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Introduction and Preliminaries

In a paper [1] on “Modéles finis” of the potential theory, Choquet and
Deny obtained the following interesting result. If a positive kernel on a
space of a finite number of points is non-degenerate and satisfies the weak
balayage (or equivalently domination) principle, then it satisfies the ordinary
balayage (domination) principle or the inverse balayage (domination) princi-
ple. In this paper we shall extend this result to a positive continuous (in
the extended sense) kernel on a locally compact Hausdorff space. Similar
extension was tried by Ninomiya [4] for positive continuous symmetric
kernels. His result states that if a positive symmetric kernel is of positive
[negative resp.] type and satisfies the weak balayage principle, then it
satisfies the ordinary [inverse resp. ] balayage principle.

Let 2 be a locally compact Hausdorff space and G be a positive continuous
(in the extended sense) kernel on £ such that G(x, y) is finite at any point
x¥y. Throughout this paper we assume that every compact subset of 2 is
separable?, and we shall use the same notations as in the author’s paper [2].

First we define domination principles which we shall consider in this
paper.

(I) Weak domination principle. If Gu#<Gy on Su\w Sy for 1 e &, and
y € M, then the same inequality holds in £22.

(D) Ordinary domination principle (or simply, domination principle).
If the above inequality holds on S, so it does in 2.

(III) Inverse domination principle. If the above inequality holds on Sy,
so it does in 2.

(AV) Elementary domination principle. If aG(x1, x) <<G(x,, x,) with
a>0, then aG(z, x,) <G(z, x;) for any point z in 2.

(V) Elementary inverse domination principle. If «G(xz, x1) <G (%3, x2)
with ¢>0, then aG(z, %) <G(z, x,) for any point z in 2.

(VI) Strong elementary domination principle. If Gu<Ge, on Su for
#e@ and xSy, then Gu<Ge,, in 2.

1) All the results in this paper hold with a slight modification for positive continuous kernels
on £ compact subsets of which are not necessarily separable (cf. Nakai [3]).

2) )%, is the totality of positive measures with compact support and €, is the totality of positive
measures in 3¢, with finite energy.
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(VII) Strong elementary inverse domination principle. If G#>Ge, on
Sy for 1 €M, and x, &Sk, then Gu>Ge, in Q.
The following implications are immediate consequences of the above
definitions:
Ordinary domination principle = weak domination prineiple.
Inverse domination principle = weak domination principle.
Ordinary domination principle = strong elementary domination
principle = elementary domination principle.
Inverse domination principle = strong elementary inverse
domination principle = elementary inverse domination principle.®

In the preceding paper [ 2] we obtained the following results.

Tueorem 1. Assume that G and its adjoint kernel G satisfy the continuity
principle. Then G satisfies the ordinary domination principle if and only if
it satisfies the ordinary balayage principle, that is, for any # € Wy and any
compact set K, there exists a positive measure /', supported by K, such that

GU =Gu G-p.p.p. on K,
Gu <Gu n 2.
TuareoreMm 2. Under the same assumptions as above, G satisfies the ordinary

domination principle if and only if its adjoint kernel G satisfies it.

Tueorem 3. Under the same assumptions as above, G satisfies the ordinary
domination principle if and only if it satisfies the strong elementary domina-
tion principle.

These theorems were obtained by using the following fundamental
existence theorem.

TueoreM 4. If G satisfies the continuity principle and u(x) s a positive
finite upper semi-continuous function on a compact set K, then there exists a
positive measure 1, supported by K, such that

GAi>u G-p.p.p. on K,

Gi<u on SA.

