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l Introduction and Summary.

In 1959, J. Ogawa [7] dealt with the analysis of association algebra,
introduced by R. C. Bose [2~\, and the relationship algebra, introduced by A. T.
James [5], of the partially balanced incomplete block designs (PBIBD). He
obtained all of the irreducible constituents in the direct decomposition of the
relationship algebra of the design. His results, however, were concerned with
a restrictive case which might be considered to be regular PBIBD as was
defined by Bose [_1J in the case of group divisible incomplete block designs,
because a restrictive condition "BTf φTfB for all T\" was imposed on the
relationship matrices. Theorem I of this paper will throw light on the meaning
of this restriction. Another restriction imposed implicitly on the relationship
algebra of PBIBD, was that the ideal of the algebra related to the block
relationship did not degenerate to zero.

We have βucceeded in removing those restrictions and completing the
analysis of partially balanced incomplete block designs. In PBIBD, NN'
belongs to the association algebra 21 and it will be seen in Theorem I of this
paper that the magnitude of each density p of its spectral expansion in 21
determines the property of the corresponding component of the treatment
sum of squares (S. S.) to be either orthogonal to, or confounded with, or
partially confounded with, the block space. The dimension of the relation-
ship algebra 9ϊ and the unique decomposition of its unit element into mutual-
ly orthogonal principal idempotents will be given in Theorem II. Examina-
tion of the ideal related to block relationship will give an inequality which
appears in Theorem III. Although our inequality is essentially the same with
the one due to W. S. Connor and W. H. Clatworthy [β~] in a certain sense, the
former is more substantial than the latter in that it will make clear the signi-
ficance of the reduction in the lower bound of the number of blocks in a PBIBD.
It includes, as its special cases, those inequalities given by Fisher in balanced
incomplete block designs (BIBD) and by Bose [1J in group divisible incom-
plete block designs. Complete Table for the analysis of variance of PBIBD
will also be given.

2. Association scheme and association algebra.

We say, following Bose [2], that an association scheme is defined in a set
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of v elements or objects which are called treatments, if the elements of the
set satisfy the following conditions (a), (b) and (c):

(a) Any two elements of the set are either 1st, or 2nd, • ••, or /rc-th
associates (1 <m<v), the relation of association being symmetrical. Each
element a is said to be the 0-th associate of itself.

(b) Each element a of the set has m (/z/>l) i-th associates, the number
m being independent of the individual element a.

(c) If any two elements a and β of the set are i-th associates, then
the number of elements r which are y-th associates of α, and at the same
time A -th associates of /?, is p)k, the number p)k being independent of the
pair of ί-t\\ associates a and β.

If we number those elements or treatments from 1 to υ in some way but
once for all, we can define the association matrices as a matrix representation
of the association scheme as follows:

Ai=\\a*i\\, a, 0 = 1, 2, ...,*; ί = 0,l, ...,™, (1)

where

rl, if a-th and /5-th treatments are ί-th associates,

to, otherwise.

The following are known Q7] as the immediate consequences of the
definition of association scheme:

(i) Each of the vxv matrices A{ is symmetric. In particular, AO( = IV) is
the unit matrix.

m

(ϋ) ΣA, = G,, (2)

where Gv is the matrix whose elements are all unity. The relation shows that
the association matrices Ao, •• , Am are linearly independent.

m

(ϋi) AiAj = AjAi='Σpk

ijAk. (3)
k = 0

Those statements show that if we consider the linear closure Si of
matrices AO,ΛU •• ,Am over the real field, SI is (/ra + l)-dimensional commutative
algebra containing unit, which is called the association algebra of treatments
[2Γ\ [7]. We shall denote the association algebra Sί = \\A0, •••, Am~] by
indicating the basis of the algebra regarded as a vector space. Throughout
this paper, we shall denote an algebra as \jCu C2, , CJ by indicating the basis
Ci, C2, •• , Cs of the algebra regarded as a vector space in the bracket [ ] .

