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A. Grothendieck developed in [1]* systematically the notion of fibre space:
on a topological space X with structure sheaf &, where & is any sheaf of
groups, and the notion of 1-cohomology set H'(X, ®) of X with values in &.
He showed the important relation between the elements of H'(X, &) and the
classes of fibre spaces on X with structure sheaf &. And he-obtained the
exact sequence of the cohomology sets (dim. 0 and 1) of X with values in
sheaves of groups on X.

A. Haefliger introduced in [2] the cohomology sets H°(X, ) and H'(X,
P) of X with values in a sheaf of groupoids L3 on X. And under the assump-
tion that %8 is transitive, he proved that there exists a one-to-one correspon-
dence between H'(X, B) and H'(X, &), where & is the sheaf of groups as-
sociated to an element f of Z'(11, P).

In this paper, it is shown that we can obtain an exact sequence of the
cohomology sets (dim. 0 and 1) of X with values in sheaves of groupoids on
X. We deal with the inverse problem of the relation between 8 and &' which
was shown by A. Haefliger: When a sheaf of groups & on X is given, we
may introduce a sheaf of transitive groupoids B on X and an element f of
Z(1, P) such that we have a one-to-one correspondence H!(X, P)— H' (X, &)
where the latter set can be identified with H'(X, &). And when the sheaf of
transitive groupoids 3 has a unit section, it is shown that there exists a sheaf
of groups ®, which is simpler than &/, such that H*(X, ) corresponds one-
one to H'(X, &).

In the first half part, we prepare ourselves for treating the above-men-
tioned problems. In §1, we prove that two systems of axioms in the defini-
tion of groupoid—those in A. Haefliger’s paper [2] and in P. Dedecker’s [3]
—are equivalent, and in §§2-3 we introduce the concept of normal subgroupoid
and quotient groupoid. In §4, we refer to a representation of groupoid.

In the last half part, we solve the above-mentioned problems, applying
the results in §§1-4 and introducing the concept of groupoid extension of a
sheaf of groups.

§1. Axioms of groupoid.l?)t*J A groupoid is a set I7 which has a com-
position law (x, y)—>xy, defined for some pairs of elements x, y (¢ ) and

* The numbers in brackets refer to References at the end of this paper.
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satisfying some axioms we shall state below. At first we state a definition.

DerINiTION. An element e of 17 is called a right unit (resp. left unit), if
xe=2x (Tesp. ex=x) whenever xe (resp. ex) is defined. And an element e of IT is
called a unit, if xe=x and ey=y whenever xe and ey are defined.

Our axioms are as follows:

(Gl) If for x,y,z (€1II) one of (xy)z or x(yz) 4s defined, then the other is
defined and two are equal: (xy)z = x(yz).

(G2) For any x( € IT), there exist a right unit e,( € II) and a left unit
2( € IT) such that xe,=x and ,ex=zx.

(G3) For any x( € IT), there exists an inverse element x~'( € IT) such that
x lx=e, and xx~'=e.

Prorosition 1.  The system of axioms (G1), (G2) and (G3) in the definition
of groupoid is equivalent to that of axioms (G1) and (G2') and (G3") which fol-
low:

(G2 For any x( € IT), there exist units e, ( € IT) and .e( € IT) such that xe,
=x and ex=x.

(G8) For any x( € I), there exists an inverse element x~*( € IT) such that
1" lx=e,.

Proor of (G1), (G2), (G3)=(G1), (G2, (G8"). Suppose that e is a right
unit and that ey is defined. Then z=ey=e,=(z"'e)y=e,=z"'y=z=(2z")y=z=
y=>z=y. Therefore e is also a left unit, so that it is a unit. Similarly if e is
a left unit, then it is also a right unit, so that it is a unit.

Proor of (G1), (G2), (G8)=(G1), (G2), (G3). We must only prove xx™'=
2. For this, at first we prove the uniqueness of ¢, and .e by (G1), (G2") and
(G3").

Suppose xe, =xé,=x, then x~ can be multiplied from the left, and (x~'x)e,
=(x"'x)e, by (G1). Hence e,e,=e.é,, 50 we have e¢,=é,. Next suppose ,ex=,éx
=, then x~! can be multiplied from the left, and (x™',e)x = (x"',é)x by (G1).
Hence »~'.e and x~',¢ are defined and both are equal to x~!, so we have ,e=.¢
=e,-1 by the uniqueness of e,-1.

