
Jfinite index of G. G, is the unique closed connected subgroup of finite index of
G.

Go =GN (G*)o and (Go)* = (G*)o.

G is conmected if and only if G is irreducible, and if and only if G* is con-
nected.

In fact, as is well known, G is the union of a finite number of the ir-
reducible closed subsets of G. If we denote by M; (i=1,2,..., m) the irreducible
components of G such that M;M; for i+, and if we denote by M;~ the closure
of M; in GL(n, k), then

G*= _ul/l/[;

is the irredundant decomposition into the irreducible closed subsets of G* and
M;=GNM;~ (e.g., see [5, pp. 35-367]). By using the fact that G (resp. G*) is
a group, it can be easily seen that these M, (resp. M;”) are disjoint (see [10,
(2.1)]). Therefore G is connected if and only if G is irreducible, and if and
only if G* is connected. Let M, contain e. Then it is immediate that M, is
invariant by x—x~', x—>yxy~! with y in G, x—>xz and x—zx with z in M;. Hence
M, is an invariant subgroup of G and M;s with i=~1 are the cosets of M.
Thus M; =G, and M,~=(G*),. Finally, if M is a connected closed subgroup of
finite index of G, then M C G, and M is of finite index in Gy, whence M=G,.

1.38. If M and N are subgroups of GL(n, k) and tf M normalizes (resp. cen-
tralizes) N, then M* normalizes (resp. centralizes) N*.

In fact, if xNx~'=N for any x in M, then x N*x~'=N* since y—wyx~
(y € GL(n, k)) is continuous. The normalizer of N* is algebraic, whence yN*y~!
=N*for any y in M*. If M centralizes N, let f be the mapping (w, y)—>wyx~'y™"

1
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of GL(n, k) x GL(n, k) into GL(n, k). Then f~'(e) is algebraic and contains M x N,
whence it contains the closure M* x N*. Therefore M* centralizes N*.

1.4. Let G be a subgroup of GL(n, k). For any x and y in G, we denote
by [«, y] the commutator xyx~'y~' of x and y, and for subsets M and N of G,
we denote by [M, N the group generated by the commutators [, y| with x
in M and y in N. We define inductively the series of derived groups

D'G=[D"'G, D'"'G] (D°6G=6G, i=0,1, 2,...),
and the descending central series
C'G=[G, C'G] (C°G=G,i=0,1,2,...).
Put
D”G=fi\D"G and C""G=C\CiG.

G is called solvable (resp. nilpotent) provided there exists j such that DiG= {e}
(resp. C'G={e}).
If G is algebraic, then we have

D*G=D/G and C~G=CG

for a sufficiently large integer j. This is immediate by considering the dimen-
sion of D'G and C'G.

(1) G 1s solvable (resp. nilpotent, commutative) if and only 1f G* is solvable
(resp. nilpotent, commutative).

(2) If G is connected, then D'G and C'G for i>>0 are all connected.

In fact, if H and L are invariant subgroups of G, let f be a mapping of
GL(n, k) X GL(n, k) into GL(n, k) defined by f(x, y)=[x, y]. Then f~'([H, L]*) is
algebraic and contains H x L, whence it contains the closure H*x L*. Hence
[H*, L*|C[H, L)*. Since H* and L* are invariant subgroups of G* by (1.3),
it is known that [ H*, L*] is algebraic (see [4, 3-047]). Therefore [H*, L*|=
[H, L])*. If H and L are furthermore connected, then H* and L* are irreducible
by (1.2). Then it is known [2, p. 1227 that [ H*, L*] is irreducible. By (1.2)
we see that [ H, L] is connected. (1) and (2) are immediate from these facts.

1.5. Let M and N be subgroups of GL(n, k) such that M is contained in the
normalizer of N. Then MN s a group and (MN)*=M*N*. If M and N are
connected, then MN s connected.

In fact, it is clear that MN forms a group. First suppose that M and N
are connected. Then they are irreducible, whence M x N is irreducible. Let f
be a mapping of GL(n, k) X GL(n, k) into GL(n, k) defined by f(x, y)=xy. As the
image of M x N by f, we see that MN is irreducible and therefore connected.
Next suppose that M and N are not necessarily connected. Since M* is in the
normalizer of N* by (1.8), (M*), is in the normalizer of (N*),. Since (M*)o(N*),
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is the image of (M*), x (N*), by fand forms a group, it is known that (M*),(N*),
is algebraic. (M™*)o(N*), is connected by the first case. But M*N* is a group
which is the union of a finite number of the sets x(M*)(N*)yy with x in M*
and y in N*. Therefore M*N* is algebraic, whence (MN)*=M*N*.

1.6. Let G be a subgroup of GL(n, k). G is called [8, Definitions 4.1 and
6.2] a D”-group (resp. C”-group) provided

D=G*CG (resp. C*G*CG).

If G is a D*-group, then we have D”G*=D/G* CG for some integer j, whence it
follows that

D*G*=D"G=D’'G.

An element x of GL(n, k) can be uniquely expressed as x=x,x,, where x, is
semisimple, x, is unipotent, and x.x,=x.x, [2, p. 71 and p. 184]. «, and «, are
called the semisimple and unipotent components of x respectively, and x.x, is
called the Jordan product decomposition of x. G is called splittable [7, p. 299]
provided the semisimple and unipotent components of any element of G belong
to G.

We call a subgroup G of GL(n, k) a torus provided G is commutative, is
connected and consists of semisimple elements. By using Zorn’s lemma, we
see that any subgroup of GL(n, k) has maximal tori.

1.7. Let G be a connected subgroup of GL(n, k). Let 4 be a connected
subgroup of G and let B be a connected invariant subgroup of G. G is called
the semi-direct product of B by A provided G=A4B, A*N\B*= {¢} and the map-
ping 7: (a, b)—ab of A* x B* into G* is birational. If A4 is furthermore an in-
variant subgroup of G, then G is called the direct product of 4 and B.

1.8. Let M be a commutative subset of M(n, k). Then there exists an
element x of GL(n, k) such that

N 0\

aMx = N . }
0 N,

where each N; has the unique characteristic root and the coefficients 0 under
the principal diagonal. All semisimple elements of xMx~! are diagonal [6,
Lemma 1 or 1, (6.4)].

1.9. Let D(n) denote the set of all diagonal elements of GL(n, k). Then
a connected algebraic subgroup of D(n) of dimension m is isomorphic to the
direct product of m copies of the group consisting of all elements of %k except
0 [1, (7.5)]. By making use of this fact and (1.8), it can be proved that, for an
element x of GL(n, k), the semisimple and unipotent components of x belong to
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the smallest algebraic group containing x [1, (8.4)]. Therefore every algebraic
subgroup of GL(n, k) is splittable. If a subgroup G of GL(n, k) is splittable, then
every closed subgroup of G is splittable as the intersection of two splittable
groups.

1.10. Let G be a connected solvable algebraic subgroup of GL(n, k). Let
a complete subvariety W of k™ be a space of transformations for G, that is, let
there exist an everywhere defined rational mapping F: (x, P)—x(P) such that

x(x'(P))=(2x)(P) and e(P)=P

for any x, " in G and any P in 7. Then there exists a point of W fixed by G
[1, (15.7) or 4, 5-14]].

As an immediate consequence of this fact, we have Lie-Kolchin’s theorem
that, for a connected solvable algebraic subgroup G of GL(n, k), there exists an
element x of GL(n, k) such that xGx~! is in triangular form [1, (16.4)]. The
theorem is true for any connected solvable subgroup of GL(n, k), since its
closure is a connected solvable algebraic group by (1.2) and (1.4).

1.11. Let G be a subgroup of GL(n, k). We call a representation f of G
rational provided there exists a representation f* of G* whose restriction to &
is f and whose restriction to (G*), is an everywhere defined rational mapping.
For simplicity, we shall sometimes write fin place of f*.

Let f be a rational representation of G. Then it is known [ 2, p. 1227 that,
if G is especially an algebraic group, then f(G) is an algebraic group. From
this fact and the continuity of /, we have generally

JEH)=f(G)*.
If G is a D™-group (resp. C=-group), then f(G) is a D~-group (resp. C=-group).
Indeed, if G is a D™-group, then by (1.4) there exists an integer j such that
D*G*=DiG* and D”f(G*)=DIf(G*),
whence
D=f(G)*=DIf(6*) = f(DIG*) = f(D7C*) C f6),

that is, /(G) is a D~-group. Similarly we have the statement for C~-groups.

If x is a semisimple (resp. unipotent) element of G, then f(x) is a semi-
simple (resp. unipotent) element of f(G) [1,(9.5)]. Therefore, if G is splittable,
then f(G) is splittable.

It is well known that, for an algebraic subgroup H of GL(n, k) and an
invariant closed subgroup N of H, there exists a rational representation of H
with N as its kernel [1, (5.10)].

