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Introduction.

Z. Kuramochi [ 8] constructed an example of a plane domain whose Kura-
mochi boundary contains non-minimal points. However, he showed only the
existence of non-minimal points and did not determine the distribution of such
points. In this note, applying his idea, we shall give an example of a domain
in the d-dimensional Euclidean space R? (d>2) whose Kuramochi boundary
contains non-minimal points and for which we are able to determine the dis-
tribution of non-minimal points completely. Our example is similar to, but
simpler than Kuramochi’s.

More precisely, let F be a compact set in R? such that components of F
cluster to the origin and F lies on the hyperplane P={x=(x1, ---, x4); xa=0}.
Unber certain conditions on F, we shall see that the Kuramochi boundary of
R?— F corresponding to the origin is homeomorphic to the closed interval [ —1,
17, the points corresponding to 1 and —1 are minimal and the other points
are non-minimal (Theorem 4.1).

One may refer to [2], [4]and [ 5] for the theory of Kuramochi boundary,
including the notions of full-harmonic and full-superharmonic functions, those
of potential type, Kuramochi kernel (denoted by N in [47], [5] and by # in
[27]), minimal points and non-minimal points. To apply the general theory,
we take the domain 2= R?—F (instead of R‘—F), where R? is the one point
compactification of R?. 2 is a space of type & in the sense of Brelot-Choquet.
Let B be the unit ball {x; |x| <1} in R? and suppose F is contained in B.
Then Ky=R?—B is a compact set in 2. Thus we can consider full-super-
harmonic functions on 2y=2—K,=B—F relative to 2. The set of all harmonic
full-superharmonic functions of potential type on £2, will be denoted by
Dy=9D(2o) (cf. [47]). We remark here that any u € 9, vanishes on S={x;
|x]| =1}, i.e., u is continuous if it is extended by 0 on S.

For a subset 4 in R? let 4 and 94 be the closure and the boundary (in R)
of A, respectively. If ACP, let @4 be the boundary of A relative to the
(d—1)-dimensional spacc P.
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§1. Preliminaries—some general results.

1.1. Let H" be the class of all non-negative harmonic functions on
B— {0} vanishing on S. The Green function g, of B with pole at x =0 belongs
to H". Conversely, the following is well-known:

Lemva 1.1. If he H, then h=ago for some a_>0.

1.2. Let F be a relatively closed subset of B (not necessarily contained
in P). We shall say that F is a regular closed set in B if B—F is a domain
and each point of 0F— {0} is regular for B—F. In this section, let F be a
regular closed set in B. Let Hj be the class of all non-negative harmonic
functions on B— F— {0} which vanish on S\U8F— {0} and are dominated by
functions in H*.

Let V,={x; |x|<1/n},n=1,2,.... For he H", let h, be the Dirichlet
solution (in the sense of Perron) on B— V,—F with boundary values A on
OV,—F and 0 on 0F\US—(V,—8V,). Then lim#a, exists and belongs to H;. We

n—oo

denote the limit function by Ir(h).
Tueorem 1.1, If u € Hy, then u=al(g,) for some ac>0.

Proor: Let u, be the Dirichlet solution on B— ¥V, with boundary values
zvondV,—FandOon(@V,NF)US. Then h=limu, existsand h € H". Hence

n—>o0

by Lemma 1.1, h=a g, for some a=>0. On the other hand, we can show that
In(h)=u. Hence u=Ip(h)=alr(g).

Cororrary 1.1. If u is a harmonic function on B—F— {0} such that tt
vanishes on S\UOF— {0} and |u| < go on B—F— {0}, then u=alz(g) for some
a with |a| <1.

Proor: Since —u < gy and —u vanishes on S\UAF— {0}, we have —u <<
I:(g,). Hence u+ I.(g,) € Hr. By the above theorem, u+ I.(g,)=a’'Ir(go)
for some a’>>0. Since u+ Ir(g) <2g0, 0o’ <<2. Hence u=(a'—1)Ir(go)
and |a’'—1|<1.