The association algebra Sί is completely reducible and each of its
irreducible constituents is linear. In order to decompose the association
algebra Sί into its irreducible constituents, it is sufficient to find all of the
irreducible constituents of the regular representation of Sί
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Let

Pi = \\p)i\\, * = 0 , 1 , ...,/*, ( 4 )

then the relations A{ (Ao, • •-, Am) = (AOi • ••, AJP^ (i = 0, 1, •••, m\ show t h a t the
mapping of SI onto itself defines the regular representation of the association
algebra:

(31): At-+Ph ί = 0 , l , . . , TO. (5)

The algebra Sβ generated by Po, Pi, , Pm is isomorphic to SI.
We may find a non-singular real matr ix

I Coo ' Com

c=\ ••• :, (6)
L C mO ' ' ' CmmJ

which makes all Pz diagonal simultaneously, such as

j ί = 0,l, ...,TO. (7)

The matrix C is uniquely determined apart from the order of its rows
and the proportionality factor of each row. We can choose co, = l and zOi=Πi
for all i.

The mutually orthogonal idempotents of the algebra Sβ will be obtained
as

m m

Pf = ( Σ C/Λ-.)-1 Σ cyPy, i = 0, 1, , m. (8)
u = o y = o

The mutually orthogonal idempotents of SI corresponding to Pf are, therefore,

given by

m m

Af = (^CiuZiuT1 ΣCijAj, ί = 0, 1, • •., m. (9)
« = o y = o

SI may also be expressed by indicating its ideal basis as

The rank or trace a{ of matrix Af, that is the multiplicity of the
irreducible constituents in regular representation of SI, is given by

at = t r U f ) - CiovίitduZiu)-1. (11)

Clearly,

A*+Af+ + AZ = Iv, (12)
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and

ao = tr(Aξ) = l, Y><Xi = v. (13)
ί =0

Each of the matrices Af defines an invariant subspace under 5ί in
^-dimensional treatment space Ev generated by the coefficient vectors of all
linear function of treatment parameters. These m + 1 subspaces are mutually
orthogonal to each other. Among them, the one-dimensional invariant sub-
space defined by A$=v~1Gv corresponds to the grand mean of the parameters,
and the others defined by Af are mutually orthogonal subspaces, each of which
is generated by a{ (=tr(Af)) independent coefficient vectors of treatment
contrasts. Hence, the set of matrices Af (i = l, --, m) gives unique decomposi-
tion of (v — l)-dimensional subspace of Ey, generated by the coefficient vectors
of all treatment contrasts, into m mutually orthogonal subspaces. The
decomposition is uniquely determined by the association scheme, and each Af
is the projection operator to each of those mutually orthogonal subspaces,
respectively.

3. PBIBD and its relationship algebra.

Suppose an association scheme of m associate classes is defined among
the v treatments and, consider the arrangements of these in r replications to
the plots of b blocks each of which consists of k plots.

We say the design is PBIBD if the arrangements of those v treatments,
satisfying (a), (b) and (c) in §1, satisfy the following conditions (d), (e) and

(f):
(d) Each of #( >1) blocks contains k (>1) different treatments.
(e) Each of v (>1) treatments occurs in r (>1) blocks.
(f) Any two treatments which are i-th associates occur together in

λi(>0) blocks.
v, ni9 pj Λ, 6, r, k and λ{ are called the parameters of PBIBD.
We shall number those n( = rv — bk) plots from 1 to n in some way but once

for all, and define the incidence matrices of a PBIBD such that, incidence
matrices for

treatments: Φ = ||^/Λ||, (n x v\

blocks : Ψ = \\Ψfa]\9 (nxb), and (14)

design : N=ΦΨ= \\nΛa\\, (v x b\

where

(1, if α-th treatment occurs in/-th plot,(

10, otherwise,
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1, if /-th plot belongs to a-th block,

0, otherwise,

1, if a-th treatment occurs in α-th block,

0, otherwise.
n<*a = j

There are four groups of relationship matrices corresponding to four
types of relationships induced among the plots [7]:

(1°) Identity relationship matrix: / = \\δfg\\> i.e., the unit matrix of
degree n, where δfg is the Kronecker δ.

