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Introduction

In our previous paper [ 4] collaborated with Y. Hirata, we have introduc-
ed the notion of ¢-convolution of vector valued distributions, which is a natu-
ral extension of the notion of the usual convolution of scalar valued distribu-
tions. On the other hand, in the Schwartz theory of convolution [117][127],
the problem concerning convolution has been worked out from a different
standpoint. For instance, let &, X and £ be three normal spaces of distribu-
tions on RY, N-dimensional Euclidean space. Let \U: & x KX—.L be a bilinear
map which is hypocontinuous with respect to the bounded subsets of &-and
XK. Let E, F, G be three Banach spaces and 6: Ex F—G be a continuous bili-
near map. He asked the question whether it would be possible to define a
unique bilinear map U,y H(E) x K (F)— L(G) in such a way that the map
satisfies the following conditions:

(a) U, is hypocontinuous with respect to the bounded subsets of 5 (E)
and K (F).

(b) For decomposed elements, that is, for elements of the type S&e and
TRf of X (E) and K (F) we have

SR Ve(TRf)=EVT)X0(, f)-

Under certain plausible conditions imposed on &, X and ./, the problem
has been settled definitely. Consider the convolution map *: X x K—.£ which
is, by definition [12]], a separately continuous map coinciding on D x D with
the usual convolution. Suppose that = is hypocontinuous with respect to the
bounded subsets of &£ and K. Now if we take the map * for the map v
above, then the problem just described turns out to be the one concerning
the convolution. Although his:theory sheds a new light on the basic opera-
tions of vector valued distributions, there remains something to be desired
as to the convolution maps:

(1) Since the map * need not agree with the usual convolution (the ex-
ample is given in [147]), Sx7 may have only relative meanings and a fortiort
the same for Sx,T.

(2) Even if the * agrees with the usual convolution, S*,T’, considered as
convolution of two vector valued distributions, has no intrinsic meanings,
but may depend on #(E) and K (F) in which S and T are contained respec-
tively.
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Centering around these two points, especially (2), the present paper is
devoted to the investigation of the convolution map x,.

Most normal spaces of distributions & referred to as examples in Sch-
wartz [117] [12] satisfy the further conditions: & is closed under the forma-
tion of multiplication by any 8 € £ and the linear endomorphism S—8S of &
is uniformly continuous with respect to 8 in any bounded subset of & &
equipped with this property is referred to as a &B-normal space in this paper.

In Section 1, where we are concerned with some preliminary discussions
on locally convex spaces and convolutions, we show that any continuous linear
map of a A-normal space of distributions inte @’ is of the form S— S*T (in
the usual sense) when the map agrees on & with the usual convolution. Such
a convolution map is called strict in order to be distinguished from the one
in the sense of Schwartz [127]. Section 2 deals with 6-convolution of two
vector valued distributions which will be defined after the model of ¢-con-
volution of our previous paper [4]. Several equivalent conditions on *,-com-
posability are also discussed here. 6¢-convolution of S € D(E) and T € D' (F)
will be denoted by ST, where E, F, G are locally convex spaces and G is as-
sumed quasi-complete and 6: Ex F—G is a separately continuous bilinear map.
Evidently the meanings of ST just defined is entirely different.from the
one considered before as a solution of a general problem. In Section 3 a brief
discussion is devoted to the subject on 6-<-convolution of two vector valued
tempered distributions after the model of the theory of &’-convolution [137]
and the treatments in the preceding section.

In Section 4 we shall consider a convolution map of a space of vector
valued distributions into another one. We show that if » is a continuous
linear map of H(E) into D'(G) and agrees on DRE with the 6-convolution by
a T € D'(F), then u(S)=SxT whenever & is A-normal and 6 is hypocontinu-
ous with respect to the compact disks of E. As an application of the result
just obtained we can show that if & is &-normal and v is a continuous linear
map of H(E) into @'(G) commuting with any translation on DRE, then u(S)
= ST, for a T € D' (&(E; G)), where £,(E; G) is assumed sequentially com-
plete and 6 the usual bilinear map of E x &,(E; G) into G. A special case
thereof has been shown by Lions [5] in connection with the theory of semi-
group distribution which is characterized as a Green operator of a partial
differential equation.

The sections 5 and 6 deal with 6-convolution map between spaces of vec-
tor valued distributions. Here the two basic cases (elementary and general)
concerning the #-convolution maps as developed in Schwartz [12] are con-
sidered again from our standpoint described above. In this paper if any of
the maps *: £ x KX—L and 6: Ex F—G is continuous, the case is referred to
as “elementary” in a sense somewhat different from Schwartz’s [127], where
“elementary convolution” is only confined to the case where 6 is continuous.
Section 5 deals with the elementary cases. For instance, if &, X, £ are nor-
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mal spaces of distributions, where the convolution map of & x X into £ is
defined and is hypocontinuous with respect to the bounded subsets of & and
X, and if E, F, G are locally convex spaces, where a continuous bilinear map
6 of Ex F into G is defined, then any S € Z(E) and T € K(F) are s,-composable
and the map (S, T)—>Sx,T € A(G) is hypocontinuous with respect to the bound-
ed subsets of X (E) and KX (F), whenever &, X are quasi-complete, £/ and G
are complete, and & is A-normal and &, &, are nuclear. When 6 is only
assumed to be separately continuous, a more complicated formulation of the
behaviors of 6-convolution maps is needed as in Schwartz [ 12] (see Prop. 38,
p. 159). Section 6 is devoted to this treatment which brings us a similar con-
clution as Schwartz’s result just cited. It is to be noticed that although in
our treatment we have assumed &-normal spaces of distributions according
to the need, it is often possible to deduce more general conclusions than
Schwartz [12]]. :

The final section is devoted to some examples of 6-convolution maps. For
instance, if 0 is separately continuous the strict 6-convolution map of Oy(E) x
OL(F) into O4(G) is well defined and the exchange formula also holds: F(Sx,T")
=[F(S)FHT) s, where F stands for Fourier transform. As an application we
can show that the multiplicative product of any two distributions of &(E)
and &(F) is well defined as an element of &(G). The section is closed with
an indication of several examples in which the convolution map *: & x X—/
is continuous.

§ 1. Preliminaries

Let E be a locally convex Hausdorff topological vector space. We will
often refer to such a space as LCS. A subset 4 of E is called quasi-closed if
any point of E adherent to a bounded subset of 4 belongs to 4. The strict
closure of A in E is the smallest quasi-closed subset containing A. A4 is strictly
dense if its strict closure is E ((12], p. 198). As usual we denote by E, and E’
respectively the dual E' equipped with the weak topology ¢(E£, E) and the
topology of uniform convergence on the compact disks of FE.

Prorosition 1. Let E, F and, G be three LCSs. Suppose E 1s barrelled. Let
u: E—>F and i: F—G be linear maps such that i is a continuous injection and iou
18 continuous. If 'i(G') is strictly dense in F,, then u is continuous.

Proor. We have only to show that <u(x), /> is a continuous form on
E for every f € F'. For, then » will be weakly continuous and hence become
continuous under the Mackey topologies of E and F ([1], p. 104). Since E is
barrelled, the topology of E coincides with the Mackey topology ([1], p. 70).
Therefore it follows that » is continuous.

Let A’ be the set of /' € F' such that x— <u(x), f'>> is a continuous form
on E. Owing to a Banach-Steinhaus theorem ([17, p. 27) it is easy to see that
A’ is quasi-closed in F’. On the other hand, A’ contains ‘(G’), the strict closure
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of which is F'. Therefore 4'=F'. Thus the proof is completed.

Let us denote by D the space of all C*-functions with compact supports
on RY, N-dimensional Euclidean space. It is provided with its usual topology
([8], Chap. I, p. 24). We denote by &' the strong dual of . @ is the space
of distributions on RY. A space of distributions & is, by definition, an LCS
contained in @’ as a linear subspace with a finer topology: that is to say, the
injection i: £X—D’ is continuous. X is called normal (117, p.7), if D is con-
tained in & with a finer topology and is dense in . We say that a space of
distributions & has. a c-property if any linear -map u: E—~X, E being bar-
relled, is continuous whenever iou is continuous ([ 137, p. 22). As an immediate
consequence of Proposition 1 we have

CoroLLARY. & has a c-property if D is strictly dense in H,.

X is called permaitted ((157], p. 18) provided it is a normal space of distri-
butions with the following properties: a;(Sx0,)—S and (a;S)*0,—S in & for
any S € X as k—>co, where {«;} is a sequence of multiplicators and {0,} is a
sequence of regularizations.

If & is a permitted space or has the approximation properties by regu-
larization and truncdtion ([117], p. 7), then it is easy to verify that O is strict-
ly dense in &/, whence & has a c-property (157, p. 18, [137], p. 21).

The e-product LeM of two LCSs L and M is, by definition ([117], p. 18), the
set of bilinear forms on L. x M/ hypocontinuous with respect to the equicon-
tinuous subsets of L' and M’. LeM is a linear space, on which we put the
topology of uniform convergence on the products of equicontinuous subsets
of L' and M. &.(L.; M) is the space of continuous linear maps of L, into M
with the topology of uniform convergence on the equicontinuous subsets of
L. To any ¢ of LeM, we can associate an element & of € (L.; M) and its trans-
posed map ‘£ € .(M.; L) by the formulas:

EW, m)y= <EW), m'>= <V, "Em)>.

The correspondences £&—Z—'E give rise to the algebraic and topological isomor-
phism between LeM, &.(L.; M) and L.(M,; L) ((117], p. 34). Hence we can
identify LeM with L.(L.; M) or with £.(M.; L). We shall write simply £ in-
stead of £ and ‘Z without explicit statement when no confusion arises. For
any space of distributions & we write & (F) instead of HeE, a space of E-
valued distributions. T € #(E) is a continuous linear map of & into E.

Proposition 2. Let E be a barrelled space. Let i: Li—M; and j: Ly—M, be
continuous imjections, where Ly, L., My and M, are LCSs. Let u: E—~LcL; be a
linear map such that ((Qj)ou is continuous. Then u is continuous when ‘i(M;7)
and 'j(M;) are strictly dense in (L)), and (L}), respectively.

Proor. Let 4’ be the set of elements (1{,1}) € L; x L, such that x—u(x)(1{, 13)
are continuous forms on E. The Banach-Steinhaus theorem shows that
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A’ is quasi-closed in (L{), < (Lj),. Since ‘i(M7) and ’j(M;) are strictly dense in
(L), and (L)), respectively, we see that 4A'=L;x L;. Any element of the dual
space (L.eL;) of LeL, is an element of an equicontinuous subset of (IeL.),
which is the weak convex closure of a subset B'&QC’, where B’ and C’ are equi-
continuous subsets of L; and L; respectively. Using again the Banach-Stein-
haus theorem, we see that u is weakly continuous. This proves that » is con-
tinuous. The proof is completed.
As an immediate consequence of Proposition 2 we have

CoroLLARY. Let X be a space of distributions such that D 1s strictly dense
in HX,. Let Eand F be two LCSs, where E is barrelled. Then a linear map u:
E—J (F) is continuous whenever (iQI)ou: E—D'(F) is continuous.

Let £ and F be two LLCSs. A linear continuous map u: E—F is called
nuclear ([37], Chap. I, p. 80) if it can be written as

u= %j/l., X/

with the e;’s contained in an equicontinuous subset of E and the f,’s contain-
ed in a compact disk of F and >}[2,] <co.

Let F be an LCS and U any disked neighbourhood of 0 in ¥. We can as-
sociate a seminorm p with U. This seminorm gives a certain equivalence
relation in F: x~4y if and only if p(x —y)=0. We put on F the coarsest
topology under which the seminorm p is continuous. Fy denotes the quotient
space under the equivalence relation defined with the help of the seminorm
p. Let Fy be the completion of Fy. Fy is a Banach space. A continuous
linear map u: E—F is called subnuclear if, for any U, the induced map E—Fy
derived from u is nuclear ([127, p. 54). E is called nuclear if the identical map
is subnuclear ([37], Chap. II, p. 34). This is equivalent to saying that F£ is
nuclear if and only if any continuous linear map of E into any Banach space
is nuclear.