1.12. Let G be a subgroup of GL(n, k) and let f be a rational representation
of G. If G is connected, then f(G) is connected. Indeed, G* is irreducible by
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(1.2), whence f(G*) is irreducible [2, p. 1217]. Since f(G*)=f(6)* by (1.11), it
follows from (1.2) that f(G) is connected.

Let * be a rational representation of G* whose restriction to G 1s f, and let
N and N be respectively the kernels of f* and f. If f(G) is connected, and if

(1) N is connected and N=N', or

(2) N 1s connected and N*=N', or

(8) N 1is connected,
then G is connected.

In fact, (1) implies (2) and (2) implies (3). Suppose that f(G) is connected
and that (8) V' is connected. Since f(G*)=f(G)*, f(G*) is a connected algebraic
group. But f((G*),) is a connected closed subgroup of finite index of f(G*).
Hence, by (1.2), we have

FG*)=f((EG").

Since N C(G*),, it follows that G*=(G*),, that is, G* is connected. Hence, by
(1.2), G is connected.

1.13. For a subgroup G of GL(n, k), the set of all semisimple (resp. uni-
potent) elements of G is called the semisimple (resp. unipotent) part of G and
is denoted by G, (resp. G,). We denote by Z(G) the center of G. Let M be a
subset of GL(n, k). We denote by n(M) (resp. n*(M)) the normalizer of M in G
(resp. G*) and by z(M) (resp. z*(M)) the centralizer of M in G (resp. G*). Their
connected components of the identity element e are called respectively the
connected normalizer and the connected centralizer of M in G (resp. G*).

1.14. Let G be a triangular subgroup of GL(n, k). Let H be a subgroup of
G consisting of semisimple elements. Then H is commutative and n(H)=z(H).

In fact, if x is in n(H), then, for any y in H, xyx~'y~' is in H and therefore
semisimple. Since G is triangular, it is unipotent. Therefore xyx 'y '=e,
whence « is in z(H). It is now evident that H is commutative.

2. Nilpotent groups

We begin by generalizing [ 1, Theorem 9.17:

Lemma 2.1, Let G be a connected commutative splittable subgroup of GL(n, k).
Then G, and G, are connected closed subgroups of G, and G is the direct product
of G, and G,. (G)*=(G*), and (G,)*=(G")..

Proor. It is immediate that G, and G, are subgroups of G, G,N\G,= {e},
and 6=6.G,. Since the fact that a matrix is unipotent can be expressed by
algebraic condition, (G,)* consists of unipotent elements. Therefore (G.)*N
G=G, and G, is a closed subset of G. By (1.8), there exists an element x of
GL(n, k) such that ¢'=xGx~"' is in triangular form in such a way that ¢, CD(n).
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Therefore
G )*NG CD@)NG' =G,

whence G/, is a closed subset of G'. Since G,=x"'G .x, it follows that G, is a
closed subset of G. By (1.5), we have G*=(G,)*(G,)*. Since G* is splittable
and commutative by (1.4) and (1.9), (G*), and (G*), are closed subgroups of G*
and G*=(G*),(G*),. Hence (G)* C(G*), and (G,)* CT(G*),, from which it follows
that

G)*=(G"), and (G.)*=(G").
Since G'*=xG*x"! and since
yo=x""(xyx D and y,=x"'(xyx D (y € GF),

y—y, and y—y, are rational representations of G*. As their images of a con-
nected group G, G, and G, are connected. It is now immediate that G is the
direct product of G, and G,, completing the proof.

As an immediate consequence of the lemma, we have

CoroLrLARY 2.2. A subgroup of GL(n, k) 1s a torus if and only if its closure
18 a torus.

Lemma 2.3. Let G be a triangular subgroup of GL(n, k). Then G, is a closed
wmvariant subgroup of G. If G is connected and splittable, then G, is connected.

Proor. Since D'GCG,, G, is an invariant subgroup of G. Since (G,)* con-
sists of unipotent matrices, we have G,=GN(G,)*, that is, G, is a closed subset
of G. Now suppose that G is connected and splittable. Let f* be a rational
representation of G* with (D'G)* as its kernel, and let f be the restriction of
f* to G. Then f(G) is connected, commutative and splittable by (1.11). There-
fore it follows from Lemma 2.1 that f(G), is connected. By (1.11) we have
f(G)=f(G).. The kernel of the restriction of /* to (G,)* is (D'G)* and there-
fore connected by (1.4). Hence, by (1.12) we see that G, is connected, com-
pleting the proof.

We can now prove the following theorem generalizing [1, Theorem 11.17:

TuaeoreMm 2.4. Let G be a connected splittable nilpotent subgroup of GL(n, k).
Then G, is a connected central closed subgroup of G, G, is a connected tnvariant
closed subgroup of G, and G is the direct product of G, and G, and we have

(G =), and (G)*=(C")..

Proor. If G is commutative, the theorem follows from Lemma 2.1. Hence
we may assume that G is not commutative. Suppose that the theorem is
proved for any connected splittable nilpotent group whose dimension is less
than that of G, and we prove that G, is a connected central closed subgroup of
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G. Let C be the connected component of the identity element of the center
Z(G) of G. Then dim C>0. By Lemma 2.1, C, and C, are connected closed
subgroups of C and C is the direct product of C, and C,. If C,5={e} (resp.
C.5#{e}), then there exists a rational representation f* of G* with (C,)* (resp.
(C)*) as its kernel since (C)* (resp. (C,)*) is a connected central subgroup of
G* by (1.3). Let f be the restriction of f* to G and put G'=f(G). Then the
kernel of f is C, (resp. C,) and G’ is a connected splittable nilpotent group
whose dimension is less than dim G. Therefore, by our supposition, G’ is the
direct product of the connected invariant closed subgroups G’ and G',..

In the case where C,~{e}, f~'(G',) is an invariant subgroup of G, which is
a closed subset of G by the continuity of f. Since the kernel of f is C,, we
have f~'(G'\)=G,. Hence G, is an invariant subgroup of G. Since G can be put
in triangular form (1.10), G, is central in G by (1.14). f(G,) is connected and
the kernel of the restriction of f* to (G,)* is connected since it is equal to
(C)*. Hence by (1.12) we see that G, is connected. Thus G, is a connected
central closed subgroup of G.

In the case where C,5={e}, let s be any semisimple element of G and let x
be any element of G. Then f(s) is semisimple by (1.11). By our supposition,
we see that f(s) is central in G’, whence

xsx~t=su with » in C,.

Since su is clearly the Jordan product decomposition of xsx~', we see that
xsx~l=s, that is, s is in Z(G). Thus G, is the semisimple part of Z(G). It fol-
lows that G, forms a group. Since Z(G) can be triangulated in such a way that
Z(G),CD(n) by (1.8), (G)* consists of semisimple elements. It follows that G,
is a closed subset of G. f(G,) is connected since it is equal to G’; by (1.11), and
the kernel of the restriction of f* to (G,)* is equal to {¢}. Hence, by (1.12),
we see that G, is connected. Thus G, is a connected central closed subgroup
of G.

Since G may be triangulated, by Lemma 2.3 we see that G, is a connected
invariant closed subgroup of G. Since G is splittable, we have G=G.G, and
therefore G*=(G,)*(G,)* by (1.5). G* is connected, splittable and nilpotent by
(1.2), (1.4) and (1.9). Therefore, as proved above, (G*), is a central closed
subgroup of G* and G*=(G*),(G*),. Hence (G,)* C(G*), and (G,)* C(G*),, from
which it follows that

(G)*=(G*), and (G,)*=(G™)..

Let + be a mapping of (G,)* x(G,)* into G* defined by (s, u)=su. Since
(G,)* centralizes (G,)*, it is immediate that there exists an element x of GL(n, k)
such that x(G,)*x~! is diagonal and »(G,)*x"! is in triangular form with coef-
ficients 1 on the principal diagonal. Then s is the diagonal part of = (s, u)=g.
Therefore u is rationally expressed by g, whence =" is a rational mapping.
Hence G is the direct product of G, and G,. Thus the theorem is proved.
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CoroLLARY 2.5. Let G be a connected nilpotent subgroup of GL(n,'k). Then
G, is a central subgroup of G. G is splittable if and only tf G contains a torus
T such that G=TG,.

Proor. Let G, be the smallest splittable subgroup of GL(n, k) containing
G. Since G CG,CG*, by (1.2) and (1.4) we see that G, is connected and nilpotent.
By Theorem 2.4, (G,), is central in G,. Hence G, is a central subgroup of G.
If G=TG, with T a torus, then it follows that 7 is central in G. Hence it is
immediate that G is splittable. The converse is evident by Theorem 2.4.

Lemma 2.6. Let G be an algebraic torus of GL(n, k) and let H be a subgroup
of G. If an automorphism « of finite order m of G induces the identity on H
and G/H, then « is the identity automorphism [1, (11.5)].