§ 1. Elementary domination principle

Lemva 1.9 Let G satisfy the continuity principle and G satisfy the

3) The last two implications hold under the assumption that G(x, x)< +co for any x.
4) Cf. Choquet-Deny [17, Lemme 3. The measure A which they constructed does not necessarily
satisfy the condition: GA<{Ge,; on SA.
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elementary domination principle. Then for any given compact set K and any
given point x, &K, there exists a point x; in K such that

Ge,, /Ge,, = a constant in 2,
or there exists a positive measure A, supported by K, such that

Gl >Ge,, G-p.p.p. on K,
Gl <Ge,, on S,
GA(x0) < Gex, (%)

Proof. Let us assume that Ge,/Ge, =< any constant for any x¢ K. In
order to prove our lemma, it is sufficient to consider the case that G(xy, %) is
finite. In fact, by the existence theorem (Theorem 4), there exists a positive
measure 4, supported by K, such that

Gl>Gey,, G-p.p.p. on K,
GA<Ge,, on Sk

Since G(xo, ¥) is finite and continuous at any point y=x, GA(x,) is finite
and hence this 1 is what we want if G (xo, %)= + .
Now we put, for any point « € K,

_ _g_(xo, %o)
T G e, )

Then by the elementary domination principle,
¢ Ge,, (2) <m,Ge,(z) for any z in 2.
Suppose that there is a point x; € K such that
Ge,, (1) = my Ge, (x1).
Then again by the elementary domination prineciple,
Ge,, (z) >my, Ge,, (2) for any z in 2.
Therefore by (1), Ge, =m, Ge,,. This is excluded. Hence we have

2 Ge,, () < mGe, (%) for any x€ K.
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Now by (1)
G2 (x0) = SG(xo, ) dA()

=[S o0 =-S5 i

where 1 is the measure mentioned above. Taking z on Si, we have

G
GA(20) < T&%%l Gexo (2) = G (w0, %0).

Here the equality does not hold, otherwise it holds that

GA(z) = Gey, (2) for any ze€ Si,

and

3 G (%, x) = —GG%%E—G@, x) J-a.e. in x for any z € SA.

Take an arbitrarily fixed point z on S2 and a neighborhood w of z. Then by
(3) there exists a point x in w for which the equality (8) holds. Hence making
o tend to z, we obtain that x converges to z and

G (%0,

Gz, 2),

since G is continuous. This shows that Ge, (z) =m.Ge.(z), which contradicts
(2). This completes the proof.

Remark. Lemma 1 holds for a positive lower semi-continuous kernel G
if G(x, y) is locally bounded at any point (x, y) € 2 x 2 with x5y and G
satisfies the continuity principle.

CoroLLARY. Let G satisfy the continwity principle and G satisfy the ele-
mentary domination principle. Then for any given compact set K and any
given point x,€EK, there exists a positive measure A, supported by K, such that

GA(x) > Ge,, (%) G-p.p.p. on K,
GA(x) <Gey ()  on SA and at x,.

Lemma 2. If G satisfies the weak domination principle, it satisfies the

5) This is essentially due to Ohtsuka (cf. Lemma 2.3 in [5]).
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continuity principle.

Proof. Let G« be finite continuous as a function on the compact set S«
and x, be a point of Sx#. We shall show that G« is continuous at x, as a
function in 2. We may assume that G(xy, %) = +oo. Let K be a compact
neighborhood of x,. By Dini’s theorem, there exists, for any ¢>0, a compact

neighborhood . of x, such that w.CK and Gu.<e on Sx, where . is the
restriction of «# to w.. We put

ao=1Inf {G(x, y); x, y € K}.
Then for a fixed point »; in K—S# and for any ¢>0
Glte <eay'Ge,, on  w:NSHU.

If G(xy, %)= —|;oo, this inequality holds at x;,. When G(wy, x,) is finite, we
put

Gl -
M(e) = max { ¥Gf(x1,(x;1)) , €a; 1} .
Then M(e)—0, as e—0, since G(xg, x0)=+oc0 and #({x})=0. Evidently we
have

Gute < M(e)Ge,, on we N\ S« and at x;.

