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Introduction.

For a topological space X with base point, its loop space ΩX is a homotopy-
associative ϋΓ-space with a homotopy-inverse, and so the set of homotopy clas-
ses of continuous maps from a topological space Y into ΩX, fixing base point,
forms a group πo(Y; ΩX). Consider the class

of the identity map 1ΩX of ΩX onto itself, and call the order of cΩX simply
the loop-order of X.

The loop-order is clearly a homotopy type invariant. In this note, we
discuss its general properties, where the dual situation to the suspension-
order of Toda [2] may be seen.

1. Preliminary and definition.

For each topological space X, we always associate a point *, called the
base point. (Continuous) maps and homotopies considered are base point pre-
serving.

The set of the homotopy classes of maps/:(X, *)—>(F, *) is denoted by

TTOU; Γ).

Let a 6 7To(X; Y) and β e πo(Y; Z) be the classes of maps / : X->Y and
g : Y->Z respectively, then the composition β°a e πo(X; Z) is the class of the
composition gof of maps. The formula β°a=f*(β)=g*(a) defines two map-
pings

/ * : 7Γo(F; Z)-*7Γo(X; Z) and #* : πo(X; F)->τro(X; Z).

The loop space ΩX of X is the space of all loops w: (/, /)—>(X, *)
(/=[0, 1], / = {0, 1}) with compact-open topology, and the constant loop is its
base point. In this note, we assume that spaces are simply connected when-
ever their loop spaces are considered, and so ΩX is arcwise connected.

The product μ : ΩXx ΩX^ΩX of the 77-space ΩX is defined by

, w2)(t) = w1(2t) (()<;* ^1/2), =w2(2ί-l) (1/2<;*<;!),
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f or wu w2 6 Ω X. The group multiplication a + β of α, β 6 7Γ0(F; ΩX) is de-
fined to be the homotopy class of the composition

juo(fXg)od: Y^YxY^^ΩXx ΩX^ΩX,

where /, g are maps of the classes a, β respectively, and d is the diagonal

map.
A map / : X->F defines a map Ωf: ΩX-+ΩY by

(Ωf)(w)=fow (weΩX\

and Ωf commutes with the multiplications of loop spaces, i.e., the following
diagram is commutative:

ΩXxΩX-^ΩX
j fl/xί/ j Ωf

ΩYxΩY—->ΩY.

Also, a class ,0a e 7Γ0(i2X; 42 F) of i2/ is determined by the class a e 7Γ0(X; F)
of /, and the mapping

Ω : πo(X; Y)^πo(ΩX; ΩY)

is defined. From the definitions, we have easily

LEMMA 1. (βι + β2)°ct = βi°a + βi°oc

for a e τro(X; F), βu β2 e τro(F; ΩZ); and

β°(cti + <x2)=β°<xχ + βoa2

for αi, a2 e πo(X; ΩY\ β e Ωπo(Y; Z) (Cτro(^F; ΩZ)). Therefore

/ * : τro(F; ΩZ)->πo(X; ΩZ), (Ωg)* : τro(X; ΩY)->πo(X; ΩZ)

are homomorphisms for any maps f: X—• Y and g: F->Z.
Denote by l x : Z-> X the identity map of X onto itself, and by

tx 6 7Γo(X; X) its homotopy class. The loop-order l(X) of atopological space X
is the order of the class tΩχ = Ωtx e πo(ΩX; ΩX). Obviously the loop-order is
a homotopy type invariant of spaces.

The class UΩX is represented by the composition

where {ΩX)1 is the product space ΩXx ... xΩX of I copies of ΩX, dι is the
diagonal map and βt is the map defined inductively by βι = β°(βι-ιXlΩχ)>
Therefore, the loop-order I — Z( X) of X is the least positive integer I such that
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/iι°dι is homotopic to zero; if no such integer exists, l(X) = oo.

2. Product spaces and fiber spaces.

Concerning the product spaces, we have the following

THEOREM 2. The loop-order of the product spaces Xx x X2 is the least com-
mon multiple of that of X\ and X2:

l(X1xX2) = l.c.m. of Z(JSΓi) and l(X2).

PROOF. Let p{: X— Xx x X2—•X* (Ϊ = 1, 2) be the natural projections, and
ίii Xχ= X\ x *C X, ii X2 = * x XiC X be the inclusion maps. Then it is easy
to see that the two mappings

( p ) * , CSp2)*)
7Γo(Z; ΩX) <_ -+ τro(Z; ΩX^ + πlZ', ΩX2)

are isomorphisms and one of them is the inverse of the other. Therefore

and Z/ Â- = (ώίi)*(^i)*(Z'^A'1) + (ώi2)*(^2)*(/W^ by Lemma 1, where Z' is
the l.c.m. of 1{X\) and l(X2). This shows that Z' is a multiple of the loop-order

On the other hand, (^/>i)°li2χo^ii = lj2χ1 shows that

) = 0,

where l = l(X). Thus Z(X) is a multiple of Z(Xi), and of Z(J5Γ2) in the same
way, and the theorem is proved, q.e.d.

Now, we consider the fiber spaces. In this note, the fiber space is as-
sumed to be in the strong sense that it has the covering homotopy property
with base point for any spaces. Precisely speaking, (E, p, B) is a fiber space
if the following covering homotopy property is satisfied: for any space X, a
map/: (X, *)-•(£', *) and a homotopy gt: (X, *)->(£, *) such that p°f= go,
there exists a homotopy ft: (X, *)-+(E, *) such t h a t / 0 = / and poft= gt.