Let & be a normal space of distributions. Let X be a space of distribu-
tions. A continuous linear map u: £ — K is called a convolution map of K
into X if there exists a distribution 7 such that u(¢) = ¢*T for any ¢ € D.
Here the convolution S*7 in the usual sense need not be defined for any S €
X (147, p. 18), and therefore we shall write S*;7 to denote u(S). We shall
say that a continuous linear map » is a strict convolution map of & into X,
if we can write u(S)=S*T for any Se€ X. We have discussed the various
equivalent definitions of the usual convolution in [137] (p. 24).

Let & be the space of C*-functions defined on R”, each of which is bound-
ed with its derivatives of every order. We denote by & the closure of @ in
£. £ is a normal space of distributions of type (F). The strong dual of £ is
the space @Dj: of summable distributions. It is bornologiqal and barrelled
((117, p. 126). A normal space of distributions & is called &-normal if & is
stable under multiplication by any element-of (/’?, and if the maps S—asS of &
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into itself are uniformly continuous when « runs through any bounded sub-
set of JQ, that is, if for any neighbourhood 9 of 0 in & and any bounded sub-
set B of &, there exisis a neighbourhood % of 0 in % such that BUC®. If a
normal space of distributions & is barrelled and possesses the c-property,
then & is B-normal when 2% C X.

Let &, 2 be spaces of distributions, & being normal. T € D’ is said to be
a multiplicator of & into £, if there exists a continuous linear map [ 7] of &
into £ which coincides with the multiplication by 7 on D& ([117, p. 69).
We write [ T]S=TS. '

If & is Z-normal and T is any element of &/, T is a multiplicator of &

into D7, and <, T>gc,g¢,=SSde. In fact, the linear map S— <asS, T> 4.4

is uniformly continuous with respect to « in any bounded subset of &. Hence
the linear map ¢—¢7T of D into Dj: is continuous when we put on D the
relative topology of &. This proves that 7' is a multiplicator of & into Dj:.

Since <@, T>4, %,=S¢de, the continuity of the multiplication implies that

<S8, T> g2 = SSde.

We shall denote by H* the set of distributions composable with any ele-
ment of &, that is, of distributions 7" such that SxT is defined for any S € &.
Then we have

Proposition 3. Let K be a B-normal space of distributions. Let u: HX—D’
be a continuous linear map commutative with any translation v, on D XK.
Then u 1s a strict convolution map.

Moreover if K is barrelled, then, for any T € X*, the linear map S—>S*T
of X into D’ 1s a strict convolution map.

Proor. The restriction of » to & is commutative with any translation
7. Then according to a theorem of Schwartz ([8], Chap. II, p. 18) there exists
a unique distribution 7 such that for every ¢ € @

u(g) = Txp.

Consider the transposed map 'z which maps @ into &#’. Then for any ¢, ¢ €
D we have
<'u(@), > = <¢, u($)>
= <@, Txp> = <Txp, $>,
where v denotes symmetrization. Hence Tx¢ € &’ for every ¢ € D. X being

&Z-normal, any element of &’ is a multiplicator of & into D;1. Therefore
S(T+¢) € Dy for every S € &K, so that S«T is defined and

ST, > = SS(T*g&)dx: <8, Trp>
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= <8, u(@)> = <u(S), o >.

Consequently we have u(S)=SxT.

Now let & be barrelled. If T € &*, then SxT exists and S(7*¢) € D1 for
every S € and ¢ € D. The bilinear map (S, ¢)—>S(T+¢) of X x D into Dj: is
separately continuous owing to Corollary to Proposition 1 since D}: is a per-
mitted space. O is also barrelled. Hence the bilinear map is hypocontinuous,

so is also the bilinear form (S, ¢)—>SS(T*¢))dx= <SxT, ¢>. This proves that

the linear map S—S*T of & into &’ is continuous. The proof is completed.
Let S be a distribution and T be a G-valued distribution, G being a quasi-
complete LCS. We say that S and T are composable if we have for any ¢ € D

(1) S(T+p) € D1 (6).

Then, owing to Corollary to Proposition 2, the linear map ¢——>S(f"*¢) of D
into @;(G) is continuous. The convolution SxT € @D'(G) is defined as follows:

< S+T, > = SS(’T’M)dx.

ProrosiTion 4. Let K be Z-normal and G a quasi-complete LCS. Let u be
a continuous linear map of K into D'(G) such that the restriction of uto D C
K is commutative with any translation. Then there exists a unique T € D'(G)
composable with any S € K, and u(S)=SxT,

Proor. For any g’ € G’, the linear map S— <u(S), g'> satisfies the re-
quisites of the preceding proposition. Therefore there exists a unique distri-
bution T,. depending on g’ such that S and 7. are composable and <u(S), g’ >
=SxT,..

Next we show that there is a T € D'(G) such that <T, g’>=T,.. Let {0,}
be a sequence of regularizations. Put 7,=u(0,). Then

2 ¢ <T, g > = (0xxTy)
=0, (¢xT,) for ¢eD, g €C.

Let 4’ be an equicontinuous disk in G’. The bilinear map (4, g’)—> ¢*T,  of
D x G, into & is separately continuous. Since @ and G, are barrelled spaces,
the map is hypocontinuous. {$+7T,/} is bounded in & when ¢ and g’ liein a com-
pact subset C of @ and 4’ respectively. It follows from (2) that {¢-<T,, g >}
converges uniformly to ¢-7,, as n—>co when ¢ and g’ run through C and
A’ respectively. This shows that {T,} is a Cauchy sequence in D'(G), which
is known to be quasi-complete (117, p. 29). Putting 7 =lim7,, <T, g'> =

Ty Now we shall prove that S (f’*qﬁ) € D;1(6) for every ¢ € D. Clearly we
have ¢ (Tx¢) € &' (G)CD;+(G) for any ¢ € D. The map ¢—¢(T*p) of D into
D;1(6) is continuous when we put on & the relative topology of &. In fact,
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let 5 run through a bounded subset B of &Z. Then we have
®) [ <80, o> ax= 86T )

- S¢(Tg/*ﬁ¢)dx
- ¢' <M(B¢)), g/>

Let ¢—0 in & with the relative topology of &£. {B¢} converges uniformly in
2 to 0 when @ runs through B. Since v is continuous, it follows from (8) that

{S<B¢(i’*¢), g'>dx} converges uniformly to 0 when ¢ and g’ run through C

and 4’ respectively. Hence we see that {gb(f*qﬁ)} converges to 0 in D}:1(G)
when ¢—0 in @ with the relative topology of #. For any S € &, we choose
{gb}VCQ) such that {¢} converges to S in &. Then {¢(T’*¢)} converges to
S(Tx¢) in D;:1(G), G being the completion of G. On the other hand, choose a
sequence of multlphcators {at,}, a, € D, where 0=c,<1, a,>1 in & and {«,}
is bounded in 4. Since for each » we have anS(T*qS)} € @ 71(6G) and D71(6G) is
quasi- complete the sequence {«,S (T*qS)} converges to S(T*¢) in D;:1(G), and a
fortiori S(T*q&) € D5(G). Accordingly

g <u(S), g >=¢-(Sx<T, g’ >)=p-<S«T, g'>.

Consequently we have u(S)=S+T for every S € &.

Finally we show the uniqueness of 7. Suppose u(S)=S+T’ for every S €
. Then we have u(¢)=¢+T =¢+T’ and hence ¢+x(T —T")=0 for every ¢ € D.
This implies T=1".

Thus the proof is completed.

§ 2. 6O-convolution of two vector valued distributions

Let E, F be two LCSs. Consider the tensor product EQF. Then for any
LCS G there exists a biunique linear correspondence between the bilinear
maps z of Ex F into G and the linear maps # of EQF into G by the definition
ule, [)=uw(e®f). The map 7: Ex F>EXF defined by 7(e, f)=e®f is a bilinear
map, the canonical bilinear map of Ex F into EQF. Now we put on EQF a
unique locally convex topology ¢ in such a way that the separately continu-
ous u corresponds precisely to the continuous # under the topology ¢. The
tensor product EQF equipped with this topology ¢ is denoted by ER.F, the
inductive tensor product of E and F. E®.F denotes its quasi-completion.
From now on we suppose that G is quasi-complete. Let 6 be a separately con-
tinuous bilinear map of Ex F into G. Let 7 stand for the canonical bilinear
map of Ex Finto EQ F. Then there exists a unique continuous linear map 6
of E®Q F into G such that §=0607.

Let & be a normal space of distributions. A vector valued distribution
S e X (E) is called Bo-bounded and is denoted by S € H.(E; o) ([12], p. 54) if
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S maps a neighbourhood of 0 in & into a bounded completing subset, a sub-
set of E contained in an absolutely convex bounded subset B of E such that
Ejp is a Banach space. S € #.(E) is called locally Bo-bounded if any multiplica-
tive product ¢S is B,-bounded for ¢ € D. A subset B of H.L(E) is Bo-equibound-
ed ([12], p. 54) if there exists a neighbourhood % of 0 in & such that E_/ﬂ-§
SeB
is a bounded completing subset of E. A locally 3o-equibounded subset of H.(E)
will be defined in an obvious way. It is easy to see that if & is nuclear, S is
Bo-bounded if and only if it is a nuclear map of & into E.

Consider two vector valued distributions S € @'(E) and T ¢ @'(F). The
regularization Tx¢, ¢ € D, is locally Bo-bounded in &(F) ([12], p. 172). The
multiplicative product [ S (T*QS)] € D (E®.F) is well defined ([12], p. 134).
The G-valued distribution [S(T*qﬁ)]e is then defined as (JQ0) ([ S (T*QS)] ).

In a similar way we define the tensor product S&,7 € D' (G) of S and T':
S®T =(UR0) (SRR.T). Here we note that the bilinear map (S, T)>S®,T is
separately continuous since the map (S, T)>S®R®.T is separately continuous
([12], p. 146) and the map IR)E is continuous.

For our later purpose we need the following lemmas.

Lemma 1. If S lies in a bounded subset of D'(E) and if T lies in a locally
Bo-equibounded subset of E(F), then [ ST J, also lies in a bounded subset of D'(G).

Proor. Since D is barrelled, it is sufficient to show that for any ¢ € D
the set {¢-[ST7],} is bounded. But ¢-[ST],=S-s(#T). We can therefore apply
Proposition 10 of Schwartz [12] (p. 58) to conclude our statement, completing
the proof.

As an immediate consequence of the preceding lemma we have

Lemma 2. The linear map ¢—[S (f’*qﬁ)]g of D into D'(G) is continuous.

Procr. D is bornological, and if ¢ lies in a bounded subset of 9, the
set {T‘*qi} is locally B,-equibounded in &(F) ([12], p. 149). Therefore it fol-
lows from Lemma 1 that the map ¢—>[§(f*¢)]a is continuous.

The lemma can also be proved as follows. The map ¢—>(§x®ofy) #(&x+9)
of D into D () is continuous. It is easy to verify that (S x®9Ty)¢(x+ P e
(D;),(DU6)). Using Corollary to Proposition 2 we see that ¢—(S,Q,T y)¢(x+ )
is a continuous map of @D into (D;1),(D,(G)). Hence ¢— [S(Tx¢) o=

S(@@J‘ y)¢(&+ $)dy is continuous.

Lemva 3. The linear map U—[(Sxp) (f‘* U)p of & into D'(G) is continu-
ous.

Proor. &' is bornological, and if U lies in a bounded subset of &', the
set {T+U} is bounded in D'(F). Therefore it follows from Lemma 1 that the
map U—[(Sx¢)(T*U)], is continuous.
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Now we shall turn to the discussion of §-convolution of two vector valued
distributions. In our previous paper [4], the notion of ¢-convolution of such
distributions was introduced after the pattern of the theory of classical con-
volution. @#-convolution, to which the present section will devote itself, will
also be treated along the same line.

SeD(E)and T € D'(F) are called x,-composable if

() (5. RT)p& + 9) € (Dy1),,(G) for every ¢ e D.

Then owing to Corollary to Proposition 2 the map ¢—(S,R6T',)¢(2+ ) of D
into (D}1), ,(G) is continuous. The f-convolition ST € D'(G) is defined as
follows:

- (SxoT)= Sg(§x®ofy)¢(x + y)dx dy.

Prorosition 5. Each of the following conditions is equivalent to (x).

