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Introduction

Let X and Y be compact Hausdorff spaces, @(x, z) and ¥(x, y) be real-
valued lower semicontinuous functions on X x X and X x Y respectively which
are bounded from below. We shall always consider non-negative Radon
measures on X and on Y and assume that @ is symmetric, i.e. (x, z2)=0(z, x)
for every x, z€ X. For a measure p on X, we set

0(x, ,u,):g@(x, 2du(z)  (@-potential of 1),

T, =[x, Do)
and
(s )=\ 0Ce, ()

Set
&={u; (u, ) is finite}

and assume that & contains at least one non identically vanishing measure.
We put

G, )= 0Cx, o)

and
(l"'—"'a /L—IJ)':(/.L, l‘)‘)—(va D)—Z(U, /1’)'

We say that @ is of positive type if the quantity (x—v, p—v) is non-negative
for any pu, v€&. In case @ is of positive type, ||p—v||=(p—v, p—»)''? is a
pseudo-metric on &. An &-Cauchy sequence is a sequence {u,} in & such
that, for any ¢>0, there exists an integer n, such that the relations n=>n,
and m = no imply [|p,— pall <e.

Let f be a real-valued function on X which is measurable for every mea-
sure on X and let 2 be a real-valued function on Y for which the following
classes of measures are not empty:
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F={n€&;¥(u, y)=h(y) on Y},
M={pn€E; ¥ (n, )=Hh(y) on Y}.

In case S fdp is defined for all p€ # (n€ 4 resp.), we are interested in the

problem of minimizing the quantity
1) = =2\ fd

for pe F (ue # resp.) and denote inf I(x) by F (M resp.). This may be re-
garded as a problem in quadratic programming. We shall discuss whether
there exists a measure p*€ % (u* € .« resp.) which satisfies I(p*)=F (I{ux*)
=M resp.). We call x* an optimal measure for F (M resp.).

In case @=0, the problem for M is reduced to finding an optimal measure
in the theory of linear programming. This was studied by M. Ohtsuka [3].

In case Y consists of a finite number of points, the problem for F is the
conditional Gauss variational problem raised in [ 2], p. 213.

Our results will be given in the case where f is an upper semicontinuous
function or the @-potential of a measure in &. As an application of the exis-
tence theorem in §1, we shall discuss a duality problem in the theory of
quadratic programming as in [17].

§1. The case where f is upper semicontinuous

First we observe that an optimal measure for M does not necessarily ex-
ist even if ¥, f and h are non-negative and continuous. In fact, taking @=0,
we see that Example 1 in [4 ] shows this fact.

We begin with

Levmma 1. Assume that @ is of positive type. Assume that F (M resp.) 18
finite and that {u.} is a sequence in F (M resp.) for which I(u,) tends to F
(M resp.). Then {u,} s an &-Cauchy sequence.

Proor. We have

H((on+ 1)/ 2) = Kpn)/ 2+ L)/ 2~ || pon— pm|*/4-

Since # (A resp.) is convex and F (M resp.) is finite, our assertion is easily
verified from the above equality.

Levmma 2. Assume that M is finite. Let {u,} be a sequence in # such that
I{11,) tends to M. Then the boundedness of total masses ., (X) follows from one
of the following conditions:

(H. 1) thereis yo€Y such that ¥(x, y,)>0 for all x € X and h( y,)<oo.

(H. 2) @ is of positive type and f>0.
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H.3) (g, ©)=0 for all p€ & and supf<O0.
(H. 4) W=inf{(u, p); u(X)=1} is positive and f is bounded from above.

Proor. From (H. 1), it follows that
pn(X )[i)rflf (x, yo)J=¥(pns o) =h(y0)<oo.
From (H. 3), it follows that
I(pn) =2 igf(—f)];bn(X)
From (H. 4), it follows that
L(pn) = W palX)* —2Bpa( X)),

where 3 is an upper bound of f.

Now we assume (H.2). Since {u,} is an &-Cauchy sequence in .# by
Lemma 1, (un, w,) are bounded, i.e. 0<(un, um,)<L<co. Suppose that
{u.(X)} is not bounded. We may assume that u,(X) tends to oo with n.
Writing 1, = u»/u.(X), we can find a vaguely convergent subsequence of {1,}.
Denote it again by {1,} and let 1, be the vague limit. Then we have

0=="(20, 20) = le(ln, ) = Em L/ (X )?=0.

