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1. Introduction.

In this paper, we are concerned with van der Pol’s equation with har-
monic forcing term
d?x

e &1 — xz)%— +x=EEsinwt (EF+0),

1.1
where o is a number close to unity. Here, as is readily seen, we may assume
&>0 and E>0 without loss of generality. By the substitution of the time
variable, the equation (1.1) can be written in the form as follows:

dZ

1.2) pr

— 5 +x—8{ Ax+(1—x2)~~+Es1nt}

which is rewritten in a simultaneous form as follows:
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R &‘&

- =—ax+ E{Esint — Ax + (1 — a%)y}.
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In (1.2) or (1.8), notice that, besides &, the quantities 4 and E are also sup-

posed to be the parameters.
By the linear transformation

x=£cos¢+ 5 sinyg,
y = —£sint+ 5 cosy,

(1.4) {
the system (1.3) is transformed to the system of the form as follows:

[ %’_— _8f<g: 75 t),
(1.5) /‘
dn
dt —~5g(f, 7 t):

where
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(F& n, 0) =<— ~;—E+ %é+ %An —%53— %f’l2>
(g B g E— g Ay b )eos 2
+ (—%A&—%n—%éznﬁ- —‘11>173>Sin 2t
e | (g e gt )eos o (g g Jsins
g n )=~ 5 A+ S y— 5 En— g )
S P DA B s
+ <%E— %E - —%—An + —}53-— —}TE?f) sin 2
\ +<—%§2¢,+ %ﬁ)cos 4t+<%§3—%SnZ>Sin 4.
Let
(e

be the solution of (1.5) such that

{E(u, v, 0,8 =u,

18 n(u, v, 0, & =v.

Then, in the finite interval of ; containing t=0, for sufficiently small |&|,
E(w, v, t, &) and 5 (u, v, t, &) are written as follows:

E(u, v, I, 8) ZEO(U’ v, t) + 851(”’7 U, t) + 8252(15, [2) t) + 8353(”3 v, t) + 0(83)’

1.9 {
(1.9 7w, v, t, &) = no(u, v, t) + En1 (u, v, t) + E92(u, v, t) + En3(u, v, ) + 0 ().

But, by the initial conditions,

{EO (us v, 0) = U, El (u” v, 0) = 52 (ua v, O) = ES (u) [ O) = 0)
170 (u’a v, 0) =0, mMm (u> v, 0) = 772(”', v, 0) =n3 (u" v, O) =0.

Therefore, substituting (1.9) into (1.5), we have:

{Eo (u, v, ) =u,

1.10
( ) 770 (u, v, 0)=v

and
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&, v, 27) = S:ﬂf(u, v, t)dt = — {f (4E — 4u — 44v + u* + w?),

(1.11) .

m(u, v, 27) = Sz g, v, di = — %(4141& — 4y + %o + 0.
L 0

Now, let us consider the equations

{4E—4u—4Av+u3+u1)2=0,

1.12
( ) 44y — 4 + v®o + 02 = 0.

By the assumption £==0, these equations can be solved as follows:

1 A
(1.18) =g 4 —pp, V=
where p(=u* + %) is a root of the equation
(1.14) p* —8p% + 16(1 + A%)p — 16E% — 0.

Evidently the Jacobian of the left member of (1.12) with respect to (u, v) is

(1.15) Jo=38@@? +v¥)* — 16 (&? + %) + 16 (1 + A7)
—3p% —16p + 16(1 + 4).

If the equation (1.14) has a non-negative root for which the Jacobian J,
does not vanish, then, by the well-known theorem, there exists one and only
one periodic solution of (1.2) whose stability is decided by the sign of the real
parts of the characteristic roots of the matrix

(1.16) <3uz +0P—4 2uw—44
2uv + 44 u2+3v2—4/'

But, in the case where the equation (1.14) has a non-negative root which
satisfies the equation

(1.17) 3p2 —16p + 16(1 + 42 =0

at the same time, the existence of a periodic solution of (1.2) is not guarante-
ed by the ordinary method.

When p=2, the characteristic roots of the matrix (1.16) are pure imagi-
nary for |A| >% as is seen later (§4). This implies that the stability of the
periodic solution is not decided by the above rule even if the existence is certi-
fied.

In the present paper we shall study such a bifurcation problem making
use of the idea of the author’s previous paper [ 3 ].