Consequently in any case, the above inequality holds on S«.\u {x;} with
M(e)—>0 as ¢—>0, and hence the inequality holds everywhere in 2 by the
weak domination principle. From this follows immediately the continuity at
X0 of Gu.

Tueorem 5. Let G satisfy the continuity principle. If G satisfies the
elementary domination principle and the weak domination principle, then G
satisfies the ordinary domination principle.

Proof. First we shall show that G satisfies the ordinary domination
principle. Let G#<Gy on S for #€ @, and v eI, We take a point x, in
2—Su#. Then by the corollary to Lemma 1, there exists a positive measure
1, supported by S«, such that

Gl>Ge,, G-p.p.p. on S,
GA < Gey, on SA and at x,.

Then by the weak domination principle, GA<Ge,, in 2. Hence
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G (%0) = S Ge,,du < S Gidy = S Gudl
< S Gvdd = S Gldy< S Ge.,dv = Gy ().

This proves that G satisfies the domination principle. Consequently G satisfies
the domination principle by Lemma 2 and Theorem 2.

'§ 2. Inverse existence theorem
In this section we shall give an inverse existence theorem.
TureoreMm 4.  Let G be a positive finite continuous kernel on 2, and K be a
compact subset of 2 and u(x) be a positive finite continuous function on K.

Then there exists a positive measure 1, supported by K, such that

Gl (x) <u(x) on K,
GA(x) = u(x) on SA.

Proof. Without loss of generality we may suppose that u(x)=1 on K.
Let M be a positive number such that

M>max gy x G (x, ¥).
We put G'(x, y)=M—G(x,y) on Kx K. Then G’ is a positive finite continuous
kernel on K. Hence by Theorem 4, there exists a positive measure ', sup-

ported by K, such that

GlV(x)>1 on K,
Gil(x)=1 on SZ.

Consequently
Mgdl’—lzG/l’ on K,

Mgd/l’ —1=GX on SX.

Therefore c=M S dA’—1 is positive and 1=c¢"'1’ is a positive measure what

we want.
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CoroLLARY. Assume the same for G and K as above. If u(x) s a positive
finite lower semi-continuous function on K, then we have the same conclusion
as above.

Remark. For a positive lower semi-continuous kernel G we can obtain
the following inverse existence theorem: if G satisfies the continuity principle
and z(x) is a positive finite lower semi-continuous function on a compact set
K, then there exists a positive measure 1, supported by K, such that

Gl<u on K,
Gi>u G-p.p.p. on SA.

§ 3. Inverse domination principle

In this section we consider only positive finite continuous kernels on 2.
By the inverse existence theorem we have

Tueorem 1. A positive finite continuous kernel G satisfies the inverse
domination principle if and only if it satisfies the inverse balayage principle,
that s, for any €Wy and any compact set K, there exists &', supported by
K, such that

G =Gu on K,
Gu' >Gu m Q.

Tureorem 2. A positive finite continuous kernel G satisfies the imverse
domination principle if and only if G satisfies it.

Turorem 3'. A positive finite continuous kernel G satisfies the inverse
domination principle if and only if it satisfies the strong elementary inverse
domination principle.

We omit the proof of these theorems (cf. [27], Chapter II).

Lemma 1. Let a positive finite continuous kernel G satisfy the elementary
wmverse domination principle. Then for any compact set K and any point
x & K, there exists a point x, in K such that

Ge,,/Ge,, = a constant in 2,

or there exists a positive measure A, supported by K, such that

G1<Ge,, on K,
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Gl = Ge,, on Si,
GA (xo) > Gexo (xo)

This can be verified in the similar way by using the inverse existence
theorem.

CoroLLARrY. Let G satisfy the elementary inverse domination principle.
Then for any compact set K and any point x, & K, there exists a positive
measure 1, supported by K, such that

GA(x) <Gey (w) on K,
GA(x) >Ge,, (%) on S and at x.
From this corollary follows

Tueorem 5. If a positive finite continuous kernel G satisfies the elemen-
tary inverse domination principle and the weak domination principle, then it
satisfies the imverse domination principle.