(2°) Universal relationship matrix: G= \\gfg\\, g/g = l9 i>e., the matrix of
degree n whose elements are all unity.

(3°) Block relationship matrix: B=¥¥'= ]\bfg\\,

(1, if /-th and g-th plots belong to the same block,
where bfg = ]

(0, o t h e r w i s e .

(4°) T r e a t m e n t r e l a t i o n s h i p m a t r i c e s : Ti = ΦAiΦ/=\\ti

fg\\, ί=0,l, •-, m,

1, if / - t h a n d g-th p lo t s rece ive r e s p e c t i v e l y α - t h

where ti

fίr =•fg' and /5-th treatments which are i-th associates,

otherwise.

The following formulas are known as the immediate consequences of the
definition of the relationship matrices

ί =0

(ii) G2 = iiG, (15)

(iii)

(iv)

The algebra

uX — \1, Lr, n, 1 i, i — 1, Δ, , m) (,10;

generated by the relationship matrices, /, G, B, Ti(ί—1, 2, ,m), over the real
field is called the relationship algebra of a PBIBD [7]. It is, however,
convenient to use as the generators of the algebra the following (4*) in place
of (4°), i.e.,

m m

(4*) Tf =ΦAfΦ'(=(^ciuziuγ
ι Σ c ^ ) , ί = 0, 1, 2, • •, m.

u = 0 j = 0

It is clear that the algebra generated by (1°), (2°), (3°) and (4*) is equivalent
to3ΐ.

The following lemmas will be μseful in the analysis of the relationship
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algebra of PBIBD.

LEMMA 1. NN' belongs to the association algebra SI and can be expressed
as

m m

NN = Σ λjAj = Σ Mi, (17)
j = 0 i = 0

where the last member of the expression is the spectral expansion of NN' in Sί.
The densities

m

P / = Σ */*//, 1 = 0,1,...,™, (18)
y=o

are the latent roots of NN' and satisfy the inequality

i = 09 1 , . . . 5 7τz. ( 1 9 )

The multiplicity of pf is αz , respectively. In particular,

po = rk=it nth. (20)
ι=0

PROOF. For any pair of a and /?, the element of NN' in a-th. row and
/9-th column can be expressed as

(NN%3 = Σ ^τz,3α = Λ o ώ + λiα2i + . + ^α2«. (21)
α = l

Thus we have, AWr= Σ ^ y . The formula shows that NN' belongs to SI. We
y=o

can, therefore, express NN' by using the ideal basis of Si as the last member
of (17). The expressions (17) and (9) lead to (18), in particular, to (20).

As (NN' — PiI)Af = 0, Pi is the latent root of NN' and the column vectors
of Af are the latent vectors of NN' corresponding to the latent root P, . The
rank of Af, i.e., the multiplicity of Pz, is a{.

Since NN' is a positive semi-definite matrix, Pz is non-negative. On the
other hand, as the matrix (rk)~1NN' is doubly stochastic, the result due to
Frechet []4] on the bound of the latent roots shows that \(rk)""1Pi\^l. Thus
we obtain (19).

L E M M A 2. ( i) The m + S matrices, /, G, B, T\ (i = l , 2, •-, ni), are linearly
independent.

(ii) TtT^rδijTf, £,; = 0,l, ...,**. (22)

an) n=v-ιG.
( iv) TΐBT^δijP Tf, £,/ = 0 , l , ...,m.

PROOF. TO prove (i), it is sufficient to prove that /, B, To, 2\, , Tm are
linearly independent. It may easily be proved by the definition of B and T{
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with r > l and k>l. As it is easy to prove (ii) and (iii), we shall omit to do
so. The formula (iv) may be proved by using (17) as

Ύ\BΎ) = ΦA

Each Tf (ί = 1, ..., m) is the relationship matrix corresponding respec-
tively to Af. The column vectors of the former define an invariant subspace
under ΦWΦf in the ^-dimensional observation space En generated by all of the
coefficient vectors of the linear functions of observation vector. The projec-
tion operator to the subspace is r~ιTf. The subspaces defined by Tf, Tf, • ••,
Tl are mutually orthogonal to each other and correspond to those defined by
Af, A\, • -, Al in Έυ, respectively. These subspaces are, of course, orthogonal
to the subspace defined by Tξ (or G) corresponding to Aξ.

