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Let f(x) be any locally summable and positive-valued function defined al-
most everywhere on R”, Euclidean n-space. Let H' be a Hilbert space obtained
by completing the space £E, the linear space of the inverse Fourier transforms

of 2, with norm ||&]|?= S |é(x) | *f(x)dx, where & denotes the Fourier transform

of ¢ #E. Under more special conditions on f, the space H’ has been investi-
gated by J. Deny [1] and B. Malgrange [5] in connection with the study of
the potential theory and the theory of partial differential equations respec-
tively. In connection with this situation, we say that fis of Deny type (simply
type D) if it satisfies the condition:
1

(D) S (x),m
where L' denotes the space of the summable functions on R".

We also say that fis of Malgrange type (simple type M) if it satisfies the
condition:

€ (1+ |x|H™x L' for an integer m,

(M) flw), f—(lﬁg C(1 + |x|®™ a.e. for a constant C and an integer m.
Actually Malgrange was concerned with the continuous f of type M.

The purpose of our investigation is to characterize these types of f by
means of the properties of H' and its related spaces.

In Section 1 we show that f is of type D if and only if H’ is a normal
space of distributions. If 4 is a positive measure with which we define the
space H* in the same way as before, we can show that , must be of the form
flx)dx when H* is a space of distributions.

In the following sections we shall only be concerned with normal H’.
Section 2 begins with the definition of the space H,_ = N\H”* (resp. H, . =

\J H”*) with the topology of projective limit (resp. of inductive limit). H”*

stands for H’:, where f,(x) = (1+ |x|®)f(x) and s is a real number. Then H;
will be a reflexive space of type (F) consisting of the distinguished elements
of H' [6], and H . the anti-dual of Hy;; .. We show that f is of type M if
and only if H; . =22 or H} . = 27-.

In Section 3 we show that H' is of local type if and only if, for some

. 1 F(y) . . . ..
integer m, (T+ lrx — )| z)m {TE%IS a kernel of a continuous linear application
of L? into L2. The condition is shown to be satisfied if, for a k(x) such that
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k(x) € (1 + |x|?)™ x L' for an integer m, the inequality f(x + y) < k(x)fy) holds
almost everywhere for |y| =c. On the other hand, H; .. and H},.. are of local
type without any restriction on f.

Section 4 is devoted to studying convolution &xy between elements of H, .
and H ;.. We show that fis of type M if and only if any ¢ € H' is composa-
ble with every » € H'/. However it is to be noticed that by means of the
Fourier transformation we can as usual define a convolution £(® 7 in such a
way that the operation (¥ is separately continuous on H’ x H*/ and coincides
with the usual convolution x on 2x 2. We show also that f is of type M if
and only if #H, . CHy, . or BH; . CH} .. But we could not succeed in giving
the conditions on f under which #H’ is a part of H’.

1. The Space of H”. In what follows by «, y,..- we denote respectively
points (%1, x2,---,%4), (¥1, ¥2,---,¥»),--- of the n-dimensional Euclidean space R”.
We use the notations |x| = (xf + 23 + - +22)"%, 2y = 211 + 2272 + - + XYy
and if p = (p1, p2, -, pn), Where the p; are non-negative integers, we will write

2 v by 2 by 0] bn
— D”=< ) #) ) '
lpl =pr+pz+ - +pu ox |\ on, ( Oty

Let f(x) be a locally summable and positive-valued function defined almost
everywhere on R”. Following F. Tréves [13] we denote by &£E the family
of the functions whose inverse Fourier transforms lie in 2, the space of the
indefinitely differentiable functions with compact support in R”. We consider

&E as a prehilbert space with inner product (¢, &), = Sé(x)g/(x)f(x)dx, and hence

with norm ||&]|; = {S |&(x)|? f(x)dx}?, where & denotes the Fourier transform of

& We shall denote by H' a completion of &#E with respect to this norm. Ac-
cording to the usual notations, we shall write H® if f(x)=(1 + |x|*)® and H'+*
if flx) =1+ |%|**f,(x). Following L. Schwartz ([9], p. 7) we say that a locally
convex space F is a space of distributions if it is algebraically a subspace of
2’ and the injection F— 2’ is continuous, and that F is normal if, in addition,
it contains 2, the injection 2 —F is continuous, and 2 is dense in F. In
general H/, as shown by Tréves ([18], p. 184), is not a space of distributions.