Now, we have x"*x=-¢, by (G8’), so that (xx Dx=x by (G1) and (G2'). Hence
we have xx~!= e by the uniqueness of .e.

Groupoid has the following properties (1)—(7)):

(1) For any x( € IT), e, and ,e are uniquely defined. Therefore, when B is
the subset of IT consisting of units of elements of I7, x—e, and x— e, two
mappings from IT onto B, are defined. We denote these mappings by « and b
respectively. That is, a(x)=e, and b(x)=,e.

(2) e€B=ale)=ble)=e. Hence B=a(Il)=b(II). a(xy)=a(y),b(xy)=">b(x)
and a(x ) =b(x).

(3) =y is defined & a(x) =b(y).
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(4) =xy and yz are defined= (xy)z and x(yz) are defined.

(6) yx=2zx (or xy=xz)=>y=z. By this, for any x( € IT) x* is uniquely de-
fined.

(6) (v '=xand (xy) =y &L

DeriniTion.  If for e, ¢'( € B) there exists x( € IT) such that ¢ =xex™!, then
we say e and ¢ are mutually transitive in II. And if any two elements of B
are mutually transitive in 17, then IT is called a transitive groupoid.

(1) Let ;= {x€II: b(x)=e, a(x)=Ff; e, f € B}, then II,, is a group with e
as the unit. When I7 is transitive, there exist y, z( € I) such that ¢ = yey™*
and f'=zfz"', and we have a one-to-one correspondence x € II,;—>yxz"" € I,...
In particuler, x € II,,—>yxy™' € II;; is an isomorphism, and such an isomorphism
is determined modulo inner aﬁtomorphism’s of I7,,.

§2. Subgroupoid of 17°%.

Derintmion.  When a subset I’ of IT is itself a groupoid under the com-
position law induced from that of 17, it is called a subgroupoid of . When a
subset I’ of IT contains all elements of I7 having the same unit as x if II’
contains x( € IT), it is a subgroupoid of I and is called a complete subgroupoid
of IT.

Any groupoid I7 is the union of disjoint complete transitive subgroupoids.
This fact can be shown as follows: When e, ¢ ( € B) are mutually transitive
in IT, we say that these are equivalent. This relation is an equivalence rela-
tion, and so B can be classified by this relation. Let B= \)\JBA, where B, are

classes under this relation. Then IT, =a"'(B,) is a complete transitive sub-
groupoid of I7, and IT = U II,.
A

§3. Homomorphism.'? Normal subgroupoid and quotient grou-
poid.

DEeriNiTION. Suppose that I7 and I’ are two groupoids, and that B=a(Il)
and B =d'(Il"), where o’ is the right unit mapping in II'. Let ¥ be a mapping
from IT into IT’, and if x, y( € IT) are composable, then let ®(x), #(y) (€ II') be
composable and let (xy)=P(x)?(y). Then @ is called a homomorphism from
IT into IT’. If ® is one-to-one, then it is called an isomorphism.

It is clear that ?(a(x))=d'(P(x)), P(b(x))=b'(P(x)), where ¥’ is the left unit
mapping in I, and it is also clear that @(x™1)=9(x)".

Let 1T, be a subgroupoid of 7. If for x, x( € IT) there exists xo( € II,) such
that x=ux.x, then we say % is equivalent to x with respect to I7,. In order that
this relation be an equivalence relation, it is necessary and sufficient that B C
II,. In this case we denote by II/II, the quotient set of I7 relative to this
equivalence relation and by [x] the equivalence class containing x.

Let us consider the conditions on 17, in order that 17/1I, be a groupoid
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under a natural composition law. The composition law we wish to define as
follows: [x] [y] is defined if and only if these cotain the composable elements
% and ¥ respectively, and [x][y]=[xy]. Then let us consider the condition
on I, in order that this definition be adequate. Now if z( € [«]) and 7( € [y])
are other composable elements, then %7 must be equivalent to zy. For this, it
is necessary and sufficient that zIT,z"* C IT, for any z( € IT). That is, if zxez~* is
defined for xo( € IT,) and z( € IT), then zxoz"" € IT,. In this case we have [«][y]
=[xy]=[%7]. Next, let us consider the conditions on II, in order that 17/1I,
satisfy the axioms of groupoid (G1), (G2) and (G3) under the above composi-
tion law.

(G1) in /M, follows from (G1) in I7.