4. Analysis of the relationship algebra.

The relationship algebra of a PBIBD is generated by symmetric matrices,
and therefore it is completely reducible. All irreducible components of this
algebra have been obtained by Ogawa [7] under certain restrictive conditions
such that, BTf φ TfB for all T? and, though implicitly stated, the ideal
corresponding to B does not degenerate to zero. We shall present here the
general results free from any of these restrictions. The following theorem
will serve to complete the decomposition of 3ΐ in relation to the treatment
relationships.

THEOREM I. Each of the components of the treatment sum of squares (S.S.)
which corresponds respectively to each of the mutually orthogonal families of
treatment contrasts induced by the association scheme, can be classified into one
of the following three cases according to the magnitude of the corresponding
density P in the spectral expansion of NN':

(A) Orthogonal case. The conditions P{ = 0 and BTf (=Tji?) = O are equi-
valent. In this case, [~TjQ is the one-dimensional two-sided ideal of 9ΐ, and the
principal idempotent of the ideal is r~1Tf. The component S. S. of <%{ degrees of
freedom corresponding to Af and being defined by r~ιTf is orthogonal to the
block space.

(B) Confounded case. The conditions p, = rk and BTf ( = T\B)=fcΓf (ί φ 0)
are equivalent. In this case, HTf ] is the one-dimensional two-sided ideal of 9ΐ,
and the principal idempotent of the ideal is r"1 Tf. The component S. S. of a\
degrees of freedom corresponding to Af and being defined by r~1Tf is completely
confounded with the block space.

(C) Partially confounded case. Three conditions; 0<P ί <rA:; BTf φTfB;
and Tf, BTf, TfB, BTfB are linearly independent', are equivalent. In this case,
[Tf, BTf, TfB, BTfB~] is four-dimensional two-sided ideal of 3ΐ and is isomor-
phic to the complete 2 x 2 matric algebra. The principal idempotent of the ideal
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is

Γ/C
λ—(kTf -BTf - T\B + -^-BTfB). (23)

The component S. S. of 2α* degrees of freedom corresponding to A] and being
defined by £f(2) is partially confounded with the block space, the confounding
coefficient being Pi/rk. The non-principal idempotent Ff(1) of the ideal being
orthogonal to the block space is

( l ) ( l ) (24)

The residual idempotent of the ideal being orthogonal to Ff(1) and confounded
with the block space is

B^ = ~BTfB. (25)

The degrees of freedom of these component idempotents are α*.
As to the occurrence of these cases in a PBIBD, we can state the following:
(i) When and only when a PBIBD is connected, there occurs no component

of the treatment S. S. which is completely confounded with the block space.
(ii) When and only when a PBIBD degenerats into the complete block

design, all components of the treatment S. S. cCre orthogonal to the block space.
(iii) In a PBIBD with three or more associate classes, all of the cases (A),

(B) and (C) may occur simultaneously.

The following seven lemmas will be useful in the proof of this theorem.

LEMMA 3. The condition P{ = 0 is necessary and sufficient for the condition

PROOF. Suppose pf = 0, then Lemma 2 shows that TfbTf = P{Tf = 0. It
follows that the symmetric matrix BTfB is nilpotent of order 2. We have
therefore BTfB=0. Using the results we can prove by similar arguments as
above that BTf + TfB=0. Multiplying by B from the left, we have BTf = 0,
and from the right, we have TfB=0.

Conversely, suppose BTf = 0, then 0 = T\BT\ = P{Tf. As Γf φO, it follows
Pi = 0.

LEMMA 4. The condition Pi=rk is necessary and sufficient for the condition

PROOF. If we replace B in Lemma 3 by M — B, the lemma will easily
be proved.