We shall first show
Prorosition 1. The space H' is a space of distributions if and only if the

Sfollowing condition (A) is satisfied:
1

(A) — €+ |x|>"xL" for some integer m.

Before proving the statement we remark that H” is a space of distribu-
tions if and only if the following conditions are satisfied:

(i) The injection of £E into 2’ is continuous, that is, for any ¢ € 2, £ —
{&, ¢» is a continuous linear form on ZE.

When this condition is satisfied, the linear forms é—<{&, > can be extended
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to the forms continuous on the whole space H’.
(ii) If we are given an » € H” with {3, ¢> = 0 for all ¢ € 2, then »=0.

Proor or Proposttion 1. Necessity. For any ¢ € 2 and any ¢ € YE we
have

¢9) o= Sé(x) P(x)d = Sé(@ Jf(x) §(x) Vg(x) d, where g = %

Since by (i) the form ¢ — <¢, ¢ is continuous and the set {é\/7; & e SE}
is dense in I?, it follows that ¢V g € L, Then, by the closed graph theorem,
the application ¢ > @y g of 2 into L? becomes continuous. This implies that
the application is continuous in 25, B being the unit ball of R” with center 0,
with the topology induced by 2% for some integer & (2} is a Banach space of
the k-times continuously differentiable functions with support in B). We can
take a positive integer I such that an « € 2% is a parametrix of an iterated
Laplacian 4' (4= }j( 1 9 >2):

J

271 Ox;
2 8§ = Aa+pB, BcPs

Now we can choose a sequence {«;}, «t; € 25, such that «;—>«a in 2% as j— oo.
This together with (2) yeilds that ayg, AVg € L% and Vg = [x|%ag +8g
€ (1 + |x|%)' x L?, hence it follows that g(x) € (1 + [x|*)"x L' for m=2L.
Sufficiency. To complete the proof it is enough to establish the state-
ments (i) and (ii). By the condition (A), ¢4/ g € L* for any ¢ € 2. As for (i),
since é«/‘f’ € L* for any ¢ € &E, the relation (1) shows that the application &é—
(¢, p> is continuous. Let {&;} be a sequence from ZE such that &;—7 in H’,
7 being any given element of H/. Since L},. CVg xL*C(A + |x[>)"x L*x L*C
1+ |x|®"x L'C ¥, the injection L},. —> &’ becomes continuous by the closed
graph theorem, so that {£;} converges in both L?,. and %’ to the same element
which we shall denote by 7. Then the relation (1) gives that {7, ¢> =

Sﬁ(x) VA(x) §(x) Vg(x) dx, Therefore, if <y, o> =0 for all ¢ € 2, then =0 since

{oVg; ¢ € 2} is dense in L% (i) is thus established.
Remark. If H' is a space of distributions, its elements are characterized

as temperate distributions & whose Fourier transforms £ lie in L?,,.
In general, even if H' is a space of distributions, it does not contain 2.

ProposiTion 2. Let H' be a space of distributions. Then the following
three conditions are equivalent:

B) fe@+ |x|?"xL" for some integer m.
i) oCH.

(i) H is normal.
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Proor. Ad (i))—(B). (i) implies that we have ¢y f € L* for every ¢ € 2.
Then, by the closed graph theorem, the application ¢ — @y 7 of 2 into L* be-
comes continuous. Hence, as shown in the proof of the proposition 1, we can
use a parametrix of an iterated Laplacian to conclude that fe (1+ |x|?)"x L}
for some integer m.

Ad (B) — (ii). Let ¢ be any function of &. Since ¢ €& and @V €
@1+ |x|?)" x L*CL?, we have ¥ CH/. & is dense in H’ as an immediate conse-
quence of the definition of A’. On the other hand, 2 is dense in & and the
injection ¥ — H” is continuous, so that 2 is dense in H, that is, H’ is normal.

The implication (ii)— (i) is almost evident.

Thus the proof is complete.

The following theorem is an immediate consequence of Proposition 1 and
Proposition 2.

Tueorem 1.  H' 1s a normal space of distributions if and only if the follow-
ng condition is satisfied:

D £ 1 A+ |x|>"x L' for some integer m.

f

We say that f is of Deny type (simply type D) if f satisfies the condition
(D), which is the same as Deny called Hypothesis (A) in his thesis (1], p. 119).
The condition (D) shows that if A' is a normal space of distributions then
HY is so also.

