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l Introduction.

In this paper, we are concerned with van der Pol's equation with har-
monic forcing term

(1.1) ~*--£(l-x2)^+x==εEsinωt (EφO\

where ω is a number close to unity. Here, as is readily seen, we may assume
£>0 and 2?>0 without loss of generality. By the substitution of the time
variable, the equation (1.1) can be written in the form as follows:

(1.2) ^ + x =

which is rewritten in a simultaneous form as follows:

( dx_ =

dt
(1.3) j ̂

Jt = - x + S {Esint - Ax -h (1 - x2)y}.

In (1.2) or (1.3), notice that, besides £, the quantities A and E are also sup-
posed to be the parameters.

By the linear transformation

(x = ξ cos t -h 7j sin L
( 1 4 ) t • 1

ly = — f sin ί + η cos ί,

the system (1.3) is transformed to the system of the form as follows:

(1.5)
dη

where
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8 b 8

(1.6)

2 '' 8

Let

{ ζ = ζ(u, v, t, ε),

77 = 77 (u, v, t, 8)

be the solution of (1.5) such that

(ξ(u, v, 0, 8) = u,
(1.8) Γ

Then, in the finite interval of t containing ί=0, for sufficiently Small | £ | ,
ξ(u, 7j, ί, 8) and η(u, v, t, 8) are written as follows:

{u, v, t, 8) = ξo(u, v, t) + βξi (u, v, t) + 8%(u, v, t) + 8%(u, v, t) + o(63),

(M, Z;, ί, 6) = 770(w, z;, ί) + €771(1*, i;, ί) + 82η2(u, v, t) + ^773(w, ^5 ί) + o(6 3).

But, by the initial conditions,

(ξo(u, v, 0) = it, ξι(u, v, 0) = ξ2(μ9 v, 0) = 1=3(1*, v9 0) = 0,

lηO(u, V, 0) = V9 ηι(μ9 V, 0) = η2(u9 V, 0) = 773(1*, V, 0) = 0.

Therefore, substituting (1.9) into (1.5), we have:

(1.10)

and
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ξx(u, v, In) = \2*f(u, v, t)dt= - -f- (4E - 4M - 4 ^ + M3 + MU2),

/ Γ» \ I / \7 T* S A Λ A 2 3\

971 (M, v, ώτr; = \ g (ω, v, tjdί— — -~r-(4:Au — Qv Λ- u v Λ- v ) .
', Jo ^

Now, let us consider the equations

[4E1 — 4w — 4^2; + w3 + wi;2 = 0,

- 4tv + w2i; + Ϊ;3 = 0.

By the assumption EφO, these equations can be solved as follows:

1 A
( 4 )(1.13) M £ £ g

where p ( = w2 + z?2) is a root of the equation

(1.14) p3 - 8/O2 + 16(1 + i42)/o - 16£2 - 0.

Evidently the Jacobian of the left member of (1.12) with respect to (M, V) is

(1.15) Jo - Ku2 + ^ 2) 2 - 16 (w2 + i;2) + 16(1 + ^ 2)

= 3/o2-16/o + 1 6 ( 1 + ^42).

If the equation (1.14) has a non-negative root for which the Jacobian JQ

does not vanish, then, by the well-known theorem, there exists one and only
one periodic solution of (1.2) whose stability is decided by the sign of the real
parts of the characteristic roots of the matrix

(1.16) /3M2 + Ϊ ; 2 - 4 2UV~AA \

J
But, in the case where the equation (1.14) has a non-negative root which

satisfies the equation

(1.17) SP

2 - 16p + 16(1 + A2) = 0

at the same time, the existence of a periodic solution of (1.2) is not guarante-
ed by the ordinary method.

When /o==2, the characteristic roots of the matrix (1.16) are pure imagi-
nary for \A\ >i as is seen later ($4). This implies that the stability of the
periodic solution is not decided by the above rule even if the existence is certi-
fied.

In the present paper we shall study such a bifurcation problem making
use of the idea of the author's previous paper [3 ].