Proor. As a consequence of (1.9), we see that, for an integer ¢ which is
prime to the characteristic of &, the set of all elements of order ¢'(i=1,2,3,...)
of G is dense in G. Hence it suffices to prove that, for any integer r which is
prime to m, « induces the identity automorphism on the subgroup G, of G con-
sisting of the elements of order r. If x is in G,, then a(x)=xz with z in HNG..
Therefore ai(x)=xz' (i=1, 2, 3,...), whence z"=e. Sincem is prime tor, we have
z=e, that is, « is the identity on G,. This completes the proof.

By using Theorem 2.4 and Lemma 2.6, we prove the following

Prorosition 2.7. Let G be a nilpotent subgroup of GL(n, k). Then the semi-
simple part of Gy is in the center of G.

Proor. Since G* is nilpotent by (1.4), it suffices to prove the theorem
when G is algebraic. Suppose that G is algebraic and let x be any element of
G. Since G, is splittable, by Theorem 2.4 G,, is a connected central closed
subgroup of G, and therefore is invariant in G. Put a(s)=xsx"'(s € Go,). If we
denote by m an integer such that x™ is in G,, then « is an automorphism of
order m of Gy,. (CG)y, is an algebraic torus by Theorem 2.4 and « induces the
identity automorphism on (C*G),,/(C**'G),.. Hence, by using Lemma 2.6, we
see that « is the identity on G,,. Thus x» centralizes G,,, which shows that
Go. CZ(G). The proof is complete.

3. Solvable groups

ProrosiTion 3.1.  Let G be a connected solvable subgroup of GL(n, k). Then
G, ts a closed invariant subgroup of G. If G is splittable, or 1f G contains a
torus T such that G=1TG,, then G, is connected and (G,)* =(G*),.

Proor. By Lie-Kolchin’s theorem (1.10) and (1.11), we may suppose that
G is triangular. The first part follows from Lemma 2.3. Since G* is connected
and triangular, (G*), is a closed subgroup of G*, whence (G,)* C(G*)..

If G is splittable, G, is connected by Lemma 2.3. By (1.3), (G,)* is a con-
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nected invariant subgroup of G*, whence there exists a rational representation
fof G* with (G,)* as its kernel. If we put G'=f(G), then G’ is a splittable con-
nected solvable group. Therefore G’ can be triangulated by (1.10) and consists
of semisimple elements by (1.11), whence it follows from (1.14) that ¢’ is com-
mutative. Thus G’ is a torus and therefore G'* is a torus by Corollary 2.2.
Now, for any element x of (G*),, we have f(x)=e, whence x is in (G,)*. Thus
(G*), C(G,)* and therefore (G*),=(G,)*.

If G=7TG, with a torus T, by (1.5) we have G*=T*(G,)*. Since (G.)* C(G*),,
it follows that

()= (T*N(E)NC)* =(G)".

Since G* is connected and splittable, Lemma 2.3 tells us that (G*), is connected.
Hence, by (1.2), we see that G, is connected, completing the proof.

Lemma 8.2. Let G be a subgroup of GL(n, k) and let T be a torus of G. Then
the set of all elements of T whose centralizers in G are equal to the centralizer
of T in G contains a non-empty open subset of T.

Proor. By (1.8) we may suppose that 7" is diagonal. An element x—(x;;)
of GL(n, k) centralizes an element :=(;;) of 7T if and only if x;;=0 for ¢=¢;.
Let U be the set of all elements s=(s;) of 7 such that s;5s; if ;5~¢; for some ¢
in 7. Then any element of U has the centralizer equal to that of T in GL(n, k)
and therefore in G. Thus we have the statement.

LemMma 3.3. Let G be an algebraic subgroup of GL(n, k). Let N be a connected
commutative closed invariant subgroup of G consisting of unipotent elements,
and let x be a semisimple element of G. Let F, be the set of all elements of N
commuting with x, and let M, be the vmage of N by the mapping f.:y—[x, y].
Then N=F.M,, F.N\M.= {e}, F. is connected, and f. 1s a mapping of M. onto M,
(1, (9.8)].

Proor. f,is a rational representation of N whose kernel is F.. Suppose
that [x, a| with « in N is an element of F,\M,. Then, if we put f'(y)=[y, a]
for y in the smallest algebraic group H containing x, it can be seen that /" is a
rational representation of H into F.. Hence f'(x) is semisimple and therefore
f'(x)=e. Thus F.N\M,={e}. Since M, is connected and f.(M,) CM., we have
f«M.)=M., by considering the dimension. (F,)M, is a closed connected sub-
group of finite index of N and therefore, by (1.2), we have N=(F,),M,. It fol-
lows that F,=(F.),, whence F, is connected and N=F,M,, completing the proof.

Lemma 8.4,  Let G be a connected solvable subgroup of GL(n, k) whose uni-
potent part G, is commutative. Suppose that G contains a torus T such that
G=TG,, and let x be a semisimple element of G. Then there exists an element u
of (G*), such that uxu="' is in T.

Proor. Since G* is connected and solvable, by Proposition 3.1 we see that
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(G*), is a connected closed invariant subgroup of G* and (G,)*=(G*).. It fol-
lows from (1.4) that (G*), is commutative. We can write x=¢z with ¢ in 7 and
zin G,. By applying Lemma 3.8 for :~* and (G*),, we have

x=tfm with ¢ in 7, fin F,-, and m in M,-:

and y—[ ¢!, y] is a mapping of M,-: onto M,-.. Therefore there exists an
element » of (G*), such that [+, u]=m™!. Now we have utz"'=#m"', whence

uxu'lzutu“lfmztf.

1 1

Since ¢f=ft, if is the Jordan product decomposition of uxu~', whence uxu™' =1.
Thus uxu~!is in T, completing the proof.
We now generalize the structure theorem of connected solvable algebraic

subgroups of GL(n, k) [1, Theorem 12.97] in the following

Traeorem 3.5. Let G be a connected solvable splittable C”-subgroup of GL(n, k).
Then maximal tori of G are conjugate by the elements of CG*. For any maxi-
mal torus T of G, G is the semi-direct product of G, by T.

Proor. If G is nilpotent, the statement is proved in Theorem 2.4. There-
fore we suppose that C*G*={e} and G+G,. We prove the theorem by in-
duction on dim G. Let f* be a rational representation of G* with C*G* as its
kernel and let f be the restriction of f* to G. Then f(G) is a connected nil-
potent splittable group. By Theorem 2.4, we see that f(G) is the direct product
of f(G), and f(G),. Let 71 and T, be maximal tori of G. Then f(7) Cf(G),
=1, 2).

Suppose that f(G).#{e}. Put H=f"'(f(G),). Since f(G), is a connected
central closed subgroup of f(G), H is connected by (1.12) and is obviously a
connected closed C*-subgroup of G. H is splittable as a closed subgroup of a
splittable group G. And dim H<dim G. Hence, by induction hypothesis, T}
and T, are conjugate by an element of C*H* and therefore of C*G*. Since
f(G)=f(6). by (1.11), we have G=HG, and therefore

G = TiHuGu: TiGu (i: 1, 2).
Now suppose that f(G),= {¢}. Then /(G) is a torus by (1.14) and therefore
C°G*=G,.

We shall first prove that, for any maximal torus 7 of G, f(T) is dense in f(G).
Assume that f(7) is not dense in f(G). Put M=/f"'(f(T)). Then M is con-
nected by (1.12) and is obviously a solvable C*-subgroup of G. Since G is split-
table, it is immediate that M is splittable. For any element x of G, we have
x~'Tx C M since f(G), is central in f(G) and contains f(7"). Thus 7 and x 'Tx
are maximal tori of M. Since dim M<dim G, by induction hypothesis there
exists an element m of M such that
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m~ Y (x~ Tx)m="T,

whence xm belongs to n(T). Since n(T)=z(T) by (1.10) and (1.14), it follows
that xm is in z(T). Therefore G=z(T)M. Since M=TM,by induction hypothe-
sis, we have

G=zT)TM,=zT)G.,.

Since z(T), is a closed subset of z(7) by (1.2) and z(T) is a closed subset of G by
(1.8), 2(T), is a closed subset of G. Since G, is algebraic, it is immediate that
2(T)G, is a closed subgroup of finite index of G, whence by (1.2) we have

Gzz(T)oGu.

z(T), is splittable as a closed subgroup of a splittable group G. By (1.3) we
have

C=(=(T)o)* CC=GC*N((T)o)* CGN(=T)o)* =2(T)o,

that is, 2(T), is a C*-group. If dim z(7),<dim G, we have z(T)o="T(z(T)o). by
induction hypothesis, whence G=7G, and therefore f(G)=f(T), which is a con-
tradiction. Therefore dim z(T);=dim G. We have (z(T)y)*=G*. Since z(T),
is a closed subset of G, it follows that

G=2z(T)y=2z(T).