ProposiTion 3. (i) If f(x) is of type D, so is flx)(1 + |x|®)° for any real s.

(i) If f,(x), f,(x) are of type D, so is f;~°(x)f;(x) for any 0<H<1.

Proor. Ad (i). Setting h(x) = f(x)(1 + |x|2), We have i(x), %

€+ |x|BHm+stx L
Ad (ii). As we may assume that integer m in (D) is the same for f,(x)
and f,(x), so we have

fi7@)f () (A — 0)f,(x) + 0f,(x) € X + |x]*)" < L}
and also

1 1 1 1
- e+ 00— — e+ |x]H"x LN
(R ORAE ey e (AT
Exampere 1. If f(x) = exp|«x|?, then H’ is a space of distributions, but not
normal.

ExampLe 2. If f(x) =exp (x; + x2 + --- + %,), then neither H' nor H'/ is a
space of distributions.

=1-0

Proposition 4.  Let H't and H”: be two spaces of distributions. We have
H''CH: if and only if there exists a constant C such that folx) < Cf(x) a.e.

Proor. By the closed graph theorem the injection H'1— H’: is continuous,
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so that there is a constant C such thatg | E() | f,(2)dx gcg [ ()| *f,(%)dx for any

Scl. Setting o(x) = SNf (), we haveg (@) Z—j%%dx < cS | o () | %ds for

any o € L% whence- f ngg =< C a.e., which concludes the proof.

We can define H* for any positive measure . in the similar way as H' is
defined. We remark that in order that H* may be a space of distributions it
is necessary for x to be absolutely continuous with respect to the ordinary
Lebesgue measure. For the proof of this fact, we consider a characteristic
function of any compact subset K of R” and a pointwise convergent sequence
{&;}, &; € E, to X such that |&;| <1 for any j and the supports of &, are con-
tained in a fixed compact subset of R”. Then &,—X in L2, as j—co. When
H* is a space of distributions, {£;} converges to a distribution 7 in H* and a
fortiori in 2'. Then for any ¢ € 2 we have

ST, 6> =lim <&, p> = ]imgéjédxz gKadx.
J J

Hence if K is a null set in the Lebesgue measure, thenSK@dx =0, so that 7=0.

This means thats [X|%du = 0, and therefore x(K)=0. Thus . is absolutely con-

tinuous with respect to the Lebesgue measure.

2. H; . and H; .. Throughout the following discussions in this paper
we shall be concerned only with normal spaces of distributions H. Then, as
we see in the preceding section, H”>* also is a normal space of distributions
for any real s. Let H, _ be the space \j H’¢ with the topology of the inductive

limit of {H”*}, and H; _ the space /\ Hf s with the topology of the projective

limit of {H”*}. Clearly H, . also is a normal space of distributions and of
type (F). Itiseasy to see that any bounded subset of H;, . is weakly relatively
compact, so that H; ., is reflexive and the strong anti-dual (H; .) of H; . isa

complete bornological, barrelled space. H.

z«> Where g :%, consists of the same

elements as the anti-dual (H; .). Both (H,.) and H}, . are bornological and
their anti-duals coincide with H; .. It follows since any bornological space
has Mackey topology that (H; .)' =H, .. also holds topologically. In a similar
way we have (H, .) =Hj, ..

We first note that H;.C%. Let m be a positive integer such that

1 .l
T - € [*. Consider any element & of H;, _. By definition we have

A+ x| D"f)

& e H * for any integer I, that is, &(x)(1+ |x|%)'™ € L', so that (1—A)' "¢ is a
continuous function tending to 0 at infinity. This implies that £ is an element
of %.
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An element & € H' belongs to H; . if and only if D¢ € H' for every p.
This is clear from the definition of H; .. An element & € H} . belongs to Hy, .,
if and only if there exists a bounded subset B of H, . such that every D?¢ is
absorbed by B, that is, £ is a distinguished element of H/ . [6]. In fact,
necessity is evident. Sufficiency follows from the fact that any bounded
subset B is contained in an H"*.

A distribution ¢ belongs to Hy,.. if and only if &éx¢ € H' (or H},.,) for any
¢ € 2. This is shown by means of a parametrix of an iterated Laplacian as
in the preceding section.

Prorosition 5.  Let o be a space of distributions contained in H}, .. If #
s of type (F) and closed for differentiation, then s# CH; .. Thus H;, .. s the
maximal one among such .