(

—

) 0¢—4—9)(S:ReT,) € (D,(D}1)..,) (G), where 0 denotes a Dirac
measure at 0 in RY;
() [(S*p)T e Ds1(G) for every e D;
(i) [ST*¢) o€ D;:1(G) for every ¢€D;
(iv) SG— PRI () is partially summable with respect to v, that s,
S(&— 96T (9) € (D1),(D1(6);
V) S RT (& — $) is partially summable with respect to ¥;
(vi) [(§ #@) (T*) o € L'eG  for every ¢, ¢ € D.

Proor. (x)—(ii): From (x) it follows that
(G DTL= | G.RT b+ idwe DG

(ii)—>(@{v): For every ¢ € D, we have
®  <SG-HBRTE), $@> = |[Se- @ TG4

— 10| (S - HORT Hp@ds)

=(R0) [(S+)T .
=[(S*)T Jp.
If (ii) holds, it follgws from Lemma 2 and Corollary to Proposition 2 that the
linear map ¢—[(Sx¢)T Jp of D into D;1(G) is continuous, and therefore by
the relation (1) we see that (ii) implies (iv).
(iv)—>(x): By (iv) we have for every ¢ € D
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(S@— DT (9) () € (E,(D11);) (6)
= (&;@.(D1),) (6)
C((D1), R.(Dy0),) (6)
= (D1 )i, (6).

Consequently, by change of variables we can conclude that
(SHReT (9) & + 9) € (D1)s,,(6).

(i))—>(vi): Owing to Lemma 3 the bilinear map (R, ¢)—+R*[(S*¢)T]9 of
& x D into D1(C) is hypocontinuous. This together with the relation: [(Sx4)
(ryT)];,—rya*[(S*r_ 46T ]y shows that y—>[(5*¢) (c,T)Jp is a continuous D;1(G)-
valued function. Then for any ¢ € D we have

[Gwg) Tx)lo = [S0) S @ T (3)dy s
- §[<§*¢> @)L (Ndy € D} (6).

Now since the map (4, ¢)—>[(§*¢) (T*p)Je of DxD into D}1(6) is hypocon-
tinuous, the derivation formula may be applied.

@) DP[(Sxp) (T*) ]y

=2

r=p rl (P r)l [(S*D ¢) (T*Dp r¢’)je

Miyazaki has proved that the pair D;:(G) and D;:(G) is distinguished in
his sense (67, p. 532): D;1(G) is the set of vector valued distributions R €
D11(G) for which there exists for any equicontinuous subset 4’ C G’ a sequence
of positive numbers 1, such that the set {<41, D’R, g ">} grear,» is bounded in
D;:. Now we put R= [(S*q&) (T+¢$)]s and show that R satisfies the above con-
dition. The map (¢, )R is hypocontinuous and there exist for any fixed ¢
and ¢ two sequences of positive numbers #, and v, such that the sets {«,D?¢}
and {v,D?¢} are bounded- in . Therefore it follows from the derivation
formula (2) that there exists a sequence of positive numbers 1, stipulated
above. This shows that R € ©,:(G) and therefore R € L'sG, as desired.

(vi)—>(ii): Let {0,} be a sequence of regularizations. Owing to Lemma
3, since D;7:(6) is quasi-complete (107, p. 29), it is sufficient to show that
{{S*¢) (T*0,)Jo} 12n<.. forms a Cauchy sequence in D;:(G). To this end let 4’
be any equicontinuous disk of G’. Let U be the closed unit cube with center
0 in RY. The trilinear map (9, ¢, g')><[(Sx¢) (T+9)o, g > of DyxDyx Gy,
into 7. is separately continuous and hence continuous, because Dy is a space
of type (F) and G, is a Banach space. Therefore we can find a positive
integer ! such that the map is continuous in the topology induced by that of

D} x Dl x G4, We can take a positive integer k such that a &€ Djy is a
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parametrix of an iterated Laplacian A* ([8], p. 47):
0=ak+7, 1€eDy.
Consequently we can write
[S*@) Tx0.)]a=[(Sp) T A ex0,)],
+ [(Sx¢) (T x1%0,) s

Since ¢ € Df;, we can choose a sequence {&;}, &, € € Dy, tending to ¢ in D, as
j—>co. Passing to the limit as j, n—co, {S,*O,,} and {7x0,} tend to £ and 7 in
Dk respectively. Therefore {<[(S*¢) (T*&;%0,) o, g'>} and {<[(S*¢) (T
0,,)]9, g’ >} converge uniformly in 9; L1 to <[(S xp) (Tx€) s, g'> and
<[(S*¢) (T*7) Do, g'> respectively when g’ runs through 4" and ¢ lies in a
neighbourhood of 0 in @Dy. On the other hand, we have

b3 s 0
<[(S*¢)(T*Wéj*pn>]0) g/>

=< _ai_i [(Sxg) Txe%0,)]r g >

— <[($x 55 #)Trex0 T 8>
Consequently {< [(§ *@) ( T *% E'j*()n) o, g'>} converges uniformly in ;1
to <[(S *¢)<T *—a% «;—‘)]9, g > when g’ runs through 4" and ¢ lies in a neigh-

bourhood of 0 in &Dy. Repeating this process, we see that {[(§*¢) (T%0,) Jo} 120cw
is a Cauchy sequence in D}:(G), as desired.

The implications (x)—(iii)—>(v)—(*) may be proved just as in the cases
(x)—>({i)—>(iv)—>(x). The proof is omitted.

(x)_(1): We have for every ¢cD
® <PB), 0@ —1—9) (S.R6T ) > =(S. Q6T )P+ 9.

Consequently (i) implies (x).

Conversely, if (x) holds, the linear map ¢— (§x®97y)¢(5c+ ) of D into
(D71).,,(6) is continuous owing to Corollary to Proposition 2, and therefore
the relation (8) shows that (i) holds.

Thus the proof of the Proposition 5 is completed.

Prorosition 6. If S , T are xg-coOmposable, then
M SuT={5G—N@T(dy=[SHI&T &~ y)ay:

) ¢S = |[EpThde = [[ST ) hdn for every ¢ D;
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(i) (pud): Sy = | [Go) Trp) b for every 4, ¢ D.
Proor. Owing to the preceding proposition, the equivalent conditions
(i)~(vi) in Proposition 5 hold.
(i) and (ii): From the condition (iv) in Proposition 5, we have for any
peD
<4, |Sa-0&T ay> =[G - @ TG p@as dy

S
- “(s”(x) RoT (1) b(x+ y)da dy
¢

Hence S S(&—y) QT (y)dy=S*,T, and similarly S§(y) ®eT (2 —y)dy = Sx,T .

Next, by the definition of §-convolution, we have
8- SxT) = || 5. T )b + e dy
—| | SanTpe+ ydn ay

=[G T ay.

Similarly we have ¢-(Sx,T)= S[§ (i’*qﬁ)]edx.

(iii): Let ¢ be any element of . Now consider the map ¢—>[(§*¢)(7*¢1)]9
of @ into L'¢G, which is continuous owing to Corollary to Proposition
2. Then there exists a distribution &, ¢ @/(G) such that g[(§*¢) T Jod =

<@, K,>, where ¢—K, is a linear map of D into @' (G). From this equation
it follows that ¢—K, is continuous and is commutative with any translation.
Owing to Proposition 4 there exists a distribution K € @'(G) such that K,=

Kx¢ for every ¢ € D, whence S[(§*¢) (Tx¢) Jodx = ¢-(Kx¢). Let {0,} be a se-
quence of regularizations. { S [(§*¢) (T+0,)Jedx} converges to S[(§*¢)T]9dx as
n—co (see the proof of (vi)—(ii) in the preceding proposition). On the other
hand {¢-(K+0,)} converges to ¢-K. Hence X[(§ *T hdx=¢-K. Tt follows

from (ii) proved above that ST =K. This ensures us to conclude that
| CS) (T = (ST a) = @) (SaD),

Thus the proof is completed.
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Remark 1. Let S, T be %,-composable. Let U be any element of &. Then
[S(T+(Ux4)) Jo€ D1 (G) for every ¢ €D. Hence S, T«U are x,-composable.
Now

¢ (Sxe(TxU)) = S [§(i’*ﬁ*¢)]edx
= (Ux¢)- (S*I)
= ¢+ (Ux(Sx,T)).
By symmetry we have
U (SxoT) = (Ux8) T = Sy (U=T).
In particular, if we take U as D?¢, then
D?(SxgT) = D?SxeT = Sx,D'T.

Remark 2. Let E be one-dimensional, then @’'(E) may be identified with
@’. Thus we may consider the convolution of a scalar valued distribution
and a vector valued distribution as a special case of 6-convolution. Therefore
SeD and T € D'(G) are composable in our sense when any one of the follow-
ing equivalent conditions holds:

D) S ®T)p&+ ) € (D1),,(©6) for every ¢€D;
(i) STx¢) € D;:1(G) for every ¢€D;
(i) (ST € Dj1(6) for every ¢ € D;
(iv) S — y)@f () is partially summable with respect to y;
V) SHRXT (2 — $) - is partially summable with respect to y;
(vi) (Sx¢) (T+¢p) € L'eG for every ¢, ¢ €D.

RemARk 3. Let S=S®e€ D' (E) and let 7 e D' (F). If S is composable
with T, then S®e is *,-composable with 7', and (S®e)*T = (IRb6(e) (SxT),
where 6(e): f—>0(e, f) is a continuous linear map of F into G. Indeed, we have

[(S®e) @)l =S(IR () Txh)
= (IQ6(e) [ST+¢p)] € Dy1(6).
Consequently SRe is #,-composable with 7. Moreover we have
8- (5Bl = | (@) Fra)lda
- [a®0) 3@
=d(e) (S.S(f'*¢)‘dx)
= d(e) (¢-(S+T))
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=¢-(IQ0(e) (S¥T),
from which it follows that (S®e)xT =(IR () (SxT), as desired.

§ 3. 0-Y-convolution of two vector valued distributions

Let &' be the space of tempered distributions, the strong dual of the
space & of rapidly decreasing C*-functions defined on RY. Two tempered
distributions S and T were called &'-composable ([13], p. 26) provided that

(S:RT)p(x+ 9) € (Di1),,, forevery ¢ec .

Then the &’-convolution S .7 was defined as
<Sxu. T, ¢> = SS(Sx KR T,)¢(x+ y)dx dy.

We can extend this kind of convolution to the vector valued distributions
along the same line as in our previous paper [47.

Let E, F, G be three LCSs, G being quasi-complete. Suppose the bilinear
map 6: Ex F—>G is separately continuous. S ¢ &(E)and T € &' (F) are called
xg- S -composable if we have

()ers (S, ReT Np (& + §) € (D)) ,(G) for every ¢ e .

Then, owing to Corollary to Proposition 2, since & is barrelled, we can see
that the map ¢—(S, T ,) (4 + $) of & into (D;1),,,(G) is continuous. Thus
when the condition (%) is satisfied, we shall define the 6-'-convolution
S, T € ' (G) as follows:

(S o, 0 T) = SS 5, 0T ) $( + y)da dy

for every ¢ € <.

Comparing the condition (%), with the condition (x) of the preceding
section, we see that the 6-'-convolution, if defined, coincides with the 6-con-
volution. First we shall show the following lemma guaranteeing that [ (S«#)T ],
makes sense for every S ¢ &'(E), TeYF), ¢e.

Lemma 4. Let S € &(E) and let B be a bounded subset of <. Then the set
{Sxp} ocB 18 Bo-equibounded in &(E).

Proor. &’ and &' are the spaces of type (DF) and the bilinear map
(S, T)—>S*T of & x & into & is hypocontinuous. Therefore it follows from a
theorem of Grothendieck ([27], p. 64) that the map is continuous. Then we
can find two neighbourhoods %, O? of 0 in & and & respectively such that

11+p C B°, whence U+B CO%, which implies that
U-(SxB)= (UxB)-§ CN°-§,



188 Risai SHIRAISHI

from which it follows that O0%°-S is a compact disk of E since 0% is an equi-
continuous subset of <. Consequently the set {Sx¢} .5 is Bo-equibounded in
&(E). The proof is completed.