Next we consider (G2). By the definition we have [x][a(x)]=[x], hence
it is necessary that [y][a(x)]=[y] for any [y]( € II/II,) such that [y][a(x)]
is defined. Since xoa(x)=x0 € [a(x)](x0 € IT,), for any [y] such that a(y)==b(x),
[y]1la(x)] is defined and equal to [yx,]( € II/II,). Since it must be [yx,]=[y],
it is necessary that there exists zo( € IT,) such that yxo=z,y. Hence we have
b(x0)=a(xo)=a(y). Therefore it is necessary that b(x,)=a(xo) for any xo( € IT,).
This condition is clearly sufficient in order that there exist a right unit for
any element of 17/11,. Similarly this condition is necessary and sufficient in
order that there exist a left unit for any element of 17/1T,.

(G3) is satisfied in IT/IT,, and [x] '=[x"1].

Now, when 17, satisfied the condition that b(x,) = a(x) for any x,( € ITy),
the composition law of II/1I, becomes the following: If [x][y] is defined, then
any elements of [x] and [y] are composable, and [x][y]=[xy].

When I7, satisfies the conditions B CIT,, zIToz"* CIT, for any z( € IT) and
b(xo) =a(x,) for any x.( € IT,), we have IT,= \é}Ne(N,2 C11.,), where N, has the fol-

lowing properties:

(1) N, is a normal subgroup of I7...

(2) When e, ¢( € B) are mutually transitive in I, N,. is isomorphic to N..
In fact, in this case ¢’ =zez"! (z € IT), and x, € N,—>zx0z"' € N, is an isomorphism
mentioned above. And such an isomorphism is defined uniquely modulo in-
ner automorphisms of I7,...

So, we have the following proposition:

Prorosriton 2. In order that II/IT, be a groupoid, it is necessary and suf-

ficient that there holds ITy=\U(\J N,), where N, is a normal subgroup of II,, and
A e€Bx

for all e( € B)) N, are isomorphic to one another. In this case P: x € II—>[x] €
II/II, ts a homomorphism from II onto IT/II,, and if P(x)P(y) is defined, then
xy 18 also defined. And when B’ is the subset consisting of units of II/II,, the
restriction of ® to B, #/B: B—B’ is one-to-one.
DerFiNrrion. Iy = \J(\UN,) in the above Proposition is called a normal
A e€BA

subgroupoid of IT.



Groupoid and Cohomology with Values in a Sheaf of Groupoids 65

In connection with this we have the following proposition as in a group.

Proposition 3. Suppose that ¢ is a homomorphism from IT onto IT', and
that ®/B is one-to-one mapping from B onto B'. Let IIy,=P ' (B'), then II, is a
normal subgroupoid of II, and II/II, ts tsomorphic to II'.

§4. Representation of groupoid.f*] Suppose that I7 is a transitive
groupoid and that B=a(II). Let II,;= {x € IT: b(x)=e¢, a(x) =f; ¢, f € B}, then
II,, is a group with e as the unit, and all 17,, are isomorphic to one another.
We put G,=1I,,. And let us consider a product set BxG,x B=1II'. This be-
comes a transitive groupoid under the following composition law and is iso-
morphic to II.

We define that (p, g, ¢), r, g’, s) (€ I") are composable if and only if g=r,
and that (p, g, ¢) (¢, g, )=(p, gg’, s). Let o (resp. b') be the right (resp. left)
unit mapping in II’, then o'(p, g, 9)=(g, & ¢), b'(p, g, 9)=(p, e, p) and (p, g, 9"
=(g, g%, p). ldentifying (p, e, p) with p( € B), a’(II") can be identified with B.
IT' is evidently transitive. Hence II’ is a transitive groupoid with B as the
set of units. ‘

For any f( € B), suppose that x.,( € IT,s) is fixed such that x,.=e and that
xre=x,}. Then g(=wx%x,) is an element of G, for any x( € IT,, CIT), and so 4:

% € Ty, CIT—>(p, g, q¢) € IT" is an isomorphism from I onto II'. Hence II' is a
representation of I7.

In general, when I7 =\{H » Where IT, is transitive, IT can be represented

by \)\JB)\X G.x By where e is a fixed element of B,. When II,(=VU(UN,)) is a
A e€BA

normal subgroupoid of 17, since the set consisting of units of 17/11, is one-to-
one onto B, IT/II, is represented by \UB, x G,/N, X B,.
A

§5. Cohomology with values in a sheaf of groupoids on a topologi-
cal space.l')[?]