2. The results obtained.

Let Ωu Ω2, &3 and Ω4 be the domains in the (A, io)-plane such that
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J2i = {(iί, p) : 3p2 - 16p + 16(1 + A2) > 0 and p > 2},

J22 - {(Λ P ) : 3P

2 - 16/o + 16(1 + ̂ 2 ) < 0}5

Ω3 = {(Λ p) : 3 P

2 - 16p + 16(1 + A2) > 0 and 2 > p > 0},

Then, as is known already [1, 2],
/or (̂ 4, p) e J31? ί/̂ erβ exists one and only one periodic solution of (1.2) which

is stable or unstable according as £ > 0 or < 0
for (A, p) € J22, there exists one and only one periodic solution of (1.2) which

is semi-stable
for (A, p) 6 J23j ίΛere exists one and only one periodic solution of (1.2) which

is unstable or stable according as £ > 0 or < 0
for (A, p) e J24, ίfeere exists no periodic solution.

ill

Our results obtained in the present paper are connected with the distri-
bution of periodic solutions of (1.2) for the point (A, p) which belongs to the
boundaries of the domains Ωλ and Ω2.

Since the boundary of Ω2 is an ellipse (1.17), any point of it can be ex-
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pressed as

M = W s i n 2 < ? > '
(2.1)

p = -g-(2

Let us divide the boundary of Ω2 into several parts according to the values of
φ as follows:

V3 ' 3

Further let L+ and L_ be the half lines as follows:
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"2~'P:

Then, our results obtained in the present paper are as follows:

for (A, p) e (λP_2vyP_2, there exist two periodic solutions of (1.2) one of
which is semi-stable and the other is unstable

for (A, p) e P_2P-iV_yi>oPi, there exist two periodic solutions of (1.2) one of
which is stable and the other is semi-stable;

for (A, p) 6 P_I\JPI\JL+, there exists one and only one periodic solution of
(1.2) which is stable;

for (A, p) € L_, there exists one and only one periodic solution of (1.2) which
is unstable

for (A, p) e P_iPoWPoWPiP2wP2WP2<2^(2? there exists no periodic solution.
In case £ < 0, the same results hold replacing A by—A and interchanging

the terminologies "stable" and "unstable" with each other.
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To make clear the distribution of periodic solutions of (1.2), we show the
results stated above including the older ones in a table in the preceding page.

3. The proof for the case where the Jacobian JQ vanishes.

In this paragraph, we study the case where the equation (1.14) has a non-
negative root which satisfies the equation (1.17) at the same time.

As was shown in the preceding paragraph, A, and p satisfying (1.17) are
expressed as (2.1). Therefore, substituting (2.1) into (1.14), we have

(3.1) E = K • q re (2 -f cos 2φ) sin 9?,

where /c= + l o r —1 according as φ^>0 or φ < 0. Substituting (2.1) and (3.1)
into (1.13), we see that, in the case in question, the solution of the equation
(1.12) is given by

(3.2) V3

y ~ 2tc COS φ.

Let us transform the variables (f, η) to (|, η) by

u=

ξ = ξ + - ^ - Λ sin φ,

> — ΎJ \ 2κ COS (p

ί /(if, V, t) =f(ξ + -j= K Sin φ, 7] + 2κ COS φ, Λ
I ^ Vo /

(3.3)

and put

ί 2 x

(f, rj, t) = g[ξ + ^ / c sm φ, 97 + 2/c cos ^, tj.

These functions can be expanded with respect to (f, η) as follows:

ϊ, η, t) = K j — — p - s i n ^(1 — 10 cosV) cos 2t -h cos <p cos 2φ sin 2ί

/
— p -

+ —τ=-sin φ(l ~ 10 cos2<p) cos 4ί — cos φ cos 2φ sin

+ j — ~o-(l ~ 4 cosV) cos 2ί— — ^ s i n 2φ sin 2ί

+ -^- (1 - 4 cos V) cos 4ί + — sin 2φ sin 4ίi ξ

cos 2ί cos2φ) sin 2ί
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(3.4)

V3 . o . 1 /Λ .
— -ors in 2φ cos 4ί 4- -9—(1 — 4

fj V3 .
s

V3

4- K j — -~-cos φ 4- 2 cos (p cos 2ί — -γ=sin <p sin 2ί

3 V3̂  . . , }μ_
— -gΓcos φ cos At -h -s-sm ̂  sin 4ί[ | ^

+ fJ 1 g i n + j L _ s i n c o s 2 ί -ACos s*

cos4ί —

g(ξ, 7j9t) = κ jcos φ cos
j=-K-

 s ί n 9>(1 — 10 cos

4- cos φ cos 2φ cos 4ί H ^ s i n 99(1 — 10 cos V) sin 4ί[

— —^sin 2ψ — —p=-sin 2ω cos 2ί 4- -^-(1 — 4 cos:

./Q O A / Q Φ
V O ^ v O "*

V3~ . o . 1 „ , 2 x . . ) _
— -g- sm 2̂ > cos 4ί 4- ~o~(l ~~ 4 cos2φ) sm 4ί^ |

• 4 cosV) a~0 ~~ 4 cos2<7>)cos 2t — 2(P s i n

1 /-. >! 2 N

— ~2~(1 ~ 4 cosV) cos sm

— -17 cos φ — cos φ cos 2ί + ~^ sin ̂  sin 2ί

3 V3" . .

—τ~cos ̂ > cos At + -j-sin ̂> sin
-
2

f 1

4- Λ: j — — = - s

V3" .

2
sm ^ — —τ=sin φ cos 2ί — cos φ sin 2ί

, 3 . / , -
φ cos4ί o~cos<^ sm4ί ξrj

3
sin2ί 4- -^-—^-

V3 .V3 . . . ) o r , _ _
- - j - sm 9> sm 4ίj τ/2 4- [I, ̂  ί ] 3 ,

where [f, ^ ί ] 3 stands for the terms of the 3rd and higher order in (ξ9 η)
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whose coefficients are periodic functions of t.
By the substitution (3.3), the system (1.5) is transformed to the system

(3.5)

Evidently the solution

(3.6) <ξ = Hύ,v,t,ε),

of (3.5) such that

(ζ(fi9 v, 0, s) = ϋ9

is expanded with respect to £ in the finite interval of t containing t = 0 as

follows:

(ξ(μ, v9 t9 6) = ξo(β9 ϋ9 t) + Sξίfa Ό9t)Λ" 9

^ (w, v, ί, £) = 7]o(u, υ> t) + £^i(w, f, ί; + .

From (3.3), it is evident that the solution (3.6) of (3.5) is related with the
solution (1.7) of (1.5) as follows:

( 2 \ 2

u + -r^-κ sin φ9v + 2κ cos φ, t, e ) — —j=κ sin φ9

ί 2 \
7 (a, V, ί, £) = η ί zz + —i=rκ sin <p, ϋ + 2κ cos <̂>, ί, £ j—2# cos >̂.

\ Vo /
If we substitute (3.7) into (3.5) and make use of (3.4), it is seen after ele-

mentary calculations that

ξι(β9 ϋ9 2τt) = I f(u9 υ9 t)dt
Jo

rV3 . _2 , 1 . _2i Γ_ _π

== — tCTt -Q-Sm φ u + COS φ uv + 9 /Q- Sin (p tΓ + l_w, UJ3,

^i(w, i7, 2τr) = I ^ ( δ , D, ί ) ώ
Jo

= — —τ=- sin 2φ u H — Q — (1 —
V3 o

— /CTT - ^ - c o s φ u2 -h —7-= s in (p wi; •+- - ^ - c o s ^ i;2 + |^M, υ^;
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(3.8)
Jo I d? ' ' cty ' )

= — K^r cos <p(l4 2 cos2φf ^ ^=-sin 2φ'ΰ
ob 4V3

4- Ί J ( - 3 4- 28 cosV ~ 52 cosV> + [δ, v]2,

^2(^5 z), 2τr) = \ 1 op fo, v, t)ζι(ΰ, v, i) -\- o - (iZ, ϊ), t)vι(ΰ. v,
J 0 ( ^s ^^

- 44 cos2<p 4-172 cosV)^si

-(17 - 100 cosV + 236 cos
4
 φ)

o 2 )

- ~=- (1-4 cosV) sin 2^| u

-l + 16

From these, it holds for a periodic solution of (3.5) that

(3.9) — Kit I -g- sin (£> w2 + cos φ ΰv + ^ sin (p ϊ;2 + . .

+ 6 —/CΊO^COS φ(l + 2 cos2(^)2+ î  sin 2φ u

(3.10) /^~sin 2ίp ίz+ o (1 — 4

— Λ TT ^ - C O S φ u + " i ^ s m 9? wi; + -^"COS >̂ ι;

+ SI K-Qjrw-sίn φ(7 - 44 cosV + 172 cos4 ̂ ?)