Proor. Let € € . As o2 is of type (F), there exists a bounded subset B
by which each D?¢ is absorbed. By the closed graph theorem, the injection
#—H, .. is continuous, so that B also is bounded in H7, .., which implies ¢ € Hy, ...
The proof is complete.

Prorosition 6. The following conditions are equivalent to each other:

(i) Hy,.CHy,,..
(i) Hj, .CHj, ..
(iii) There exist a constant C and an integer 1 such that

Lé,C(l-i— |x]2)  ae.
1

Proor. Ad (i)—(ii). For any £ € H .., we have that &xp € H; .. CHy, ..
CHj}, .., whence & € HY, ..

Ad (ii))—(iii). (ii) implies that H/: CH’>* for some s ([2], Théoréme A
p. 16). Consequently, by Proposition 4, we have (iii).

(iii)— (@) follows from Proposition 4.

Thus the proof is complete.

As an immediate consequence of Proposition 6 we have

CororrAry. The following conditions are equivalent to each other:

™M) £ lgC( 1+ |x|%) a.e. for some constant C and an integer l.

f
(1) Hy=9;:.
(i) H},.=2%:.
(iii) Hy .=Hf,
(iv) Hj.=HY;, ...
We say that fis of Malgrange type (simply type M) if it satisfies the con-

dition (M). Malgrange called a continuous function of type M “fonction-poids”
([5], p. 284).
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3. Spaces of local type. A space of distributions s is said to be of local
type if 2# C . H’ is not necessarily of local type even when f is of type M.
Let £ € H/. Setting o=£J [ € L*, we have for any a € 2

- 2 - oNm_ O\ )/ f(x) 2
@ las e a0 a1y 7Ty
We first show

PROPOSITION 7. H’ 1s of local type if and only if, for some integer m,

;/ f@) ; 18 a kernel of continuous linear application of L3 into L2.

1+ Ix y2m T fy)
Proor. Sufficiency. Let &€ H and e € 2. As a(y) (1+ |y|?)” is bounded,
it follows from (1) that there is a constant C such that

. . . 1
since, by hypothesis, the linear operator generated by the kernel m X

?g g is continuous on L2
Necessity. Let £e H', ¢ H' and a« € 2. We first assume that &, 9, and

& are non-negative. As H’ is of local type, we have a& € H’, so that (c/(\$) 7 €L
i. e. (ax&)7 € L'. Then, by Fubini theorem,

[(@+) 4w ={a(é iz, where £ = &),
which implies that @(é'+%) ¢ L', and hence for any B € 2
|B1%(& *9) € L}

For any «, B € 2, on account of the inequality |& 8| < |a|?+ |£]? it fol-
lows from the above relation that

aB(é) € LY,

whence by making use of a parametrix of an iterated Laplacian as in Section
1 we have

Expe(1+ x| x L' for some integer m=>0.

Let ¢ (resp. ) be any element of H' (resp. H'/). Then # '(|£|) € H' and
F7'(19]) e HY'. 1t follows that

Exfe(1+ |x|)"x L' for some integer m >0,

where m may depend on & and 7. But we can show that m may be chosen in-
dependent of £ and 5. In fact, the application (&, 7)— &™+3 of L3, x L4, into
2’ is continuous, each (1+ |x|*)™x L', m=1, 2,..., is a Banach space, and the
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injection (1+ |x|*)™ x L'>2’ is continuous, whence, by a theorem of Yoshinaga-
Ogata ([14], p. 16), we can choose m as desired.
By a change of variables we have

D) , y
@ A+ [x— yIZ)m €L;, foranyéeH and any € H',

from which, by setting c=2&/ 7 € L? and f=f7% € I’ we have

1
ng f( 3 |o(x)| |7(y)|dady< + oo for any o, t € L%
which concludes the proof.

ReMARK. (i) From the proof of Proposition 7 it is clear that for any ¢ € I,
7€ H' and a € D, if H' is of local type, we have

3) <aaﬁ>:k@%ﬂm

where &x% € (1+ |x|?)"x L' for an integer m independent of & and 7. As a
consequence we see that if H' is of local type, then H’ C H/, and the equation
(3) also holds for any « € &#. Consequently we can define multiplicative pro-

duct &7 for any & € H and 7 € H' in the sense of [3]. In fact, &, % have (¥')-
convolution, since (éx¢)} € L' C 27 for any ¢ € & ([12], p. 151).