§ 4. First main theorem

Let G be a positive continuous (in the extended sense) kernel on £ such
that G(x, y) is finite at any point x=y.

DeriniTiON.  If there exist different points x;, and x, such that
Ge,,/Ge,, = a constant in 2,

G is called degenerate. If G is not degenerate, it is called non-degenerate.
In this section we shall prove the following first main theorem.

Tueorem 6. Let G satisfy the continuity principle. If G is non-degenerate
and satisfies the weak domination principle, then it satisfies the ordimary
domination principle or the inverse domination principle.

To prove this we require several lemmas.

Lemma 8.9  Let G satisfy the weak domination principle and G satisfy
the continuity principle. Then G satisfies the ordinary domination principle
if for any different points x and y,

6) This corresponds to the result of Ninomiya for symmetric kernels [4].
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Proof. By Theorem 5, it is sufficient to show that G satisfies the ele-
mentary domination principle. Let Ge, (x1)<<aGe,,(x;) With ¢>0. Then, being
]_'(xla x2)207

G
Gou, () <G 2 G, () <, ().

Hence by the weak domination principle, Ge, (z)<laGs¢,,(z) for any z € 2. Thus
G satisfies the elementary domination principle and hence the ordinary
domination principle.

Similarly we have

Lemma 3. Let G be a positive finite continuous kernel and satisfy the
weak domination principle. If for any different points x and y, I'(x, ¥)<0, G
satisfies the inverse domination principle.

Lemma 47. Let G be a positive (finite or infinite-valued) kernel on a
space 2= {x1, x2, x3}. If G is non-degenerate and satisfies the weak domination
principle, then it satisfies the ordinary domination principle or the inverse
domination principle.

Proof. We put g;;=G(x;, ;) and 7;;=1"(x;, ;). Since G is non-degenerate
and satisfies the weak domination principle, 7,20 for any (#;. The proof
will be accomplished by virtue of Lemmas 3 and 8 when it will bs shown
that there occur only two cases: 712, 723 and 73 are simultaneously positive
or negative.

First we consider the case that g;/’s are all finite, and we show that

4) if 7,;>0 ;<0 resp.),

Bii — 8k - & (Jﬂ"_g_gk_fgg{"; resp.).
&ij 8ri 8ii &ii 8rj 8ii

Suppose that 7;;>0. Then

Ge; (%) = g”- Ge; (%)

17

Gei(w)) < gi Ge;(x)),

ij

7) This is, in a certain sense, a special case of Choquet-Deny’s theorem for a positive kernel on
a space consisting of a finite number of points (cf. Theorem 4’ in [17).



10 Masanori KisHi

where ¢; is the unit measure at x;. By these inequalities and the weak
domination principle we get

Ge;i () < L4 Ge;j(xp),
8ij

namely
Bii — 8k
8ii 8ki
Interchanging ¢ and j, we obtain
Bk~ 8ii
8ri  &ii

Similarly we obtain that if 7,;<<0,

.. R .. 8)
il 8k 8l 7
&gij 8kj 8ii

Now we show that if 7,,>0, then 7;;>0 and 735,>0. In fact, if 7,3<0
and 7; <0, then by (4)

g, ., 8
g2 823813 g2 823
and
0<( 82 _ 81 ,
h(\ g22 g21 >g23

which is a contradiction, since 7;,>0 and the right-hand term is negative.
If 753>0 and 73,<0, then

&
8

12

z g3 < g13< g g33

32

and

8) We can also derive (4) as follows: for any finite real numbers ¢; and ¢},

giit; +8ijt; <0

=griti +8rjt; <0,
gﬁti+gff‘f£0} e

since G satisfies the weak domination principle. From this implication follows immediately (4).
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0<< g2  gu )
832 831 >g33

which is a contradiction, since 7,,>>0 and the right-hand term is non-positive
by (4). Similarly 7,3<0 and 73,>0 lead to a contradiction. Consequently if
712>>0, then 7,3 and 7;; are positive and hence 712, 723 and 75, are simultane-
ously pesitive or negative.