2. The results obtained.

Let £1, 25, £5 and £, be the domains in the (4, p)-plane such that
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Q1= {(4, p) : 3p> — 16p + 16(1 + 4% >0 and p > 2},
Q= {(4, p) : 3p> —16p + 16(1 + 42) < 0},

Q5= {(4, p) : 3p> — 16p + 16(1 + 4% >0 and 2> p > 0},
2e={4, p): p=0}.

Then, as is known already [1, 27,

Sfor (4, p) € 21, there exists one and only one periodic solution of (1.2) which
1s stable or unstable according as & >0 or < 0;

Jor (4, p) € £5, there exists one and only one periodic solution of (1.2) which
18 semi-stable;

Jfor (A4, p) € £, there exists one and only one periodic solution of (1.2) which
1s unstable or stable according as &€ >0 or <0;

Jor (4, p) € £4, there exists no periodic solution.

3P2—16P +16(1+A*)=0

=16 E?

E?*=32/27

E*=1

E2<16/27

Our results obtained in the present paper are connected with the distri-
bution of periodic solutions of (1.2) for the point (4, p) which belongs to the
boundaries of the domains £; and 2,.

Since the boundary of £ is an ellipse (1.17), any point of it can be ex-
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pressed as
1/ A= —\/1§ in 2¢,

2.1) { ) (=< 2p<m)
L p= 3*(2 + cos 2¢).

Let us divide the boundary of 2, into several parts according to the values of
o as follows:

QP 2—{(14 P:— g <p< —?-}

P_z_:(———;j,z),

PZP]-‘{(A DE *731;_<<P<“%},

re(- )

~ - )
PPy = {(A, i =3 <p<0p,

oo"oo

Py=(0, 4),

ﬁlz{(Aap)0<(P<‘Z‘}a

()

PP, = {4, p): ] <p< 51,
(49,

PO, p): 5 <p< G,
0=(0, 3 ).

Further let L. and L_ be the half lines as follows:

L+:{(A.p):A>%,p=2},
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1
L_={(A,p):A<—‘2*,p=2}.

Then, our results obtained in the present paper are as follows:

for (4, p) € @’_ZUP_Z, there exist two periodic solutions of (1.2) one of
which ts semi-stable and the other is unstable;

I/~ —~
for (4, p) € P_oP_1\JUP,Py, there exist two periodic solutions of (1.2) one of

which is stable and the other is semi-stable;

Sfor (4, p) € P_.1\UP1\UL., there exists one and only one pefriod;éc solution of

(1.2) which s stable;
Jfor (4, p) € L_, there exists one and only one periodic solution of (1.2) which
s unstable; .
Jor (4, p) € Ig_—:POUPo UPlPZUPZUIia\JQ, there exists no periodic solution.
In case & <0, the same results hold replacing A by— A and interchanging
the terminologies “stable” and “unstable” with each other.

‘ e>0 e<0
nos. of nos. of
regions 1% periodic stability periodic stability A, p
| solutions i solutions | B 1 -
2, 1 stable 1 unstable
2, 1 | semi-stable 1 semi-stable
24 1 ‘ unstable 1 stable
2, 0 ‘ 0
53 T T | " semi-stable S
QP —3<¥<-3 2 | unstable 0
. . m | semi-stable A=-—-1/2
Py ¥="3 2 unstable 0 p=
5D i w semi-stable
(PP mgse<og ] 2 sable 0
B pP_, @ =— Zf 1 statﬁe 1 :ftable ;4:8731/‘/3
T T semi-stable
'_P'lP“ —3<¢<0 ] 0 \ 2 unstable
_ I A=0
P, @=0 - 0 t - _7”07_ - p—4 )
5D T semi-stable
PoPy 7770 <¢<i B 2 ‘ stable 0 )
_ A=1/V3
B P, =7 B 717 ,,,‘ stabl? 1 _unj_table B p=8/3
5D e T semi-stable
PPy 1<¥<3 0 _ 27 unstable I
T | semi-stable A=1/2
Viipz o Y=3 0 o 2 stable p=2
57 Y P2 5, | semi-stable
PiQ 3<?<3 0 2 stable ;
o L ] A=0
Q ¢=9 | 0 0 | p=4/3
L, 1 stable 1 stable !
L_ 1 unstable 1 unstable
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To make clear the distribution of periodic solutions of (1.2), we show the
results stated above including the older ones in a table in the preceding page.