Since @ is of positive type,
0 < (ko= pony kAo pn) = % 2k(R0, pn)+ (ptns 2n)
for any k=0. We infer that (4, x.)=0 for each n. Furthermore,
ko, Y= UM, HZLMA()/p(X)=0  if h(y)<oo,

N—o0

Hence ndo+ pn, € #. 1t holds that
M= Indo+ o) = I ) — ZnS Fdi.

Letting n—co, we arrive at a contradiction because />0 and 2,(X)=1.
We have

Turorem 1. Assume that f is upper semicontinuous and does not take the
value +oo. If we assume one of conditions (H. 1), (H. 2), (H. 3), (H. 4) and
that M is finite, then there exists an optimal measure for M.

Proor. Let {u,} be a sequence in .# for which I(x,) tends to M. Then
the total masses u,(X) are bounded by Lemma 2. We can find a vaguely con-
vergent subsequence of {u,}. Denote it again by {u,} and let u, be the vague
limit. On account of the lower semicontinuity of @, ¥ and —f, we have
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(o, =Um¥(u,, »=h(y) on Y,

N—o00

(0, po) <lim(py, pa) and 1”17{1 gfdﬂn = gfdlbo-

N->00

Therefore o€ .# and

M=1im () Z1im G, i) —21im | £l

= (o, 10) =2\ fdpo= 1) = M.

Namely ., is an optimal measure for M.
Similarly, we have the following results for F.

Lemma 3. Assume that F s finite and let {u,} be a sequence in F such
that I(u,) tends to F. Then the boundedness of total masses p,(X) follows from
one of conditions (H. 1), (H. 3), (H. 4) and

(H. 2) @ s of positive type, f >0 and ¥ is non-negative.

TueoreM 2. Let f be an upper semicontinuous function which does mot
take the value +oo. Assume one of conditions (H. 1), (H. 2), (H. 3) and (H. 4),
that ¥ is finite and continuous and that F is finite. Then there exists an opti-

mal measure for F.
In the above theorem, the continuity of " can not be omitted in general.

This was shown in Example 2 in [ 2], p. 226.

§2. The case where f is a potential

In the case where f is lower semicontinuous and does not take the value
— oo, the existence of an optimal measure for F or M is not necessarily as-
sured. This is shown by

Examrre 1. (Example 5 in [ 2], p. 226) Let X be the unit ball {|x|=<1}
in the 3-dimensional Euclidean space, Y consist of one point, @(x, z)=
1/|x—z|, =1, h=1and f(x)=1+ | x| for [x| <1, =1 for |x|=1.

For € #, we have (X)<<1 and

160~ m—=2(0~2| x| dptx)

= (XY —4u(X) = —3.

If 4 is the unit measure distributed uniformly on a sphere close to {|x| =1},
then I(u) is close to —38. Thus the infimum is equal to —3, but there is no
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measure of .# which gives —8. It is also shown that there is no optimal
measure for F.

In this section, we always assume that f is the @-potential of ve &, i.e.
f(x)=0(x, v), and that @ is of positive type.

Turorem 3.  Assume one of conditions (H. 1), (H. 2), and (H. 4), that @ is
consistent? and that M is finite. Then there exists an optimal measure for M.

Proor. Let {u.} be a sequence in .# such that I(u,) tends to M. Then
{u.} is an &-Cauchy sequence by Lemma 1. On account of Lemma 2, the
total masses u.(X) are bounded. We can find a subsequence which converges
vaguely to some measure u,. We see uo€ .« and that ||u,— uol| tends to 0 by
the consistency of @. It holds that

M= }1132 Ipn)= }EE A tns pn) =20, pn)}

=05 110)—2(v, po)= (o) = M.

Similarly we have

Tueorem 4. Assume that @ is consistent, that ¥ is finite and continuous
and that F is finite. Then under one of conditions (H. 1), (H. 2) and (H. 4),
there exists an optimal measure for F.

We show by an example that the consistency of @ can not be dropped in
the above two theorems:

ExampLE 2. Let X be the interval {0=x <1} in the real line, Y= {y},
V=1, h=1, 0(x, 2)=f(x)f(2), f(x)=x for 0<x<1, =0 for x=1. Then 0 is
not consistent and f(x) is the @-potential of the point measure at x =1/2 with
total mass 2. For p€ .#, we have u(X)<<1 and

169=({ f)dn—1) 1= -1.