Next we consider the case that some g;;’s are infinite. In this case it is
sufficient to consider the case that only one of them, say gi1, is infinite, since
otherwise 7;;>0 for any i+ and hence G satisfies the ordinary domination
principle. Similarly as we derived (4), we obtain

(5) 8L 8M (k1)
8ii 8ki

If 7,3<0, then

g22 g33 < gas < g1 g33;

&32 831

where the last inequality follows from (5). This yields

0< (£ — % )y,

which contradicts (5). Consequently 7:;>0 and & satisfies the ordinary
domination principle by Lemma 3. This completes the proof.

Remark. When G is finite-valued and non-degenerate and satisfies the
weak domination principle, the determinant A of the matrix

g11 g12 g13 \
821 822 823 /
831 832 &33!/

is positive®. In fact, if 7,2, 723 and 73, are positive,

A= 813 (gz1g32 - gzzgsl) + 823 (g12g31 - g11g32) + 833 (gugzz - g12gz1)

> 81283

= gazk (gzlgsz —gzzgsl) + %gi(glzgm - g11g32) + gsa(gugzz - gugzl)
31

9) Consequently the non-degeneracy of this kernel G is equivalent to the one of Choquet-Deny
(namely A=0). In general, it is verified that with respect to a positive finite-valued kernel G on a
space consisting of a finite number of points, the non-degeneracy in our sense is equivalent to the one
of Choquet-Deny provided that G satisfies the weak domination principle.
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- 833
831832

(gzxgsz - gzzgal) (g12g31 - g11g32)20~
Consequently if A=0 and gi2g317g11432, then

823831 = 821433 and 821832 = g22831-

Hence gi:g33=g23832, Which contradicts 7,35>0. If A=0 and gi2g51=g11432
then 813832=812833 OT g21832=g&22831- Hence g11g33=g13831 OF gng22=g12821,
which is also a contradiction. Therefore A>0. When 7}, 723, 713 are negative,
similar computations show that A>0.

When G is not necessarily finite-valued, we put

Gy (x;, xj) = min {G(x;, %), N}

Then for any sufficiently large N, the determinant Ay of the matrix corre-
sponding to Gy is positive.

CoroLrary 1. Let a positive continuous (in the extented sense) kernel G be
non-degenerate and satisfy the weak domination principle. If there exist
different points x, and x; such that I'(x, x;)>0, then for any different points
x and y, I'(x, y)>0.

Proof. It is sufficient to show that 7I'(x;, 43)>0 for any point x;. Let G’
be the restriction of G to 2’ = {x;, x2, x3}. Then G’ is non-degenerate and
satisfies the weak domination principle. Hence by Lemma 4, G’ satisfies the
ordinary domination principle or the inverse domination principle. Since
I'(x1, 22)>0, G’ satisfies the ordinary domination principle and hence I'(xy, x3)
>0.

CoroLLARY 2. Let a positive finite continuous kernel G be non-degenerate
and satisfy the weak domination principle. If there exist different points x;
and x; such that I'(x1, %)<0, then for any different points x and y, I'(x, y)<O0.

Now we have

Turorem 7. Let a positive finite continuous kernel G be non-degenerate
and satisfy the weak domination principle. Then G satisfies the ordinary
domination principle or the inverse domination principle.

Proof. Take arbitrary different points x;, and x;. Then I (x), x,)0,
since G is non-degenerate and satisfies the weak domination principle. If
I'(x%,, %2)>0, then G satisfies the ordinary domination prineiple by Lemma 3
and Corollary 1 to Lemma 4. If I'(x,, x,)<0, G satisfies the inverse domination
principle by Lemma 3’ and Corollary 2 to Lemma 4.