3. The proof for the case where the Jacobian J, vanishes.

In this paragraph, we study the case where the equation (1.14) has a non-
negative root which satisfies the equation (1.17) at the same time.

As was shown in the preceding paragraph, 4, and p satisfying (1.17) are
expressed as (2.1). Therefore, substituting (2.1) into (1.14), we have

3.1 E= (2 + cos 2¢) sin o,

3\/3

where x=+1 or —1 according as >0 or ¢ < 0. Substituting (2.1) and (3.1)
into (1.13), we see that, in the case in question, the solution of the equation
(1.12) is given by

u= 2 cSin @,
(3.2) V3
v = 2x COS .

Let us transform the variables (&, ) to (€, 7) by
E=E+ —rfc sin ¢,
(3.3) V3
=7+ 2k COS
and put

(f@ﬁ )=f< \/3K51n¢,7?+216005¢, >,

gE& 7,0)= <<§+ J3 e sin g, 7+ 2k cos g, ¢ >
These functions can be expanded with respect to (€, 7) as follows:

(f(sé, Ty 0)=1r { — 3—\1@— sin (1 — 10 cos’p) cos 2¢ + cos ¢ cos 2¢ sin 2¢

sin @(1 — 10 cos’p) cos 4z — cos ¢ cos 2p sin 41:}

1
+
3v3

+ {— %(1 — 4 cos’p)cos 2t — sin 2¢ sin 2¢

1

2V3
1o 2 \/3

+ 5 (1—4 cos’p)cos 4t + Y2 sin 2¢p sin 4s €

+ {—\lzisin 2 cos 2 — %(1 — 4 cos’p)sin 2
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— gsm 2¢p cos di+ 5 (1 — 4 cos’p)sin 4t}
1 . V3 .
+x Sln<p —5 €08 @ sin 2t+Tsmq>cos 4t

+ % cos @ sin 4t} E?

l_sin @ sin 2¢

V3

+

;c{ ‘cos¢+2cos¢cos2t—

_3

cos @ cos 4¢ + i23~s1n @ sin 41:} &7

1_sin @ €0S 2t + icos @ sin 2¢

2
+/c{ ~S1n<p+ 73 2

V3 . 3 . —
3.4 — 4 sing cos 4t — ) COS¢0S1n4t}77 +[§, 7; tls,

3\1@ sin (1 — 10 cos’p)sin 2¢

%sin »(1 — 10 cos’p)sin 4;}

+ {— T/% sin 2 — -2—\5/3?sin 2¢ cos 2 + %(1 — 4 cos’p)sin 2¢

g& 7, 0=« {cos @ COs 2q-cos 2t +

+ cos @ cos 2p cos 4¢ +

— izgi sin 2¢ cos 4z + %(1 — 4 cos’p) sin 41:} g
+ {—é—(l — 4 cos’p) — —%;(1 — 4 cos’p)cos 2t — gsin 2 sin 2¢
— —;—(1 — 4 cos’p)cos 4t — %sin 2¢ sin 41:} 7

1 V8 . .
+k —TCOS¢—COS¢COSZt+_2—'Sln<pS1n2t

L —a

— oS p cos 4r + %sin @ sin 45} &

) 2 . .
+d——_si — ——~_sin @ cos 2t — cos ¢ sin 2¢
“ { ov3 TP gtne ?

— Tgsin @ cos 4t — %cos @ sin 4t} &7

sin @ sin 2¢ + 3 cos @ cos 4¢

3 1
+/c{ T»COS(p o3 i

— %sin @ sin 41:} 72+ (& 7; t1s

where [£, 7; t]; stands for the terms of the 3rd and higher order in (€, 7)
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whose coefficients are periodic functions of .
By the substitution (8.8), the system (1.5) is transformed to the system

f%‘ =‘9f(‘§9 7, Z))
(3.5) '
1%:5;57@, 7, t)~

Evidently the solution

(3.6) {E =E(a, 9, ¢, &),

of (3.5) such that

is expanded with respect to & in the finite interval of ¢ containing :=0 as
follows:

(37) {g(ﬂ" l_)’ t’ 6) :50(1—2, '1—7) t) + 851(17, ’l-J, t) -+ ceey

77(17') 0, t, 8):770(’2; 0, Z) + 8771(17') v, t) + o
From (3.3), it is evident that the solution (3.6) of (3.5) is related with the
solution (1.7) of (1.5) as follows:

E(m, b, 1, &) = f(n-l— —\—/2;‘))416 sin @,  + 2« cos @, t, 5> — 7/257_'“ sin ¢,

7 (@, B, t, &) =77<E+ \/—2—3:16 sin @, 5 + 2« cos @, ¢, 8)—2/c cos @.