LEMMA 5. Any one of the following four conditions is necessary and
sufficient for the remaining three.
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(i) The matrices Tf and BTf are linearly dependent.
(ii) The matrices Tf and B are commutative, i.e., TfB=BTf.
(iii) 577=0 or BTf=kTf.
(iv) Pi = 0 or Pi = rk.

PROOF. We shall prove the lemma along the following steps, such as,
(i)->(ii)—•(iv)<-»(iii)->(i). Suppose that the condition (i) holds, then there exist
some constants a and β, not both zero, and aTf + βBTf =0 holds. As we can
assume βφO without loss of generality, we have BTf = aTf for some constant
a. The expression shows that TfB=BTf, because the matrices Tf and B are
both symmetric. Accordingly, the condition (i) implies the condition (ii).

Suppose that the condition (ii) holds, then multiplying both members of
TfB = BTf by TfB from the left and by Tf from the right, we obtain the
equation (rk — Pi)PiTf = 0. As TfφO, we obtain P, = 0 or Pi=rk. The condition
(ii), therefore, implies the condition (iv). Lemmas 3 and 4 show that the
conditions (iii) and (iv) are equivalent. It is easy to see that the condition
(iii) implies (i).

LEMMA 6. The condition; Tf and BTf are linearly independent; is
necessary and sufficient for the condition; Tf, BTf, TfB and BTfB are linearly
independent.

PROOF. Assume that, Tf and BTf are linearly independent and for some
constants a, b, c and d, we have

aTf + bBTf + cTfB + dBTfB = 0. (26)

Transposing (26), we have b = c. Multiplying (26) by Tf from the right, we
have (ar + bP{)Tf + (br + dP^BTf =0. As Tf and BTf are linearly independent,
we have

. ar + bPi = 0, br + dPi = O. (27)

Multiplying (26) by TfB from the left and by BTf from the right, we have

(a + 2bk + dk2)P2

iTf = 0 . (28)

As Tf is not equal to zero, we have

(a + 2bk + dk2)P2

i =0. (29)

Lemma 5 shows that, under the assumption, P{ is equal neither to 0 nor to rk.
Thus, using (27) and (29), we have a=b(=c) =d=0. Tf, BTf, TfB and BTfB
are, therefore, linearly independent.

The converse is clear and the proof is complete.

LEMMA 7. Any one of the following three conditions is necessary and suf-
ficient for the remaining two.
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(i) A PBIBD is connected.
(ii) There exists a positive integer p such that all elements of the matrix

(NN')P are positive.
(iii) Maximum latent root P0 = rk of the matrix NN' is simple.

PROOF. Bose and Mesner [2Γ\ has pointed out that (iii) is necessary for
(i). We shall, therefore, prove that (i) is necessary for (ii) and (ii) is
necessary for (iii).

The condition (ii) states that, for any pair of a and /?, we have,

((NN')p)Λβ = 1 ] nΛai nΛiai nΛlAi nΛ l β n-βa > 0. (30)
a1aia2"-ap-iap v v v

As every element of the matrix N is non-negative, the inequality (30) shows
that there exists at least an alternately associated treatment-block chain:

a, au au a2, α 2 , ••-, ap-U ap, /?, (31)

such that,

nΛai naiOl nΛla2 - - - nΛp_ iapnβap > 0. (32)

Hence the design is connected. Thus (i) is necessary for (ii).
From (17) of Lemma 1, we have

(NNΎ = (rk)p [At + Σ (-^t)PΛf ]. (33)

Suppose that the condition (iii) holds. Lemma 1 shows that the inequalities
0<Pi/rk<l hold for all P, except Po. Thus, for any positive number ε and for
any pair a and /?, we can choose an integer p such that the inequality

((NNγ)Λβ> (rkf {~- - ε) (34)

holds. The condition (ii) is, therefore, necessary for the condition (iii).

LEMMA 8. (i) BIBD is always connected.

(ii) PBIBD is not always connected.

