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l Introduction.

In the present paper, we are concerned with error estimation for some
accelerated iterative processes for numerical solution of equations, the round-
off errors committed in actual computation being taken into consideration.
From our results, some remarks will be made on the use of these formulas
in actual computation.

For simplicity, we suppose the equation is given in the form

(1.1) x = <P(x\

where φ(x) is continuously diff erentiable in the closed interval /.
We assume that

(1.2) 0<\φ/(x)\^K<l i n /

and that

(1.3) S{h: μ - ^ i l ^ y ^ - |ai-*o |} C /

for xo e I and xι = φ(x0). Then it is well known Q2] that

1° the iterative process

( 1 . 4 ) Xn+ι = <P(χn) (n = 0, 1 , 2 , . . . )

can be cont inued indefinitely so t h a t xn e S (ra = l , 2, . ••);

2° t h e sequence {xn} (Λ = 0, 1, 2, ...) converges in 5 and l i m ^ = ic satisfies
W->oo

the equation (1.1);

3° x = x is the unique solution of (1.1) in /.

As is well known, the convergence of this classical iterative process (1.4)
(in what follows this process is abbreviated as Cl-process) is not fast when
K is not small. To rescue this fault, some methods are devised to accelerate
the speed of the convergence of the above iterative process.

One of these accelerated processes is Aitken's δ2 process [1, 3, 4, 5]. It
is based on using the function
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in place of the given function φ(x). One process is to predict the root x by

(1.6) Xn+2 = Φ(Xn),

where

(1.7) xi+ι = <P(xi) (ί = 0, 1,2, ..., τ ι-1) .

In what follows, we shall call this process Aitken's predictive process or
briefly the AP-process. Another process is the iterative process:

(1.8) χn+i = Ψ(χn) (n = 0,1,2,..-).

This process will be called Aitken's iterative process or briefly the Al-process
in what follows.

Aitken's processes can be modified by using the function

d9) Ψ(x) = x

in place of ψ(χ). This modification is suggested from the fact that

Φ(X) = X~ φ{<P{x)}-2φ{x) + x {<P(x) ~x}

for x^x. Corresponding to the processes (1.6) and (1.8), there are conceived
the predictive process

(1.10) Xn,l = V(Xn)

where

(1.11) Xi+i = H*i) (i = 0 , 1 , 2, . . . , Λ - 1 )

and the iterative process

(1.12) xn+1 = Ψ(xn) (TΪ = 0, 1, 2, ...).

In what follows, these are called the modified Aitken's predictive process
(MAP-process for short) and the modified Aitken's iterative process (MAI-
process for short) respectively. Evidently the MAI-process is nothing but
Newton's process applied to the equation

(1.13) φ(x)-x = 0.

The above modified Aitken's processes can be simplified in analogous way
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as in Newton's process. Namely using the function

(1.14) Φ(χ) = x-k{φ(x)-x}

in place of ψ{%\ where k is an arbitrary number such that

<"» *-F5FΓ
there are conceived the predictive process

(1.16) χn.ι = Φ(χn)

where

(1.17) Xi+ι = <P(xd (£ = 0, 1,2, ..., τ ι -1)

and the iterative process

( 1 . 1 8 ) Xn + l=Φ(Xn) (71 = 0 , 1 , 2 , . . . ) .

In what follows, the former is called the simplified Aitken's predictive pro-
cess (SAP-process for short) and the latter the simplified Aitken's iterative
process (SAI-process for short). The latter process is nothing but the simpli-
fied Newton's process applied to the equation (1.13).

The geometrical meanings of the above accelerated processes can be
readily seen from Figs. 1-3.

In the present paper, assuming

(1-19) \(Pf{ocι)-φί{x2)\^L\xι~x2\

for any xux2e /, we shall seek the error estimates for the approximate roots

y =χ

y = φ(χ)

\ X %n

Fig. 1 AP-process

Xn Λ / ί + i X 3

Fig. 2 MAP-process
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Mope of h n e = l + * JΓ

y =x

y = ψ\χ)

Xn+ι X Xn+ι

Fig. 3 SAP-process

of the given equation (1.1) obtained actually by the above accelerated pro-
cesses. And, from these error estimates, some remarks will be made about
using the accelerated processes for numerical computation of the roots of the
equation.