+

4- {"^"(17 - 1 0° C 0 S V + 2 3 6 cosV) ~ "^T^C 1 ~ 4 cosV) sin 2̂ >

sin 2^ ( - 1 + 16 cos2(p) + - ^ - ( 1 - 4 cos2

.. = 0.
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Case I. The case where φ φ -^ , ± - j - .

In this case, sin2^^0, because φ = 0 is excluded by the assumption EφO.
Therefore the equation (3.10) can be solved with respect to a as follows:

1-4 cos2<p 7-44 cosV +172 cosV
U ~ 2V3 sin cos V + κ2V3 sin Ψ cos Ψ

 V + κ 144 cos Ψ ^ ^ 6^

If this is substituted for u in (3.9), the resulting equation is of the form
as follows:

(1 -f 2 COSV)COS 2ω 2 7Γ /-, o 2 N2 A
KTC o l7r— — — — — V 2 — /c-~~-COS(p(l + 2 C O S V ) 8 + ••• = 0 .

8V3 sm 2 ^

Here the coefficients of ϊ)2 and 6 do not vanish due to the condition on φ.
Therefore, by Weierstrass's preparation theorem, we see that,

for φ such that 0<φ< - | - or — -|-- < φ < — - | - , the equations (3.9) and

(3.10) have the two real solutions

(3.11) sm

cos

for φ such that —JΓ- <φ< ^ or — - j - < φ< 0, the equations (3.9) and

(3.10) have no real solution.
This implies that the equation (1.2) has two periodic solutions (with peri-

od 2?r) for A and E corresponding to φ (by (2.1) and (3.1)) such that 0<φ<

—T- or — —ό- < φ < — --V- and that the equation (1.2) has no periodic solution

for J and # corresponding to <p such that . <φ< ~^~ or — ^ <rp<0. It

is needless to say that the periodic solution of (1.2) with period 2π corresponds

to the periodic solution of the initial equation (1.1) with period ——--.

Now let us investigate the stability of the periodic solutions obtained
just above. Let us consider the transformation

r' = ^ ( S - f r 5 i ; + Sj 2τr, 6) — w,

s = ^ ( H r 5 H s , 2τr, 8) — v.

By (3.8) and (3.11), the matrix A of the coefficients of the linear parts in
the right members of (3.12) is of the form as follows:

/qiq\ Δ — τ? \ c Λ \ c 3 / 2 A

where
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0

o-i/4 COS φ COS 2φ

sin φ

o 1 4

v3-1/4

cos 3 ~ 3 / 4

BlΠφ

D = (1 + 2 cosV) tan 2φ).

(1 + 14 cosV)

The matrix A of the form (3.13) can be written in the exponential form as
follows:

where

The characteristic roots of the matrix B are found after elementary calcula-
tions as follows:

in case φΦ — « - 5

in case φ= —

for the upper sign of the double signs in (3.11),

for the lower sign of the double signs in (3.11).

From this, the stability of the periodic solutions of (1.2) determined by the
initial conditions (3.11) is concluded as follows:

for φ such that 0<φ<-j- or — —^-<φ< ~~~AΓ)
 o n e solution is semi-

stable and the other is stable;

1) φ = JL is excluded, because there exists no periodic solution of (1.2) for this value of φ.
ό
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Tt
for φ such that — - H - < φ<L — -jr-, one solution is semi-stable and the

other is unstable.

Case II. The case where φ = ± —T- .

In this case, it is found after elementary calculations that

o V2~ V2
(iZ, ϋ, 2τr) = -

(3.14) {
_ 2τr _ 2τr _ „ / V2 _2 ^ V2 __ ^ 3V2 _2\,_ . o x _ 2τr _ 2τr _ „ / V2 _2 ^ V2 __ ^

Then, in t h e p r e s e n t case, t h e e q u a t i o n s (3.9) a n d (3.10) b e c o m e :

3V2 2 V2" V2 Λ 7ΐ

Tt 7t Tt

rQ,aλ _ 2τt _ 2τt ___ /V2 9 . V2 __ . 3V2

+ O(£2) = 0.

The equation (3.16) can be uniquely solved with respect to u as follows:

. 1 _ V2\9 . 1 , . \ . / . 7 .

The substitution of this into (3.15) yields

This can be uniquely solved with respect to v as follows:

6ll6£2
(3.18) v = Q

from which, by (3.17), follows

(3.19) a = ^(61/3) = ΐ - | 6-1 / 6θ1 / 3 - -y- 6"1 / 6θ2 / 3 -h 0(6).