DermviTion. Let P, Q and R be sets of elements, and let R have a subset
D whose elements are called neuter. Let us consider a sequence:

(5.1 P-%>Q-—*>R,

where uz and v are mappings. When v~ '(D) =u(P), we say that the sequence
(5.1) is exact as usual. Further suppose that Q has neuter elements which
form a subset C of Q, and that v(C)CD and that a mapping p: Q—C is defined
such that the restriction of p to C is identity. And suppose that P is a grou-
poid of operators on Q, and that B=a(P) where a is the right unit mapping in
P, and that «(B) CC and pu=ua. The fact that P is a groupoid of operators on
Q means the following: x( € P) can operate on y( € Q) if and only if u(a(x)) =
p(y), and x-y € Q, satisfying the following properties:
() p(x-y)=u(b(x)), where b is the left unit mapping in P.
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(B) When x;, x; € P, y € Q, and xx, is defined, and x;x, cah operate on v,
there holds (x1x2)-y =1+ (x2-).

(7) When e( € B) can operate on y( € Q), e-y=4y.

When the sequence (5.1) satisfies the following conditions, we say that it
is strongly exact.

(i) For any x( € P), u(x)=x-c or u(x)=x""-c where c=u(a(x)) (€ C) or c=
u(b(x)) (€ C) respectively.

(i) For ys, 2 € Q),
v(y1) = v(yz) ©there exists x( € P) such that y,=x-y;.

(iii) v/C: C—D 1is onto.

Lemma 1. If the sequence (5.1) is strongly exact, then it is exact.

Proor. For any x( € P), u(x)=x-c or u(x) =x"'-c by (i). Hence v(u(x)) =
v(x-c) or v(x~t-c)=v(c) € D by (ii).

Conversely suppose y € v™(D) and »(y)=d( € D). By (iii) there exists ¢( € C)
such that v(c) =d. Therefore, there exists x( € P) such that y = x-c =u(x) or
u(x~) by (ii) and (i).

Lemma 2. If P, Q and R are all groupoids, C=ad'(Q), p=d’, D=ad"'(R) (where
a’ and o'’ are the right unit mappings in Q and R resp.), u and v are homomor-
phisms of groupoids, and if v/C: C—D 1is one-to-one, then P can be a groupoid
of operators on Q and we have the following: If the sequence (5.1) is exact, then
it 18 strongly exact under the above operation.

Proor. P can be a groupoid of operators on Q as follows: We say that
x( € P) can operate on y( € Q) if and only if yu(x~') is defined, and in this case
we shall define x-y=yu(x"?). Now yu(x~') is defined if and only if o'(y) =¥ (u
(@) =1 ")=u(a(x)), where ¥’ is the left unit mapping in Q. In this case
d'(xy)=d (yulx™))=d (=) =u(a(x"")) =u(b(x)), hence this operation satisfies
(a), and clearly it satisfies (8) and (7).

Now suppose the sequence (5.1) is exact, then we can prove its strong ex-
actness as follows:

Proof of (i). Let x be any element of P and let c=u(b(x)). Then x ':c=
cu(®)=u(b(x)u(x)=b(ux))uv(x)=u(x).

Proof of (ii). Let y1, y» € Q and v(y;)=v(y2). Then v(y;!) =v(y.)"', hence
a’(w(yi)=a" ((y2)")=b"(v(y2)), hence v(a'(y71)=v(¥'(y2)). Therefore, since
v/C: C—D is one-to-one, a'(y;1)=0b"(y.). Hence yily, is defined, and v(y;ly:) =
v(¥7Dv(y2) =da" (v(y2)) € D. Hence from the exactness of the sequence (5.1)
there exists x~' € P such that y7ly, =u(x"!). Hence y; = yu(s™") = x-y,. Con-
versely let y, = x-y1, then v(y,) =v(yu™) =v(y)v (@) =v(y:) from the
exactness of the sequence (5.1).

(iii) is contained in our given assumption.

Suppose that X is a topological space, 3 is a sheaf of groupoids on X, p
is the projection mapping from P onto X, B is the subsheaf consisting of
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units of B, N is a subsheaf of normal subgroupoids of B, and that n(=p/N) is
the restriction of p to M. The fact that N is a subsheaf of normal subgrou-
poids of P, means that N, (=n""(x)) is a normal subgroupoid (we have defined
in §3) of P, (=p'(x)) for any x( € X). Let H=PL/N, then this is a sheaf of
groupoids on X. And B->N—P->H—>B is exact. Hereafter, we shall denote
the unit mappings in %N, L and O by the same notations « and b, and use the
following notations as usual.