If we substitute (38.7) into (3.5) and make use of (3.4), it is seen after ele-
mentary calculations that

(éo(ﬁ, v, t) =u, 770(17; 0, t):'l_);

& (4, 5,27) = SM f (@, v, )de
0
g 1
= — KT [% sin q)-ﬂz + cos @+iiv + 23 sin (p-ﬁz] + [, 93,

718, 0, 2m) = Szwg(n, v, t)dt
0

_ %sin 2 + 27 (14 cos’p)o

— K [—% cos @i’ + 713; sin p-ap + %cos ¢)-@2] + [@, 03;
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4 a
fz(% 1), 277) - S { ag (u, U, i')gl(u’a 1), t) + a{: (u’ ’l), t)"?l(ua U: t)}

(3.8)

=— k-2 _cos p(l+ 2 cos’p)® + sin 2p-a

36 4¢§

+ % (— 8 + 28 cos’p — 52 cos’p)d + [a, 7 s,

75,20 = |20, 1, D8 @ 5,0+ (@, 1, 07 1, )

=k 36\/¥ sin (7 — 44 cos’p + 172 cos'p)

+ {1(17 — 100 cos?p + 236 cos* )

_ 2n (1— 4 cos’p)sin 2@}

3V3

+ { 3 sin 2p(—1 + 16 cos’p) + —~(1 4 cos ¢>)2}

\ + [a, v s
From these, it holds for a periodic solution of (3.5) that

V8 ., _ T .,
3.9 — Kk [—2— sin @i + cos @p-ud + —oy3 Singed ] + ..

T 2 N2 T -
+8[ £ 36 cos (1 + 2 cos®p)” + 3 sin 2¢p-a
4 2 4N

+ﬂ(—3+28005¢—52cos¢)v+-~~]+-~-=O,
(3.10) — —%sin 207+ 2T”(l — 4 cos’p)d
1 RN TS 2
——mr[ 9 COSeu” + \/gsmq)-uv+ 2 COSq)-v]-f-
+é l 36\/3 sin @ (7 — 44 cos’p + 172 cos' p)

(1 —4 cos’p)sin 2¢)}

T _ 2 4 2n°
+ { 7o (17 = 100 cos’p + 236 cos'p) —

4 cos? go)z} 7

s

+...]+ =0,
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Case I. The case where ¢+ —; -, _74r

In this case, sin 2p==0, because =0 is excluded by the assumption E==0.
Therefore the equation (3.10) can be solved with respect to z as follows:
1—4cos’p N 7—44 cos’p +172 cos'p
2V3singpcosgp | " 144 cos ¢

= &+ [, &la

If this is substituted for @z in (3.9), the resulting equation is of the form
as follows:

1+2 cos’p)cos 2¢p .
(8«13’ sin (/)P()',OSZ(p/) " — kggcos p(1 +2cos’p)’e + ... = 0.

KT

Here the coefficients of #* and & do not vanish due to the condition on ¢.
Therefore, by Weierstrass’s preparation theorem, we see that,

for ¢ such that 0<p< 4742 or — —72?' < p< — *Z , the equations (3.9) and
(8.10) have the two real solutions

~114 . 2 P S
(a=n(e?) =+ 3 1 174C08%) jq o osoytan 2pre' 4+ o(eli2),

(3.11) 6 sin ¢
=p(e"?%) = + 8% cos pV(1+2 cosip)tan 2p-&'/? + o(641%);

S

for ¢ such that A} <p< 725 or — % < <0, the equations (3.9) and

(3.10) have no real solution.
This implies that the equation (1.2) has two periodic solutions (with peri-
od 27) for A and E corresponding to ¢ (by (2.1) and (3.1)) such that 0<p<

71 -

;‘L or — *721* <p< — V! and that the equation (1.2) has no periodic solution

for A and E corresponding to ¢ such that Z <p< % or — Z <p<0. It
is needless to say that the periodic solution of (1.2) with period 2= corresponds
to the periodic solution of the initial equation (1.1) with period 2—5 .