Then T* is an invariant subgroup of G*. Hence there exists a rational re-
presentation g* of G* with 7™ as its kernel. Let g be the restriction of g* to
G and put G'=g(G). Then dim ¢'<dim G. By induction hypothesis, we have

G'=5(G", for a maximal torus S’ of G'.

(g7%(S")o is a subgroup of G and consists of semisimple elements since the
kernel of g is 7. It follows from (1.14) that (g7(S)), is a torus of G, which
obviously contains 7. By the maximality of 7, we have (g~ '(S)=7. S is
therefore a finite group, whence S'= {¢'} (¢’ the identity element of G'). There-
fore we have

G'=(G).=gG.).

It follows that G=TG,, whence f(G)=f(T), which contradicts our assumption.
Thus we conclude that f(T) is dense in f(G).
Now, since f is continuous, we see that

FXGCH=F(G)* =f(T)*=f*(T:").
Hence G*=T,*G, and therefore

G=6GNT*G,=TG, @=1, 2).
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To prove the conjugacy of T, and T,, we consider the following two cases
separately.

(1) In the case where G,=C~G* is not commutative, let g* be a rational
representation of G* with D'G, as its kernel, and let g be the restriction of g*
to G. Then

86)=g(T)g(G.)=g(T)g(G)..

It follows that g(7)) is a maximal torus of g(G). Since g(G) is a connected
solvable splittable C~-group and since C~g(G)*=g(C~G*), by induction hy-
pothesis there exists an element x of C~G* such that

8(x)g(T) g(a™") =g(T>).

Hence xT1x™' Cg7'(g(T2)). By (1.12) we see that g~'(g(7%)) is connected. Thus
it is a connected splittable C”-group which has smaller dimension than G.
Therefore, by induction hypothesis, there exists an element y of C*G* such
that y(«T1x" ")y '=T,. Thus T; and T, are conjugate by an element of C*G*.

(2) In the case where G,=C"G* is commutative, by Lemma 3.2 we see
that there exists an element ¢; of 7) such that z(z)=2z(T)). Since G=T,G,, it
follows from Lemma 3.4 that there exists an element v of G, such that wtu™
is in T,. Therefore

alu™)=z(utiu) DTy,

whence uT1w"! and 7. generate a torus of G. By the maximality of 7; and 7%,
we conclude that u7 u"1=7T,.

Thus it remains only to prove that G is the semi-direct product of G, by
any maximal torus 7. By Lie-Kolchin’s theorem, we may suppose that G is
in triangular form. Since D(r) is a maximal torus of the triangular subgroup
of GL(n, k), by the fact proved above there exists an element a of GL(n, k) such
that aG*a~! is triangular and «7*a"* C D(n). Since G=7G,, we have

G*=T*6)" =T*G").

by Proposition 3.1. The mapping 7: (4, v)—>w of T*x(G*), into G* is an in-
jective rational mapping. It is clear that r is surjective. ¢ is the diagonal
part of (¢, u)=x and therefore u is rationally expressed by x. Hence r is an
everywhere defined birational mapping. Thus G is the semi-direct product of
G, by T. The theorem is completely proved.

CoroLLary 3.6. Let G be a connected solvable C~-subgroup of GL(n, k). Then
maximal tort of G are conjugate by the elements of C~G*.

Proor. Let G, be the smallest splittable group containing G. Since
G CGyCG*, Gy is a connected solvable splittable C~-group. For maximal tori 7
and T, of G, let Q; and Q; be maximal tori of G, containing 7, and 7, respec-
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tively. Then we have
T1 = (Gf\ QI)O and Tz = (Gf\ Qz)o.

By Theorem 3.5, there exists an element x of C*G* such that xQx'=Q,.
Therefore

x(Gf\Ql)x'l :Gf\le x'l ——‘Gf\Qz,
whence xT 3" ="T,.

CoroLLARY 3.7. Let G be a connected solvable splittable C~-subgroup of
GL(n, k) and let [ be a rational representation of G. If T is a maximal torus of
G, then f(T) is a maximal torus of f(G); and conversely.

Proor. If T is a maximal torus of G, then we have G= TG, by Theorem
3.5, whence

F&)=fT)f(G)=F(T) f(GC)..

Since f(T) is a torus, it follows that f(7')is a maximal torus of f(G). Con-
versely, let 77 be a maximal torus of f(G). Since f(G) is a connected solvable
splittable C”-group and f(C*G*)=C"f(G)*, it follows from Theorem 3.5 that
there exists an element x of C*G* such that

T = () f(T) )™

Hence 7'=f(xTx""), where x7x~" is obviously a maximal torus of G, com-
pleting the proof.

Lemma 3.8. Let G be a connected solvable C*-subgroup of GL(n, k). Let T be
a maximal torus of G.

(1) Let f be a rational representation of G. Then f(z(T)) ts the centralizer
of f(T) mm f(G).

(2) G=z(T) (CG™).

Proor. Put C=z(T) and let C’ be the centralizer of f(7) in f(G). Then it
is clear that f(C)CC’. Conversely, let f(x) with x in G be an element of (.
Put H=(f"'(f(T))). Then it is immediate that H is a C*-group. Since T'CH,
we have f(H)=f(T), whence H C TN where N denotes the kernel of /. We have
xTx~' CH. Therefore, by Corollary 3.6, there exists an element . of H such
that xTx~'=4"'Th. If we write

h=tn with ¢ in 7 and » in N,

then xTx ! =n"1Tn, whence (nx)T(nx)~'=T, that is, nx normalizes 7. It follows
from (1.14) that nx centralizes 7. Since f(x)=f(nx), f(x) is in f(C). Therefore
we have C' C f(C), whence C' = f(C).

Let g be a rational representation of G with C*G* as its kernel. Then
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g(G) is nilpotent and connected. Therefore, by Corollary 2.5, the centralizer
of g(T) in g(G) is g(G). By the first part, we have g(«(7))=g(G). Hence G=
2(T)(C~G*), completing the proof.

ProrositioN 3.9. Let G be a connected solvable splittable C*-subgroup of
GL(n, k) and let x be a semisimple element of G. Then x is contained in a torus
of G.

Proor. We prove the proposition by induction on dim G. Let T be a
maximal torus of G. Then G=7G, by Theorem 3.5. If G, is commutative, by
Lemma 3.4 there exists an element v of G* such that x is in «7u~!. By using
the formula in Lemma 3.8, we may suppose that » is in C°G* and therefore in
G. Thus uTu™' is a torus of G containing ». If G, is not commutative, let f*
be a rational representation of G* with D'(G*), as its kernel and let f be the
restriction of f* to G. Then f(G) is a connected solvable splittable C~-group
whose unipotent part is commutative. By induction hypothesis, f(x) is in a
maximal torus of f(G), which we can write f(71) with ) a maximal torus of
G by Corollary 3.7. Put H=f"'(f(T1)). Then the kernel of the restriction of
f* to H* is equal to D'(G*), and therefore connected by (1.4) and Proposition
3.1. Hence, by (1.12), H is connected. It is immediate that H is a splittable
C=-group. Therefore, by induction hypothesis, we see that «» is in a torus of
H. The proof is complete.

CoroLrLary 3.10. Let G be a connected solvable splittable C~-subgroup of
GL(n, k). Let S be a torus of G and let x be a semisimple element of G centralizing
S. Then there exists a torus of G containing x and S.

Proor. Denote by H the connected component of ¢ of the centralizer
of xin G. Then H contains x by Proposition 3.9 and S by hypothesis. By
using (1.3) we see that the centralizer of x in G is a closed subset of G, from
which it follows by (1.2) that H is a closed subset of G. Hence it follows
easily that H is a splittable C”-group. By applying Theorem 3.5 to H, we
see that x is contained in every maximal torus of H. Hence x is contained in
any maximal torus of H containing S.

Lemma 3.11.  Let G be a connected solvable C~-subgroup of GL(n, k) and let
S be a torus of G. Then z*(S)=2z*(S*)=2z(S)*.

Proor. By using (1.8), it is immediate that z*(S)=z*(S*). Let T be a
maximal torus of G containing S. Then z(T) Cz(S). By Lemma 3.8, we have

G=x(T) (C~G"),
whence
G=z(S) (C*G*) and G*=z(S)* (C~G™).
Since z(S)* Cz*(S) by (1.3), we have
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Z(8)=2(8)*(C=G*Nz*(S)=2(S)*,
completing the proof.

ProrositioN 3.12. Let G be a connected solvable C*-subgroup of GL(n, k) and
let S be any torus of G. Then z(S) is connected.