(ii) Owing to the relation (2), H' is of local type if and only if there
exists a positive integer m such that (1+ |x|?) ™« € L};, for any & € L4, i.e.
Lon€ € H for any & € H', where L,,, denotes the Fourier transform of (1+ |x|*)™
([8], p. 116).

(iii) Let {B:}occc1 be a family of functions of 2 such that the support of
B. is contained in B, = {x; lx |<Lé&}, B.=>0, and SBS(x)dx: 1. Further we assume

that ,88_ ] aB d for some constant M. Schwartz ([11], p. 28) has

l— 5”“

shown that the followmg inequality holds for some constant C:
|8l — ) = Be() | (1 + || HE S CA + |y D

Then, using this inequality and noting that the application & — (1+ |x|?)~"x&
of L%, into itself is continuous for large m, we can show that Friedrichs’ lemma
([117, p. 27) holds: Let H” be of local type, then, for any & € H, Bx(ag) — a(Be*E)
tends to zero in H"* as €0, where a is any element of <.

It is easy to see from Proposition 7 that H'/ is of local type if so is H’.

CoroLrAry 1. If H' is of local type, then so is H < for any real s.

Proor. Setting A(x) = (1+ |x|*)*f(x), and using the inequality (1+ |»|?*)*<
CA+|y|®* A+ |x—y|®'*!, C being a constant, we have
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K <0/ T 4 o=y

1 h(x)
whence we can choose an integer m such that—— is a kernel
germ A+ [x—yD" V W)

of a continuous linear operator in L.

Cororrary 2. If H'+ and H’: is of local type, then H', where = fi=° f?
and 0<0<1, also 1s of local type.

Proor. It follows from the inequality

f) S ful®)
oy =1~ 9>/f(y) T Loy

We shall give a sufficient condition for H’ to be of local type.
ProposiTiON 8.  H is of local type if the following condition is satisfied :

D" flaty) S k)fy) ae for |yl =Z¢

where k(x) € (1 + |x|%)' x L', | being an integer, and c is a constant.
Proor. If we put k(x) = (1 + [x|*) A(x), then he L'.  As flx+y) <k(®)f(y),
we have

f®) <A+ |x—y|» h(x—y) ae. for |y|=c.

fy) —

e s V e
Choose a positive integer m such that (~JF| j—;)| - €L? and AT s (lz))'" 7 € L.
Then, by our hypothesis, we have

SR S (N Vh(x — ) a.e. for |y| >c

A+ [a—y[H" fy) = A+ [x—y D2

Now using the inequality (1 + |x —y|»)™<Ci(1 + |y|™Q + |x|*)™™, where C;
is a constant, we have, for any o € L7,

1T s
e ey oy riet* o

:Slylglsm]/ﬂ( )o‘(x)dx|2dy

+S.y1>LS(1+|x1 y|2)ml/§()<f(x)dx[2dy I+,

but

. A+ [y VI el del
r=aif | ) il n |0 | di
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R0) 2,
=G rba iZzllellZ

and

Jés{g(l——l——\/ﬁl(x—;]}gm =7z |0 (@) | dx}zdy

Vi(x) Mx)

SOl faf e 12l

where C., C; are some constants. It follows that

Viw VA 2 yioyes
I+J.—§C4(”_<1+l [2)m HL +”(1+ ’ Iz>m 1/2HL )” ”L ’
IS Y OF
where C, is a constant. This yields that A+ s—y] Z)M}/ i is a kernel of a

continuous linear application L2 — L2, so that, by Proposition 7, the space H is
of local type. The proof is complete.

Exampre. If f(x)=|x|*, 0<\<n, then the space H” is of local type. Indeed,
since the inequalities |x+y|*<<2'(|x|*+ |y |)<2"|y|*A + |»|") hold for |y|=1,
it follows by setting k(x) = 2*(1 + |x|*), that flx + y) <k(x)f(y) and k(x) = 2*(1 +
[2]™ @+ |2]|H7" <@+ |x]|?)" €@+ |x|>)"x L, and hence H’ is of local type.

Remark. Consider the condition (essentially due to Malgrange ([5], p
289)):

M) fla+y) <L+ [x[)"fly) ae,

where C is a constant and m is a positive integer.
If 7 satisfies (M), the equation (1) gives

naen;;cuou%z{g |a@) | (L+ | x| da?.