In the next paragraph, in preparation for subsequent discussions, there
will be described briefly the results of Urabe [6, 7] concerning the actual Cl-
process, namely the Cl-process accompanied with the errors unavoidable in
actual computation of φ(x).

In the subsequent paragraph, the accelerated processes described above
will be discussed in order.

2. The results of Urabe on the actual Cl-process.

Let ε be the bound of errors committed in computation of φ(χ). Due to
the errors in computation of Ψ(χ\ there is obtained the sequence {%*} in the
actual Cl-process and this sequence {#*} differs in general from the sequence
{xn} obtained by the ideal Cl-process (1.4).

Let us write

(2.1) **+1 = φ*(χϊ) = φ(χ*) + εn (n = 0, 1, 2, ...),

then, by our assumption, it is evident that

(2.2) |εĵ ε.

The results of Urabe are as follows.
Assume

(2.3)
K
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where χt=χ0 and

(2.4) δ=T=^'

Then,

1° the iterative process (2.1) can be continued indefinitely so that ^ e H

2° after a finite number o£ repetitions, the iterative process (2.1) attains
the state of oscillatory numerical convergence (the state of ONC for short),
namely the state where the sequence {x*} oscillates taking a finite number
of values

3° for any ** in the state of ONC,

(2.5) | * ί - 5

4°

(2.6)

provided the iterative process (2.1) is stopped by the criterion

*n * i ^ l_R >

Recently Urabe [7] has generalized the above results replacing the as-
sumption (1.2) by a little more general one:

(2.8) \φ(Xι) - <P(x2)\<K(xu x2) |*i - * 2 1

for any xu x2 e /, where

(2.9)

The results of Urabe are as follows.

Put

δ

) Vp+ι={x: \x-x\^dp}9

J

i Kp+ι = l.u.b. K(x, x) (p = 0, 1, 2, .),

then there exist the transfinite limits ί, V and K such that
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(2.11) \v={x: <δ},

I K = lim Kp = l.u.b. K(x, %)

and it holds that

(2.12)

for x* in the state of ONC.

Further, if we put

(2.13)

then there exist the transfinite limits δ, V and K such that

(2.14)

Vp+i = {x' \χ — χ\ f

Kp+1 = l.u.b. K(x, x) (p = 0,1, 2, ..),

V = {x: \x — x <!(?},

Zp — l.u.b. K(x x)

for x%+1 satisfying (2.7) and it holds that

(2.15)

\x%+1-x\

a + ε

Ka

1 —it.

3. The actual AP-process.

In the present paragraph, an error estimate for the value obtained by
the AP-process is sought first and later some remarks will be made on using
this process.

As is seen from (1.6), the AP-process is carried out in the actual compu-
tation as follows:

(31)

where

(3.2)

= x*+2 -

(ί = 0, 1,2, . . . , *
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and yjn is a round-off error caused by computation of kn(x*+2—x*+1).
Let us suppose the initial Cl-process (2.1) is stopped by the criterion of

the form (2.7) and there holds an inequality

(3.4) O<0<\xt+1-xt\^a

actually for the computed values x* and #*+1. Then, by §2, the inequalities
(2.6) hold for the present x* and #*+1.

Now, from (3.1) and (3.2), it holds that

(3.5) χ*+2 - x = {(1 - kn)φ'{ξ) + K) (**+1 - x)

where ξ e (x, χ%+1). Here the symbol (3c, x%+1) means the open interval with
the end points x and x%+1 regardless of their magnitude.