C°(1, P): set of 0-cochains in P over an open covering U(=(U));es) of X.

ZYU, PB): set of 1-cocycles in P over U, ete.

We have an analogous proposition as in a sheaf of groups.

Proposrtion 4. (5.2) H°(X, B)-i> H'(X, 9)->H(X, P)-L>H (X, 9)-12»
HY(X, %-i>HY(X, P)-LH>HY(X, D) is exact, and is strongly exact till H'(X, P).

Proor. We define that the product p:p, of pi, p.(€ H(X, P)) is defined if
and only if p;(x)p,(x) is defined for any x( € X). Then H°(X, ) is a groupoid.
Similarly H°(X, 8), H*(X, ) and H°(X, D) are also groupoids, and i{, i, and j,
are homomorphisms of groupoids. Let the neuter elements of H'(X, B), H'(X,
N), H(X, P) and H'(X, D) be unit sections of B, N, P and H respectively, then
these satisfy the condition in Lemma 2, v/C: C— D is one-to-one. Evidently
the sequence (5.2) is exact till H°(X, ), hence by Lemma 2 this is strongly
exact till H°(X, D).

Definition of 8,. Let % be any element of H°(X, 9) and let U (= (U;):e;) be
a sufficiently fine open covering of X. There exists p;( € H°(U;, L)) such that
jo(p)=h/U; for any i(€I). Then, there exists n;;( € H°(U;, N)) such that p;=
ni;p; on U;(=U;N\U;). Since n;;=pip;!, we have (n;;) € Z'(U, N). We define 8,(h)
is the element of H'(X, M) which is represented by (»;;,). Evidently this does
not depend on the choice of (p;).

Proof of the strong exactness at H°(X, ). Since H°(X, B) and H°(X, D)
are groupoids, H°(X, B) can be a groupoid of operators on H°(X, ) as stated
generally in the proof of Lemma 2. That is, p(€ H°(X, P)) can operate on
k(€ H°(X, 9)) if and only if 4j,(p~') is defined, and we have defined that p-i=
hjo(p™).

Proof of (i). Let p be any of H°(X, ), then p~'-jo(b(p)) = jo (b(p))jo(p) =
b(jo(p))jo(p) = jo(p)-

Proof of (ii). Let &, hy € H°(X, ), and we assume h, =p-h; where p €
HO (X, S;B) Let jO(pli) = hl/Ui, then jo(pl,'p_l) = hz/Ui, therefore 80 (/Zl) = 80 (hz)
Conversely we assume 8¢(h;)=8,(%2), and let jo(p1:)="h1/U; and let jo(p2i)=hs/U;,
then pi;pi} =nipuip;}n;t on U;; where (n;) € C°(1, 9). Therefore p;ln;'pii=
pzin;ipi; on U;j, hence (p;in;ip;) defines an element of H°(X, ), we shall put
this as p. Then we have np,;=pup~' on U;. Hence jo(np2:)=jo(p1:)jo(p~") on U,
that is h,/U;=p-h1/U; for any U, so that we have h,=p-h;.

Proof of (iii). Let a neuter element e of H'(X, ) be represented by (»;;)
(e Z'(1, M)), where n;; is a unit section over U;;. Then ni;=n,;;=n;; on U;;.
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Therefore (n;;) defines a neuter element n of H°(X, ), and & (jo(r))=e. Thus
8, maps the set of neuter elements of H°(X, ) onto the set of those of H'(X,
).

Proof of the strong exactness at H*(X, N). H°(X, ) can be a groupoid
of operators on H'(X, %) as follows: Suppose that 2 e H(X, ), n € H' (X, N)
and that n is represented by (n;;) (€ Z'(11, N)). In this case a(n) is the neuter
element of H'(X, M) which is represented by (n};)=(n:;)=(n;;) (€ Z'(0, W)). If
and only if §o(a(h))=a(n), » can operate on n, and we define 4-n as follows. We
replace 11 by a finer open covering when necessary, and we denote it by the
same notation 1. Let jo(p;)=h/U;, where p; € H'(U;, B), then jo(a(p;)=a(jo(p:)
=a(h)/U;. Therefore 8 (a(h)) is the element of H'(X, N), which is represented
by (a(p)a(p)™) (€ 2, N)). Therefore » can operate on » if and only if
a(p)a(p;) ' =nm;n;* on U;;, where (n;) € C°(1, N). In this case a(p;) =b(n) =
a(n;)="b(n} ;)=n;;=b(n;,), hence pn;;p;' can be defined, and (pin;;p;=pniip;*)
(pip7 V) € 20, W), thus we define that i-n is the element of H'(X, N) which is
represented by (pini;p;!) (€ Z'(1, N)). It does not depend on the choice of (p;)
and representatives of n. And this operation satisfies the conditions of opera-
tion (), (B) and (7).