PROOF. AS fc>l, λ is necessarily positive in a BIBD, every element of
NNr is positive. Hence, by Lemma 7, BIBD is always connected. In the case
of a PBIBD, not all of the λj are necessarily positive. It is, therefore, easy to
illustrate an unconnected PBIBD when 7?z>2.

LEMMA 9. A PBIBD is reduced to a complete block design if and only if
Oo=rk, and Pi = 0 for all ί=l, 2, , m.

PROOF. If a design is complete block, then
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b ... b^
v = k, b = r and NN = \ • •• !. (35)

[b ... b)

The latent roots of NN are, therefore, P0=rk and Pi = 0 for all i = l, 2, • ••, m.
Conversely, if the conditions P0=rk and P{ = 0 for all i — \, 2, , τ?z hold, then
we have

J^ )P0A*=J^Gv. (36

The expression (36) implies that all of the elements of NN' are rk/v> Especial-
ly, for diagonal elements, we have rk/v=r. Thus we have v = k and hence the
design is complete block.

Proof of Theorem I.
Lemma 1 shows that it is possible to classify the spectral densities or

latent roots p, of NN', corresponding to A] (ίφθ\ into one of the three cases
(A): ρf = 0, (B): Pι = rk, and (C): 0<P f <r*.

(A) Lemma 3 shows that the condition Pi = 0 is necessary and sufficient
for the condition BTf(=TfB) = 0. In this case, ITf = Tfl= T*i9 BTf = TfB=0,
GTf = TfG = 0 and TfT^rd^Tf show that [Γf] is the one-dimensional two-
sided ideal of 9ΐ and, evidently, r"1 T\ is the principal idempotent of the ideal.
The relation BT\ (= TfB) = 0 shows that the space generated by the row (or
column) vectors of Tf is orthogonal to the block space. The component of
S. S. with ai(=tr(r"1Tf) = tr(Af)) degrees of freedom corresponding to Af
and being defined by r"1 Tf is orthogonal to the block space.

(B) Lemma 4 shows that the condition P{ = rk is necessary and sufficient
for the condition BTf( = TfB) = kTf. In this case, ITf = Γf/= Γ?, BTf = TfB=
kTf, GTf=TfG=0 and TjTf =rdijT*i show that [_TfJ is the one-dimensional
two-sided ideal of 9ΐ and, evidently, r~ιTf is the principal idempotent of the
ideal. As k~lBTf=k-1TfB=Tf, the component of S. S. with a{ degrees of
freedom corresponding to A\ and being defined by τ~xΎ\ is completely
confounded with the block space.

(C) Lemma 5 shows that the condition 0<Pz<r& is necessary and
sufficient for the condition BTfφTfB and, consequently, Lemma 6 shows that
Tf, BTf, TfB, BTfB are linearly independent. In this case, since the left
representations of the generators of 9ΐ:

- 1 0 0 O Ί

ILTIBTI TfB,BTfB2 = {Ύf,BTf, TfB,BTfB^\ °Q J J J I,

Lo o o i J

i - o o o o Ί

G[Tl BTf, TfB, BTfBΓ\ = {Ύf, BT], TfB, BTfB~]\ J J J J |,
L 0 0 0 0 J (37)
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Γ 0 0 0 0 η

•f, BTf, TfB, BTfBj = ITU BTf, TfB, BTfBj\ J J Q 0 '

0 0 1 fc -

- r P, 0 0
0 0 0 0

| [Γf, BTf, TfB, BTfBj = [Γf, 5Γf, Γ?5, BTf 0 0 r

as well as the right representations of the generators of 9ΐ in transposed
form of (37) hold, the subalgebra [_Tf, BT$, TfB, BTfB~} is a four-dimensional
two-sided ideal of 3ΐ. It can be seen that the ideal is irreducible and is iso-
morphic to the complete 2x2 matric algebra, because we can find a matric
basis {fij; ί, j = l, 2} of this ideal satisfying fijfki = δjkfn for all ί, j , k, Z = l, 2
by using (37) as shown in the following:

( 3 8 )

It can be seen that the principal idempotent Ef(2) of. the ideal is (23), its trace
being 2α,. The relation {r'ιTf —k"ιB)2Tf =(l — Pi/rk)Tf shows that each vector
of the subspace generated by the column vectors of Tf is partially confound-
ed with the block space with constant confounding coefficient Qi/rk [6].