Let us rewrite kn as follows:

(3.6) fc, = - ^ y ,

where

_ v *

(3.7)
'n + 2 xn+l

and ξ± e (Λ;*, Λ * + 1 ) . Then, from (1.2) and (3.4), it follows readily that

provided ε<^β.
On the other hand, by (1.19), (2.6) and (3.4), it holds that

Then it follows that

\{l-kn)φ'{ξ)

Thence, using (2.6), from (3.5), we obtain
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1 r L L 2ε
Co.») x*+ 2 — at < , K—- -ϊ-—j^- a + --, j ^ - ε + - 5 -

The assumption that ε<<β is a natural one, for,

1° otherwise, in computation km many significant figures may be lost for
the denominator and there may arise an overflow in the computer as will be
shown in the example in the end of the present paragraph;

2° the AP-process is expected to be more effective for prediction of the
solution than the initial Cl-process and this means in the actual computation
that x*+2 is exact enough even if x*+2 is not so exact or, in other words,
I #*+1 — #* I is not so small.

From such a point of view, in what follows, we assume

(3.9) l>α-/?>ε.

Then (3.8) can be written approximately as follows:
J Ίζ I i Jζ

(3.10) \x*+2-x\<: (i_Kγ oc2+ ( i- jgy £ + K l

This is the desired error estimate for x*+2 obtained actually by the AP-process.
Now, from (3.6) and (3.7), it is evident that

Further, from (2.1) and (3.4), it is evident that

Therefore yn is of the same magnitude as ε.
Then, from (3.10), it is seen that

(3.11) * * + 2 - * = O(e)

if a is chosen so that a = 0(ε*). Since our computation is carried out within
the error bound O(ε), we can not expect to be able to obtain the values more
exact in order than %*+2 obtained just above.

For x*+2 obtained by the Cl-process (2.1), it is readily seen from (2.6)
that
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(3.12) | Λ * + 2 _ * | ^ _ ^ α + _ l _ e .

The right member of this inequality is O(a) due to (3.9). Consequently it is
evident that

(3.13) l * ί + 2 - * l > l * * + 2 - * l ,

which implies the AP-process really accelerates the iterative process in the
actual computation.

From (3.10), it is evident that

\ χ * + 2 - x \ < d κ y a

approximately when α^O(ε^). However, even in this case, it is needless to
say that (3.13) holds.

Example.

<K*) = Λ; - 0.5*2 + 0.04.

We assume that the computation is always carried out correctly to 8
decimal places, and we consider the Cl-process in the interval I[0.28, 0.30]
starting from Λ;0 = 0.29. Then evidently

K=0.72 and L = l.

Since

we see that

ί = " 3 τ x io~8~ 2 7 x lo"8

Therefore, since x* = Xl = 0.28795, (2.3) is Valid, because

0 79

-^4f- x 0.00205 + 5.4 x 10"8 < 0.00795 < 0.01205.

By the actual computation, we have Table 1.

For 7a = 9, 10, ..-, it is readily seen that

Therefore, by (3.10), we have the error estimates en for x* as is shown in
Table 2. In Table 2, for comparison, the true error en for x* are also shown.
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Table 1. Table 2.

n

9

10

11

12

13

14

15

16

17

18

19

20

21

38

39

40

x
n

0.2831

0. 2830

0. 2830

0. 2829

0.2829

0.2829

0. 2828

0. 2828

0. 2828

0. 2828

0. 2828

0. 2828

0. 2828

0. 2828

0. 2828

0. 2828

9592

9595

2429

7291

3607

0966

9072

7714

6740

6041

5540

5181

4923

4273

4272

4272

xt+i-

-0.0000

-0.0000

-0.0000

-0.0000

-0.0000

-0.0000

-0.0000

-0.0000

-0.0000

-0.0000

-0.0000

-0.0000

-0.0000

-0.0000

0. 0000

0. 0000

9997

7166

5138

3684

2641

1894

1358

0974

0699

0501

0359

0258

0185

0001

0000

0000

0.2828 4290

0.2828 4274

0.2828 4273

0. 2828 4279

0. 2828 4270

0.2828 4273

0. 2828 4269

0. 2828 4264

0.2828 4272

0.2828 4273

0.2828 4264

overflow

overflow

0.2828 4272

n

11

12

13

14

15

16

17

18

19

20

21

10
8
xe

ra

50

34

26

21

19

18

18

17

17

17

17

10
8
xe

n

19

3

2

8

- 1

2

- 2

- 7

1

2

η

True value £ = 0. 2828 42712-..