1.3. Tueorem 1.2. Let 0 € 0F. Then Ip(go)>0 on B—F if and only 1f
0 2s an irregular point for B—F.

Proor: Let (go)r be the reduced function of g, on F in B. (It is denoted
by 8 in [17].) It is easy to see that go— Ir(go)=(go)r on B—F. On the
other hand, 0 is irregular for B—F if and only if F is thin at 0, or equiva-
lently, (go)r # go ((1], Chap. VII and VIII). Hence 0 is irregular for B—F if
and only if Iz(go)>0.
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§2. Functions which are full-harmonic except at the origin.

2.1. Now, we turn to the case where F lies on the hyperplane P. Thus,
in what follows, we assume that F satisfies the following conditions: 1) F is
a compact set in B such that 0 € FC P; 2) {0} is a component of F and com-

ponents of F— {0} are isolated but cluster to 0; 3) FF'=P—FN\B is a regular
closed set in B (in the sense defined in 1.2); 4) 6'F is a polar set in B.

For example, if d=2, then F— {0} consists of a countable number of closed
intervals on the real axis clustering nowhere except to 0. {(Cf. the example
~in[3].)

Let F be the interior points of F relative to P, i.e., F=(P—F)NB and
let F'=(P—F)"\B. Conditions 2) and 3) imply F= ¢ and F'+~&. By con-
dition 2), 0 € 9'FC F’, so that 0 ¢ F and 0 ¢ F".

By cendition 1), 2)=B—F is a domain. Let B"={x¢ B; x,>0} and
B ={x€ B; x,<0}. Obviously, 2,=B*\UF\UB~. For x=(x1, ..., x4), let
A=(x1, -, xq_1, — %4), i.€., the symmetric point of x with respect to P.

2.2. Let D be a domain in B such that 9DNF= & and D is symmetric
with respect to P. The family of all such domains will be denoted by Q..
For a function f defined on D— P, we define functions f, f and fon D—Pby

_ (%) if xeB"N\D [f(%) if xeB™ND

Jeoy= f)=

&) if xeB D * | f(x) if xeB D

and f(x)=f(x)+f(2)=f(x)+f(x). Obviously, f, f, f are symmetric with re-
spect to P. ) }

We shall denote by HS(D, F) the class of all harmonic functions z on
D— F such that & and u can be extended to be harmonic on D—F'. The ex-
tended functions are also denoted by # and u. If uwe HS(D, F) and u is
bounded on D—P—V, for any n, then & can be extended to be harmonic on
D— {0}, since 0'F is assumed to be a polar set.

2.3. Levma 2.1. Let DeD,. If u is full-harmonic on D—F, then u €
HS(D, F).

Proor: Let D’ be any domain in @, such that 9D’ is smooth, D' > DNF
and D’CD. Let u* (resp. uy) be the Dirichlet solution for D' — F’ with bound-
ary values & (resp. u) ondD’ and u on F' N\ D’ (any finite values on ' FN\D"). By
the Dirichlet principle, ||u*||p_r <||#llp-—p and ||luxllp—r <||u||p.—-p Where
|| ||c denotes the Dirichlet norm on G. Let v(x)=u*(x) if x € D'N\B*,=uy(x)
if x ¢ D’N\B-. Then v is continuous on D’ — F if it is extended by u on F'N\D".
Since v=u on 0D’, v and u have the same boundary values. We have
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Wollp —r=3u*|3—p +llusllp—r)
<3llallp-p+ el - =llwll} - r
Since u is full-harmonic on D—F, it follows that v=u (see [ 2], [4] or [5]),

ie, u*=z and uy=u. Therefore, u € HS(D, F).

We say that u € 9;(2,) is full-harmonic except at 0, if, for any D € D,
such that 0 ¢ D, u is full-harmonic on D—F. Let P, =Py(2)={u € Dy; u is
full-harmonic except at 0}.