Weak Domination Principle 13

Turorem 8!,  Let G satisfy the continuity principle and let G satisfy the
weak domination principle. If G is non-degenerate and there exists a point x,
such that G(x,, x,)= + oo, then G satisfies the ordinary domination principle.

Proof. This is an immediate consequence of Lemma 3 and Corollary 1
to Lemma 4, since 7'(x1, x2)>0 for any point «,.
Our first main theorem (Theorem 6) follows now from Theorems 7 and 8.

Remark. Noting that in the proof of Lemma 4 the non-degeneracy of G
is effective in the form that /'(x, y)=0 for any xy in 2, we obtain

TuroreMm 6'. Let G satisfy the continuity principle. If G satisfies the
weak domination principle and G is non-degenerate, G satisfies the ordinary
domination principle or the inverse domination principle.

Turorem 8. Let G satisfy the continuity principle and let G satisfy the
weak domination principle. If G is non-degenerate and there exists a point x,
such that G(xi, x1)= + oo, then G satisfies the ordinary domination principle.

§ 5. Second main theorem

By Theorem 6 we obtain our second main theorem which is concerned
with the weak balayage principle.

(VIII) Weak balayage principle. For any positive measure # € 9, and
any compact set K, there exists a positive measure #’, supported by K, such
that

GU =Gu G-p.p.p. on K.

TaEOREM 9. Let G be a positive continuous (in the extended sense) kernel
such that G satisfies the continuity principle'® and G or G is non-degenerate.
Assume that every open set o C 2 1s of positive G-capacity'®. If G satisfies the
weak balayage principle, it satisfies the ordinary balayage primciple or the
mverse balayage principle.

Proof. First we consider the case that G(wx, x)<<+oco for any x€ £ and
hence G is a finite continuous kernel. We suppose that G#<Gv on K=Su\USy
with # and v in 9, and we take an arbitrary point x, in 2—K. By the weak
balayage principle, there exists 1 € I, such that

10) This is sharper than a result obtained in [2] (cf. Theorem II 13).
11) Notice that we assume the continuity principle for G but not for G.
12) This means that for any open set wC 2 there exists a positive measure A0 in &, such that

S?\Cw.
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Gi = Ggy on K,
SA CK,

where ¢, is the unit measure at x,. Then

Gat(wg) = SGeodﬂ - SGldﬂ - S Cuar <\ Gvar
= SG/Idv= SGeodv = Gy(xo).

Consequently G satisfies the weak domination principle. Therefore G and
hence G satisfy the ordinary domination principle or the inverse domination
principle by Theorem 7.

Next we consider the case that there exists a point x € 2 such that
G(x', )=+ 0. We shall show that

(*) if Gu<Gey, on Suvu {x} with #€@, and x & Sx,
then the same inequality holds everywhere in £2.

Let us take a point x; in 2—(S#\U {xo}). It is sufficient to show GCu(x,)<<
Geo(x). When G(wo, %) is finite, we can show the inequality similarly as
above. Therefore we suppose that G(xo, %)= + oo. Then there exists a
compact neighborhood K of x, such that

éﬂgéeo on K.

Let 1 be a weakly balayaged measure of ¢, on S#UK, i.e.,

Gl =Ge,, G-p.p.p. on SuVUK,
SACSu UK.

Then GA(w) <Ge,, (x0). In fact, if GA(x) > Ge,, (x0), there exists an open set
o CK such that GA>Ge,, in 0. This is a contradiction, since by our assump-
tion w is of positive G-capacity. Therefore

Gu(x) = gGexldﬂ = SG/ldﬂ = Séﬂdl
S S éeo i =Gl (xo)gGexl (xo) = éeo (xl)

This proves the implication (x)'¥. By this implication and Corollary 1 to

13) Hence G satisfies the continuity principle (cf. Lemma 2).
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Lemma 4, it is seen that I'(x, y) is positive for any x=y in @, since I'(+/, y)=
+ oo, where &' is a point such that G(x/, v')=+co. Consequently G satisfies
the elementary domination principle.