From Table 2, we see t h a t the error estimates given by (3.10) are considerab-

ly good and t h a t the values x\λ, xf2, •••, Λ*I a r e accurate enough though the

number of steps in the Cl-process is not large and the values #*1 ? x*2, •••, #*i

obtained by the Cl-process are far from the t rue value.

Table 3 shows t h a t the overflow arises actually in the computer for com-

putation of x%69 x%8, xξ9 and the indefinite form appears for χ%l9 a*2, •••.

Table 3.

| n

33

34

35

36

37

38

39

40

41

•

•

χ
*

0. 2828 4282

0. 2828 4279

0.2828 4277

0.2828 4275

0.2828 4274

0.2828 4273

0.2828 4272

0.2828 4272

0.2828 4272

•

•

- 0 . 0000 0003

-0.0000 0002

-0.0000 0002

-0.0000 0001

-0.0000 0001

-0.0000 0001

0. 0000 0000

0.0000 0000

0. 0000 0000

•

•

x
%

0.2828 4269

0.2828 4274

0. 2828 4273

overflow

0.2828 4273

overflow

overflow

0. 2828 4272

indefinite

•

•

•

Remark. As is seen from the results of the present paragraph, in actu-
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al application of the AP-process, it should be kept in mind that we should not
repeat the initial Cl-process too many times. It is most desirable for effective
use of the AP-process to stop the initial Cl-process in the state that | # * + 1 — x* |

4. The actual Al-process.

By (1.8), the Al-process is carried out in the actual computation as
follows:

(4.1) ϊ* + 1 = p* {?*(**)} - kn\jP* {?>*(%*)} - ^*(2*): + %,

where

and Vn is a round-off error caused by computation of kn\jP*:{^*(£*)} — ̂ *(^*)H
Since kn is of the same form as km as is remarked in the preceding para-

graph, the iterative process should be stopped before | <?*(£*) —£*| becomes
so small that it may be O(ε). Hence we suppose that the Al-process under con-
sideration is stopped in the state where

(4.3) 0 < 0 : £ | ?*(**)-a* | ^ α

and that

(4.4) ε</?.

Now, as is seen from the proof of (2.6), it is valid that

(4.5)

for any Λ;*

(4.6)

such that

— x

GO

1-.K

^Kα + ε
1-ίΓ

Then the results in the preceding paragraph are valid if x*9 #*+1, Λ;*+2 and
x*+2 are replaced by £*, ^*(Λ*), <?* {<?*(££)} and x%+ι respectively.

Thus, from (3.8) and (3.10), for the Al-process under consideration, we
have

(4.7)
2ε—1
β J
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1 \ 1
1-K ε + -

2 ε

and, in case a ~ /9,

(4.8) 13
L£

£ +

are the desired error estimates for the values £*+1 obtained by the AI-
process.

As is seen from comparison of (3.10) with (3.12), the AP-process once
applied yields an acceleration of the Cl-process, consequently the Al-process
which is a repetition of the AP-processes yields an acceleration of the AP-
process and accelerates the Cl-process more than the AP-process.

Example. The Al-process applied for the example of the preceding
paragraph.

Table 4 shows the results of the actual computation.

Table 4.

n

0

1

2

3

0. 2900 0000

0. 2829 0598

0.2828 4266

overflow

<p*(χ$)-χϊ

-0.0020 5

-0.0000 179

0.0000 0001

10
8
xe

re

13801

18

108 xe
n

6327

5

Here en refer to the error estimates for £* by means of (4.8) and en refer to
the true errors for 3c*.

Comparing Table 4 with Table 1, we see that the Al-process yields really
an acceleration of the AP-process and accelerates the Cl-process much more.

Table 4 shows also that the process should be stopped before | φ*(χ*)—x* \
becomes too small.

5. The actual MAP- and MAI-processes.

By (1.10), the MAP-process is carried out in the actual computation as
follows:

(5.1)

where

τ;* _ * _ .