Cororrary 2.1. Du(2,) CHS(B, F).

Proor: By condition 2) for F, we see that a harmonic function z on £,
belongs to HS(B, F) if and only if u € HS(D, F) for any D € D, such that 0 ¢ D.
Therefore, this corollary follows from the above lemma.

2.4. We define functions u, and g. (a: real) on £, as follows:

j Ir(g) on B~
we=1¢ 0 on F and  g.=gotau,.

}\ —Ir(g) on B~
It is easy to see that uoand g, are harmonic on £, and vanish on S. By Theo-
rem 1.2, g, go for a0 if and only if 0 is an irregular point for B—F".

Tueorem 2.1. If |a| <1, then g. € Pu(L0).

Proor: Let D be any domain in &, such that DB and 8D is smooth.
Let u,=/2"F be the full-harmonic measure (cf. [2] or [4]) for the domain

D—F. u, is a measure on 0D. We shall show that ga(x)zgga du, for all

x € D—F and that the equality holds if 0 ¢ D. Since g,>>0 (for |a|<1), g.
vanishes on S and is harmonic on 2, it follows that g, € Pu(2).
Since the domain D and the function g, are symmetric with respect to P,

80 is p(x)= Sgo du., ie., 3=¢. ¢ is a bounded function and, since ¢ is full-

harmonic on D—F, ¢ € HS(D, F) by Lemma 2.1. Hence ¢ can be extended to.
be harmonic on D (cf. 2.2). Lety=g—¢on D. Since g and ¢ have the same
boundary values, 7(x)=0 if 0 ¢ D and 7 is the Green function of D with pole

at x=01if 0 ¢ D.
Next, let ¢(x)= guo du, for x € D—F. Since uo(2)= —uox)and D is sym-

metric with respect to P, we have ¢(4)=—¢(x). Hence y=—¢ and ¢=0 on
F'.  On the other hand, ¢ is full-harmonic, so that ¢ is harmonic on D—F’ by
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Lemma 2.1. Let u=Ir(g))—¢. Then u is harmonic on D—F and u=0 on
(F'n\D)\UdD. Since ¢ is bounded, z>>0 by the minimum principle. Also, we
see that u(x)=|u¢(x)—¢(x)| for all x e D—P.

If 0 ¢ D, then u is bounded. Hence u=0, i.e., ¢=1Ir(go). Hence, ¢=u,,

so that ga(x)=go(x)+auO(x)=¢(x)+a¢(x)=Sgo dﬂx+aguo dﬂngga dut.

If 0¢ D, then we compute 0(x)= gu(x)— Sg“ dt= go(%)+ aue(x)—(x)

—ap(x)=7(x)+auo(x)—¢(x)). Our theorem is prvoed if 0(x)>>0 for all
x€D—F. Since u<<gi—¢, r—u=G—g)+(go—u)>71r—go+¢. Since r— g
is bounded on D, y—u is bounded below. Also, y—u=0 on @D and >0 on
F'ND. Hence, by the minimum principle, we have y—uz >0 on D—F. If
x € D— P, then 0(x)=71(x)+ a(ue(x)— (%)) =>71(x)— || u(x) >7(x)—u(x)=>0.
If x ¢ F'N\D, then 0(x)=7(x)>0.

2.5. We now prove our main theorem in this section:

Tueorem 2.2, Pu(20)={Fg.; A>>0 and |a|<1}.

Proor: By the above theorem, we only have the show that any v € 2,(2,)
is of the form B g, with #>>0 and |a|<(1. By Corollary 2.1, v € HS(B, F).
Hence, as remarked in 2.2, 9 is harmonic on B—{0}. Since v vanishes on S,
if follows that # € H*. By Lemma 1.1, 9=283g, for some 3>>0. Let u=v
—Bgo. Then ue HS(B, F) and i =9—28g,=0. Hence u=0 on F. Obvi-
ously, u=0on S. Since v and g, are bounded on £,— 7, and since each point
of F'— {0} is regular for B—F’, & is a harmonic function on B—F' vanishing
on SUF —{0}. Also, |z|=|v—9/2|=|v—v|/2<9/2=Lg. Hence, by Corol-
lary 1.1, a=aB Ir(go) with |a|<1. Hence u(x)=ua(x)=aBlr(go)x) if x € B*
and u(x)=—u(¥)=—aBIr(g)(x) if x € B~. Thus, u=afu,, so that v=apu,
+680=">ga-

§3. Kuramochi kernel for 2,.