Proof of (i). Let he H*(X, ) and let jo(p;))=h/U;. Then & (%) is the ele-
ment of H'(X, N) which is represented by (pip;) (€ 2'(1, N)), and this is
equal to A-(a(h)) by the definition.

Proof of (ii). We assume ny=h-n; for ny, no( € H(X, N)) and A( € H'(X, D)),
and suppose that (n1;;), (n2:;) (€ Z' (1, N)) are representatives of ni, n, respec-
tively and that jo(p;)=h/U;. Then ny;;=n;pmi;;p;'n;' on U;; where (n;) € C°(11, N),
so that we have i,(n))=1i,(n;). Conversely, we assume that i;()=1i;(n).
Then, ngijzp;nl,-jp]‘-l on Uij where (p1) eC’ (11, SB), hence n2iip; = (pinlijp,fl)p,- on
U;, so we have jo(p;)=jo(p:) on U;;. Therefore, (jo(p;)) defines an element % of
H° (X, @), and ny=h-n;.

In this case, it is clear that (iii) is satisfied.

Finally the exactness at H'(X, ) is clear.

§6. Groupoid extension. Suppose that %3 is a sheaf of transitive grou-
poids on X, and that f=(f;;) € Z'(11, P). Let & be a subsheaf of P/U; which
consists of elements g; such that a(g,)=b(g:) € fii(Uy), and let I'= \eJ,@{ When

(i, g) € ®% and (j, g;) € ®7, it is said that these are equivalent if and only if
gi=fiigifs on U;;. The quotient sheaf of /" relative to the above equivalence
relation is a sheaf of groups on X, and denoted by &’. Then as shown by A.
Haefliger(?J there exists a one-to-one correspondence H'(X, P)—H'(X, &).

In this section we consider the inverse of the above relation. That is to
say, when at first a sheaf of groups & on X is given, we want to induce a
sheaf of transitive groupoids P on X and f( € Z(1, P)) such that we have the
above one-to-one correspondence H' (X, P)— H' (X, &) where we can identify
HY(X, ) with H(X, ®).
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When G is any group and B is any set, IT=Bx G X B becomes a transitive
groupoid as in §4, and B can be identified with the set of units of 7. We
shall call this IT groupoid extension of G by B.

Suppose @ is a given sheaf of groups on X, B is any topological space
with discrete topology, and also suppose B=X x B. Then B is a trivial sheaf
on X.

Let a: ®—>X and B: B—X be projection mappings, and let L=(B, G, B)
be the set of triples z=(p, g, q), where p, g € B and g € ® such that B(p)=a(g)
=03(¢), and let p: P—X such that p(z)=L(p), be the projection mapping from
% onto X. And let W, V', and W, be the open sets containing p, g and ¢ in 5,
® and B respectively which are homeomorphic to an open set U of X(p(z) € 0).
We shall define the topology in P such that {(W,, V,, W,)} is the fundamental
system of the open sets. Then P is a sheaf on X. In each P.(=p'(»)) (x € X),
we introduce a composition law as mentioned in §4. In this way 93 becomes a
sheaf of transitive groupoids on X. And % can be regarded as the subsheaf
of units of .

Let #( € H(X, ) be represented by (2;,)=((pij, gis» g:/) (€ Z*(1, P)). Since
hii=b(h;;) and hj;=a(h;;) on Uy;, there hold (pi, gii, ¢:) =b(pijs &ij» 4i1)=(Pij» € pi)
and (pjj, gii» ¢i)=0a(pij» gis» 4i)=(qij, &, ¢i;) on Uj;, where e is the unit section
of & over U,'j. Hence Pii=Pii=qii and qi;i=pji=¢qjj on U,'j. We put Pii=qii=Pi,
then 7;; becomes the form (p;, gij, p;)- So, from the relation £;h;,=hi on Uije
(=UinNU;N\Uy), we have g;;g;»=gi on U;;;. Hence (g:;) € Z'(1, &), by this the
element of H'(X, &) is determined and it does not depend on representatives
of z. Conversely, when I( € H'(X, ®)) is represented by (g:;) (2' (11, ®)), let (p:)
be any element of C°(ll, B), then ()= ((p;, gij» p;) € Z'(U, P). By this the
element of H'(X, %) is determined and it does not depend on the choice of (p;)
and representatives of . So we have a one-to-one correspondence H'(X, {5)—
HY(X, &). This is no other than the following correspondence.