C£ = 0 , 1 , 2 ,
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and <P'*(χ*) is a computed value of <Pr(χ*) and yn is a round-off error caused by-
computation of

Let us suppose

(5.2)

From (5.1), it follows readily that

(5.3) s*+1 - x = (** - s) — γ ^

where ξ e (#, Λ*).
Let us suppose that (2.7) is valid in the present case. Then the former of

(2.6) is valid, consequently, from (5.3), readily follows:

(5.4) \x*+1—x
r

1-K-e' L 1-K 1-K-ε
T + I Vn I

Since α - < l and e'= O(ε), neglecting the quantities smaller than O(ε), we can
write (5.4) approximately as follows:

(5.5)

is the desired error estimate for x*+ι obtained by the MAP-process.

Example 1. The MAP-process applied for the example of §3. Here,

1
Vn\ x 10-

Table 5 shows the results of the actual computation.

Table 5.

n

10

11

12

13

14

15

16

17

18

19

20

21

0.2828 4282

0.2828 4275

0.2828 4272

0.2828 4273

0.2828 4271

0.2828 4272

0.2828 4271

0. 2828 4269

0.2828 4270

0.2828 4271

0.2828 4269

-0.0000 7166

-0.0000 5138

-0.0000 3684

-0.0000 2641

-0.0000 1894

-0.0000 1358

-0.0000 0974

-0.0000 0699

-0.0000 0501

-0.0000 0359

-0.0000 0258

10
8
xe

re

27

15

9

6

5

4

4

3

3

3

3

10
8
xe

ra

11

4

1

2

0

1

0

-2

-1

0

2
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Here en refer to the error estimates given by (5.5) and en refer to the true
errors. Table 5 shows that the error estimates given by (5.5) are considerably
good and that the values xfl9 xf2, #?3, •• , χ*i a r e accurate in the same degree
as the values obtained by the AP-process (cf. Table 2).

The MAI-process is, as is remarked in §1, a Newton's process applied for
the equation (1.13). Therefore the error estimates are obtained by applying
the theory of Urabe [7] to the function ¥(x) defined by (1.9).

From (1.9), it is readily seen that

¥(x) - ¥(x) = (* - x) ̂ Sj^f- ,

where ξ e (#, x). Consequently, by the assumption (1.19), it holds that

(5.6) I ¥(x) - ¥(x) I ̂ K(x9 x) I x - x I.

where

(5.7) K^x9x)=Ύ^κ-\x-x\.

Now let ¥*(x*) be the values of ¥(x*) obtained in the actual computa-
tion. Then evidently

φ*(r*Λ — r*
(K Q\ Ψ*(**Λ — ?* — — V n - -n— 4 - 77

\D °J * \Pcn) — χn φf*r%*\_\ * '*n>

where yn is a round-off error caused by computation of

By the way, by our assumputions (2.2) and (5.2),

(5.9) φ*(χ*ϊ-χ* Hχϊ)-χt ^ 1

Let us put

M1 = max I φ(χ*) — 3c* |,

where

/i = {3c*: x* in the state of ONC},

and assume that

Then, from (5.8) and (5.9), it follows that, for 3c* e/ l 5
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(5.10) \Ψ*(βc*)-¥(βc*)\^ε",

111

where

(5.11) ε " = •

K-ε'c^ (X-K)0—K-e>)

Hence, by the theory of Urabe [7J, it is seen that

IT 2' + V.

(5.12)

for x* in the state of ONC.
However,

\<P(x)-x\<L\φ(x)-φ(x)\ + \x-x

consequently, for 5* in the state of ONC,

(5.13) | ?(£*)-3

Therefore, in this case, we obtain the relation

(5.14) ε"< 1_^_ ε,-g + -|

Then, since ε' = 0(ε), it follows that

(5.15)

(5.16)

Then the error estimate (5.12) can be written approximately as follows:

1-X

This is the desired error estimate for 3c* in the state of ONC.
Now, we consider the c&se where the computation is stopped by the

criterion of the form

(5.17)

Let us put

xn+l x n

M2=\<pQt*)-x*\,

then, from (5.8) and (5.9), it holds that

(5.18)

where
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ε +

Hence, by the theory of Urabe [7], it is seen that

(5.20)

for the %* satisfying the criterion (5.17). In this case, from (5.8) readily
follows

Then, since a,v^l and ε'= O(ε), we have

(5.21) ε"' = -^^ + .̂

Therefore we see that the error estimate (5.20) can be written approxi-
mately as follows:

(5.22) \xi+i-x\^^zr^-&2+-j^^e + v.