Let O( be the space of rapidly decreasing distributions defined on R". It
may be considered to be the topological linear subspace of 2%, &) restricted
to the maps ¢—>Sx¢, ¢ € <. Any ¢ € & can be decomposed into a convolution
product of the form ¢=gx¢s, ¢1, ¢ € & (6], p. 530). Let O be any neigh-
bourhood of 0 in &*. Since &’ is a space of type (F), we can find a neighbour-
hood % of 0 in & such that %% COJ. Then with the aid of these facts it is
easy to check that the convolution map (S, T)—>S+T of O, x O into O is con-
tinuous ([ 87, Chap. II, p. 104). Using this result we shall show

Lemva 5. Let S € O4(E) and let B be a bounded subset of Oc, the strong
dual of 0. Then the set {S«g}qep 15 Bo-equibounded in Oc(E).

Proor. Since the convolution map O x 0,—0( is continuous it follows

that a neighbourhood % of 0 in O, may be chosen so that QVZ*WCBO, whence
UxB CU° which implies that

U-(SxB) = (UxB)-S CU°-S.

Since 7/° is an equicontinuous subset of Oc, we see that 7%/°-S is a compact
disk of E. This shows that {Sx¢} ..z is fo-equibounded in O(E). The proof is
completed.

Remark. Schwartz ([12], p. 149) has shown that if S e @'(E) and Bis a
bounded subset of @D, the set {S«@},z is locally B,-equibounded in &(E).
Another proof of this result may be carried out as in the proofs of our lem-
mas 4 and 5. In fact, we can find a sequence of positive numbers 1, and a
bounded subset B; of D so that we may have D?’BC1,B;. Let 2 be a relative-
ly compact open subset of RV and let OO0 be the neighbourhood of 0 in & de-
fined by the condition: 8161!? |f(x)|<1, fe & On account of the hypocontinuity

of the convolution map of @' x D into &, we can find a neighbourhood % of 0
in @' such that #+B; COY. Then we have for each p

sup | D*U=B| = sup | U+xD?B| < 2,.

Z€Q x€Q

This shows that %+B is bounded in &;. Let « be any element of Dz If we
put B,=a(l/xB), we see that V=BIN&’ is a neighbourhood of 0 in &. Now
we take a compact disk K of E such that < S, K°> C 7. Then we have

<a(SxB)- P, K*> = | <a(S*B), K> - Y|
= |a(<S, K°>*B)- Q|
= |a(U+B)- V|
= !Bz'BgLé_l-
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Consequently «(Sx¢) maps O into K whenever ¢ lies in B. Thus the set
{S*p} pep is locally Bo- equibounded

Suppose that Se S E)and T € & (F). Owing to Lemma 4 the multlphca-
tive product [(S*qs)Tj6 is well defined. We remark that the map ¢—>[(S*¢)T:Io
is continuous. For when ¢ lies in a lqounded subset of &/, Lemma 4 together
with Lemma 1 shows that the set [(S*)T ], is bounded. It follows that the
map ¢—[(Sx¢)T ], is continuous since & is bornological. The following pro-
position will be proved in an entirely similar way as in Proposition 5.

Prorosition 7. Fach of the following conditions is equivalent to the con-
ditton (%), :

(i) ()Tl eDy:(6) for every ¢€

(i) [S@T+¢) e Ds:(G) for every 9 €I
(i) S —PNRTB) € L1(D}0),(6));3

(iv) ST (& — ) € L1( D, (6);

(V) [(Sx¢) (Txp) )y € L'eG  for every ¢ P, ¢€D;
(vi) [(§*¢) (T+p))s € L'eG  for every ¢eD, e P,
(vil) [(Sx¢) (T+p))s € L'eG for every ¢, € .

Proor. (iii)—>(*)w.: It is known that for any ¢ ¢ & the linear map R—
#R of G'(E) into O,(E) is well defined and continuous since the map R—>¢R of
& into O is continuous. Since O/ is nuclear, we have

(06)e(D11)y = (02): D2 (D11)y C(D1): D2 (D 1)y = (D 1) -

Using these inequalities, we can infer that (iii) implies that (S(z — PR ($)p(2)
is contained in (D}1),,(G) for every ¢ e . Consequently, by change of
variables, we obtain the condition (x)...

() —>(1)—(il), (D)—>V)—>(1), (x)o—>AD—>(iV)>(x)» and (iD)—>(vi)—>(ii) are
proved in an entirely same way as in the corresponding cases of Proposition
5. Thus the conditions (%), (i), (ii), (111), (iv), (v) and (vi) are equivalent.

(V)>(vii): (v) implies [((Sx@)"*x) T*¢) ]y = [(S*(qsxx)) (T*¢)]s € L'eG for
every ¢, x € & and ¢ € D. It follows from the equivalence of (x). and (v)
already proved that Sxj and T are x,-&'-composable. Since (x).. implies (vi),
it follows that [((Sx¢)"*a) (T*¢)]s € L'eG for every ¢, ¢ € & and « € D. Now
let {0,} be a sequence of regularizations. For the proof of (vii) it is sufficient
to show that the sequence {[((§ )" *0,,) (T*¢) Jo} 12n<.. forms a Cauchy sequence
in L'eG. Using the closed graph theorem we can infer that the multilinear
map (4, «, ¢, g’)—»[((§*§5)v*a) (T+¢) s, g > of FyxDyx Yy x G into L' is
continuous, where U is the closed unit cube of R and 4’ is an equicontinuous
disk of G’. Then we can make use of a parmetrix of an iterated Laplacian to
conclude the statement.

The.converse (vii)—(v) is trivial.
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Thus the proof is completed.
As in Proposition 6 we can show

ProposiTioN 8. Suppose that S € Y'(E) and T € '(F) are x-S -composable.
Then the following relations hold:

(i)  SxpuT = Sg(o%—y)®ef(y)dy = S§(y)®97(5c —1)dy;
(ii) ¢-<§*9,ﬂ>=§[<§*¢>Tjadx=§[§<f*¢>jedx for every ¢ €.
(i) (prd)- Swg o T) = St<§*¢> (Txp)lodm  for every 6, € .

Remark. O is the set of distributions composable with every element
of & ([157], p. 22). However, in the case of the vector valued distributions,
any two elements taken from O.L(E) and &'(F) respectively are not always x,-
composable if ¢ is assumed only to be separately continuous. While S € O4(E)
and T € OK(F) are %~ '-composable. These will be shown in the examples in
Section 7.

§ 4. Strict convolution map

Let E, F and G be three LCSs, where G is assumed quasi-complete. Sup-
pose 0 is hypocontinuous with respect to the compact disks of £ We denote
by 0’ the bilinear map of Fx G into E; defined by <0(e, f), g’ > = <e, 0'(f,g") >+
0’ is hypocontinuous with respect to the equicontinuous subsets of G.. We
put §'(g"): f~0'(f, g"), which is a continuous linear map of F into E.

Let S € D'(E), T € D'(F), and ¢ € D. T is locally B,-bounded in EF). If
F=E, and 6(e, ¢')= <e, ¢’ >, we write simply S(T'«¢) instead of [S(Tx¢)]s. It is
to be noted that the bilinear form <e, ¢'> on Ex E, is -hypocontinuous with
respect to the compact disks of E and the equicontinuous subsets of E. Now
we can write for a given ¢ € D

a(Trg)= z LT, & f),

with 7, in a compact disk of & and f, in a compact disk of F and >}|4,| < co.
The linear map {4,} >>A(T,Rf,) of I' intoag(F) transforms the unit ball of

' into a By-equibounded subset of &(F). Now using Lemma 1 we have the
continuous linear map of /! into D'(G) defined by {1,} »[S(I4L(T,® ) Je-

Then
alS @)L =3 < [S AT, D £)

therefore
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a<[ST+p) g > =D <[SALQf) g >
=2SA TR0 (f,n8))
=S(BALLR0(f, g))
= aS (R0 (g)T*g).
Consequently
@ <[ST@+t) ) g'> =S (IR (g)T+p).
We first show

Provposition 9. Let X be a B-normal space of distributions. Let T be an
F-valued distribution. Let u be a continuous linear map of H(E) into D' (G)
such that the restriction of u to DRE is of the form u(dRe)=dRe)xl. If K
or E has the approximation property, then T is xg-composable with every ele-
ment S of H(E) and w(S)=Sx,T

Proor. Since E.=(E,))., %(Ey) coincides with #(E), but the former has a
finer topology than the latter. If E has the approximation property, so does
E,. Therefore we may assume that E has a r-topology ([11], p. 17), then any
compact disk of E. is an equicontinuous subset of £’

Now let us denote by 7" the set of S € Z(E) with the following properties:

(2) [§(f’*¢)]9 € D;1(6G) for every ¢ €D,
3) $-u(S) = g[§(i’*¢)]9dx for every ¢ €D,
4) if Ser, then BSel for every PBeA&.

Clearly I” is linear and contains DX®FE which is dense in H(E) since & or
E has the approximation property. It is sufficient to show that I is closed in
H(E). Suppose S tends to S, in Z(E), and S € I'.  The properties (2), (3), (4)
together with the fact that & is &Z-normal imply that {{S(T'+$)Js} is a Cauchy
filter in @;1(G), and therefore converges to an X in D;1(G). On the other hand

) <[ST+)Tn g'> = S(UR (g") T+s).

f"*q& is locally 7-bounded in &(F). _Since §'(g") is a continuous map of F into
E/, it is easy to see that (I®6’(g/))7’*¢ is locally r-bounded in &(E.). Since the
bilinear form <e, ¢'> is hypocontinuous with respect to the equicontinuous
subsets of E;, we can apply Corollary 1 to Proposition 32 of Schwartz [12] (p.
133) to conclude that S (IR’ (g") :7"*¢)—>§0 (IR (g))T+¢) in D'. Therefore
(5) yields

< X, g > = <[So(T*)Is g >,
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from which it follows that X=[§o(f*¢)]y in @(G). Let {a,} be a sequence of
multiplicators. Then for each «,

[ So@xp)]s € D}1(6).

Passing to the limit as n—>oo, we have X=[§o(f‘*¢)]g € D;1(G). Now since
[So(T*4) ) is the limit of {{S(T*¢)]s} in D}:(G), the properties (2), (3), (4) re-
quired for S, are immediate.

Thus the proof is completed.

Now we take F as &,(E; G) and 0 as the bilinear map Ex 8,(F; G) into G
as usual, where b denotes the topology of bounded convergence. Then the
map 0 is hypocontinuous with respect to the bounded subset of £ and the
equicontinuous subsets of &,(F; G).

By making use of Proposition 9 we have

Tueorem 1. Let u be a continuous linear map of H(E) into D'(G), where
X is R-normal and X or E is assumed to have the approximation property.
Suppose 0 € X or L(E; G) is sequentially complete. If the restriction of u to
DRE is commutative with any translation, then there exists a unique T €
D'(R(E; G)) such that T is xo-composable with any element S of H(E) and u(S)=
SxoT .

Proor. Let SQe € XRE and ¢ € D. Putting L(S, ¢)e=d-u(SRe), since u
is continuous, it follows that L(S, ¢) € &(E; G). Now if we put ¢-L(S)=L(S, ¢),
then the map I(S): ¢—L(S, ¢) of D into L,(E; G) is continuous. In fact, let B
and C be any bounded subsets of D and E respectively. When ¢ and e run
through B and C respectively, the set {(¢-L(S))e} = {¢-u(SRe)} is bounded in
G. Since D is bornological, it follows that L(S) is continuous, that is, L(S) €
D (L (E; 6)). o '

Next we show that the map L: S—L(S) of & into D'(&,(E; G)) is continu-
ous. This is easily seen from the equation

(#L(S)e=gu(SRe)

and from the fact that » is continuous.
We have for any ¢, ¢ € D

(¢ L) e=¢-u(tpRe) = ¢-thu(p Qe)
= ¢7_;,'u(¢®e) = (¢T_h.L(¢))e
= (¢-iL(D))e.
Hence L(¢) is commutative with any translation. Consequently, owing to
Proposition 4 there exists a unique distribution T € @’ (%(E; 6)7) such that
L(S)=S+T for every Se &. When 0 € &, then T=0+T =L(0) € D' (L(E; G)).