Proor. First we consider the case where G is splittable and S is a maxi-
mal torus of G. We prove the assertion by induction on dim G. Let m be
the smallest integer such that D"G={¢}. Put N=D""'G. Then N is connected
by (1.4). Let f* be a rational representation of G* with N* as its kernel and
let f be the restriction of f* to G. Then f(G) is a connected solvable split-
table C*-group by (1.11). Put C=2z(S). Then we see by Corollary 3.7 that f(S)
is a maximal torus of f(G) and by Lemma 3.8 that f(C) is the centralizer of
f(S) in f(G). Hence, by induction hypothesis, f(C) is connected. We have
C*=z*(S*) by Lemma 3.11. Therefore, by Lemma 3.2, there exists an element
x of S* whose centralizer in G* is equal to C*. Hence, by Lemma 3.3, we see
that C*N\N* is connected, that is, the kernel of the restriction of f* to C*
is connected. By (1.12) we see that C is connected.

Secondly, we consider the case where G is splittable and S is any torus of
G. Let T be a maximal torus of G containing S. Then, by Theorem 3.5, we
have G=TG,. Therefore z(S)=T=z(S),. Since G, is closed and connected by
Proposition 3.1, SG, is a connected C~-group by (1.5). From the splittability
of G, it is immediate that SG, is splittable. It is clear that S is a maximal
torus of SG, and that the centralizer of S in SG, is Sz(S),. Hence, by the first
case above, Sz(S), is connected. It follows from Proposition 3.1 that its uni-
potent part z(S), is connected. Therefore, by (1.5), it is immediate that z(S)
is connected.

Finally, suppose that G is not splittable and S is any torus of &. Then, by
Lemma 3.11, we have z*(S)=2z(S)*. By the second case above, we see that z*(S)
is connected. Therefore it follows from (1.2) that z(S) is connected. The proof
is complete.

4. Some properties of maximal solvable connected subgroups
and maximal tori
Lemma 4.1. Let G be a connected algebraic subgroup of GL(n, k) and let R be

a maximal solvable connected subgroup of G. Then G/R is a complete variety.
We omit the proof (see [1, (16. 10)7).

Lemma 4.2. Let G be a connected algebraic subgroup of GL(n, k) and let f be
a rational representation of G. If R is a maximal solvable connected subgroup
of G, then f(R) is a maximal solvable connected subgroup of f(G) [1, (22.3)].

Proor. Put G'=f(G) and R'=f(R). Let p be the projection of G’ onto
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G'/R'. Then pof is an everywhere defined rational mapping of G onto G'/R’
which is constant on the cosets of R in G. Hence pof induces an everywhere
defined rational mapping of G/R onto G'/R’. Since G/R is complete by Lemma
4.1, G’'/R is complete. By (1.10), R’ is a maximal solvable connected subgroup
of G'.

We now show some fundamental properties of maximal solvable connected
subgroups of D~-groups in the following

Turorem 4.3. Let G be a connected D=-subgroup of GL(n, k). Then:

(1) Maximal solvable connected subgroups of G are conjugate by the ele-
ments of D=G.

(2) Any maximal solvable connected subgroup of G is the intersection of G
and a maximal solvable connected subgroup of G*, and its closure is a maximal
solvable comnected subgroup of G*; and conversely.

8) For any maximal solvable connected subgroup R of G, we have G=
R(D=G).

Proor. Since G is a connected D>-group, DG is equal to D~G* and there-
fore is a connected invariant closed subgroup of G*. Take a rational represen-
tation f of G* with DG as its kernel. Then f(G*) is solvable and connected.
Let S be a maximal solvable connected subgroup of G*. Then, by Lemma 4.2,
f(S) is a maximal solvable connected subgroup of f(G*), whence f(G*)=/(S)
and therefore G*=S(D~G). Hence

G=(GNS)(D=G) and G*=(GNS*(D"G).
Since (GNS)* C S, it follows that
S=(GNS)*(SND=G)=(GNS)*.

By (1.2) GN\S is connected. It is now immediate that GNS is a maximal
solvable connected subgroup of G. Conversely, let R be a maximal solvable
connected subgroup of G. Take a maximal solvable connected subgroup S’ of
G* containing R. Then, as above, we see that GNS’ is connected, S'=(GNS)*
and G=(GNS)(DG). By the maximality of R, we have R=GNS’, whence
R*=S8"and G=R(D~G). (2) and (3) are proved.

Let R, and R, be maximal solvable connected subgroups of G. Since R;*
is a maximal solvable connected subgroup of G* by (2), G*/R,* is complete by
Lemma 4.1. Hence, by (1.10), there exists a point of G*/R;*, say xR,;*, which
is fixed by R,*, from which it follows that xR, *x"'=R,*. By using (3), we
may suppose that x is in D*G. By taking the intersection with G, we have
xR1x'=R,. Thus the theorem is proved.

Cororrary 4.4. Let G be a connected D”-subgroup of GL(n, k). Let H be a
connected solvable subgroup of G and let x be an element of G centralizing H.
Then there exists a maximal solvable cennected subgroup of G containing H and
X.
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Proor. By Theorem 4.3, it suffices to prove the statement when G is
algebraic. We write the proof given in [1, (18.2)]. Suppose that G is algebraiec.
Then it is known [1, (17.6)] that the union of all maximal solvable connected
subgroups of G coincides with G. Let R be a maximal solvable connected
subgroup of G. Since G/R is a complete variety by Lemma 4.1, the set F of all
fixed points of x on G/R is closed and non-empty by (1.10) and the fact that «
is contained in a solvable closed subgroup of G. It follows that F is invariant
by H. Hence, by (1.10), there exists a fixed point, say yR, of H on G/R. Thus
¥R is fixed by H and «x, from which it follows that H and x are contained in
yRy~!, completing the proof.

CoroLLARY 4.5. Let G be a connected D~-subgroup of GL(n, k) and let R be
a maximal solvable connected subgroup of G. Then:

1) Z(G)=Z({R).

(2) If R s nilpotent, G=R.

Proor. By Theorem 4.3, (1.3) and (1.4), it suffices to prove the statement
when G is algebraic. We write the proof given in [4, 6-10, 117]. Let z be any
element of Z(R). Put f(x)=wzx"'(x €G). Then f is constant on the cosets of
R, whence f induces an everywhere defined rational mapping of G/R into G.
Since G/R is complete by Lemma 4.1, the image of G/R is a complete affine
variety and therefore reduces to a point. Hence z is in Z(G). Thus we have
Z(R)=Z(G).

We prove (2) by induction on dim R. If dim R=0, then R={e}. Since G/R
is complete by Lemma 4.1, G={¢}. If dim R>0, put H=Z(R),. Then dim
H>0. By (1) we have H=Z(G),, whence H is an invariant closed subgroup of
G. Take a rational representation f of G with H as its kernel. By Lemma 4.2,
f(R) is a maximal solvable connected subgroup of f(G). Therefore f(R)=f(G)
by induction hypothesis, whence R=G, completing the proof.

By using these results, we show some properties of maximal tori of C~-
groups:

TureoreMm 4.6. Let G be a connected C*-subgroup of GL(n, k). Then:

1) Mazimal tori of G are conjugate by the elements of G.

(2) Any maximal torus of any maximal solvable connected subgroup of G
18 a maximal torus of G.

Proor. Let 7; and 7, be maximal tori of G. Take maximal solvable con-
nected subgroups R, and R, of G containing 7) and 7. respectively. Then, by
Theorem 4.3, we have

xR x ' =R, with x in D~G.

Hence x7,x"' is a maximal torus of R,. Since R, is obviously a C~-group,

Corollary 3.6 tells us that
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y(lex‘l)y"lsz with y in CMRZ*.

Thus 7; and 7T, are conjugate by an element of C*G*.

Let R be a maximal solvable connected subgroup of G and let T be a max-
imal torus of R. Take a maximal torus 77 of G and a maximal solvable con-
nected subgroup R’ of G containing T'. Then, as above, by using Theorem 4.3
and Corollary 3.6 we see that 7 and 77 are conjugate by an element of G.
Hence T is a maximal torus of G. Thus the theorem is proved.

As an immediate consequence of the theorem we have

CororLrLARrY 4.7. Let G be a connected C”-subgroup of GL(n, k). Then any
maximal torus of G* contains a maximal torus of G.

TueOrREM 4.8. Let G be a comnected C”-subgroup of GL(n, k) and let S be a
torus of G. Then z(S) is connected.

Proor. Let x be any element of z(S). Then, by Corollary 4.4, there exists
a maximal solvable connected subgroup R of G containing x and S. Since R is
a closed subset of G, R is a C~-group. It follows from Proposition 3.12 that
the centralizer of S in R is connected and therefore contained in z(S),. Hence
«x i8 in 2(S),. Thus z(S)=2z(S),, that is, z(S) is connected.

CororLLaRrY 4.9. Let G be a connected splittable C=-subgroup of GL(n, k) and
let T be a maximal torus of G. Then z(T) is nilpotent and contained in any
mazximal solvable connected subgroup of G containing T.