Now we shall show that G satisfies the ordinary domination principle.
Let G«<Gy be true on S« for «# € &, and v € M,, and take a point x, in 2-—Sx.
Then by the corollary to Lemma 1, there exists a positive measure ¢, supported
by S, such that

Gr>Ge, G-p.p.p. on S,
Gr < Ge, on St and at x.

Then by (%)
Gr <Ge, in 2
and hence
Gr=Ge,  G-p.p.p. on S
Therefore

G (xo) = g Geody = S Gedy = SGﬂdrg S Gydr
= Séfdvg S Geody = Gy ().

This shows that G satisfies the ordinary domination principle. Consequently
G satisfies the ordinary balayage principle by Theorem 1.

Remark. Theorem 9 is not valid unless it is assumed that every open
set is of positive G-capacity. In fact, a non-degenerate and non-symmetric
kernel G defined by

+ oo 1 g13)
1 1 g2
831 832 1

with 0<gs<gs<gzi<gii< oo, satisfies the weak balayage principle but
not the ordinary balayage principle nor the inverse balayage principle.
Now we consider a weaker principle than the weak balayage principle.
(IX) Elementary weak balayage principle’®. For any compact set K and
any point x, & K, there exists a positive measure A, supported by K, such that

14) This is, in a certain sense, a special case of the light sweeping-out principle of Ohtsuka [57].
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G = Gey G-p.p.p. on K.

TuroreM 9.  Let G be a positive continuous (in the extended sense) kernel
such that G satisfies the continuity principle and G or G is non-degenerate, and
let every open set w C 82 be of positive G-capacity. If G satisfies the elementary
weak balayage principle, then it satisfies the ordinary balayage principle or the
inverse balayage principle.

This is verified by the proof of Theorem 9, where we used a weakly
balayaged measure of a point-mass.

By Theorem 9 we obtain immediately

Turorem 10.  Under the same assumption as in Theorem 9, G satisfies the
weak balayage principle if and only if it satisfies the weak domination
principle.

Turorem 11. Under the same assumption as above, G satisfies the ordinary
balayage principle if it satisfies the (elementary) weak balayage principle and
if there exists a point x, such that G(x;, %)= + oo.

Remark 1. Let G be symmetric. Then all the theorems in this paper are
true without assuming the continuity principle for G, since the existence
theorem is, as well-known, true without the continuity principle. Let us
remark that if this kernel G is of positive (negative resp.) type satisfying the
weak domination principle, then it satisfies the ordinary (inverse resp.)
domination principle. In fact, if G is of positive (negative resp.) type,

I'(x,9)>0 (<0 resp.)

for any x=+y in 2. Therefore by Lemma 3 (Lemma 3 resp.), G satisfies the
ordinary (inverse resp.) domination principle. Similar fact holds concerning
the weak balayage principle.

Remark 2. We say that a positive continuous (not necessarily symmetric)
kernel G satisfies the weak equilibrium principle when for any compact set
K2, there exists a positive measure #, supported by K, such that

Gu=1 G-p.p.p. on K.

It seems natural to ask whether the analogue to Theorem 9 is valid concern-
ing the weak equilibrium principle. However the answer is negative, in
general. In fact, a symmetric kernel G defined by the matrix,

1 2 3
2 1 1}
1 1 1
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is non-degenerate and satisfies the weak equilibrium principle, but it does
not satisfy the ordinary equilibrium principle nor the inverse equilibrium
principle. This example also gives an affirmative answer to the question
raised by Ninomiya [4]: Is there a positive symmetric kernel satisfying the
weak equilibrium principle which is not of positive type nor of negative
type?
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