Next suppose &,(E; G) is sequentially complete. Let {0,} be a sequence of
regularizations. Then ¢-(0,+T)=46,(¢+T) € L(E; G) for each n. Hence we have
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¢-T =1im 6, (+T) € &(E; G). Therefore T € D' (&(E; G)).
Next we have for any ¢, ¢ € D

pru(@Re)=(¢-L))e=0(e, ¢+ ($+T))
=¢-(IRE(e) (p+T) =+ (9 Re)xT).
Consequently

w(pRe) = (P Re)xT.

Hence we can apply the preceding proposition 9 to conclude our statements
of the theorem. The proof is completed.

Here we note that when E and G are Banach spaces and & is any of &,
@’ and D, the theorem was proved by Lions ([5], p. 150).

If T €D (F) is %,-composable with any S € #(E) and moreover if the
linear map u: S—Sx,T is continuous from H(E) into a space of vector valued
distributions X (G), we shall say that » is a strict convolution map of K (E)
into K (G).

Lemma 6. If EeF is barrelled, then E and F are also barrelled.

Proor. Let 4" be a weakly bounded subset of E'. Let /" be any fixed
non-zero element of F” and choose f € F in such a way that <f, //>=1. For
any ¢ € EeF, ¢ is considered to be a bilinear form on E.x F.. Now &(¢, )=
<'E&(f), ¢>. This shows that the set £(¢/, /) with ¢’ in 4’ is bounded. Since,
by assumption, EecF is barrelled, there exists a neighbourhood W of 0 in EeF
such that

[e(e, O =1 for c'ed, ceW.

Let U be a neighbourhood of 0 in E such that UKQfCW. Then, for any e€ U
and ¢ € 4, we have

|<e,d>| = [®f) @, )] <1

This proves that E is barrelled. Similarly we see that F is barrelled.
We note that if E is a Banach space and if & is nuclear, then X (E) is
barrelled when and only when & is barrelled.

Lewva 7. Let S e D'(E), T € D'(F) and ¢ ¢ D. If E is barrelled, the map
So[STxp)]s of D(E) into D'(G) is continuous.

Proor. Since E is barrelled, the bilinear map 6 is hypocontinuous with
respect to the bounded subsets of F. Then Corollary 1 to Proposition 32 of
Schwartz [12] (p. 133) shows that the map S—[S (f‘*gz&)], of D'(E) into D'(G)
is continuous.

By virtue of these lemmas we can show
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Prorosition 10. Let X be a space of distributions. Let X be a normal
space of distributions with D strictly dense in K;. Suppose that T e D' (F) is
sg-composable with any S € H(E) and that Sx,T € X(G). If H(E) is barrelled,
the linear map S—Sx=T of H(E) into K(G) is continuous.

_Proor. Since E becomes barrelled by Lemma 6, the linear map S—
[S(Tx¢)]s of H(E) into D'(G) is continuous by Lemma 7. But, by assumption,
[S (i’*qS)]e € D;,1(G), whence, by Corollary to Proposition 2, the map S—
[S(T*¢) ] of H(E) into D}:(G) is continuous. Therefore the map S—SxT of
H(E) into D'(6) is also continuous. Using again the corollary cited above one
can conclude that the map S—Sx,T of H(E) into K(G) is continuous, which
completes the proof.

§ 5. Strict convolution map between two spaces of
vector valued distributions (elementary case)

This section and the next are devoted to the investigations on the be-
havior of strict convolution maps between two spaces of vector valued distri-
butions concerning the assigned continuity. Let us denote by &, X, £, I -
normal spaces of distributions and by E, F, G the locally convex spaces. We
assume that G is quasi-complete. 6 will stand for a separately continuous
bilinear map of Ex F into G. Recall that a convolution map * of & x X into
2 is, by definition, a separately continuous bilinear map, coinciding on D x D
with the usual convolution. Here, if we further assume that & or X is &-
normal, the convolution map is strict in our sense (see Proposition 3).

In this section we shall deal with the case called elementary where * or
0 is continuous. For our later purpose we need the following lemmas.

Lemma 8. Let E, F, G be three LCSs. Let 0 be a separately continuous
bilinear map of Ex F into G. If A is a bounded subset of E and B is a bounded
completing subset of F, then 6(A, B) is bounded in G.

Proor. There exists an absolutely convex bounded subset B, DB of F
such that F is a Banach space with B, as the unit ball. The restriction of 6
to Ex Fp, becomes hypocontinuous with respect to the bounded subsets of E.
Hence it follows that 6(4, B) is bounded in G, which was to be proved.

Lemma 9. Let & be a Z-normal space of distributions and E, F, G be LCSs,
G being assumed to be quasi-complete. Let 0 be a separately continuous bilinear
map of EXF into G. Further we assume that XQE is strictly dense in H(E).
Let T € Z.(F) be a nuclear linear map of & into F, that is, we can write

T=31®f;
J

with k) in an equicontinuous U° in X, Ul being a neighbourhood of 0 in X and
fi m a compact disk f of F and >3|2;| <oo. Then. for any S e H(E),
7
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() 0, T)=34;<hjS, f;>q converges in D;:1(G), where <I'S,f>,=
J

(IR ( f)) (W'S). And 0(S, T) is independent of the representations of T;

(i) Moreover if T is locally Bo-bounded in &(F), then 0(S, T)=[ST J,(=
(IX0) [§T]L), where [ST ], denotes the multiplicative product of S and T in the
sense of Schwartz (12, p. 134).

Proor. (i): Any element %’ of &' is a multiplicator of & into D;: since
X is B-normal. It follows that #'S € D, (E) for S e H(E). And it is easy to
see that if 2’ runs through an equicontinuous subset 7/° of &/ the set {#’S} is
bounded in D}:(E). Since f is a compact disk of F, it follows from Lemma 8
that the set {<#'S, f>e}wewr sei is bounded in D;:(G). Therefore the series
@S, T) converges in D;1(G). Next we shall prove that @(S, T) is independent
of the representations of 7. To this end it is sufficient to prove the case T =
0. We note that the linear map S—@(S, T) of H(E) into D;:(G) is quasi-con-
tinuous, that is, the map is continuous on any bounded subset of H(E). Let
S—0 on a bounded subset of #(E). Then for any A and 1 {<K'S, f>e} is
bounded and converges to 0 in D;:(6). In fact, let # run through a bounded
subset of 2. The equations 8-<A#'S, f>,=0(8-k'S, f)=0(h'8-S, f) show that
since the set {#'8} is equicontinuous in &., 6(//3-S, f)—01in G as S—0 and the
set {¥'B3-S} is relatively compact. Hence by Lemma 8 the set {9(2'5-S, f)} is
bounded in G. First suppose that S is decomposable: S =SRe, Se X, c€E.
The linear map #»'—Sk’ of &/ into @’ is continuous. Therefore the map 7T—
ST of Z.(F) into @'(F) is continuous. Hence we have

SISk f; =83,k Qf; = ST = 0.
J J

Consequently
O(SRe, T)=>12;Sh; R0, f;)
7
= <e, 204;8h; R f; >0 =0.

J
Next consider the general case where S is any element of & (E). Since the
map S—&(S, T) is quasi-continuous and XRE is, by assumption, strictly dense
in K(E), we have @(S, T)=0, as desired.

(ii): Finally, let T be locally So-bounded in &(#). Then for any « € D,
aT can be written as follows:

af =310, ® [,
7
with «; in an equicontinuous subset of @ and f; in a compact disk of F and
S #;| <. On the other hand, aTzaZijh;(X)fj=2’;/Ijah}®j"j. Because of the
j j 7
uniqueness of @(S, T) proved above, we have

ad(S, T)=0(S, aT)=[S(al)]s = a[ST .
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Consequently @(S, T)=[ST J,. The proof is completed.

Remark. In the preceding lemma we assumed that ZXE is strictly dense
in Z(E). If we assume instead that £ QE is dense in K (E) and that 0 is
hypocontinuous with respect to the compact disks of F, the conclusions of the
preceding lemma remains valid. This is because that in virtue of the expres-
sion @(S, T) the linear map S—&(S, T) of H(E) into D}:(G) will become con-
tinuous as seen from the proof of our lemma.

We shall now consider the case where the convolution map *: & x K—.0
is continuous.

Turorem 2. Let K, K, L be three normal spaces of distributions, L being
assumed to be complete and E, F, G be three LCSs, G being assumed to be quasi-
complete. We assume that K is nuclear, B-normal and HRE 1s strictly dense
wm HK(E). Suppose that the convolution map x: H x K—>L is continuous and
that the bilinear map 6: Ex F—>G is separately continuous. Then any S € H(E)
and T € K(F) are *,-composable and Sx,T € L(G).

(@) Thelinear map T—Sx,T of K(F) into L(G) is quasi-continuous. More-
over if L. is barrelled, the linear map S—Sx, T -of H(E) into L(G) is also quasi-
continuous.

(b) If 6 is hypocontinuous with respect to the compact disks of E, then the
linear map T—S%,T is untformly continuous with respect to the equicontinu-
ous subsets of L(E.; X).

(e) If 6 1s hypocontinuous with respect to the compact disks of F, then the
linear map S—Sx,T is uniformly quasi-continuous with respect to the equi-
continuous subsets of LF.; K). Further, if F is quasi-complete, any compact
subset of K(F) is an equicontinuous subset of (F.; K) ([117], p. 22), therefore the
linear map S—S*,T is uniformly quasi-continuous with respect to the compact
subsets of K(F).

(d) If 6 is hypocontinuous with respect to the bounded subsets of E and F,
then so is *,.

Finally,

(e) If 0 1is continuous, then so is *,.

Proor. Let Q8 be any disked neighbourhood of 0 in /. Since the con-
volution map »: & x K— L is continuous, we can find two disked neighbour-
hoods 7% and O of 0 in & and X respectively such that %+ COJ Now we
choose a compact disk f in F such that the image of {° by the map T is con-
tained in ©). Since & is assumed to be nuclear, there exists a disked neigh-
bourhood 7 of 0 in & such that the map I: 92,7%929/ is nuclear. Here I is of
the form:

34,85 @y,

where %} € 1% h; € U and 3)|2;| <oo. The bilinear map (h, I')—>h+l’ of & x L/
j
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into XK/, as the transposed map of the convolution map & x KX— 2, is a strict
convolution map since & is &-normal. Let '€ 08 and T ¢ X(F). Putting
<T"*1l’, h>= <f, Tkl >, Tl € H(F) is considered as a continuous map of &
into F factorized as follows:

RS

i1 1 *Z/ T iz

A A

H—>Hy—>Hy—> Ko —>F;—>F,

where i), i; are the canonical maps and */’ is the continuous extension of the
convolution map h—hxl’ of Xy into Kjo. Therefore Tl can be written as

) T+l = -21 LR 7.1
2

where fjj,,,:(hj*l’)-fCCE?O-TCT, h; € fI° and 33|2;| < co. According to Lemma
7
9

O(S, Txl') =332, <h}S, f1.7.1>0 € D3 1(6)
7

for every S EV%(E). In particular, T‘*q&, ¢ € D, is locally B,-bounded in & (F),
so that @(S, Tx¢)=[S Tx¢)Js € D,:1(G). Therefore, by definition, S and T are
*g-composable.

We shall next prove that if £ is complete, Sx,7 € £(G). To this end we
put

v = Sd)(§, Tl dw = SI0(R;S, £, 7. 10)-
J

Then the map /'—»% () of O C L, into G is continuous. In fact, f;; , =
(hj*1)+T =1-(h;*T) tends to 0 for each j when ’—0 in O0°, and the set
{0(h]’.-§, Firan} Wi, 17630 is bounded in G. According to Proposition 8 of
Schwartz [117] (p. 41) asserting that a linear map of £/ into an LCS is continu-
ous, when £ is complete and the map is continuous on any equicontinuous subset
of /., the map I'>¥%(l") is continuous from 2. into G. We can conclude that
there exists an element ¥ € /(G) such that Z(I)=1"- ¥ for every I’ € £,. Now I’
may be chosen an arbitrary element of D, so that we can write I'-#% =1'-(Sx,T),
and therefore & =Sx,T € L(G), as desired.

From now on let %, @, O, O0 be chosen as before. Here we note that OO
may be chosen an arbitrary fixed disked neighbourhood of 0 in 2.