This is the desired error estimate for x*+1 satisfying (5.17).
When

it is readily seen from (5.8) that

r* — r* a
1- '-V- + v.

Then, replacing a by

in (5.22), we have

a
1-K
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d-κy -K

which is of the same form as (5.5). This fact means (5.22) implies (5.5), or,
in other words, the error estimate (5.22) may be a little more precise than
the error estimate (5.5).

Just like the Al-process relative to the AP-process, the MAI-process
yields an acceleration of the MAP-process, consequently the former yields an
acceleration of the initial Cl-process much more than the latter.

Example 2. The MAI-process applied for the example of §3.
Table 6 shows the results of the actual computation.

Table 6.

n

0

2

3

0.2900 0000

0.2829 3103

0.2828 4270

0.2828 4270

* ί + i - * , ΐ

-0.0070 6897

-0.0000 8829

0.0000 0000

108xeΛ

17850

6

3

108 x en

8832

- 1

Here en refer to the error estimates given by (5.22) and en refer to the
true errors. Table 6 shows that the error estimates given by (5.22) are con-
siderably good and that the accurate values are obtained after a very few
numbers of repetition of the iterative process

Remark. As is remarked in §§3-4, in using Aitken's processes, we have
to stop the processes before |^*(#*) —χ*\ or \φ*(χ%) — £*| becomes so small
that it may be O(ε), for, otherwise, there may arise the overflow in the com-
puter or may appear the indefinite form. On the contrary, in using the modi-
fied Aitken's processes, there is not any restriction. In addition, the results
obtained by both processes have the accuracy of the same degree. Thus, if
we can avail ourselves of the derivative of the given function φ(x\ the modi-
fied processes are preferable to the original Aitken's processes. But it is
needless to say that the original Aitken's processes are preferable when the
computation of the derivative of φ(x) is not convenient, for instance, when
the analytical form of φ(x) is not given explicitly.

6. The actual SAP- and SAI-processes.

The simplified Aitken's processes are based on the function Φ(x) defined
by (1.14). Therefore
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Since k is chosen so that (1.15) may hold, we suppose

(6.2) max | (1 + k) - W(?) | <K(x\ χ")<,K, < < 1,

where tx\x"~]CL
Now the SAP-process is carried out in the actual computation as follows:

where

Λ ? + 1 = ?*(**) (ί = 0, l ,2, ...,κ)

and Vn is a round-off error caused by the computation of k(x*+ι—#*). There-
fore, from (6.3), it follows that

(6.4) **+1 - x = a + Λ) (** - *)

= [(1 + fc) - fc^r (£)] (Λ* - s) - kεn +

where

? 6 (*, Λ*).

Let us suppose

(6.5) \a + k)-KP\x*)\^ic.

Then, from (2.6),

^ + \k\L

Consequently, from (6.4), we have

(6.6) \xi+i-x\^+\k\Lγ^)-γ^+ \k\e+\Vn\

is ΐs a.desired error estimate for ^*+1 obtained by the SAP-process from #*
satisfying (2.7).

Example 1. The SAP-process applied for the example of §3.
Let us take k so that

Then, for φ(x) under question,

(1 + k) - kφ\x*) = l + kx* = l - 3.5335**,
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from which K can be easily calculated. The computed results are shown in
Table 7.

Table 7.

n

10

11

12

13

14

15

16

17

18

19

20

21

x
n

0. 2828 4274

0.2828 4274

0.2828 4274

0.2828 4275

0.2828 4274

0.2828 4274

0.2828 4272

0.2828 4270

0.2828 4271

0.2828 4271

0.2828 4269

-0.0000 7166

-0.0000 5138

-0.0000 3684

-0.0000 2641

-0.0000 1894

-0.0000 1358

-0.0000 0974

-0.0000 0699

-0.0000 0501

-0. 0000 0359

- 0 . 0000 0258

IC

0.0003 1954

0.0000 6633

0.0001 1522

0.0002 4540

0.0003 3872

0.0004 0564

0.0004 5383

0. 0004 8804

0.0005 1274

0.0005 3044

0.0005 4313

10*xe
re

34

15

11

9

7

6

5

5

4

4

4

10
8
x^

3

3

3

4

3

3

1

-1

0

0

-2

Here en refer to the error estimates given by (6.6) and en refer to the true
errors.