Let aj(x)=a<ﬁ,>, and suppose that « is 1 near the origin. {«;(x)} is a sequence
]

of multiplicators. &;(x) = j"a(jx).
Hence
e !
[l leimae= {lacoia+ 2 |as
1
whence {||la;&ll;} is a bounded sequence. Then, by a theorem of Banach-Stein-
haus, we see that H' has the approximation property by truncation, i. e. a; £—&

uniformly in X when ¢ runs through any compact subset of H. On the other
hand, the approximation property by regularization is possessed by any H’.

Prorosition 9. H ., and Hf, .. are of local type.
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To complete the proof of this proposition it is enough to establish the
following proposition.
Prorosrrion 10.  There exists a real number s, such that 2H"*C H s+ for

every s. But s, may depend on f.

Proor. First we note that 2H C H" % if and only if there exists an inte-
A+ %]/ flx)
A+ o=y [V o)
plication of L? in L. The proof is very similar to that of Proposition 7 and
will not be supplied here.

ger m such that is a kernel of a continuous linear ap-

As H’ is normal, there exists an integer / such that £, % €1+ |x|H¥ x L.

S

Setting sy = — 41, m = o

—1 i, we have

A+ S A+ 2 o V[ 1

A+ =y D"V o+ |y = T+ D A+ Ty N

where C is a constant such that (1 + |x[%)**" <<CA+ |x—y |2 (1 + |y | D)2
The right hand side of the above inequality is clearly a kernel of a continuous
linear operator in .2, wich concludes the proof.

Remark. ¥H; . CHy.. H; . CH} .. In fact, 9H”* CH’*** implies
SPH"s CH"** . This can be shown as in Remark (i) after Proposition 7.

Prorostrion 11. Let #H' CH’. Then, setting g:%, we have

(1) &7€ D4 for every &€ € H and 5 € HE,
(i) @H CH,
(iil) @H'*CH'® for any real s,
(iv) #H*°*CH*® for any real s.

Proor. Ad (i). Let & (resp. ) be any element of H' (resp. H!). For any
o € 2, we have

<ag, 7> :S(a*émdngd((éy e = <a, 67>

Since the application 8— B¢ of & into H' is continuous by the closed graph
theorem, the above relations show that <, £7>> is a continuous form of a € 2
even when we impose on & the topology of #. Since 27: is the dual space of
4, it follows that &7 € 271

Ad (ii). Let v be any element of #. Let {«:} be a sequence from 2 with
ayy—>v in #.. Then, as ayy € 2, we have <awyé, 7> = <oy, &7>. Therefore
it follows since &7 € 271 that {«a,vé} converges weakly toa & € H and <&, 7>
=<y, &7>. On the other hand, a;vé > ¢ in 2’, which implies & =«&. Thus
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we have #H' CH'.
Ad (iii). We first consider the case 0<s<1. For any & € H”* we put

lets.o={| “f;l,,i“sf daf’,

where &,(x) = &(x + a).
As in J. Peetre ([7], p.17), we have after some calculations

le1z.=s{[ Iy 1180 P}

where J(s) is a constant depending only on s. Therefore in H”* the norm ||-||; s
is equivalent to {||-|[7 + [|-|}2}?. Let 3 be any element of #. Then for any
element £ of H"* we have

“:85”723 :S 1Baba— Ellf da

o

<2 [U8a - O gy ¢ o[ 1B 17 g,

Ell + Iz.

Now, as the application (B, &) — 3¢ of # x H' into H' is continuous by the closed
graph theorem, there exists a constant C such that

1Balés — ONF < Cll&a — €117

and

1Ba— P22 < € min (Ja|2 DI

since {8,— B} is bounded in # and we can write 8,— 8= iai vi.. with bounded
i=1

v:.. € 4. Hence we have

h=c| ‘, J,,,i'lf da=C||g|[32< + oo,

and

d d
'aléIWgﬁﬁ+glalél ‘]af]%zT}llEHk + oo,

el

On account of these inequalities we see that ||B¢[[F ;< +co. We also have
that ||&]|; <||€]l;,s< + oo. Hence [|B¢]|7 + [|B¢]|}2< + co. From the remark just
given with respect to the equivalent norms of H''*, we see that B¢ ¢ H"* for
any & € H.