If (E, p, B) is a fiber space, then it is easy to see that (ΩE, Ωp, ΩB) is also
a fiber space.

THEOREM 3. Let (E, p, B) be a fiber space and F=p~\*) be its fiber. Then
the loop-order 1{E) is a divisor of the multiple l(B) l(F).

PROOF. Set l = l(B\ then the composition μ^di: ΩE-*(ΩE)ι-^ΩE satisfies
Ωp°βι°dι = βιodι°Ωp^0 : ΩE-+ΩB by the definition of the loop-order l(B).
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Thus βι°dι is homotopic to a map / : ΩE^ΩF (preserving base point) by the
covering homotopy property.

Also, it is clear that

βim° dlm — βmo dmoμto dι:

Therefore, we have

βlm° dim ~ βm° < 4 ° / = (βmo dm \ ΩF)of — 0,

where m = l(F). This shows that lm is a multiple of l(E\ q.e.d.

3 Homotopy groups.

THEOREM 4. Assume that the loop-order l = l(X) of a space X is finite,
then lπi(X)=lHi(ΩX)=lHXΩX)=O for *>0, and

l(Ωπo(X; Y)) = lπo(Z; ΩX)=0

for any spaces Y and Z.

PROOF. It is clear that the induced homomorphism

satisfies (/*/© df)*a = la for each element a e Hi(ΩX). By the assumption, μto dι
is homotopic to zero, and so lHi(ΩX)=0 for all ί>0. The proof of IH%ΩX)=O
is similar.

By Lemma 1 and lcΩX = 0 of the assumption, we have

for ae Ωπo(X; Y), and

for βeπo(Z;ΩX). Thus l(Ωπo(X; Y)) = lπo(Z; ΩX)=0. In particular,
lπi(X)=lπ0(Si; X)=lπo(Si~1; ΩX)=0, where S1' is the /-dimensional sphere, q.e.d.

In the rest of this note, spaces are assumed to be the same homotopy type
of C JF-complexes then their loop spaces are also so [ΐj.

If X is an Eilenberg-MacLane space c9C(π, n\ where π is an abelian group
and n > 1, then its loop space ΩX is £K(π, n — 1) and it is well known that there
are the isomorphisms

7Γo(i2X; ΩX)~Hn-\π, n-1; 7r)*Hom(τr, π).

Also, the image of cΩχ e πo(ΩX; ΩX) under these isomorphisms is the identity
isomorphism lπ : 7Γ->7Γ. Clearly, the order of lπ e Horn (π, π) is equal to the
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least positive integer I such that lπ = 0, which will be denoted by l(π).
Thus we have the following theorem for the case that X is an Eilenberg-

MacLane space £K(π, n).

THEOREM 5. Let Xbe a space having only a finite number of non-trivial
homotopy groups

) = πj 0"=l , •••, rc)> Kίι< <ίn.

Then the loop-order of X is a multiple of the l.c.m. of l(π{)9 , l(πn\ and is a
divisor of \\l(π/), where l(π) is the least positive integer I such that lπ = 0 for

j

an abelian group π.

PROOF. By Theorem 4, the loop-order Z(X) satisfies l(X)πt{X) = 0 for
ί > 0 . Therefore Z(X) is a multiple of Z(7ΓZ (X)), and so of the l.c.m. of l(πι\ ...,

l(jtn\

The second half of the theorem is proved by the induction of n. As is
well known as the Fostnikov decomposition, there exists a fiber spεce (2?,p, B)
such that E is homotopy equivalent to X,

p nt{B) (ί < in\ π{(B) = 0 (ί :> ίn\

and its fiber F is an Eilenberg-MacLane space £K(πn, in). The loop-order l(F)

is l(nn) as proved atove, and l(B) is a divisor of Π K^j) by the inductive as-
3=1

sumption. Therefore l(X)=ί(E) is a divisor of ΠZ(τry) by Theorem 3, q.e.d.
3=1

4. Example.

By Theorem 2, there is a space Xsuch that its loop-order l(X) is equal
to the l.c.m. of {Z(7rt (X)) | i>0}. We notice that there is also a space X such
that l(X) is equal to the multiple fj Z(τr/(X)), as seen by the following ex-

f>0

ample.
Let Y=Sn~ι\Jen be the space obtained by attaching zi-cell en to the n — 1

2

sphere S"'1 by the map 2: 5 W - 1 ^5 W ~ 1 of degree 2. It is well known that
πn(SY) = πn+1(SY) = Z2 (the group of integers mod 2), where SY=Sn\Jen+ι is

2

the suspension of F.
Also, let Xbe the space obtained by attaching i-cells (i^n + 3) to SY so

as to kill the homotopy groups of dim ;> n + 2. Then

and the loop-order of X is a divisor of 4 by Theorem 5.
Consider the group πo(Y; ΩX) which is isomorphic to πo(SY; X), and the
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induced homomorphism

i*:τro(SΓ; SY)^πo(SY; X)

of the inclusion map i: SYCX SinceXis the space attaching j-cells (i>n + 2)
to SY and SY is the 71+ 1 dimensional CϊF-complex, i* is an isomorphism as
is well known.

On the other hand, the order of cSγ e 7ΓO(SΓ; 57), the suspension-order of
Y, is 4 by Theorem 4.1 of [2J. Therefore, πo(Y; ΩX) has an element of order
4, and so l(X) is a multiple of 4 by Theorem 4. These show that the loop-
order of X is equal to 4 = Z(Z2) Z(Z2)=
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