The SAI-process is carried out in the actual computation as follows:

xn+l
xn)— xn \xn) xn J ^ 'm

where yn is a round-oίF error caused by the computation of k[_φ*(x*) — #*].
Therefore it is evident that

(6.7) (<#*(£*) — Φ(x*)\ <^\k\e + V9

where y is a number such that

(6.8) \Vn\<V.

From (6.1) and (6.2), it is also evident that

(6.9) \Φ(χ') ~ Φ(χ") I <^K(χ\ x") I x' ~ x" I

for any x\ xπ e I.
Let us suppose

(6.10) I (1 + k) - kψ! (x*) I <;«,

then, from the definition of K(x\ x"\ we may suppose

(6.11) K(x,χ*) = ίc+ \k\L\x*-x\.

By means of the method of Urabe [7], making use of (6.7) and (6.11), let
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us derive the error estimates for the values obtained by the SAI-process.
First, for x* in the state of ONC, let us derive the error estimates. By

§2, let us put

p¥1 = it+ \k\LSP9

Then, in the limit where p—•oo, we have

s \k\ε + y
~ l-ίc-\k\Lδ

for δ = limδp. Therefore δ can be obtained by solving the Quadratic equation

Since δ=0 for \k\ε + y = 0, we see t h a t

Since \x*—x\<Lδ by the results of Urabe [7], the δ given by (6.12) provides
the error bound for £* in the state of ONC.

Next, for x*+1 such that

(6.13) | a* + i -2* |^a,

let us derive the error estimates. By §2, let us put

p+I = ίc+ \k\Lδp

a+\k\ε + y
Op = ϊZTjζ (p = U, 1, 2, . •).

Then, in the limit where p—•<*=>, we have

ά+ \k\ε + V
= ίc+ \k\L-

1-K

for ^ = l i m ^ . Therefore K can be obtained by solving the Quadratic equa-

tion

Since K=0 for ίc = a = ε = y = 0, we see that
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(6.14)
2

where

(6.15) ic' = ic+ \k\L(a+

Then, by the results of Urabe [7],

(6.16) |5*+1-5|^γ^-a+-ί3

I fclL 2-\- ίc

This is the desired error estimate for 3c*+1 satisfying (6.13).

Example 2. The SAP-process applied for the example of §3. For φ(x)
under question,

consequently let us take k so that

The computed results are shown in Table 8.

Table 8.

n

0

1

2

3

4

5

0.2900 0000

0.2829 2750

0.2828 4473

0. 2828 4276

0. 2828 4269

0.2828 4269

x
n+ί

 x
n

-0.0070 7250

-0. 0000 8277

-0.0000 0197

-0. 0000 0007

0. 0000 0000

10
8
x^

17605

208

8

3

3

10
8
x*

Λ

8479

202

3

-2

-2

Here en refer to the error estimates given by (6.16) and en refer to the
true errors.

Remark. Comparing (6.6) and (6.16) with (5.5) and (5.22), we see that,
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in the acceleration of the initial Cl-process, the simplified Aitken's processes
are both inferior to the modified ones as is predicted from thίer derivation.
However, in the simplicity of the computation, the former is evidently superior
to the latter. So, in the actual computation, either of these processes should
be selected according to whether accuracy or simplicity may be preferable.

However, when k is chosen so that /c, £<!1, the inferiority of the simpli-
fied Aitken's processes in the acceleration is very slight as is seen from com-
parison of (6.6) and (6.16) with (5.5) and (5.22). So, in such a case, it is need-
less to say that the simplified Aitken's processes are preferable to the modi-
fied ones.

In conclusion, the auther wishes to expre$sj his hearty gratitude to Prof.
Urabe f of his kind guidance and constant advice.
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