The values given by (3.18) and (3.19) are evidenly the unique solution of the
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7t , 7tequations (3.15) and (3.16). This implies that, for φ=-χ- and <p= — ~τ~5 there

exists respectively one and only one periodic solution of the given equation
(1.2).

In the present case, by (3.14), (3.18) and (3.19), the matrix A of the coef-
ficients of the linear parts in the right members of (3.12) is of the form as
follows:

(3.20) A = E + eAλ + 64I3A2 + 85I3A3 + 0{S2\

where

+ _!ΓL_.61/6

" 2V2

The matrix A of the form (3.20) can be written in the exponential form as
follows:

(3.21) A

where

As is readily found, the characteristic roots of the matrix B are

2 ^ and ε2 / 3(-6-1 / 3τr

This says that the periodic solutions of (1.2) determined by the initial con-
ditions (3.18) and (3.19) are both stable.

Case III. The case where φ = —9—.

In this case, it is found after the elementary calculations that
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- 2 - ft -3

7τr ,
(w? ?;, 2τr) =

fe ί7, 2τr) = - -~w- + C", V]I

Then, in the present case, the equation (3.9) and (3.10) become

(3.23) - - ^ « 2 - i ^ r » 2 + [a, e]3 + e ( - -f-e + [a, e ] 2 )

(3.24)

The equation (3.24) implies

(3.25)

-g-t; + [a, s ] 2 + £( -5HJT- +Cs, «]i) +O(62) = 0.

24V3

The substitution of this into (3.23) yields

V3τr
- u 2 - - 3456V3

This implies there is no real solution of (3.23) and (3.24), or in other words,
Tt

there is no periodic solution of (1.2) for φ = ~n~.

4. The proof for the case where p = 2 and | A \ >

Put jo=2 in (1.14), then we have

(4.1) 2E2 - iA2 = 1.

The E and A satisfying (4.1) can be expressed as follows:

f£ = -LSec
(4.2)
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by the assumption \A\> -9-, we may suppose -?- <φ< -«- or — ? - > <p >

7t_

~ 2 *
Putting p = 2 in (1.13), from (4.2), we get the parametric representation

of the solution of the equations (1.12) as follows:

( 4 3 ) 1 r-
yv =• V2 s in φ.

As in the preceding paragraph, let us transform the variables (f, η) to
(f, 7) by

(4.4)
• = 7? + V2 si

and put

, Ϋ, ί) - / ( | + V2 cos φ, rj + V2 sin ^, ί),

5 Ϋ> ί) = grd +• V2 cos φ, rj + V2 sin >̂, ί).

These functions can be expanded with respect to (|, ^) as follows:

/(ΐ, Ϋ, ί) = \~wjψ c o s ^(3 — 4 cosV)cos 2ί + r= sin ^>(1 — 4 cosV)sin 2ί

T-7--C0S (p(3 — 4 cosV) cos 4ί —3-^-sin φ ( l — 4 cosV) sin 4ί[

+ I — 2 Γ c o s ^^ — 2 c o s ^ c o s ^ + ^ Γ ^ a n ^ (1 ~" 4 cos2(p) sin 2ί

3 3
+ ^~cos 2<p cos 4ί + -^T- sin 2φ sin 4

•! — j - t a n φ cos 2φ — - j-tan <p(l — 8 cos2<p)cos 2t — cos 2<p sin 2t

3 3
i^sin 2φ cos 4ί + —7^ cos 2φ sin 4ί

4V2

+ A ,~ sin φ sin 4ί

_ izr sin <z> + \/2 sin G>cos2ί τ^cos<p sin 2ί ^n^s in Φ COS 4ί



Bifurcation of a Periodic Solution of van der Pol's Equation 67

3

1 1 3 . . o 3
— ~Γ7K~ c o s Ψ + ~Ί^ COS ψ COS 2ί 4- ~7Γ7κ~ Sin φ Sin 2ί — , ι= COS φ COS 4ί