The decomposition of the idempotent E'f(2) into two, though non-principal,
symmetric idempotents, one of which is orthogonal to the block space and
the other is confounded with the block space, will give Ff(1) and Bf(1) as was
described in (24) and (25). The degrees of freedom associated with both Ff(1)

and Bf(1\ i.e., the traces of those idempotents, are a{.
Lemma 7 shows that when and only when the design is connected, the

case (B) can never occur. Lemma 9 shows that when and only when the
design is complete block, only the case of (A) can occur. A design composed
of the direct arrangement of two singular group divisible designs {Y\ is an
example of PBIBD with three associate classes in which all of the cases (A),
(B) and (C) occur simultaneously.

Now, we shall give the direct decomposition of the relationship algebra
9ΐ into its irreducible components. To this end, we shall rearrange P{ as well
as corresponding A] in (17) according to the magnitude of p, as follows:
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(39)

[Pi = rk, i = c + 1, , rn.

In the following, we shall use the suffix u exclusively for the orthogonal parts,
the suffix I exclusively for partially confounded parts and the suffix j
exclusively for confounded parts.

The principal idempotent Eψ of the one-dimensional two-sided ideal [6Γ]
of 3ΐ is, of course,

E^=\G. (40)

The principal idempotents £* ( 1 ) (M = 1, •••, s) and £f(1) (; = c + l, •• , m)
corresponding respectively to the one-dimensional two-sided ideals Ĉ ΠΠ a ^ d
CΓjΠ, have already been mentioned in Theorem I as

Ei^=~T*9 E*jV=~~Tl (41)

The principal idempotent Ef(2) corresponding to the four-dimensional two-
sided ideal [Γf, BΓf, Γf£, 5Γf5] has also been given in (23) of Theorem I.

In order to obtain the remaining irreducible two-sided ideals of 9ΐ and
their principal idempotents, we shall consider the difference algebra of 9ΐ
m o d u l o (G, Tf;i = l, •••, m\ i.e.,

?R-(G9T*9T*, ..., Γ*) (42)

where (G, Tf, Γ|, •••, Γ^) is the ideal of 31 generated by G and 77(*' = 1> ••-, TTC)

and the principal idempotent of the ideal is Ec^ + ^E*a)+ Σ £;f(2)+ f ] E| ( 1 ) .

In general, this difference algebra is isomorphic to the algebra [7, 5 ] , i.e.,
the algebra generated by / and B. The latter can be decomposed into the
direct sum of two mutually orthogonal one-dimensional two-sided ideals [ 5 ]
and [J — k~ιB~}, and their principal idempotents are k~ιB and (I — k~1B),
respectively. In some cases, however, it may happen that the ideal of the
difference algebra corresponding to [_B~] degenerates into the null algebra,
though the ideal corresponding to [J—k~ιBΓ\ cannot degenerate into null
algebra because r and k are both greater than 1. In such a degenerate case,
the algebra 3t —(G, Γf, & = 1, , m) is one-dimensional, and is not isomorphic
but homomorphic to the algebra Q/, BΓ\.

The principal idempotents Eψ and Re

Ό of the ideals of 31 corresponding
to the principal idempotents k'1 B and I—k~ιB of the difference algebra may
be obtained by dropping the modulo G and Tf (ί = l, , m) of the following:
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m o d G, Tf; ί = 1 , •••, m. (43)

The results may be expressed as

where

= -f-B-F2,

(44)

± 5*
/ = s + 1

and

1 = s + 1, •••, c,

M = 1, .-., s,

since £^x), E*υ, JP2 and F 3 must satisfy the following equations:

Σ Σ
0 -

We may summarize the results obtained so far in the following theorem.