(a): Suppose that T converges to 0 in K(F) lying in a bounded subset B
of X(F). We shall first show that Sx,7—0 in £(G) for every fixed S € H(E).
It is known that any bounded subset of K (F) is an equicontinuous subset of
F;; K) (117, p. 28). Therefore we can choose a bounded disk f; of F so that
any T € B maps ¢ into Q0. As before, we write

T+l = S0 R0
P
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where the set {f; 7/} is contained in f;. For each j, 0 (%S, f;.7.17) eonverges
to 0 as T—0 uniformly with respect to I’ € O0°. And the set {0(h;-S, f;7,:)} uje
29, 7¢w, -y becomes bounded by Lemma 8. Taking into account the equation
< 8T, I >=30,0}S, f; 7.1-), we see that S, —0 when T—0 in B.

7

Next suppose that £/ is barrelled. Let T be fixed and let S converges to
0 in a bounded subset B, of #(E). We shall prove that Sx,7—0 in 4(G). To
this end, in view of the Banach-Steinhaus theorem it is sufficient to show that
< Sx,T, !> converges boundedly to 0 for every fixed !/, which may be assum-
ed to be an element of O0° since we can take O0° such that 1" € O for a given
I’. Also we may assume that Txl' is of the form (1). Then we see that
0(h;S, f;.7.,-) converges boundedly to 0 for each j when S—0 in B, and that the
set {O(h]'..S‘, f.71)} b jewo, 5ew, Fig e, is bounded. Then, owing to the equation
< ST, U>=33,0(h;-S, f;7.1-), We can conclude that < Sx,T, !> converges

J

boundedly to 0 in G, as desired.

(b): Suppose that 0 is hypocontinuous with respect to the compact disks
of E. Let S lie in an equicontinuous subset % of Q(E.; &). Then there exists a
compact disk f of E such that each <3S, {°> is contained in %. By our as-
sumption on § we can find a neighbourhood 7 of 0 in such a way that 6(¢, V)
CW for a glven neighbourhood W of 0 in G. Now cons1der the set ¥ of the
elements 7 € X (F) such that W.TCV. Vis, by deﬁmtlon a neighbourhood
of 0 in K(F). Then %/-S € f and fi7r € TCVforSe¥, TeVandl eOQ.
Therefore we have for every S e ¥, T € V, I’ € O°

<$ﬁl>=2@ﬂwiﬂiﬁ€2uﬁM

which implies that the map 7—S%,T is uniformly continuous with respect to
the equicontinuous subsets of L(E.; &X).

(e): Suppose that 6 is hypocontinuous with respect to the compact disks
of F. Let S0 in a bounded subset B of #(E) and let T lie in an equicontinu-
ous subset U of {(F,; K). Then we can find a compact disk f of F such that
<T,i°> CW for every T € A. We may assume that 7x,/’ is of the form (1) with
fi.7.1- €. By our assumption on 6, 6(4}-S, f;,7,,)—0 in G for each j as S—0
in B and the set {0(4}-S, f;7,)} wez®, 5ew,7ev, ;7ew0 i bounded in G. Therefore
Sx,T—0 uniformly in 2(G) when T lies in .

(d): Suppose that 6 is hypocontinuous with respect to the bounded sub-
sets of £ and F. It is known that any bounded subset of #(E) (resp. K(F)) is
an equicontinuous subset of &(E;; &) (resp. &F;; X)) (117, p. 28). From this
fact together with our assumption on # we can conclude just as in (b), (¢) that
the bilinear map *,: H(E) x K(F)—>L(G) becomes hypocontinuous with respect
to the bounded subsets of & (E) and K (F).

(e): Suppose that 6 is continuous. Let W be a neighbourhood of 0 in G,
then there exist two neighbourhoods U and 7 of 0 in E and F respectively
such that 6(U, V)C W. Let U (resp. V) be a neighbourhood of 0 in #(E) (resp.
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K(F)) such that U°-UCU (resp. ®°-¥C V). Then we have for Se U, T ¢ ¥,
e Od°

ST, U> =33,0(R;S, f,7..) € 12| W,
J J

which shows that the bilinear map *, is continuous.
Thus the proof is completed.

Remark. It is shown that £/ is a space of type (B), a fortiori barrelled,
if £ is a complete Schwartz space (117, p. 43, [7], p. 431).
Next we turn to the case where 0 is continuous.

Tueorem 3. Let X, K, L be three normal spaces of distributions on R”.
Let E, F, G be three LCSs. We assume that £, G are quasi-complete. Further
we assume that & is nuclear and Z-normal. Suppose the convolution map (S,
TY—>SxT of H =<K into L is defined and r-continuous, that is, hypocontinuous
with respect to the compact disks of X and K. Let 0 be a continuous bilinear
map of ExF into G.

(@) If £ and G are complete, or if K or E has the strict approximation
property, then any S € H(E) and T € K(F) are x,~composable and Sx,T € L(C),
where the map S—Sx,T of H(E) into L(G) is continuous. ILf we further assume
that K. is nuclear, then the bilinear map (S, T)>SxT of H(E)x K(F) into
L(G) is hypocontinuous with respect to the bounded subsets of H(E) and the
compact subsets of K(F) whenever X, K are quasi-complete.

(b) If the convolution map of H x K into L is B-continuous, that is, hypo-
continuous with respect to the bounded subsets of K and XK, and if L and G are
complete or if X or E has the strict approximation property, and if K is quasi-
complete and K., is nuclear, then the bilinear map (S, T)—>Sx,T of H(E)x K(F)
into L(G) 1s S-continuous.

Proor. LetT € K(F). First we define the map: S—S+ T of & into L(F)
as follows: <ST, f'>=8x<T, f'> for any f' ¢ F'. Since the convolution
map of X x XK into £ is r-continuous, it is easy to verify that the linear map
S—S#T of & into L(F) is continuous. By our assumption & is &-normal.
According to Proposition 4 any S € X is composable with T and S#,T =SxT.
Then from Remark 3 in Section 2 it follows that S®e is *,-composable with T
and (S®e)x,T = (IQd(e)) (S¥T). Thus we have a bilinear map (S, e)—>(SQe)x,T
of X x E into £(G). Now we show that the bilinear map thus obtained is con-
tinuous. To this end let 4" be any equicontinuous subset of ¢’. For any g’ €
A’ we have

1) <(SRe)xT, g’ > = (IR0 (g))(IQF(e) (S+T)
=Sx<T, 0", g)>,

where 6" is defined by the equation <0(e, f), g'>=<f, 0"(e, g)>. Since 0 is
continuous, we can find neighbourhoods U and ¥ of 0 in E and F respectively
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so that for any e€ U, fe V, g’ € A’ we have
| <0(e, ), g' > <1

Therefore the image 6”(U, A) (C V?°) is an equicontinuous subset of F’. There-
fore since S—SxT is continuous, if OO is any neighbourhood of 0 in £, we can
find a neighbourhood 7% of 0 in & in such a way that for any S€ 1 and ec U
we have

(2) < ST, 0" (e, g)> €O,

Consequently it follows from (1) that the map (S, e)—>(SRe)*,T under con-
sideration is continuous.

& is nuclear by our assumption, and therefore XX.E=HXR.E and H(E)
CHARE If £ and G are complete, then we can extend the above map uni-
quely to the continuous linear map u of H(E) into £(G) which coincides on
DRE with the 6-convolution map by T. Therefore we can apply Proposition
9 to infer that any S € H(E) is *,-composable with 7 and that S—S%,T is a
continuous linear map of #(E) into 2(G). In case where & or E has the strict
approximation property, we can reach the same conclusion by a similar way.

When X is quasi-complete (resp. when the convolution map & x X—2 is
B-continuous), the map S—Sx<T, 6" (e, g)> is uniformly. continuous when T
lies in a compact subset (resp. a bounded subiset) of K (#) and ec U, g’ € 4".
By the same way as above we can infer that the map S—S=,7 is uniformly
continuous with respect to the compact subsets (resp. bounded subsets) of
K(F).

Now we shall assume that &’ is nuclear and prove that the linear map
T—Sx,T of K(F) into £(G) is continuous.

First we define the convolution map (T, R)—>T* R’ of K x £, into &. by
the equation .

<SxT, R"> = <8, T+,R'>.

It is easy to see thas x; is hypocontinuous with respect to the compact disks
of X and the equicontinuous subsets of £/. We then define T+, R’ by the equa-
tion

<TwR, f>=<I, >R, f €F.

Then the bilinear map (T, R’)—»T"*lR’ of K(F)x L. into X.(F) is hypocontinu-
ous with respect to the equicontinuous subsets of £/. Let 4’ be any equicon-
tinuous subset of G’ and choose neighbourhoods UCE, VCF as before. Then
0"'(U, A)CV°. Here we assume that U is a disked neighbourhood of E.

Since the map S—S%,T is continuous, S— < R'-(Sx,T), g’ > is a continuous
linear form on J(E), to which there corresponds an element T . € H.(E'; ¢)
=(H(E)) ([12], p. 103). We show that Tz,  transforms a neighbourhood of
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0 in & into U° when g’ € A, and that we can write Tz, =R (g") (Tv‘*lR’).
Indeed, for any ¢ € D and ¢ € E we have

<R-($Re)*T ), g'> = R+ <$+T, 0" (e, g') >
= ¢ <TR, 0" (e, g')>
= ¢ <(IR0(g") TR, e>
= <p®Re, (IR0 (g") @T*R)>

Hence T . =(IR0'(g") (f’"*lR/). From the equations just obtained it follows
that

Se < Ty, e> =8 <TxR, 0" (c, g)>,

which implies that for e ¢ U, g’ € A’ there exists a neighbourhood ¥ of 0 in &
such that for every Se ¥

IS <Trg,e>| <1.

Thus Tz ,,- can be identified with an element of (#(Ey))".

Since . is nuclear, S is a subnuclear map of &/ into E. Hence for UCE
we can find a compact disk C of & in such a way that the map S followed by
the canonical map E—Ey can be written as

S0k R,
v=1

h, lying in C and ¢, lying in the unit cube of Ey and T, ¢~ may be considered
an element of (H(Ev)).
Now we can write

<8 Trp> =30 <hyTr g, &,>.
Let 4’ be any equicontinuous subset of £. Let ¥V be the set of elements T of
K(F) such that for f' € V°, R" € &', h € C we have
b <T+iR', f>1 <1

Then V is, by definition, a neighbourhood of 0 in K(F). For every T eV we
have

‘ <hv'TR’,g’a év> | él
Therefore

|<§a TR’,3’>|§%”L¢|7

which proves that the map 7S, is continuous.
Finally we assume that & is quasi-complete. Let S run through a bound-
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ed subset of H(E), the maps § followed by the canonical map E—Ey may be
written as

20,5

with the same 7, and 1, as before. Therefore we can infer in a similar way
that 7—Sx,T is uniformly continuous with respect to the bounded subsets of
H(E). Thus the proof is completed.

From the proof of the preceding theorem we can infer the following

CororLrary. Let K, K be £-normal and nuclear. Let £ be complete. Let
E, F, G be three LCSs, G being assumed complete. Let 0 be a continuous bilinear
map of ExF into G. Suppose the convolution map of H x XK into L is defined
and B-continuous. Then any S € H(E) and T € K(F) are xo-composable and the
bilinear map (S, T)—>Sx,T of H(E)x K(F) into L(G) is B-continuous.

§ 6. Strict convolution map between two spaces of
vector valued distributions (general case)

Let & be a saturated family of bounded subsets of an LCS E. A family
S of subsets of E is called saturated if the following conditions are satisfied:

(i) if A&, then 14€& for every 1>0;

(i) if A€, then any subset of 4 belongs to &;
(iii) if A€ &, then the disked envelope of 4 belongs to &;
(iv) if A4,Be&, then AUBe&S;

(v) every one point subset of E belongs to &.

Let 0 be a separately continuous bilinear map of Ex F into G. Let & (resp. 0)
be a family of bounded subsets 4 (resp. of bounded completing subsets B) of
E (resp. F) for which for any neighbourhood % of 0 in G there exists a neigh-
bourhood ¥ (resp. U) of 0 in F (resp. E) such that 6(4, V) C W (resp. 6(U, B)C
W). Then 6 becomes &-0-hypocontinuous.

Now we shall show the following theorem which bears a very close
analogy to Proposition 38 in Schwartz [127] (p. 159).