Now let us investigate the stability of the periodic solutions obtained
just above. Let us consider the transformation

(3.12) %"/:5(174",17-%8, 27, &) — i,

S =7{@+r,0+s, 27, &) — 7.

By (8.8) and (3.11), the matrix 4 of the coefficients of the linear parts in
the right members of (3.12) is of the form as follows:

(8.13) A=FE+ &4, - %4, +0(&D),

where
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A,= 0 0 ,
V‘ 27 Sin2p -?31(1 — 4 cos’p)
Ay = &+ ZT D (373 cos 2 3-1/4_COS P €08 290
sin @
3/4
g-1/4 €08 9 COS 2p _ ¥ 3 (1 + 14 cos’p)

sin @
(D = (1 + 2 cos’p)tan 2¢p).

The matrix 4 of the form (8.13) can be written in the exponential form as
follows:

A =exp(&EB),
where
B =4, + &4, + 0(8).

The characteristic roots of the matrix B are found after elementary calcula-
tions as follows:

. z D
in case <p#——T s

ZT”(l — 4 cos’p) + O('1?),

8-3%  _ cos 2p(1+2 cos’p)
el/2
& {i—mr 5 VD 1—1 cos’y

+0@E);
. 7T
in case p = — 3,

g [J_r 274 - %—sl“ + 0(3“4)]
for the upper sign of the double signs in (3.11),

ML+ 2% 4+ 0(8Vh]
for the lower sign of the double signs in (3.11).

From this, the stability of the periodic solutions of (1.2) determined by the
initial conditions (38.11) is concluded as follows:

for @ such that 0<p< Zor —Z-< p< — -7, one solution is semi-
4 3 4
stable and the other is stable;

1) = ? is excluded, because there exists no periodic solution of (1.2) for this value of ¢.
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for ¢ such that — % <p< — igL’ one solution is semi-stable and the

other is unstable.
Case II. The case where ¢ = + %

In this case, it is found after elementary calculations that

32 5, vz_ V2 Ty
(3.14) !Sl(u’ 2m) == (g g Wk g o) =@ )
| 715, 5, 20) = F 2% g— 2T TI—T—ﬂ(——@EZ-‘- V2 51 392 52
e BT T A A

— 4@ + ).

Then, in the present case, the equations (3.9) and (3.10) become:

(3.15) @ + )

+s{¢ + = a—f—zfz+[a,ﬁ]2}+0(ez)=0,

_ _ /N2, N2 N2, T . 4
(3.16) F 303 v+7t<Tui- 2V3 b + 4 v)———4—(uv+v)

o5 (56 i )er (=g 5 ey

+ 0@ =0.

+el

The equation (3.16) can be uniquely solved with respect to z as follows:

(3.17) E=<T~%ﬁ——%iﬂi— 2\1/3 5 + >+8<_ 18742 ...>+0(52).

The substitution of this into (8.15) yields

4+

&g 0 0@ + (7 g 7B +0H)) +O(E) =0,

_T__
M2

This can be uniquely solved with respect to 7 as follows:

(8.18) 7=v(e"3) =6"15g13 1 —\gi 618623 + 0(8),

from which, by (3.17), follows

(3.19) a=u(") =7 % 6116113 — é* 671823 1. 0(8).

The values given by (3.18) and (8.19) are evidenly the unique solution of the
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equations (3.15) and (3.16). This implies that, for ¢>=*ZA and p= ~—%, there

exists respectively one and only one periodic solution of the given equation
(1.2).

In the present case, by (3.14), (3.18) and (8.19), the matrix 4 of the coef-
ficients of the linear parts in the right members of (3.12) is of the form as
follows:

(320) A=E+ Ay + &4, + &1 45 + 0(8),
where
A= 0 0 s
+ 2 _ 27
V3 3
A= [0 0 ,
0 = 87 .g-us
3v2
AB: T ~1:3 T 116
IRAEN Sl + ___ .Y/
2 22
i , 11~
+ - L .6l — 22T 613
2V2 6

The matrix 4 of the form (3.20) can be written in the exponential form as
follows:

3.21) A = exp(EB),
where
B=A, + &3 A, + 345 + 0(6).
As is readily found, the characteristic roots of the matrix B are

- 2?:3 +0(E?) and &P(—67" 7 + 0(?)).