Let ¢ be the neuter element of H'(X, ®) represented by (e;;) (€ Z*(l1, ®)),
where e;; is the unit section of & over U;;, and let (p;) be any of C°(ll, B). Then
F=fiD=(pi, €i;» p») € Z'(1, P). Let &’ be the sheaf of groups on X associated
to f such that we have stated at first in this section, then ¢’ is isomorphic to
®. It results from the following: Since f;;=(p;, i, pi), &f consists of elements
such as (i, (ps, gi, p1)) Where g; € . And the equivalence relation is as follows:
Gy (pis gi» pi) is equivalent to (j, (p;, gj» p)), if and only if (pi, g1, p)=(p;, eij, pi)
(pi» 8i» P Ps» €is p)=(pi, gj, pi) on Uy, that is g;=g; on U;;. Therefore [(i, (pi,
gis p1))] € ® (the equivalence class containing (i, (pi, gi, p1)) > g: € © is an iso-
morphism.

Therefore H'(X, &) is one-to-one onto H'(X, ®). Now, the one-to-one
correspondence ®: H'(X, P)—H' (X, &) stated at first in this section is as fol-
lows: Let (h:))=((pi, gij» p)) (€ Z'(11, P)) be a representative of any s( € H'(X,
%)). Then #(s) is the element of H (X, &) which is represented by ([, &;;f;)])
(€ Z' (1, &), where h;;f;i=(pi, gis» P2) (Ps» €sis p)=(pis gis> Pi-
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Therefore H' (X, P)—>H' (X, ®) stated before is no other than the product
HY(X, P)—H (X, &H)—>H' (X, ). Thus we have the following:

Prorosition 5. Suppose & is a sheaf of groups on X. Then there exists a
sheaf of tramsitive groupoids L on X such that we have a one-to-one correspon-
dence H' (X, B)—>H' (X, ®). Let f= (pi, eij, pi) € Z* (0, P) where e;; is the unit
section of & over U;j, then & is isomorphic to & and H'(X, ®)— H (X, &) is
one-to-one. And the product H* (X, B)— H* (X, 8)—>H" (X, &) is no other than
the one-to-one correspondence H'(X, P)—H'(X, &).stated at first in this section.

§7. Suppose P is a sheaf of transitive groupoids on X, p is its projection
mapping, B is the subsheaf of 1 that consists of units of 2 and that B has a
section e over X. And let us consider the sheaf of groups & on X which is
the subsheaf of P consisting of g( € B,=p(x)) for any x( € X) such that a(g)
=b(g)=e(x).

Next let P'(=(B, &, B)) be the set of triples (p, g, q), where p, g € B, =
P x)NB and g € §,=p~'(x)NE. Then P is a sheaf of transitive groupoids
on X as in the last section.

Let us consider the one-to-one correspondences: H'(X, P)-Z>H'(X, P )Z>
H'Y(X, ®). Let s be any element of H'(X, P), and let f=(f;,) (€ Z*(l1, P)) be its
representative. We replace 1l by a finer open covering of X when necessary,
but here we denote it by the same notation U. Since %} is transitive, for any
i € I there exists a section zy,, of P over U; such that b(zer,,(U;)) = e(U;) and
a(zef“(U;))='f,~;(U,-). We denote z;}ﬁ by Zfiies then f:J = (f,',', Zefiiﬁjzfjje’ fjj) is a
section of P’ over U;;, and f;;f;,=f:; on U;. Hence (f};) represents an ele-
ment s'( € H'(X, P')). Since s’ does not depend on representatives of s and the
choice of zy,;, we define that P(s)=s".

Put gij=z.,fijzs;;, then g;; is a section of & over U;;, and gi;gs=gix on
Uijr. Hence (g;;) € Z'(11, ®). The element of H'(X, &) represented by (g:,) is
denoted by z. Since ¢ does not depend on representatives of s’, we define that
P'(s")=t. It is clear that ® and ¢’ are both one-to-one. The neuter element of
H'(X, P) is mapped by ® on the neuter element of H'(X, ') and it is mapped
by #’ on the neuter element of H*(X, ®).