Turorem 4. Let K, XX, £, 1M be normal spaces of distributions on RY and
E, F, G, be LCSs, where L. and G are assumed to be quasi-complete. ) Suppose
that K CH and the injection K—H s subnuclear, and that K is B-normal.
Suppose the convolution map (S, R)—S+R of I x £ into X is defined and sepa-
rately continuous. Let 0 be a separately continuous bilinear map of ExF into
G. Then any S € M(E) and T € HL(F; Bo) are xs-composable. Further, if the
convolution map =, is hypocontinuous with respect to the compact disks of 0 or
those of .L, then Sx,T € L(G).

Suppose that the ¢onvolution map *, is hypocontinuous with respect to the
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compact disks of L. Let & (resp. 0) be a saturated family of bounded (resp.
bounded completing) subsets of E (resp. F) defined above.

(a) Let S lie in a subset of type & in W(E). If T tendsto 0 in H.(F)
while lying in a Bo-equibounded subset, then ST converges to 0 uniformly in
L(G) with respect to S. In particular, this is also the case if the injection of
K into X is nuclear, and if T tends to 0 in JL(F).

(b) If S tendsto0 in M(E) and T lies in a O-equibounded subset of H(F),
then Sx,T converges to 0 uniformly in L.(G) with respect to T.

Proor. Let.S € %((E) and TRf € XK. (F) By assumption, <S e >xp € XK
for any ¢ € D and ¢ € E. The map ¢ —><S e >x¢ of E/ into X is continuous.
Taking account of the fact that X is %-normal it follows from the remark
preceding Proposition 3 that (Sx¢)7 € D;:(E) holds, so that, by Remark 3 (§2),
S and T&f become +,-composable. Let T be any element of (F; B,), that is,
T maps a neighbourhood of 0 in & into a bounded completing absolutely con-
vex subset B of F so that Fjy is a Banach space. The injection K- being
subnuclear, a neighbourhood % of 0 in & may be found so that the map 7 can
be written as

SILE®;
=

with %} in an equicontinuous subset 7/, /; in a compact disk C of Fp and || f]h B
—0 as j—>oco and >}[4;| <co. On the other hand S*¢ is locally By-bounded in
&(E). Hence, considvering T as an element of @'(E), we can define the multi-
plicative product [(S*¢)T Jo, which is written as

[(S*h)T 1o = [(Sxp) S E @)
whence, by the remark preceding Proposition 9,
@ [S*$)T T = z 3, L) G5 )T,

As k] lies in an equicontinuous subset ¥%°, the set (S #¢)k}}j-1,2.. is bounded in
D;1(E). According to Lemma 8 and the fact that f; lies in a bounded com-
pleting subset of F, it follows that the set {[(S*qﬂ) (k;& /)]sy is bounded in
D11(6), whence the right side of (1) converges in @D;:(G). Therefore S and T
are x,-composable, and by integrating both sides of (1) we obtain

2) S,T = i 2850k, R ) € D' ().

Now let us define the convolution map (S R)-»S <R of %(E) L into K(E)
by the equation <S*1R e >= <S ¢ >R, e € E. We note that S*lR forms a
bounded subset of X(E) when R runs through a compact disk of Z. In fact,

<§, ¢ > lies in a compact disk of 9%6 when ¢ runs through an equicontinuous
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disk of E'. Then by Lemma 8 the set {<S ¢ >R} and therefore the set
{S*IR} 1s bounded. Since X is Z-normal and S*lR belongs to K(E), it follows
that [(S #1R) (;Qf;)]e € D11(G). Accordingly

@) S[(S‘*lm ;@ ;) Jodw = 0 (k} GiR), f;) € C.

First we suppose that the map *; is hypocontinuous with respect to the

compact disks of 0fi. Then the map R—»O(k’ S*IR), f;) of £ into G is continu-
ous. This is because R—>0 implies S*;R—0 in K(E) by the assumption just
made, and in turn k- (S*lR)—>O in E. For any ¢ €D, as S and E;Qf; are xo-
composable,

@ @) O @)D = 8- (S35 1),
This together with (3) irtnplies that Sx,(k/®f;) € £,(G) and

5) S[<§*1R> ;@) Jod = R- (Sxo(k; R ,).

Using this we next show that i l~§*9(k4®fj) converges in Z.(G). Let R run

through a compact disk C of ,Q then the set {R-(Sxo(k;® fj))}] L2..Rec 18
bounded in G. In fact, the set {k}- (S*IR)} j=1,2,.. 18 bounded in E and f] is an
compact disk of F. Then, by Lemma 8, the set {0(k;-(§*11{), i)} i=1,2,..Rec 1S
bounded in G. It follows from (3) and (5) that the set N fiti-ie,.. 18

bounded in £2.(G). 5}1,- being convergent, élj§*9(k}®fj) converges in L(G).
=1 i=1

Now it follows from (2) that S=,T € £.(G).

Now we suppose that the map *; is hypocontinuous with respect to the
compact disks of /. Consider the convolution map =] of 7 x X/, into L, in-
duced from the map *,. The map *; is hypocontinuous with respect to the
equicontinuous subsets of XK. We define S«k' € L/(E) for any k' € K, by the
equation R-(Sxik)=K-(SxR), Re £. Now the map R—0(R-(Sxik}), f;) of L,
into G is continuous. For, if R—0 in £,, then R-(§ *1k;)—>0 in E. Noting that
the rlght side of (3) is rewritten as O(R-(S*k%), f), we can infer from (3) and
(4) that S *o(k’ (o) f,) € 2(G). Proceeding just as before, we can conclude that
S;S*o(k;Rf;) converges in L4(G), so that Sx,T € L.(G).

Now we shall turn to the proof of the cases (a) and (b) of the theorem.
Suppose that the convolution map x*;: 0 x D—X is hypocontinuous with re-
spect to the compact disks of £. Then, as proved above, S%,T € £.(G) for
every S e 1fi(E) and T € Z.(F; Bo). Let § lie in a subset U of type & in M(E),
that is, for any equicontinuous subset B’ of ¥’ the set V%’S is contained in

_ Sey .
an 4€@. Let T be in a f,-equibounded subset of #/(F) and T—0 in K.(F).
T may be written as
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%‘I/L-k}- ®ff,fr‘

with the same % and 1;, where %/ lies in an equicontinuous subset of X/,
12| <eo and {f; 7}j-1,2...7ex is contained in a bounded completing subset B
of F. T—0 implies that f; 70 for each j. Now consider the convolution map

*7 of £x rﬂ%; into 7. induced from the map *,. Then we have
6) R (S0 (k; ® ;7)) = 0(R¥1E) S, f.7).

Let R run through a compact disk C of £. By our assumption on *;, since
{k;}j-1,2,.. is contained in an equicontinuous subset of X’ it follows that
{R*/{IE}} i-1.2...rec is contained in an equicontinuous subset of 77.. As S lies in
U, the set {(Rx}k;)-S};.1,2,..rec,gen is contained in an 4€S. The map 0: Ex
F—G is hypocontinuous with respect to &. Therefore by the equation (6), if
T tends to 0 in L(F), R-(Sxo(k;Rf; 7)) for each j converges uniformly in G to
0 when R e C. On the other hand, the set {R-(Sxo(k;Qf;2)}i-1.2.. rec.5ex 1S
bounded in G. Consequently, it follows from (2) that S«,7 converges to 0 uni-
formly in £/(G) as T—0. In particular, if the injection i: X—& is nuclear, i
can be written as >34;(k;&®%;) with &} in an equicontinuous subset of X" and

7
any h; in a compact disk of & and >3|1;| <oco. If we take for T to be an ele-
J

ment of K/(F), we can write 7 in the form:
>;lf k& fi.7s

where fj,f:hj-f. As in the preceding discussions with necessary modifica-
tions the equation (6) implies that S%,7—0 uniformly in £/(G) when § lies in
a subset of type © in 7(E) and T—0 in H.L(F).

Next, let T run through a G-equibounded subset B of J.(F), and suppose
that S—0 in 7 (E). We shall show that S%,7—0 in £/(G). There exists a
neighbourhood N of 0 in & such that

\J VT CB,

7€
where B, is an element of 0. Now we can write 7= 1,k/®f; 7, where &} lie
. 7
in an equicontinuous subset of X', >}|2;| <oo and f;7 liein a B, € 0. Then
j
we can infer in a similar way as above that, when S—0 in "(E), S%,T con-
verges to 0 in £.(G) with respect to T.
Thus the proof is completed.
Remark. In the preceding theorem we have assumed that the convolu-

tion map *;: 0 D—>K is separately continuous. We note that if 2 (resp. /)
is quasi-barrelled the map =, also becomes hypocontinuous with. respect to the

compact disks of oM (resp. £). In fact, let C be any compact disk of 0. 1f B
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is a bounded subset of £, then by Lemma 8 CxB is a bounded subset of X, and
therefore absorbed in any given disked neighbourhood O0 of 0 in K. Let Q0
be the set of elements [ such that Cx/CO0. O will be a disk absorbing B. /
being quasi-barrelled, &) must be a neighbourhood of 0 in 2.

When 6 is continuous, Theorem 4 yields a result concerning elementary
convolution. However it is possible to obtain here a more general result by
relaxing a little the conditions on 7. Given a disked neighbourhood # of 0
in G there exist two disked neighbourhoods U and ¥ of 0 in E and F respec-
tively such that (U, V) W, so that we shall have a continuous bilinear map
0: Ey x.Fy—Gy deduced from 6 in an obvious way. Generally Sy, S € Z(E),
will stand for the continuous linear map of &, into £y defined as the map S;
H.—E followed by the canonical map E—~Ey. Then by the definition of the
multiplicative product ([12], p. 120) we have for any S € D'(E), T € D'(F), ¢ €
D

) (ST Jow =[So*h) Tv s,
which will be made use in the proof of the following

CoroLLArY 1. Let E, F, G be LCSs, and &, XK, £, L be normal spaces of
distributions on RY where G and L, are assumed to be complete. Let 6 be a con-
tinuous bilinear map of EXF into G and *, be a separately continuous convolu-

tion map of Wix 0 into K. I f KK and the injection K—H is subnuclear,
and if K s R-normal, then any S € M(E) and T € 2,(X; F) are *,-composable
and Sx,T € L.(G).

Further if the map *, is hypocontinuous with respect to the compact disks
of £, then we have

(a) Let S lie in a bounded subset of W (E). If T tends to 0 lying in an
equicontinuous subset of L(H; F), then Sx,T converges to 0 uniformly in L.(G)
with respect to S. In particular, this is also the case if the injection of X into
& is nuclear, and if T tends to 0 in L(K; F).

(b) If S tends to 0 in M(E) and T lies in an equicontinuous subset of
LUK ; F), then Sx,T converges to 0 uniformly in L.(G) with respect to T.

Proor. Let U, V, W be chosen as before, where ¥ is an arbitrary given
disked neighbourhood of 0 in G. Then Sy € M(Ey), Tv € (K, F)=H.(Fv; Bo).
By the preceding theorem and (7) we have for any ¢ € D

[S*8) T Jow = [(Su*d) T s € D71 (C).

It follows from this equation that {ac,,[(.?*gé)f],,} forms a Cauchy sequence in
D;1(G) for any sequence {a,} of multiplicators. Since D}:(G) is complete,
[(S+$)T 1 € D;1(G), so that S and T are *,-composable and

(§*GT)W = §U *3 TV-
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The injection X—& being subnuclear, T is written as

=33,0® )

with £} in an equicontinuous subset of X! and f ; in a compact disk of F, and
>32;|<eo. Here we may take f; in V so that f, may be the canonical image
of f;. Then

(8 SyxaTy = E/If(gv*@(k;' ® f7)-
We next show that Sx,T € £/(G). For any g’ € W°, we have
9) <Sx,T, g > = <(SxT)w, g'>

= za <Svxik, 0/ (fi, g)>
=
é <§*1k}, 0'(fi, g)>.