4v2 V2 2V2 4V2
3 . . , ) _2 Γ F _ Ί- ^ - s m φ s m 4ίJ τ?2 + [f, ^ ί ] 3 ,

. λ 1 , 2 λ 1
^- s m φ ( l — 4 cos φ) cos 2ί — ~^η^-

^~ sin φ (1 — 4 cos 2^) cos At 7>ΊcΓ c o s ^ (3 — 4 cos2φ) sin 4ί

~~ ~4" "tan φ ( l + 2 cos2<p) ——r- tan <p(l + 8 cos2φ)cos 2̂  4- cos 2φ sin

3 3
— - j - sin 2φ cos 4ί + ^j-cos 2φ sin 4ί

-h j-^r-cos 2rp — -o—cos 2φ cos 2ί — -v- tan <p(l + 4 cos2<p)sin 2ί

3 3
— -^r- cos 2 ^ cos 4ί — -T- sin 2 ^ sin 4ί

( 1 . 1 . o 3 o 3 .
4- j — ~γirΓ s m ^ ~ /o~ s m ^ c o s ^ί + 9 /9 cos <p sm 2ί —T7o~ s i n CP c o s

1 - 1 3
— —-7χ- cos Φ — V 2 cos Φ cos 2ί — -/^ sin φ sin 2^ — ^y^ cos φ cos 4ί

2V2 V2 2v2

3 .

{ 3 1 3

~ ΪVf s i n φ ~ 2Vf c o s φ s ί n 2 ί + ~4Vf"sin ^ c o s 4 ί

s i n

By the substitution (4.4), the system (1.5) is transformed to the system
of the same form as (3.5). Let us write the solution of the transformed sys-
tem in the same notations as in the preceding paragraph. Then, in the pre-
sent case, for a periodic solution of the transformed system, we have the
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equations as follows:

— -^-cos2ίp ίZ— -^-tanφcos2<p t;— — ^ c o s ψ'ΰ2 — -^Lsin φ ΰΰ
2 ψ 2 ^ H 2V2 V2

ί;2 -h [s, V ] 3

Γ - - A — sin ̂ (3 - 4 cosV)

L I6V2 ψκ ψ)
A—

I6V2

t2in <PΦ 3 4 C 0 S V + 3 2 cosV) +
COS

ί^(6 - 15 cosV -4 cosV + 16 cosV)^ + [s, v]21
S ^? J

(4.5)
• 2 COS2φ)ϋ +

2V2

- - ^ cos 9> SΪ) - J ^ sin φ z)2 + [δ, ϋ]

Γ - — ^ = — (1 - 13 cos2α> + 24 cosV - 16 cosV)
L 16V2 c o s φ ^ ^ FJ16V2

1
2 - (2 - 25 cos V + 76 cosV - 80 cosV) a

+ \~tan φ{l - 2 cosV) + ί- -5™f2-l» + [a, »]21
( 1 6 o COS φ ) J

Since the Jacobian of the left members of the equations (4.5) with respect
to (ΪZ, υ) does not vanish for the value of φ under condition, the (4.5) can be
solved uniquely with respect to (u, v) as follows:

sinφ(l 4 eos2u = — — j = - s i n φ ( l — 4 eos2φ)ε -h o(έ),

(4.6) 7

i (5"15 cosV+12 cosV)£+0(£)

The unique existence of the solution of the equations (4.5) implies that there
exists one and only one periodic solution of (1.2) for any (A, p) lying on L+ or

The stability of the periodic solution corresponding to the initial value
(2, v) given by (4.6) is decided by the signs of the real parts of the character-
istic roots of the matrix
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A = / | ί (S, 55, 2?r, 6) %(2, v, 2τt, 6)".

\-QJj~(u, v, 2τr, 6) -3^(2, v, 2τr, 8) j

By (4.6), ^ is of the form

A = E + βAi + 62A2 4- o(£2).

Consequently 4̂ can be written in the exponential form as follows :

where

Now, if we write B as

B = /ax + £α2 + o(8) bι + £δ2 + o(6) \,

\ci + 6c2 + o(6) di + 6cί2 + o{β)J

it is readily seen from (4.5) that a\Λ-dι==Q and aιdλ— feici>0. Hence it is seen
that the real parts of the characteristic roots of the matrix B are of the form
as follows:

The quantities a2 and d2 can be calculated using (4.5) and (4.6), and there is
found

(4.7)

<< ψ and is positie for >> |This is negative for -ξ- <φ< -ψ and is positive for — -~r- >φ> — - | - .

Hence the periodic solution corresponding to the initial value given by (4.6)
is stable for (A, p) lying on L+ and is unstable for (A, p) lying on L_ (cf. (4.2)).

In conclusion, the author wishes to express his hearty gratitude to Prof.
Urabe for his kind guidance and constant advice.
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