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Introduction.

For a topological space X with base point, its loop space 2X is a homotopy-
associative H-space with a homotopy-inverse, and so the set of homotopy clas-
ses of continuous maps from a topological space Y into 2X, fixing base point,
forms a group 7o(Y; £X). Consider the class

tox=[1lox] € m(2X; 2X)

of the identity map 1l,x of £X onto itself, and call the order of ¢ox simply

the loop-order of X.
The loop-order is clearly a homotopy type invariant. In this note, we
discuss its general properties, where the dual situation to the suspension-

order of Toda [ 2] may be seen.

1. Preliminary and definition.

For each topological space X, we always associate a point *, called the
base point. (Continuous) maps and homotopies considered are base point pre-

serving.
The set of the homotopy classes of maps f:( X, *)—(Y, %) is denoted by

To( X; Y).

Let a € mo( X; Y) and Be€m(Y; Z) be the classes of maps f: X—Y and
g : Y—Z respectively, then the composition Bex € 7o( X; Z) is the class of the
composition gof of maps. The formula foa=f*(8)= g«(a) defines two map-

pings
[rinY; Z)-»ny(X; Z) and gy : no( X; V) > X; 2).
The loop space 2X of X is the space of all loops w: (I, I)—(X, %)
(I=[0, 17, =10, 1}) with compact-open topology, and the constant loop is its
base point. In this note, we assume that spaces are simply connected when-

ever their loop spaces are considered, and so 2X is arcwise connected.
The product #: 2Xx 2X— 2X of the H-space 2X is defined by

(w1, w)(D=wi(2) 0=t=1/2), =wy(2t—1) (1/2=:<1),
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for wy, w; € 2X. The group multiplication a+8 of «, Ben(Y; £X) is de-
fined to be the homotopy class of the composition

d fx
po(fx god: Y>¥x V50X x 2X>2X,

where f, g are maps of the classes «, £ respectively, and d is the diagonal
map.
A map f: X—Y defines a map 2f : 2X—2Y by

@fHw)y=fow  (we L2X),
and 2f commutes with the multiplications of loop spaces, i.e., the following
diagram is commutative:
QX x 9X—>0X
| erxer | es
P
RY x QY—2Y.
Also, a class Qa € 7(RX; 2Y) of 2f is determined by the class a e m(X; Y)
of £, and the mapping
2:71(X; Y)>n(2X; 2Y)
is defined. From the definitions, we have easily
Lemma 1. (Bi+ Bo)oa= 1o+ frocx
foraen(X;Y), B, B:€nY; 2Z); and
Bo(ar+az)=PBoai+ o
for ay, az € mo( X; 2Y), B € 2ny(Y; Z) (Cno(RY; Z)). Therefore
[¥im(Y; 2Z)>no( X; 27), (2g)x: n( X; 2Y) > no( X; 22)

are homomorphisms for any maps f: X—Y and g: Y—>Z.

Denote by 1lxy: X— X the identity map of X onto itself, and by
tx € To( X; X) its homotopy class. The loop-order I(X) of a topological space X
is the order of the class cox =82¢x € 1o(2X; 2X). Obviously the loop-order is
a homotopy type invariant of spaces.

The class l¢ox is represented by the composition

d; ~l
wed;: 92X —>(2X) 5 2X,

where (2X)' is the product space 2Xx ... x2X of [ copies of 2X, d, is the
diagonal map and g, is the map defined inductively by u=pgo(ui_1x1ex).
Therefore, the loop-order I=1(X) of X is the least positive integer I such that
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od; is homotopic to zero; if no such integer exists, I( X)=oo.

2. Product spaces and fiber spaces.

Concerning the product spaces, we have the following

Tueorem 2. The loop-order of the product spaces X; x X, 18 the least com-
mon multiple of that of X; and X,:

Z(X]_X Xz) = l.c.m. Of Z(X1> and Z(Xz)

Proor. Let p;: X= X;x X,— X; (i=1, 2) be the natural projections, and
i1 Xi= XixxC X, iz: Xo=xx X, X be the inclusion maps. Then it is easy
to see that the two mappings

((‘Qpl)*a (*QPZ)*)
<__~__‘—) 7T()(Z; gXl)“i‘ 7[0(Z; ng)

n(Z; 8X)c———
(Qi1)5+ (Qi5)y

are isomorphisms and one of them is the inverse of the other. Therefore
tox =((2i0)x+ (Ri2):) (Lp1)xtax, (2p2)stox)
=(R201)4(2p1)*tox, + (i) (8p2)*tax,,

and V'tox =(2i1)x(8p1)*(U'tex,)+ (2i2)4(Lp2)*(l'cex,)=0 by Lemma 1, where [’ is
the Le.m. of I( X;) and I( X;). This shows that I’ is a multiple of the loop-order
I(X).

On the other hand, (2p1)oloxoRi1=10x, shows that

l(gXl = l(gpl)*(gil)*lg}{ = (Qpl)*(ﬂh)*(l(gx) = O,

where [=1I1(X). Thus I(X) is a multiple of I(X;), and of I(X,) in the same
way, and the theorem is proved, g.e.d.

Now, we consider the fiber spaces. In this note, the fiber space is as-
sumed to be in the strong sense that it has the covering homotopy property
with base point for any spaces. Precisely speaking, (E, p, B) is a fiber space
if the following covering homotopy property is satisfied: for any space X, a
map f: (X, x)—>(E, ) and a homotopy g : (X, *x)—(B, *) such that peof= g,
there exists a homotopy f;: (X, x)—(E, x) such that fo=/ and pof,= g

If (E, p, B) is a fiber space, then it is easy to see that (2F, 2p, 2B) is also
a fiber space.