Each < Sy*k/, 6(f,,g)> <S8y, 0'(fj, g)>k: belongs to L. and for any
lel we have I <Syxikl, 0 (fj,g)> =k} (<SU, 0'(fi, g)>l). The set
{<SU, 8'(f;, g)>} is contained in a compact disk of X and {k}} is equicon-
tinuous in K{. Hence the set {I- <SU*1k 0'(fisg)>}iz1,2..gewo is bounded,
that is, the set {<Syxk}, 0'(Fs, &) >}or 2, rew is 0(LL, £)-bounded, and
therefore is bounded in ,Qé. £! being complete, (9) implies < S,T, g'> € L.
If g’ tends to 0 in G! lying in W°, then each ¢'(f;, g") tends to 0 in EJ, so
that < Sxk}, 0'(f5, g)> converges to 0 in £;. Therefore, it follows from (9)
that < S#,T, g’ > converges to 0 in £{. According to Proposition 8 in Schwartz
[117] (p. 41), the map g’—&<§ %,T, g’ > of G, into /! becomes continuous.
Consequently Ssx,T € L.(G).

If & and © are taken as the family of bounded subsets of £y and Fy re-
spectively, any bounded subset of 7 (Ey) is a set of type & in 7(Ey) and any
equicontinuous subset of .(; Fy) is O-equibounded. Then the cases (a) and
(b) are immediate consequences of the preceding theorem, completing the
proof.

As an immediate consequence of Corollary 1 we have

CoroLLarY 2. Let E, F, G be LCSs, and X, X, £ be normal spaces of dis-
tributions, where G and 2. are assumed to be complete. Suppose that K is nu-
clear, B-normal and has the r-topology. Let 0 be a continuous bilinear map of
ExF into G and *, be a separately continuous convolution map of K x XK. into
L. Then any S € H(E) and T € K.(F) are so-composable and Sx,T € L(G).

Further if the map *, is hypocontinuous with respect to the compact disks
of K., then we have

(a) If S lies in a bounded subset of H(E) and T tends to 0 lying in an
equicontinuous subset of K.(F), then Sx,T converges to 0 uniformly in L.(G)
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with respect to S.
(b) If S tends to 0 in H(E) and T lies in an equicontinuous subset of
KI(F), then Sx,T converges to 0 uniformly in L/(G) with respect to T.

§ 7. Examples

Let E, F, G be three LCSs, G being assumed to be quasi-complete. Let 0
be a separately continuous bilinear map of Ex F into G.

Exampre 1. Of, the space of convolution maps of & into itself, is a nu-
clear barrelled space ([37], Chap. II, p. 131). It is easy to verify that O, is
&-normal. As already indicated in Section 3 the convolution map *: Oz x Oz—
O¢ is continuous. Applying Theorem 2 to the case where X=KX=L=0,, we
obtain:

The strict comvolution map *4: Or(E) x OL(F)—04(G) 1s defined and 1is
separately quasi-continuous. Further the map is hypocontinuous (resp. con-
tinuous) whenever 6 is hypocontinuous (resp. continuous).

We shall show that for any S € OL(E) and T € Ou(F)

@ F(SxT) =[FS)FT)Jy

where J stands for the Fourier tramsform. We first note that the right
side of (1) makes sense if we consider it as a multiplicative product € D'(G)
of elements of @'(E) and &(F) respectively. F(S) is locally B,-bounded in
D'(E). In fact, let @ € D and put f=F (a) € &. We have aF(S)=F(*S).
Owing to Lemma 5, 5xS is Bo-bounded in Oc(E), and therefore F(5xS) is Bo-
bounded in (Oy)(E) and a fortiori in D'(E). Consequently, F(S) is locally Bo-
bounded in @D'(E). Therefore, considering F(T) € Oc(F) to be an element of
&(F), we can define the multiplicative product [F(S)F(T)J, € D'(6) ((12], p.
134). The bilinear maps (S, T)—>F(S*T) € D'(G) and (S, T)->[FSFT) s €
@' (G) are separately quasi-continuous ([127], p. 134). If S and T are decom-
posable: S=S®e and T=TRf, S, T € O, e € E, f € F, then we have

F(SRe)*(TRF) = FES* TR0, f)
=FSFTIR0(, f)
=[FER)FTR ).

It follows since OzQF and O, QF are strictly dense in O,(E) and OL(F)
respectively that F(Sx,T)=FS)HT) ]y for any S € OL(E) and T € OL(F).
Further we shall show that we have for any x, € R

€ F(SxeT) (x0) = 0(F(S) (x0), F(T) (x0).

Indeed, we consider the element ., € (Oy) and put ¢ =F(0,,) =e "%t € O,
where x,-¢ denotes the scalar product of x, € RY and ¢ € 5", the dual of R".
Now Sx¢ is Bo-bounded in Oc(E) by Lemma 5. Using the notations in the
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proof of Theorem 2, @(S«¢, T) € D} and S(p(§*¢’ Tdx = <8x,T, ¢>. This
yields
<Oy, F(ST)> = <, SieoT >
- g@<§*¢, T)dx

- Sw(¢®9<§> (o), T)da

- g <¢T, F(S) () >
=0(F(S) (w0), ¢-T)
=0(F(S) (x0), F(T) (x0))

Consequently we have the equation (2). (1) and (2) show that [F(S)F(T)], €
Ou(6) and [F(SFT)] (x0)=0(F(S) (x0), F(T) (x0)).

Here we have:

The multiplicative product map (S, T)—>[ ST Jo of On(E) x Oy(F) into Ou(G)
is well defined and is separately quasi-continuous and if S and T are decom-
posable, [(S®e) (TR f)1o=STR0(e, /) for S, T €Oy, e€E, f<F. Further the
map is hypocontinuous (resp. continuous) whenever 0 is hypocontinuous (resp.
continuous).

As a consequence of this assertion we can conclude the following asser-
tion, the case in which 6 is continuous is a simple consequence of the proposi-
tion in Schwartz ((127, p. 120).

The multiplicative product map (S, T)—>[ST |, of &(E)x EF) into &) is
well defined and is separately quasi-continuous. Further the map is hypocon-
tiriuous (resp. continuous) whenever 0 is hypocontinuous (resp. continuous).

In fact, let a, 7 € D such that =1 on the support of &. Now aS=7aS €
Ou(E). Since there exists an element S; € 0.(E) such that aS=%(S,). aS=
79(S1) is Bo-bounded in D'(E) as indicated above. Therefore [S7 ], makes
sense if we consider it as a multiplicative product € D’(G) of elements of
D'(E) and &(F) respectively. Next we take ay, 8; € D such that a;(x)Bi(x)
=1 in a neighbourhood of x, € RY. Since a5 € O(E) and BT € Oy(F), there
exist S; € OL(E) and T, € O,(F) such that a,S=S,) and B, T =HT,) respec-
tively. If we consider [(a,S) (/1T)]s as a multiplicative product € 0y(G) of
elements of 0,(E) and Oy(F) respectively, then from the preceding result we
have

[(@:S) (BT o(x) = [F(SDF(T 1) s ()
- 0(9(§1) (), 9(71) (x))
=0(c.(®)S (%), B1 ()T (x))
= a1 (®)B1 (@)0(S @), T (x)).
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On the other hand, if we consider [(a.S)(8:T) ] as a multiplicative product
€ D(6), [(nS) (BiT) Jy=a1/[ST ]y in D'(G), whence in a neighbourhood of x,
[(a:S) (B.T)o(x) = ()Bu(%) [ST Jo(x). Consequently, [ST Jo(aro) =0(S (o), T(x0))
for any x, € RN and [ST ], € &().

In Theorems 2 and 3 we have assumed that the convolution map *: & x
K—L or 0: Ex F—G is continuous. Otherwise it is generally not possible to
define the 6-convolution map between H(E) and K(F), or even when it is pos-
sible the 6-convolution need not belong to 2(G) as the examples follow.

ExampLe 2. Let E=(s), the space of the sequences £=(¢,),_01,2,.. of com-
plex numbers equipped with the usual topology. It is well known that (s) is
a nuclear space of type (F). We take F=(s), the strong dual of (s), which
is the space of sequences 7=(7,),-0.1,2,.. of complex numbers with only a finite

number of components not zero. We define 6(&, 7) = iénﬂn. Therefore G is
n=0

assumed to be the space of complex numbers. Then 0 is hypocontinuous, but
not continuous. Let 2, be the unit vector of (s) such that the n-th component
of ¢, is 1, but the others are 0. {3,} forms a.Schauder basis of E. Let {&,

be its dual basis in E. Then we can write &= EEnen, = E 7,6,. Now we

consider the spaces of vector valued dlstrlbutlons &'(E) and é(F) It is to be
noticed that the convolution map *: & x&—Q’ is not continuous. We shall
show that there exist vector valued distributions S € &' (E) and T € EF) which
are not *,-composable. In fact, we put

S=3t0R%, T=3>r,aR%,
n=0 n=0

where « is a positive element of @. It is easy to verify that S € &(E) and
T ¢ 8(F). Let ¢ be any positive element of @. Then an easy calculation
yields

(ST ]y = Z T_.(ga) € &.

This is not an element of D:. For, otherwise the sequence {S[(§ s )T Joct (2)dac}

would be bounded.for any sequence {«,} of multiplicators, which is evi-
dently a contradiction. Consequently S and T are not s,-composable.

ExampLe 3. Taking E as the space of the rapidly decreasing suquences
€=(£)u-01,2.. of complex numbers with semi-norms ||&], = an|$n| p=1,2,

., it is a nuclear space of type (F). Let F be the strong dual of E, which is
the space of the slowly increasing sequences 7=(7,),-0,1,2.. of complex num-

bers. We take 0(¢, 7)= ié,ﬂ?n. Therefore G is assumed to be the space of
. n=0

complex numbers. Then 6 is hypocontinuous, but not continuous. Consider
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the spaces of vector valued distributions <(E) and &'(F). Here the convolu-
tion map *: & x &' —D’ is not continuous. Then we can show that there exist
vector valued distributions S € F(E) and T € ' (F) which are not *,-composable.

Let ¢,, ¢, be chosen as in the preceding example, and put S =§i‘, 7,aXRé, € S(E)
o n=0
and T=>7_,8R¢, € &'(F) for positive a, 8 € D. Then we have for any posi-
n=0
tive ¢ € D

[S(Txd)Ts= grna (t,fxp) € &.

If the 6-convolution S%,7 is defined, we must have [ S (7’*¢)],, €L'. Butitisa
contradiction as follows:

S [S (Tg) lodn = % S (e,a5T _,R) bda
=< Sl (axh), §> = 0.

It follows from this example that we cannot generally define the convolu-
tion map x, of F(E)x OL(F) into D'(G).

ExampLE 4. Let E=& and let F=". Let 6 be the multiplicative product
map of & x &’ into @’. Then 6 is hypocontinuous, but is not continuous. Now
we shall consider two elements S =0(y—x) €& (&) and T =0+ ¥) € S ().
Since &', ¥ C 0L, it follows from Example 1 that the -convolution S,T can
be defined and belongs to 0.(@"). However, we can show that Sx,T does not
belong to (D). In fact, FS)=e 2 and HT)=e*"?. Therefore we have
0(F(S) (&), F(T)(€)=1. On the other hand F(d®1)=1, which leads us to a
contradiction: S%,7=0R1& (D).

The following example indicates some cases where the convolution map
x: K x K— L is continuous and the spaces &, K, £ satisfy the properties
stipulated in Theorem 2, which we may apply to the existence and the as-
signed continuity of the convolution map x,: H(E) x K(F)—>L(G).

ExampLe 5. We shall consider the twelve cases given in the following
table, where &, XX, £ are chosen from the classical spaces of distributions.

1
|
|
l
|
|
|
|

CovpoLe N
o
™

|
|
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x X 2
T Y 2 :
8 ¢ ¢ ¢
9 &’ &’ &’
10* & o A
11 & & &
12 & 0L 0%

In each case the continuity of the convolution map *: & x KX— /£ is easily
proved. & is a nuclear A-normal space, possesses the strict approximation
property and 2! is barrelled. Therefore according to Theorem 2 we can infer
that the convolution map x,: X(E) x K(F)— L(G) is defined and separately
quasi-continuous (resp. hypocontinuous, resp. continuous) when 6 is separately
continuous (resp. hypocontinuous, resp. continuous). It is to be noticed that in
the cases 3*, 5%, 7* 10* the spaces indicated in the last column cannot gener-
ally be replaced by the spaces D, ¢, < and & respectively. The proof may
be carried out just as in Example 4 and shall be omitted.
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