This says that the periodic solutions of (1.2) determined by the initial con-
ditions (3.18) and (3.19) are both stable.
Case III. The case where ¢ = _72_r_.

In this case, it is found after the elementary calculations that

(gl(g, 5, 2m) = — \/Z’”, g2 — -t ,Zi_as _ %m—)z,

2V3




(3.22)
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715, B, 2m) = 27 5 T g T gt T
71(G, v, 2m) = g v \/§U g vy Rl
V& (@, 7, 27) = — —Z*z‘: + (@, 9],
2
772(173 v, 2”)_ 3’27:;3 + 1,’77; o+ 29 v+ [l_‘s 1_7]2)
| &(, b, 27) = — %7%? + &, 5L

Then, in the present case, the equation (3.9) and (8.10) become

(3.23)

(3.24)

 Bx

+ 8~ g + 800 ) + 0E) =0,

2?7: o+ @, vls + 8( 3673 -+ [ &, v]1> +0(&%) =

The equation (3.24) implies

(3.25)

7
= — 24\/3 8+[u,8]2

NI

The substitution of this into (3.23) yields

_ V8m 5, 197
2 "7 345643

&+ [a, £l =0.

5 i — 27\r/§ 1‘)2-1—[17,17]3-}-8(— fg—w-[u, 1712)

65

This implies there is no real solution of (3.23) and (3.24), or in other words,

there is no periodic solution of (1.2) for ¢ = ,725_.

4. The proof for the case where p=2 and | 4| > 5

1

Put p=2 in (1.14), then we have

4.1)

2E* — 44 =1.

The E and A satisfying (4.1) can be expressed as follows:

(4.2)
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T

by the assumption |A4| >%, we may suppose% <p< —72r— or — 4 >@>

Putting p =2 in (1.13), from (4.2), we get the parametric representation
of the solution of the equations (1.12) as follows:

v =2 sin @.

As in the preceding paragraph, let us transform the variables (¢, ) to
&, 7) by.

(4‘4) {§=§+\/ZC?S(]),
n=7+V2sing
and put
{f(é, 7,8)=f(E+V2cos @, 7 +V2sin p, ),
g 7,0)=gE+V2cosp, 7+ V2sin @, 0).
These functions can be expanded with respect to (€, 7) as follows:

FE 7,1)= 1 cos (8 — 4 cos’p)eos 2 + L—sin @1 — 4 cos’p)sin 2¢
/ 242 2\2

1 _ 2 . S _ 2, Vi }
o5 €08 @(3 — 4 cos’p)cos 4z gJg Sin @(1 —4 cos’p)sin 4t

+ { — —élfcos 2 — —;cos 2¢ cos 2t + %tan (1 — 4 cos’p)sin 2¢

+ %cos 2¢ cos 4t + —i sin 2¢ sin 45} g

+ {~ %tan @ COS 2¢ — %tan @(1 — 8 cos’p)cos 2t — cos 2 sin 2t

— %sin 2¢ cos 4¢ + % cos 2¢ sin 4t} 7

+ {—- 3 CoS @ — 1 sin @ sin 2¢ + iCOS cos 4¢
a2 PP T gyg S P a2 7

3 ..
+——4\/é s1n<psm4t}§

1 . = . 1 . 3 .
+{-— 25 sin @ +v2 sin ¢ cos 2¢ — \/2—COS<p81n2t-— 2\/é~sm<pcos4t
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+ —zcosp sin 417} &7

2\/2

+ { 1 cosS @ + — 1 = COS @ COS 2t +- sin ¢ sin 2t — ——=—cos ¢ cos 4¢
— q D
a2 RPT g FOBP 2v 4 ?