Proor. By Theorem 4.8, z(T) is connected. Let R be a maximal solvable
connected subgroup of z(T') containing 7. By using (1.3), it is immediate that
2(T) is a closed C~-subgroup of G and therefore R is also a closed C~-subgroup
of G. R is splittable as a closed subgroup of a splittable group G. Therefore,
by Theorem 3.5, we have

R=TR,=Tx R,

whence R is nilpotent. By Corollary 4.5, we see that z(T) is nilpotent.

Now there exists a maximal solvable connected subgroup S of G containing
z(T). Let S’ be any maximal solvable connected subgroup of G containing 7.
Then, by Theorem 4.3, we have S=xSx"" with x in G. Since S is a C~-group,
by Corollary 3.6 we have

yTy ' =xTx" with y in S.
Hence
2(T)=x""yz(T)y 'w Ca~ySy 'x=x""Sx=5,
completing the proof.

CororLLary 4.10. Let G be a connected C-subgroup of GL(n, k) and let S be
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any torus of G*. Then z(S) is connected,
2(8)*=z*(S)=z*(S*) and G=z(S)(CG™).

Proor. By using (1.3), it is immediate that z*(S)=z*(S*). Let Q be a
maximal torus of G* containing S. Then z*(Q) Cz*(S). By Theorem 4.8 and
Corollary 4.9, z*(Q) is connected and nilpotent. Take a maximal solvable con-
nected subgroup R of G* containing z*(Q). Let f be a rational representation
of G* with C*G* as its kernel. Then, by Lemma 3.8, f(z*(Q)) is equal to the
centralizer of f(Q) in f(R). But, since f(R) is connected and nilpotent, by
Corollary 2.5 we see that f(Q) is central in f(R). Therefore f(z*(Q)=/f(R),
whence R Cz*(Q)(C~G*). Since G*=R(D~G) by Theorem 4.3, it follows that

G*=z*(Q)(C™G*)==(S)(CTC™).
Since C*G* CG, we have
G=GN* SN (C"C)=2(S)(C™C™),
whence G* =z(S)*(C~G*). Since z(S)* Cz*(S), we have
24(8) =z(S)*(z*(S)NCG*)==(S)*.

Thus we have z(S)*=z*(S)=2z*(S*). But, by Theorem 4.8, we see that z*(S) is
connected. Hence z(S) is connected by (1.2). This completes the proof.

5. Splittability and (S)-property

Lemma 5.1. Let G=HN be a subgroup of GL(n, k) such that H 1s a subgroup
of G and N is an algebraic invariant subgroup of G. If H is splittable, then G
18 splittable.

Proor. By (1.3), N is an invariant subgroup of G*. Hence there exists a
rational representation f of G* with N as its kernel. Suppose that H is split-
table. For any element x of G, there exists an element y of H such that f(x)=
f(y), whence

f@)=f@).=f(n.=f(y)
and therefore
X =Yz with z in V.
Since y, is in H, «, is in G. Thus G is splittable, completing the proof.

5.2. A connected D~-subgroup G of GL(n, k) is splittable if and only if a
maximal solvable connected subgroup of G is splittable. This follows from
Lemma 5.1 by using the formula (3) in Theorem 4.3. Corresponding to the
splittability, we introduced another kind of “splittability”, the (S)-property,
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for a D”-group. Namely, a D”-subgroup (resp. C”-subgroup) G of GL(n, k) is

called an SD~-group (resp. SC™-group) [ 8, Definitions 7.2 and 11.1] or to hawve

the (S)-property provided G satisfies the following condition:

(S) There exists a maximal solvable connected subgroup R of G such that
R=TR, for any maximal torus 7 and the invariant subgroup R, of all
unipotent elements of R.

We note that, on the definition of the (S)-property above, if R=TR, with
T a torus of R, that is, R is the semi-direct product of R, by a torus 7T in the
group-theoretic sense, then R is the semi-direct product of R, by 7 in the
sense of (1.7). This was verified in the last part of the proof of Theorem 3.5
by using Lie-Kolchin’s theorem.

By virtue of Theorem 4.3 (1), it is clear that, if a D”-group G has the (S)-
property, then all the maximal solvable connected subgroups of G have the
(S)-property.

On the connection between the (S)-property and the splittability, it is
known that, for a connected D>-group G, the (S)-property of G does not imply
the splittability of G and conversely the splittability of G does not imply the
(S)-property of G [9, Examples 1 and 2], but they are equivalent for a con-
nected C”-group or more generally for a connected D~-group H such that C*H*
normalizes H, [ 8, Theorem 11.4 and 9, Theorem 5.1]. For our convenience, we
write the proof of the following

Tuaeorem 5.3. Let G be a connected C”-subgroup of GL(n, k). Then G has the
(S)-property if and only if G is splittable.

Proor. If G is splittable, any maximal solvable connected subgroup of G
is a splittable C~”-group as a closed subgroup of G. Hence it follows from
Theorem 3.5 that G has the (S)-property.

Conversely, if G has the (S)-property, let R be a maximal solvable con-
nected subgroup of G. For any element x of R, x, and «x, are in R*. By Pro-
position 3.9, there exists a maximal torus Q of R* containing x,. Since R is
a C”-group, Q contains a maximal torus 7 of R by Corollary 4.7. Since R=TR,
by the (S)-property,

x=1u with ¢ in T and v in R,.

Hence ¢ 'x,=ux,”!, which is semisimple and unipotent. Therefore ¢ 'x,=
ux, ' =e, that is, x,=7 and x,=u. Thus R is splittable. By using Theorem 4.3
(3) and Lemma 5.1, we see that G is splittable. The proof is complete.

6. Cartan subgroups

Derinition 6.1, Let G be a group. A subgroup H of G is called a Cartan
subgroup of G provided H is maximal nilpotent and any invariant subgroup of
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Sfinite index of H is of finite index in its normalizer [ 3, p. 199].

The following are immediate from the definition: If H is a Cartan sub-
group of a group G and if L is a subgroup of G containing H, then H is a
Cartan subgroup of L. For groups G; and G,, the Cartan subgroups of G, x G
are the products of the Cartan subgroups of G; and the Cartan subgroups of
G;. A Cartan subgroup of G contains the center of G [3, pp. 200-2027.

It is known that a connected algebraic linear group, a connected splittable
SD=-group and a connected C~-group have Cartan subgroups [3, p. 208 and 1,
(20.5); 8, Proposition 8.10; 10, Theorem 5.47]. It is also known that, if G is a
connected algebraic linear group or a connected splittable SD“-group or, more
generally, a connected splittable D~-group satisfying the condition (a) (see
(6.4) below), then a subgroup H of G is a Cartan subgroup of G if and only if
H is the centralizer of a maximal torus of G [1, (20.8); 8, Theorem 9.3; 9, Theo-
rem 4.8]. We showed that, if G is a connected splittable C~-group, a subgroup
H of G is a Cartan subgroup of G if and only if H is the intersection of G and
a Cartan subgroup of G*[8, Theorem 12.27.

In this section, we generalize these results to a more general subgroup G
of GL(n, k). Especially, we study the interrelation between the following three
kinds of subgroups of G:

(1) A Cartan subgroup of G.

(2) The centralizer of a maximal torus of G.

(3) The intersection of G and a Cartan subgroup of G*.

We begin with the following

Lemma 6.2. Let G be a subgroup of GL(n, k) and let H be a closed subgroup
of G. Then the following conditions are equivalent:

1)  Awny subgroup M of finite index of H is of finite index in n(M).

(2) Any invariant subgroup N of finite index of H is of finite index in
().

(8) H, 1s of finite index in n(H).

(4) H, 1s the connected component of the identity element of n(Ho).

Proor. It is evident that (1) implies (2) and (2) implies (3). Suppose that
H, is of finite index in n(H,). Since H is a closed subset of G and H, is a closed
subset of H by (1.2), H, is a closed subset of G. Hence H, is a connected closed
subgroup of finite index of n(H,). By (1.2) we have Hy=n(H;),. Thus (3) im-
plies (4).

Suppose that H,=n(Hy),, and let M be any subgroup of finite index of H.
Then it is immediate that M*NG is a closed subgroup of finite index of H.
Therefore, by using (1.2), we see that

HyCM*NGCH,
whence by (1.3) we have
n(M) Cn(M*NG) Cn(Hy).
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Since M is of finite index in H, MN\H, is of finite index in H,. But, by our
supposition, H, is of finite index in n(H,). Hence MNH, is of finite index in
n(H,) and therefore M is of finite index in n(M). Thus (4) implies (1), com-
pleting the proof.

ProrosiTioN 6.3. Let G be a subgroup of GL(n, k). A subgroup H of G is a
Cartan subgroup of G if and only if H is maximal wmilpotent and H satisfies
one of the equivalent conditions in Lemma 6.2.

Proor. A maximal nilpotent subgroup of G is a closed subset of G since
its closure is nilpotent by (1.4). Hence the proposition follows from Lemma
6.2.