Thus we have the following:

Prorosition 6. Suppose that P is a sheaf of transitive groupoids on a to-
pological space X, B is the subsheaf of P consisting of units of P and that B
has a section e over X. And suppose & 1is the sheaf of groups on X, which con-
sists of g( € P) such that a(g)=b(g)=e, and let P'=(B, &, B).

Then there exist one-to-one correspondences: H' (X, P)-2»>H' (X, P)-ZH5>H?
(X, ®), in which the neuter element of H*(X, B) corresponds to the neuter elements
of H'(X, ) and H'(X, ®).

We consider a geometrical meaning of this Proposition. Let (E, p) be a
fibre space on B, where p is its projection mapping. And suppose 9 is a sheaf
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of transitive groupoids on X which operates on (E, p). That is, z( € ) can
operate on y( € (E, p)) if and only if a(z)=p(y), and zy € (E, p), satisfying the
following:

(@) py)=>b(2).

(B) When zy, 2, €%, y € (E, p), z1z; is defined and zz, can operate on y,
then (z122)-y=2z1(z2"%).

(v) When e( € B) can operate on y( € (E, p)), e-y=1y.

Suppose s € H'(X, P) and that f=(f;,) (€ Z'(1l, P)) is its representative.
Let Ef=p~'(f::(U;)) and let an element of Ef be denoted by (i, y;). In >1=\UE/,

i€]

when x € Uy, G, yi) € Ef, (j, y)) € Ef, p(y)=fi;(x) and p(y,)=f;;(x), we shall say
that (i, y;) is equivalent to (j, y,) if y;=fi(x)-y;. E’ is the quotient space of >}
relative to the above equivalence relation. The element of E' represented by
@G, 1), is denoted by [G, y:)]. Let p’: E'—>X such that p’ ([G, y:)])=p(p(y:)) be
the projection mapping from E' onto X. Then (E’, p’) is a fibre space on X,
which is locally homeomorphic to (E, p). When f'=(f;,) (€ Z'(11,p)) is another
representative of s, (B, p’") is isomorphic to (E’, p’). Thus, as shown in [2],
we have a one-to-one corespondence between the elements of H'(X, ) and
the classes of fibre spaces (E/, p*) which are isomorphic to one another.
Suppose that t=92'?(s) (€ H'(X, ®)), g=(g:;) (€ Z'(1, ®)) is its representa-
tive, and that E,=p~'(e(X)) (CE). Then E, is a fibre space on ¢(X) and we
define p,=pp. Thus (E, p.) is a fibre space on X with projection mapping p..
Further & becomes a sheaf of groups of operators on (E,, p,) as follows: #( € &)
can operate on y.( € E,) if and only if p(Z)=p.(y.). In fact, in this case if we
put p(A)=p.(y.)=x( € X), then a(h)=e(x)=p(y.), hence i can operate on y, by
means of operation of 3 on (E, p). And since p(h.y.) = b(h) = e(x), by € E, and
pe(hry.)=x. Thus, as shown in [1] we can define (E%, p#) which is fibre space
on X. That is, let E¢,=E,/U; and >, =‘g E2;, then E¢ is the quotient space of

> relative to the equivalence relation such that y.;( € E%,) is equivalent to
vei( € E;) if yoi=gi;y.;, And as shown in [1], we have a one-to-one correspon-
dence between the elements of H' (X, ®) and the classes of fibre spaces (E?, p¢)
which are isomorphic to one another.

In connection with this we have the following:

Prorosirion 7. (E/, p’) is isomorphic to (E%, pf).

Proor. We shall denote by [y.;] the element of E¢ which is represented
by y.i. Let [(i, y:)] be any element of E’, and if (j, y,) is another representa-
tive of [(7, )], then y; = fi;y;. Then, yu =z, y: € Ef;, yoj=1z.5,;-y; € Ef; and
Vei=Zes;;Yi=Zes ;" (fisy )= (es i fiizsj0) (e ;¥ ) =gis*yej- Thus, clearly h: [, yi)]

€ E' > [y.;] € E¢ is a homeomorphic mapping and pfi=p’, hence % is an iso-
morphism from E onto E%.
Thus we have the following commutative diagram:
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H(X,® —2— H'(X,6)

I+ Lo

(classes of EY) —> (classes of E¥).

This is a geometrical meaning of @',
In conclusion, I wish to express my thanks to Prof. K. Morinaga for his
encouragement and kind guidance.
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