Next consider the case s>>0. We choose a positive integer N such that

0< %<1. Then repeating the above process N-times we can conclude that
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B& € H' s for any & € H"*.

Finally consider the case s<0. As Hf is the anti-dual of H’, then the
adjoint application of £— B¢ of H’ into H' yields #H¢ C H¢. Then, from the
preceding discussions, we have & H® ~* C H® ~°, and therefore # H>*C H>*

Ad (iv). From (iii) we have # H"*C H''* for any real s. Then, by consid-
ering the adjoint application as in the proof of (iii), we see that # H** C H®*®
for any real s.

The proof is complete.

Remark. The proof of (iii) can also be carried out by the aid of the in-
terpolation theorm (e.g. [4]). As clear from the proof of the case (iii), it
suffices to show that # H"*C H"* for any positive s. For any temperate dis-

tribution &, & € H"! is equivalent to that &, —j g ¢
1

Suppose that

$+,3

#H' CHY, for any B €% and any & ¢ H!

J
€ H’, so that 8¢ € H”'. By repeating this process we see that if g&Hf CH, then
ZH '™ H™ for any positive integer m. Now we can make use of the inter-
polation theorem cited above to conclude our assertion.

4. Convolution. We shall first recall the defintion of convolution con-
cerning two distributions S, 7. We shall say that S, 7 are composable provided

)] S(T"*@) € 271 for every ¢ € 2.

If this is the case, the convolution Sx7 is defined by the equation
<S*T, p> = SS(TV*{p)dx.

This is the usual convolution due to L. Schwartz [9]. Various conditions
equivalent to (1) have been discussed by Shiraishi [12]. However, when con-
volution is considered as an application, another definition is possible. Let s#
and 7 be normal spaces of distributions and let .# be a space of distributions.
We shall follow Schwartz ([10], p.151) in saying that a bilinear application of
# x A into Z is a convolution of s x " into % if the application is separately
continuous and coincides with the usual convolution on 2 x 2. For our tem-
porary purpose such convolution will be denoted by ® and we shall take &
for 2, in the following discussions.

If we are given a subset E of 2/, we shall denote by E* the set of the dis-
tributions composable with every element of E. It follows from (1) that E* is
a linear space stable for differentiation, and ZE* CE*. In the following we

shall write g= 1

/
Prorosrtion 12. (1) (H)*=(H}, )*=(H;,.)*. (i) (HH*CH,, ..
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Proor. (i) is clear from the fact that S, 7 are composable if and only if
Sxq, T are composable for any ¢ € 2. As for (ii), let 7 be any element of (HH*.
Then by (1) we have &(F*¢) € 2,: for every & € H' and every ¢ € 2. Hence
7x@ € H® since & — &(%*¢) is a continuous application of H’ into 2/, so that
% € H, .. and in turn 7 € H, .., as desired.

Now we shall show

Turorem 2. f 1s of type M if and only if any of the following equivalent
conditions holds:

@ EH*>H

() ()Y =H,.. (i) (HO*=H) ..
(iii) @H).CH,.. iy @H,.CH,..
(iv) @#H; . CH;,.. vy @H, .CH,,..

(v) @H' CH"* for some real s,. vy @HECHE for some real so.

Proor. Ad (i) — (ii). This follows from the fact that y lies in H, _ if
and only if y*¢ € H® for any ¢ € 9.

Ad (ii))—(iii).  This is clear, because, for any EC 2’, E* is stable for
multiplication by any element of #.

Ad (iiiY 2(iv). This equivalence is obtained by considering the adjoint
application of the multiplications by elements of #.

Ad (iiiY—>(v)’. (iii)’ implies that ZH?* CH, ... As #, H* are spaces of type
(F) and H, ., is a space of type (LF), so we have #H* C H%* for some real s
[14].

Assume that (v)” holds. By the closed graph theorem the application
(B,6)—> B¢ of # x H* into H®* is continuous, and therefore there exist a con-
stant C, and a postitive integer m such that for any & € H*

18811z, s, = Cill€|7 max||D*BllZ~, |p| = 2m.

Consider the set @ of the functions {(1—_!2_7—11;)7}, where ¢ is a parameter run-
ning through R".
Then the set of functions
eZnix-t
{DP'W; Ipl=<2m, ¢ € Rn}

is uniformly bounded, whence for a constant C,

2mix.t

e 2 2
I ey e S Calel
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for any & € H? and any ¢ € R".