THEOREM II. The dimension of the relationship algebra of a PBIBD with
m-associate classes is /τz + 3c?+2 or m+3d-\-3 according as the idempotent E$ is
null or not, where d(=c—s) is the number of treatment components which are
partially confounded with the block space.

The decomposition of the unit element of the relationship algebra 9ΐ into
mutually orthogonal idempotents
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I = E%> + Eιf + E™+±E*W+ Σ #? ( 2 ) + Σ £? ( 1 ) (45)
«= l / = s + i y = c + i

is unique, where Eψ may or may not degenerate into null.

The decomposition of the idempotent 2?f(2) (Z = s + 1, •••, c) of four-dimen-
sional ideal [rf, 5Γf, ΓfB, £Γf J3] into two mutually orthogonal idempotents
is not unique. It may, however, be relevant to decompose Ef(2) into two
mutually orthogonal npn-principal idempotents in relation to the block
relationship as

{ \ ) \ (46)

where {I-k-1B)E^2)=F^ι) and k'1 BE*(2) = B*(1) cited in (24) and (25). The
former is the idempotent which defines the component of treatment S. S.
corresponding to A\ and orthogonal to the block space, and the latter is the
idempotent though corresponding to A\ but being confounded with the block
space.

In general, the rank or trace of a non-null symmetric idempotent is a
positive integer. The idempotent Eψ may, as was cited above, degenerate
into null. We can, therefore, state that the rank or trace of Eψ is a non-
negative integer. Enumerating the trace of Eψ we obtain the following
theorem.

THEOREM III. For PBIBD, the inequality

b>v-±au (47)

« = 1

s

holds, where ^au is the sum of the degrees of freedom of the components

of the treatment S. S. which are orthogonal to the block space.

The inequality (47) is more substantial than the one given by Conner
and Clatworthy [3]. It is a generalization of Fisher's inequality for BIBD to
PBIBD and, of course, includes some inequalities which appears in Bose and
Connor £1Γ\.
5. Analysis of variance for PBIBD.

We are considering PBIBD in which the observation vector x = (xu x2,
•.., xn) satisfies the linear model

x=jHr + Φv + Ψβ + e, (48)

where ϊ is the general mean, r' = (ri, ••, rυ) is the treatment parameter vector
and β'=(βu •••,&) is the block parameter vector being subjected to the
restrictions



Source of variation

Treatments,

eliminating

blocks

Blocks,

ignoring

treatments

Treatment-

components

Table I. Analysis of variance

Families of
treatment contrasts

Orthogonal

Partially
confounded

Confounded

Total

Orthogonal

Partially
confounded

Confounded

1st—5-th

s-th~c-th

(c+l)-th~ m-th

1st—s-th

(s+l)-th~ c-th

(c+l)-th~ m-th

Remainder

Total

Intra-block error

Total

Idempotents

E u v

^ ^

EUΐ>

kB nG

E.v

for PBIBD with m-associate classes

d. f.

/

*j

a*

b-l

aE

n-\

S. S.

x'Ff^x

by substract.

*(4-*--H*
by substract.

- • ( ' - : °>

Expectation of mean squares

_ _ ^ — ^

+ Wβ'NΆ*Nβ)+σ\ Z = 5+l, ,c

-^{r^'A*! +2rβ'NΆ*jτ

+ β'NΆ$Nβ) + σ2, j=c+\, ,τn

^β^IB~Σ±N'A*N-Σ~kN'Aμ)β + (r>

~b^T [-^'NN'τ + 2β'N''r+kβ'β} + σZ

<r2

re_l (/•τ/τ+2τ/7Vi8 + A:iS/i8)+σ-2

3.
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l ] r α = 0 and Σ/9α = 0, (49)
«=1 α = l

respectively, and e' = (ei, •••, ew) is the error vector being normally distributed
with mean vector zero and covariance matrix 62In. Φ and Ψ are the incidence
matrices defined in (14) and j ^ = (l, 1, •••, 1).

The complete table of the analysis of variance for this design will be
given in Table I.
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