4\/2
8 . . __2 = -,
— /g Singsin 4t} 77+ [&, 7; tls,
1
_ = 2 _ - _ 2 :
g& 7,0)= { o3 sin (1 — 4 cos®p)cos 2¢ o5 €08 (3 — 4 cos’p)sin 2¢

+ sin @ (1 — 4 cos’p)cos 4t — cos (38— 4 cos’p)sin 4t}'

2\/2 2\/2

+ { - %— tan (14 2 cos’p) — —4117 tan @ (1 + 8 cos’p)cos 2¢ + cos 2 sin 2¢
3 . 3 . % £
— 4 Sin2pcosdi+ —;-cos2p sindi &
1 1 1 2 :
+ {7—4— €08 2p — 5= €08 2¢ cos 2t — ~,~tan (1 + 4 cos’p)sin 2¢

— %cos 29 cos 4t — '?f sin 2¢ sin 4t} 7

+{——*1‘Sin( —7'1~—sin( cos2t+icow sin 2¢ — sin @ cos 4t
a2 PP T g n e ov2 ‘P 4\/2 P
+ icos sin 4t} =
w2 PP
+ «{— ToJg COSP V2 cos ¢ cos 2 — ?/E sin ¢ sin 2t — Ty COS @ cos 4¢
3 sin @ sin 4 £7
oy S } K

+{———»§ﬂ sin 1 cos @ sin 2; + sin @ cos 4¢
az SMPT gyp €087 ”4v 7

— 4\]—' COS(pSln4t}77 +[& 75105

By the substitution (4.4), the system (1.5) is transformed to the system
of the same form as (3.5). Let us write the solution of the transformed sys-
tem in the same notations as in the preceding paragraph. Then, in the pre-
sent case, for a periodic solution of the transformed system, we have the
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. equations as follows:

37 Gos peii? — %sin Peiiv

2V2

- %cos 2t — %tan P €08 20D —

- #COS (p'l_)z + [ﬂ, 1‘]]3

2
+8[ 16\/‘ sin ¢ (3 — 4 cos’p)

7’ cos2¢p }_

+ { 16 = _tan @(7 — 34 cos’p + 32 cos* go)—l-A “cos’p 7
gz cosz (6 — 15 cos’p —4 cos'ep + 16 cos’p) s + [ i, 5]2]
+0(8) =0,

(4.5)

- 20V 4+ F— T sin @i
5 tan p(1 + 2 cos’p)a + 5 COS 2¢p+v 23 sin p-a

= COS @b — \/_ sin @-o* + [ &, 73

(1 — 13 cos’p + 24 cos’p — 16 cos’p)

\/
[ 16\/2 cow
T

~ 39 cos2 —(2 — 25 cos’p + 76 cos’p — 80 cos’p)a

2
tan (7 — 2 cos’p) + = ” cos 2¢ }17 + [&, ﬁ]zJ

{ 16 cos?p

+0(&)=0.

Since the Jacobian of the left members of the equations (4.5) with respect
to (z, v) does not vanish for the value of ¢ under condition, the (4.5) can be
solved uniquely with respect to (@, #) as follows:

f/ﬁ = — —S%Sin (1 — 4 cos’p)& + o(8),
(4.6) / )
= W cf)‘;szq; (5 — 15 cos’p + 12 cos'p) & + o(&).

The unique existence of the solution of the equations (4.5) implies that there
exists one and only one periodic solution of (1.2) for any (4, p) lying on L. or
L_.

The stability of the periodic solution corresponding to the initial value
(&, 9) given by (4.6) is decided by the signs of the real parts of the character-
istic roots of the matrix
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A= G v 2m ) & @5, 2m, ) .
| ou ov
o7 o7 :
\\\a—g(aa v, 2”; & ’57;‘(1‘2, 7, 27[9 8)’,
By (4.6), 4 is of the form
A=E + &4, + &4, + 0(&%).
Consequently 4 can be written in the exponential form as follows:

A =exp(EB),

where
B— Ay +&( 4~ —;—A{) +0(8).

Now, if we write B as
B = {a; + &ay + 0(&) bl-i—&bz—f-o(é)),
(Cl + &y +0(8) di+ &dy+ 0(E)

it is readily seen from (4.5) that a, +d,=0 and a,d, —b,c; >0. Hence it is seen
that the real parts of the characteristic roots of the matrix B are of the form
as follows:

sﬂ;i +o(8).

The quantities a; and d. can be calculated using (4.5) and (4.6), and there is
found
7 sin @ cos @

@ ot dy= Ty SRPENP

T

5

Hence the periodic solution corresponding to the initial value given by (4.6)

is stable for (4, p) lying on L. and is unstable for (4, p) lying on L_ (cf. (4.2)).
In conclusion, the author wishes to express his hearty gratitude to Prof.

Urabe for his kind guidance and constant advice.

This is negative for *Z— <p< g and is positive for — % >p> —
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