3.1. Let Fand £, be as in the previous section. We denote by N,(x)
=N(p, x) the Kuramochi kernel (IV-Green function) for 2, (see [2], [4] or
[5]). For a domain D, let GY(x)=GP”(p, x) be the Green function for D.

Turorem 3.1.
( GP(p, x)+GP T (p,x) if p,x€B" or p,x€B,

N(p, x)={ GE(p, x)—G® T (p,x) if pe B, x€ B~ or pe B, x¢€B",
LGB(p, x)=G2(p, x) if x€F or peF.
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Proor: Let Nj=N*(p, x) be the function defined by the right hand side
of the equation. It is easy to see that, for each p, N} is harmonic on 2,— {p}
and has the same singularity as G5 at x=p. Therefore, w,=N,—N} is
bounded harmonic on £,. We shall show that w,=0. Since N, is full-har-
monic on 2o— {p}, Lemma 2.1 implies that N, € HS(B— {p, p}, F), so that
N, is harmonic on B— {p, p}. On the other hand, N*(x)=N*(p, x)-+ N*(p, &)
=GP(p, x)+GB(p, 4) = GB(p, x)+G3(p, x). Hence N} is also harmonic on
B—{p, p}. Hence @, is harmonic on B. Since w,=0 on S, #,=0. In parti-
cular, w,=0 on F.

Letpe B*. [, is harmonic on B*\UB™ and since N,e HS(B— {p, p}, F), N,
is harmonic on B—F". On the other hand, since G¥ —G2~*" is bounded harmo-
nic on B—F’ and continuous everywhere on B— {0}, it is symmetric with
respect to P, i.e., G%(p, 2)—G® "' (p, £)=G"(p, x)—G®F'(p, x). Hence, N*(p, x)
=G%(p, x)—GPF'(p, x) for any x € B*UB~. It follows that N is also harmo-
nic on B—F’; hence so is w,. Since w, is bounded and vanishes on F'\US, we
have w,=0. Since w,=0, it follows that %,=0 and hence w,=0.

Similarly, we obtain #,=0 for p € B~, which implies w,=0 for p € B™.

3.2. From the expression of N(p, x) in the above theorem, we see: If
pi—¢& € F— {0} with p; € B*(resp. p; € B7), then {N(p;, x)} converges to

(GP(e, x)+GP (&, x) if x € B® (resp. x € B™)

N(&*, x)(resp. N(&~, x))= ( GB(¢, x)—GPF'(¢, x) if x € B~ (resp. x € BY)
lGB(é, x) if xekF.

We note that GZ-7'(¢, x)==0 for ¢ € F. If p;—~>0and {N(p;, »)} converges, then
the limit function u(x) belongs to 9,(2,). Hence u=pgg, for some £>>0 and
|| <1 by Theorem 2.2. By Theorem 8.1, we see that u(x)= gy(x) if x € F.
It follows that 3=1. Thus, we have

Tueorem 3.2. To each & € F, there correspond two Kuramochi boundary
points €T and £~ and to each & € 0'F— {0}, there corresponds one point (denoted
by & again). If pi—0 and {N(p:, x)} converges, then the limit function is of
the form g (Ja| <1) and is different from any Kuramochi kernel correspond-
ing to £ € F— {0}.

Thus the Kuramochi boundary A of £ consists of two parts A" and A°,
where A'={¢", & ; £c F}\U{&; £ € 0'F—{0}} and A° is the set of points defined
by fundamental sequences tending to the origin.