Consequently,
[E( — 1) *(A + [x]*)*og(w) :
S a—+ |t|2)2m dx éczg {f(x) | Zg(x)dx,

which implies for every z € R”

A+ |x+¢]® glo+1)
@+ 2™ glx)

Therefore for any x, with g(x,) 0, oo, we have

@+ [z]2)
A + [xo +£]%)

<C, a.e.

glxo+1) < Cy g(xo) a.e.

If we put x=x,+¢, then for some constant €’ and a positive integer 7’
glx) < CA+ %] ae.

As # H5CH®*, then #H" **CH’. By repeating a similar reasoning as
above, we have

flo)y < C"A + %] ae,

for some constant C”" and a positive integer /”. Thus we see that fis of type M.

If fis of type M, then H; . =H, .=2;, and H} .= H, .= 273 so that
(Hf)*=(922)*=.@22=H;,,mDHg.

Now, by definition, fis of type M if and only if g is of type M. Hence the
substitution of f by g in the above discusions will complete the proof of the
theorem.

Remark. The condition (v) of the theorem implies that BH'SC H s+%
for every real s. This can be shown by an interpolation theorem as indicated
in the remark after Proposition 11. In general, s, cannot be chosen to be zero.
For, suppose the contrary. Every H’, f being of type M, would be of local
type. However, this is not the case.

ProrosttioN 13.  (H)* D H' if and only if there exist a constant C and a
real s, such that

2 flx) = CA+ x5 ae.

Proor. Necessity. H' C(H')*CH, .. Hence H; . CH, . by Proposition 5,
and we obtain by Proposition 6

7g(x) 2\s
16 < CA+ %% ae.

for a constant C; and a real s. Thus we have (2).
Sufficiency. (2) implies H C H**C 27.. Since any two distributions of 27
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are composable, so we have H C(H")*, and our proof is complete.

CoroLLARY. (H')*=Hj, .. if and only if f is of type M.

Proor. It is enough to show the “only if” part. By Proposision 13 we
have f=>C(1+ |x|?)* for a real s,, hence by Proposition 6 H' C H},.. C 27:, which
implies that Hj .=(H)*D(2::)*=27.. Consequently we have H} .= 927
Then, by the Corollary to Proposition 6, we see that f is of type M.

If we define é®y=""(£4), where & ¢ H, _ and 7 € H, _, then it is not dif-
ficult to see that (®» is a convolution of H} .xH, . into 2. However, as
Theorem 2 shows, the application (» coincides with the usual convolution x if
and only if fis of type M.

Finally we shall conclude this section by stating a sufficient condition for
a convolution of & x " into 2’ to be well defined, which will also be applied
to the case where #=H}, . and 4" =H, ..

Prorosition 14.  Let o#, o be mormal spaces of distributions. Let # be
barrelled. Assume that the application (T,0)— T x¢ of A x D into #' (the
strong dual of ) is hypocontinuous. Then the application & defined by the
Sfollowing relation is a convolution of # x A into 2’ :

<S®T,o>=<8, T*p>,Sex, Te A and ¢ € 2.

Furthermore if # possesses the approximation property by truncation,
then SxT, if it exists, coincides with S T.

Proor. It is evident that (») coincides with *x on 2 x 2. Let C be any
compact disk of 2. If T—0in ', then 77+*C— 0 in s#’ since the application
(T, 9)— T =¢ is hypocontinuous. Hence <S, T"xC>-—0 for any S € s#. If S—0
in o# and T is a fixed element of ¢, then 7"xC is a compact disk of ', and
hence an equicontinuous subset of #’, so that <S, T"*C>—>0 as S—0. Thus
we have shown that (¥) is separately continuous.

For the proof of the last part of the statements we use the notations
<, >aa <, >0 to make clear the duality between the spaces of distribu-
tions under question. Suppose ST exists, that is, S(T"*¢) € 271 for any ¢ € 2.
Let {«;} be a sequence of multiplicators such that a,—1 in %, and «,S— S in
# as k—>oo. Then <S®T, ¢>o.0=<S, TV*¢>%,%,=lilrcn LS, T Q> g 0=

lil{n <S8, a(T *¢) > o 0= lilr_n SakS(T'*go)dx: ‘S(TV*(o)dx =< ST, ¢ >0/,0.
Therefore S » T=S«=T, as desired. &
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