Tureorem 3.  Let (E, p, B) be a fiber space and F=p~'(x) be its fiber. Then
the loop-order I(E) is a divisor of the multiple I(B)-I1(F).

Proor. Set I[=1I(B), then the composition x#,od;: QE—>(QE) —QF satisfies
Qpopod;=pode2p~0:2E— Q2B by the definition of the loop-order I(B).
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Thus #0d; is homotopic to a map f: 2E—QF (preserving base point) by the
covering homotopy property.
Also, it is clear that

Him®© A~ Umodmottiod; : QE—QF,

Therefore, we have

Him® Qi ™~ lm© dm°f:(ﬂm° dm‘-QF)"f'\’O:

where m=1I(F). This shows that /m is a multiple of I(F), q.e.d.

3. Homotopy groups.

THeOREM 4. Assume ffhat the loop-order |=I1(X) of a space X is finite,
then ln( X)=IH(2X)=IH'(2X)=0 for i >0, and
(2o X; Y))=Iny(Z; 2X)=0
for any spaces Y and Z.
Proor. It is clear that the induced homomorphism
(wedp)y : H(2X)—> H(2X)

satisfies (u;0d;)sa=Ia for each element a € H(2X). By the assumption, #d,;
is homotopic to zero, and so [H(2X)=0 for all i >0. The proof of [H/(2X)=0
is similar.

By Lemma 1 and l¢pox =0 of the assumption, we have

la=l(actgx)=ao(ltgx)=0
for a € Qny( X; Y), and
IB=1(texoB)=(ltex)o=0

for Beny(Z; 2X). Thus U(Qr(X; Y))=In«(Z; 2X)=0. In particular,
In( X)=1rny(S"; X)=In(S'~; 2X)=0, where S’ is the i-dimensional sphere, q.e.d.
In the rest of this note, spaces are assumed to be the same homotopy type
of CW-complexes; then their loop spaces are also so [17].
If X is an Eilenberg-MacLane space K(rw, n), where = is an abelian group
and n>1, then its loop space 2X is K(zx, n—1) and it is well known that there
are the isomorphisms

7o 2X; 2X)~H" Y(n, n—1; 7)~Hom (n, ).

Also, the image of ¢ox € 7o(2X; 2X) under these isomorphisms is the identity
isomorphism 1,: 7#—=n. Clearly, the order of 1, ¢ Hom (x, 7) is equal to the
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least positive integer I such that Iz=0, which will be denoted by (7).
Thus we have the following theorem for the case that X is an Eilenberg-
MacLane space K(r, n).

Tueorem b. Let X be a space having only a finite number of mon-trivial
homotopy groups

”ij(X)an (]—"—'1, Tty n)) 1< <<
Then the loop-order of X is a multiple of the l.e.m. of (7)), ---, I(w,), and is a
divisor of []I(n;), where I(7) is the least positive integer [ such that Ix=0 for
i
an abelian group .

Proor. By Theorem 4, the loop-order I(X) satisfies I( X)r(X)=0 for
i>0. Therefore {( X) is a multiple of {(7(X)), and so of the Le.m. of I(7y), ---,

I(w).

The second half of the theorem is proved by the induction of n. As is
well known as tke Fostnikov deccmpcsition, there exists a fiber spzce (E, p, B)
such that E is homotopy equivalent to X,

Py mE)=n(B) (i<in), m(B)=0 (i=in),
and its fiber F is an Eilenberg-MacLane space K(w,, i,). The loop-order ((F)

is I(x,) as proved akove, and /(B) is a divisor of n]_'ll I(z;) by the inductive as-
ji=1

sumption. Therefore I( X)=I(E) is a divisor of ﬁ I(z;) by Theorem 3, q.e.d.
ji=1

4. Example.

By Theorem 2, there is a space X such that its loop-order I(X) is equal
to the Le.m. of {I(z(X))|i>0}. We notice that there is also a space X such
that I( X) is equal to the multipleﬂl(n,'(X )), as seen by the following ex-
ample. e

Let Y=S""1\_Je" be the space obtained by attaching n-cell e” to the n—1

2
sphere S”~! by the map 2: $*'—S”"! of degree 2. It is well known that
1 (SY)=m,,1(SY)=2Z, (the group of integers mod 2), where SY=S"\ Je"*! is
2

the suspension of Y.
Also, let X be the space obtained by attaching i-cells (i =>n-+38) to SY so
as to kill the homotopy groups of dim=>n+2. Then

T X)=np1(X)=2,, 7{X)=0 (i=~=n,n+1),

and the loop-order of X is a divisor of 4 by Theorem 5.
Consider the group 7Y ; 2X) which is isomorphic to 7,(SY; X), and the
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induced homomorphism
iy :7o(SY; SY)—>7mo(SY; X)

of the inclusion map i : SYCX. Since X is the space attaching i-cells (i >n+2)
to SY and SY is the n+1 dimensional CW-complex, i, is an isomorphism as
is well known.

On the other hand, the order of ¢sy € 7((SY; SY), the suspension-order of
Y, is 4 by Theorem 4.1 of [27]. Therefore, 7o(Y; 2X) has an element of order
4, and so [(X) is a multiple of 4 by Theorem 4. These show that the loop-
order of X is equal to 4=1(Z,)-I(Z;)=[]l(z{ X))
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