§4. Kuramochi boundary at the origin.

4.1. For any & € A°, let N:(x)=N(¢, x) be the corresponding Kuramochi
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kernel. ¢ is a minimal point if N, is minimal in 9D, i.e., if N;=u;+ u, with
u; € Py(i=1, 2) implies u;=2N; for some constant 1.

LemMa 4.1, u € Py 18 minimal in P, iof and only 1f it 1s minimal in P;.

Proor: Since P, PD,, the “only if” part is trivial. Suppose u € P, is
minimal in P, and let v =u,+ u, with u,, u, € P;. It is enough to show that
uy, uy € P,. Take any D € D, such that 0 ¢ D. Since u is full-harmonic on
D—F and u,, u, are full-superharmonic on D—F, u,, u, must be full-harmonic
there. Then it follows that uy, u, € P;.

Lemma 4.2, If uos£0, then u= g, (|a|<1) ts minimal in P, if and only
if la|=1.

Proor: Since uo7#0, g1~ g-1. If g1=12g_1,then 2g,=2,=28_1=21g, im-
plies 1=1, which is impossible. Hence g, and g, are not proportional. If
la| <1, then g,=[(1+a)/2]g+[(1—a)/2]g-1 and 1+a)/2, 1—a)/20.
Hence g, is non-minimal in ;.

Next, let g1= ui+u, with uZZBigai, ,8,'20, la,lgl (L=1, 2) Since
280 =41 =1+ 02=2B180+2B280 = 2(B1+B2) g, Bi+B:=1. It follows that
wo=P1a11o+ Bactatsg, OF Bia;+ B2ct2=1. These equalities can hold only when
ai=a,=1. Hence g; is minimal in 9,. Similarly, we see that g_; is minimal

in @h-

4.2. Now, we are able to determine the part A°. Our final and main
result is:

Taeorem 4.1. I1f 0 is a regular point for B—F', then A° consists of a
single point and the corresponding Kuramochi kernel is equal to g. If 0 is
an trregular point for B—F', then A° 1is homeomorphic to the closed interval
[—1, 17 in such a way that the points corresponding to —1 and 1 are minimal
and other points are non-minimal; the Kuramochi kernel corresponding to
ael—1,17 s equal to g,.

Proor: Let {p;} be a sequence of points in B—F tending to 0 such that
{N(pi, x)} is convergent. The limit function is of the form g, (|a|<(1) by
Theorem 3.2. If 0 is a regular point for B—F', the u,=0 by Theorem 1.2,
so that g,=go for any a. Hence g, can be the only limit function of
AN(pi, %)}

If 0 is an irregular point for B—F’, then uy==0 by Theorem 1.2. It is
generally known (see [2], [4 ] or [5]) that any 9;-minimal function is a con-
stant multiple of N(&, x) for some & € A. Thus, it follows from Theorem 3.2,
Lemma 4.1 and Lemma 4.2 that there exist sequences {p;} and {g;} such that
pi—0, ¢i—0, N(p;, x)— gi(x) and N(g;, x)—> g-1(x). Now, we shall show that,
for each o with |«| <1, there exists a sequence {p;“} such that p,“—0 and
N(pi©, x)—> go{x). We may assume that p» i€ Vi—F. We can connect p;
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and ¢; by a curve I'; in V;—F. Fix xo€ 2,—P. There exists p;/ € I'; such
that N(p:“, x0)=[A+a)/2]N(pi, xo)+[(1—a)/2]N(gi, x,). Subtracting a sub-
sequence, if necessary, we may assume that {N(p;*”, x)} is convergent. Then
it is easy to see that N(p,®, x)— g.(x). Thus, there is a one-to-one mapping
¢ of [—1, 1] onto A° such that N(¢(«), x)= gu(x). From the definition of g,
we see that ¢ is a homeomorphism. Now our theorem follows from Lemmas
4.1. and 4.2.
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