6.4. We now introduce the following two conditions for a connected D>-
subgroup G of GL(n, k), which are respectively weaker than the (S)-property
and the splittability of G:

(a) For one of the maximal solvable connected subgroups of G, say R, the closure

of any maximal torus of R is a maximal torus of R*.

(b) All maximal nilpotent comnected subgroups of G are splittable or equiva-
lently have the (S)-property.

The equivalence of two kinds of “splittability” in the condition (b) follows
from Theorem 5.3.

It is to be noted that there exists a connected D~-group satisfying the
condition (a) which does not have the (S)-property [9, Example 17.

LemMAa 6.5. Let G be a connected D”-subgroup of GL(n, k) satisfying the con-
ditton (a). Then, for any maximal solvable connected subgroup R of* G, the
closure of any maximal torus of R is a maximal torus of R*.

Proor. Let R’ be a maximal solvable connected subgroup of G satisfying
the condition (a). Let T" be any maximal torus of R. Then, by Theorem 4.3,
there exists an element x of G such that R=xR'x~!. If we write 7"=x"'Tx,
then 7’ is a maximal torus of R’. It follows that

R*=xR*x ' and T*=xT"*x"'.
Since T'* is a maximal torus of R'*, T* is a maximal torus of R*.

ProrosiTion 6.6. Let G be a connected D”-subgroup of GL(n, k) satisfying
the condition (a). Then:

1) Any maximal torus of G is the intersection of G and a maximal torus
of G*, and its closure is a maximal torus of G*.

(2) Any maximal torus of any maximal solvable connected subgroup of G
18 a maximal torus of G.

Proor. Let T be a maximal torus of G. Take a maximal solvable con-
nected subgroup R of G containing 7. By Lemma 6.5, 7* is a maximal torus
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of R*. Since R* is a maximal solvable connected subgroup of G* by Theo-
rem 4.3, it follows from Theorem 4.6 that 7* is a maximal torus of G*. Since
GNT* is a torus by Corollary 2.2, we have T=GNT* by the maximality of 7.

Let 7’ be any maximal torus of a maximal solvable connected subgroup
R of G. Then T'* is a maximal torus of R’* by Lemma 6.5. Since R™* is a
maximal solvable connected subgroup of G* by Theorem 4.3, it follows from
Theorem 4.6 that 77* is a maximal torus of G*. Since R’ is a closed subset of
G and T’ is a closed subset of R’ by (1), 77 is a closed subset of G. By using
Corollary 2.2, it is now easy to see that 77 is a maximal torus of G. The proof
is complete.

LemMa 6.7. Let G be a connected subgroup of GL(n, k). Let N be a com-
mutative invariant subgroup of G consisting of semisimple elements. Then N
1s contained in the center of G.

Proor. N* is an invariant subgroup of G* by (1.3) and is commutative
by (1.4). By (1.8) we may suppose that N is in diagonal form. Hence N* con-
sists of semisimple elements. Let ¢ be any positive integer and let N *, be the
set of all elements of order ¢ of N*. Then we assert that N*, is central in G*.
In fact, it is immediate that z*(V*) is of finite index in G*. Therefore z*(N*,),
is of finite index in G*. Since z*(N*,) is a closed subset of G*, z*(N*,), is also
a closed subset of G*. By (1.2), we have z*(N*,),=G"*, that is, N*, is central
in G*, as was asserted. Now we have N*,C Z(G*)N\N*. Thus any element of
finite order of N* is contained in Z(G*)N\N*. As an easy consequence of (1.9),
we see that the set of all elements of finite order of N* is dense in N*. Hence
we have N*C Z(G*)N\N* and therefore N*C Z(G*). It follows that NCZ(6),
completing the proof.

Lemma 6.8. Let G be a connected nilpotent subgroup of GL(n, k) and let H
be a connected proper subgroup of G. Then H is properly contained in its con-
nected normalizer [ 8, Lemma 9.27].

Proor. We prove the lemma by induction on dim G. If G is commutative
or if H does not contain Z(G),, the lemma is clearly true. If Z(G), CH, let f*
be a rational representation of G* with the closure of Z(G), as its kernel and
let f be the restriction of /* to G. Then f(G) is a connected nilpotent group
whose dimension is less than dim G, and f(H) is a connected proper subgroup
of f(G). By induction hypothesis, f(H) is different from its normalizer N in
f(G). Put N=f'(\'). Then, since the kernel of the restriction of f* to N* is
connected and f(N) is connected, by (1.12) we see that N is connected. Since
N is different from H and normalizes H, we conclude that H is properly con-
tained in n(H ).

We are now in a position to prove the following

TuroreM 6.9. Let G be a connected D>-subgroup of GL(n, k) satisfying the



88 Shigeaki T6GO

condition (a). Then:

(1) G has Cartan subgroups. The centralizer of a maximal torus of G is a
Cartan subgroup of G, which is the intersection of G and a Cartan subgroup of
G* and contained in one and only one Cartan subgroup of G*.

(2) Suppose that G furthermore satisfies the condition (b). Then a sub-
group H of G is a Cartan subgroup of G, 1f and only if H 1is the centralizer
of a maximal torus of G, and only if H is the intersection of G and a Cartan
subgroup of G*.

Proor. (1) Let 7 be a maximal torus of G. Then, by Proposition 6.6, T*
is a maximal torus of G*. By Corollary 4.9, we see that z*(T'*) is nilpotent.
By using (1.3), we have z(T)=GNz*(T*). Hence z(T) is nilpotent. Suppose
that H is a nilpotent subgroup of G containing z(T"). Then, by Proposition 2.7,
we see that TC Z(H), whence HCz(T) and therefore H=z(T). Thus z(T) is
maximal nilpotent. Now put C=2z(T),. Then T is a unique maximal torus of
C. Hence T is invariant in »(C). By Lemma 6.7, we see that T is contained in
the center of n(C),, which shows that »(C), CC, that is, »(C)y=C. Thus, by
Proposition 6.3, we conclude that z(T) is a Cartan subgroup of G.

Since z*(T*) is a Cartan subgroup of G* as proved above, z(T) is the in-
tersection of G and a Cartan subgroup of G*. If M is a Cartan subgroup of
G* containing z(T), then T* is contained in M since M is a closed subset of G*.
It follows from Proposition 2.7 that T* is in the center of M, whence M is
contained in z*(7*). By the maximal nilpotency of M, we have M=z*(T*),
which shows that z(T") is contained in a unique Cartan subgroup z*(7T*) of G*.

(2) Suppose that G furthermore satisfies the condition (b). Let H be a
Cartan subgroup of G. Then H, is a maximal nilpotent connected subgroup
of G. In fact, if H, is properly contained in a connected nilpotent subgroup
N of G, then it follows from Lemma 6.8 that H, is properly contained in the
connected normalizer of H in N, which contradicts the second condition of a
Cartan subgroup H by Proposition 6.3. By the condition (b), we now see that
H, is splittable. It follows from Theorem 2.4 that (H,), is a unique maximal
torus of H,. Put S=(H,).. Let R be a maximal solvable connected subgroup
of G containing H, and let T be a maximal torus of R containing S. Let M be
the connected centralizer of S in a group 7R,. Then we have

M=TMNR,)=TM,.
M, is connected by Proposition 8.1. By Theorem 2.4 we have
Hy=Sx(Hy),CM=TM,.

By using Lemma 6.8 and the second condition of Cartan subgroups (the con-
dition (4) in Lemma 6.2), we see that (H,),=M,, and therefore that S=T.
Hence, by Proposition 6.6, S is a maximal torus of G and S* is a maximal torus
of G*. Since z*(S*) is nilpotent by Corollary 4.9, z(S) is nilpotent as its sub-
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group. By Proposition 2.7, S is contained in the center of H, whence we have
HCz(S). By the maximal nilpotency of H, we conclude that H=2z(S). The
other parts of (2) are proved in (1). Thus the theorem is completely proved.

CororLLARY 6.10. Let G be a connected D”-subgroup of GL(n, k) satisfying
the conditions (a) and (b). Then any Cartan subgroup of G is a Cartan subgroup
of any maximal solvable connected subgroup R of G containing its maximal
torus T and 1s the intersection of R and n(T).

Proor. By Theorem 6.9 and (1.14), it suffices to show that, if T is a max-
imal torus of a maximal solvable connected subgroup R of G, then z(T)CR.
If 7 is a maximal torus of R, then T* is a maximal torus of G* by Proposition
6.6. Since R* is a maximal solvable connected subgroup of G* by Theorem 4.3,
we have *(T*) C R* by Corollary 4.9. Hence, by using (1.3) and Theorem 4.3,
we have

2T)=6GNz*(T*)CGNR*=R.

CoroLrLARY 6.11. Let G be a subgroup of GL(n, k). In each of the following
cases, a subgroup H of G is a Cartan subgroup of G if and only ©f H 1is the cen-
tralizer of a maximal torus of G:

(1) G s a connected algebraic group [1, (20.8)].