1f we take the unit point measure u, at x=1—1/n, then I(u,)=1/n%—1.
Therefore the infimum of I(u,) is equal to —1. However, we see easily that
I()> —1 for every u€ .# and hence there is no optimal measure. It is also
shown that there is no optimal measure for F.

§3. A duality problem for M

In this section, we always assume that f and —#% are upper semicontinu-
ous and do not take the value +co. As in [1] and [ 37, we consider the fol-

1) 0 is called consistent if any &-Cauchy sequence converging vaguely to a measure convergesin
the pseudo-metric to the same measure.
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lowing dual problem for M:
Let .#’ be the totality of pairs [ u, »] of measures € & and v on Y satis-

fying
V(x, v)+0(x, p) = f(x) on X.
In case .#’ is not empty, we consider the problem of minimizing the quantity

Ty v)=(ps, #)+2Shdu

for [, v]e#’. We put
M =inf{J(p, »); [p, v]e A}y If M'£¢,
M =oco if #'=¢.

Our interest lies in the problem to find when the equality — M= M holds.
First we have

Turorem 5. If @ is of positive type, then it holds that — M <M .

Proor. We may suppose that .#'s~¢. Let[ u,v]€ .#"and 1€ .#. Then

Tty )=ty m)+2) () )

=, )+ 2T, D)
G W+ 27, D dA)

= (o, 1)+ 2{[ ()~ 0, 10]di)

= — I+ (u—24, p—2).
Since @ is of positive type, (u—4, n—2)=0 and hence
Sy ») = — 1.
We give a characterization of an optimal measure for M.

Lemma 4. () Assume that M is finite. If u* is an optimal measure for
M, then it holds that

® (o a*y ¥ = fdn—p)

for every ne 4.
(B) If p*e€  satisfies the above relation (§) and @ s of positive type,
then p* 1s an optimal measure for M.
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Proor. (@) Assume I(p*)=M and p*€ .#. Let pbe any measure of .#
such that gfdu> —oo and ¢ be a number such that 0<<:<{1. Since u(t)=tp
+ ({1 —t)u* belongs to .#, we have

I(p*) < I( 1(2))
=1*(y )+ 20— )y p*)+ A —1)*(p*, w*)
_o Sfdp,—Z(l— £ gfd,ﬁ.
It follows that

0< dI(/L(t>)
= dt

=20 w) =20, wh) =2 fdut 2| fap

t

(B) Assume that p* < .# satisfies (#) and let x be any measure of .#.
Then we have

1=y )2\ fdn

= (py ) —2(pp— p*, M*)—zgfd,u*

= I(p*)+ (p—p*, p—p*) = I(p*).

Finally we prove

TuroreEM 6. Assume that @ is of positive type and one of the following
conditions is true:

(1) condition (H. 1),

(2) f>0and =0,

(3) sup?<0 and either f>0 or f<0or W>0.
XxY

If M is finite, then 4’ ¢ and —M=M.
Proor. We can find by Theorem 1 an optimal measure p* for M. Put
[Hx)=f(x)—0(x, p*). Then the relation (#) can be written as
gf*dﬂ*zgf*dlb

for every ne.#,i.e. Sf*d,u*z sup {gf*d,u; e Jl} Writing 2% = {v; ¥(x,v)

= f*(x) on X} and making use of Ohtsuka’s duality theorem (Theorem 3 in
[3], p. 35), we see £ * =£¢ and
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Sf*dp*=inf{ghdu; vE .///*’}.
Given ¢ >0, there is a measure v, € .#* satisfying
Shdve < Sf*du*—I—s:Sfd,u*—(;L*, w¥)+e.
Obviously [ u*, v. J€ #’. It holds that

M =2 hdve+ (¥, 1)

< 2gfd,u*—(,u*, w¥)+ 2
=—I(u*)+2e=— M+ 2¢.

By the arbitrariness of ¢, we obtain M’ << —M. The inverse inequality was
shown in Theorem 5.

References

[1] W.S.Dorn: Duality in quadratic programming, Q . Appl. Math., 18 (1960), 155-162.
[2] M. Ohtsuka: On potentials in locally compact spaces, J. Sci. Hiroshima Univ. Ser. A-I Math., 25

(1961), 135-352.
[3] M. Ohtsuka: A generalization of duality theorem in the theory of linear programming, ibid., 30

(1966), 31-39.
[4] M. Yoshida: Some examples related to duality theorem in linear programming, ibid., 30 (1966),

41-43.

Department of Mathematics,
Faculty of Science,
Hiroshima University