(2) G is a connected splittable SD~-group [ 8, Theorem 9.37].

(8) G is a comnected splittable D=-group satisfying the condition (a) [9,
Theorem 4.87].

(4) G s a connected D> -group all of whose maximal solvable connected
subgroups and maximal nilpotent connected subgroups have the (S)-property.

Proor. If G has the (S)-property, then G clearly satisfies the condition (a).
Therefore the statement is immediate from Theorem 6.9.

It is to be noted that there exists a connected splittable D”-group sat-
isfying the condition (a) which is not an SD~-group [9, Example 17.

By making use of Theorem 6.9, we can now prove the following

Turorem 6.12. Let G be a connected C~-subgroup of GL(n, k). Then:

(1) G has Cartan subgroups. The intersection of G and a Cartan subgroup
of G* 1s a connected Cartan subgroup of G, whose closure is a Cartan subgroup
of G*. These Cartan subgroups are conjugate by the elements of G. A Cartan
subgroup of G* s the closure of a Cartan subgroup of G [10, Theorem 5.4].

(2) Suppose that G satisfies the condition (a). Then a subgroup H of G s
the centralizer of a maximal torus of G, if and only if H is the intersection of
G and a Cartan subgroup of G*, and only if H is a Cartan subgroup of G.

Proor. (1) By Theorem 6.9, G* has Cartan subgroups. Let C be a Cartan
subgroup of G*. Then, by Theorem 6.9, we have

C=z%(Q) with Q a maximal torus of G*.
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By Corollary 4.10, GNC is connected and C=(GNC)*. Let H be a nilpotent
subgroup of G containing GNC. Then

C=(GNCO*CH*.

Since H* is nilpotent by (1.4), by the maximal nilpotency of C we have C=H™*.
It follows that HCGNC, whence H=GNC. Therefore GNC is maximal nil-
potent. Furthermore, since C=(GNC)*, byv (1.3) we have

n(GNC)y CGNr*(C)y Cn(GNC).
Since n*(C),=C and since GNC is connected, it follows that
n(GNC)y=GNC.

By Proposition 6.3, we see that GNC is a Cartan subgroup of G.
Let C; and C, be Cartan subgroups of G*. Then

C:=2%(Q;) with Q; a maximal torus of G* (i=1,2).

By Theorem 4.6, there exists an element x of C*G* such that Q,=xQ.x".
Hence C,=xCx~! and therefore

GCNC,=GNxCox ' =2(GNCy)x L.

(2) Suppose that G satisfies the condition (a). Let H be the centralizer
of a maximal torus 7 of G. Then, by (1.3), we have H=GNz*(T'*). By Pro-
position 6. 6, T* is a maximal torus of G* and therefore, by Theorem 6.9,
Z¥(T*) is a Cartan subgroup of G*. Thus H is the intersection of G and a
Cartan subgroup of G*. Conversely, let H be the intersection of G and a
Cartan subgroup C of G*. Then, by Theorem 6.9, we have

C=z*(Q) with Q a maximal torus of G*.

But Q contains a maximal torus 7" of G by Corollary 4.7. Hence Q=T7"* by
Proposition 6.6. Therefore we have

H=GNC=6GNz*(T"*)=2z(T").
The other part of (2) is proved in (1). Thus the theorem is completely proved.

CoroLLARY 6.13. Let G be a connected C-subgroup of GL(n, k). Let S be a
torus of G and let x be a semisimple element of G centralizing S. Then there
exists a Cartan subgroup of G containing x and S [ 10, Proposition 5.5].

Proor. x and S are contained in a maximal solvable connected subgroup
R of G by Corollary 4.4 and therefore in a maximal torus Q of R* by Corollary
3.10. Since R* is a maximal solvable connected subgroup of G* by Theorem
4.3, Q is'a maximal torus of G* by Theorem 4.6. Hence z*(Q) is a Cartan sub-
group of G* by Theorem 6.9. Therefore, by Theorem 6.12, GNz*(Q) is a Cartan
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subgroup of G, which contains x and S.

CoroLLARY 6.14. Let G be a connected complex linear Lie group. Then G
has Cartan subgroups and the Cartan subgroups of G contain all semisimple
elements of G.

Proor. We may suppose that G is a subgroup of GL(n, C) with C the field
of complex numbers. As is well known, the Euclidean topology is finer than
the Zariski topology in GL(n, C). Hence G is connected in the Zariski topology.
As was shown in [8, Example 27, G is a C~-subgroup of GL(n, C). Therefore
by Theorem 6.12 we see that G has Cartan subgroups and by Corollary 6.13
that every semisimple element of G is contained in a Cartan subgroup of G.

On the connection between the condition (b) and the splittability, we have
the following

ProrosiTion 6.15. Let G be a connected C-subgroup of GL(n, k). Then G
satisfies the condition (b) if and only if G is splittable, and only if G satisfies
the condition (a).

Proor. Suppose that G satisfies the condition (b). Take a maximal torus
Q of G* and denote by H the centralizer of Q in G. Then H is a connected
Cartan subgroup of G by Theorem 6.12. Hence H is a maximal nilpotent con-
nected subgroup of G and therefore H is splittable by the condition (b). By
Corollary 4.10, we have

G=H(C"G*).

It follows from Lemma 5.1 that G is splittable. Conversely, if G is splittable,
then any maximal nilpotent connected subgroup of G is splittable since it is a
closed subset of G by (1.2) and (1.4), whence G satisfies the condition (b).

A connected splittable C~-group has the (S)-property by Theorem 5.3 and
therefore satisfies the condition (a). Thus the proposition is proved.

CoroLLARY 6.16. Let G be a connected splittable C-subgroup of GL(n, k).
Then G has Cartan subgroups.

(1) Cartan subgroups of G are connected, are splittable, are conjugate by
the elements of G, and contain all semistmple elements of G.

(2) Any Cartan subgroup of G is the centralizer of a maximal torus of G,
and conversely.

(3) Any Cartan subgroup of G is the intersection of G and a Cartan sub-
group of G*, and conversely. The closure of any Cartan subgroup of G is a
Cartan subgroup of G*, and conversely.

(4) Any Cartan subgroup of a maximal solvable connected subgroup of G is
a Cartan subgroup of G, and any Cartan subgroup of G is a Cartan subgroup of
any maximal solvable connected subgroup of G containing its maximal torus.

(5) Any Cartan subgroup of G is algebraic if and only if G is algebraic.
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Proor. By Proposition 6.15 we see that G satisfies the conditions (a) and
(b).

We have (2) by Theorem 6.9 and we have (3) by Theorems 6.9 and 6.12.
Any Cartan subgroup of G is splittable as a closed subgroup of a splittable
group G. Hence we have (1) by (3), Theorem 6.12 (1) and Corollary 6.13.

Let R be any maximal solvable connected subgroup of G. Then R is a
splittable C~-group as a closed subgroup of G. Hence, by (2), any Cartan sub-
group H of R is the centralizer of a maximal torus 7 of R in R. But T is a
maximal torus of G by Theorem 4.6. By Corollary 6.10 we see that H is the
centralizer of T in G. It follows from (2) that H is a Cartan subgroup of G.
Thus we have the first part of (4). The second part of (4) follows from Corol-
lary 6.10.

Any Cartan subgroup H' of G is the centralizer of a maximal torus of G
by (2). Hence it follows from Corollary 4.10 that

G=H'(CG*).

Therefore, if H' is algebraic, then G is algebraic by (1.5). The converse is
immediate from (1.4) and we have (5). The proof is complete.

Remark 6.17. In Theorem 6.9 (2), we cannot assert that (1) the inter-
section of G and any Cartan subgroup of G* is a Cartan subgroup of G and
also that (2) every Cartan subgroup of G* is the closure of a Cartan subgroup
of G. The statements (1) and (2) are not necessarily true even for a con-
nected D~-group having both the splittability and the (S)-property, although
they are true for a connected C~-group as was shown in Theorem 6.12.

The goup in [9, Example 3] gives an example for these facts. Namely,
let € be the field of complex numbers and let ¢ be an element of € which is
transcendental over the prime field. Let %, be the subring of C consisting of
all rational functions of ¢ with integral coefficients. Let G be the group of
all matrices of the following forms:

r

a b
g‘——( ) with r an integer and b in ;.
0 1,

Then G is a connected splittable solvable subgroup of GL(2, C). Furthermore
G has the (S)-property, since every maximal torus of G is generated by an
element g with r=1. Let H be the subgroup of G* which can be represented

as

{ x ulx—1)

< ) : x(5£0) variable in C§
0 1

with v an element of € which is not in k. Then it is easy to see that H is a
maximal torus of G*, H is equal to its centralizer in G* and GNH={¢}. There-
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fore H is a Cartan subgroup of G* whose intersection with G is not a Cartan
subgroup of G and which is not the closure of any Cartan subgroup of G.
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