
J. Sci. HIROSHIMA UNIV. SER. A-I
31 (1967), 161-171

On the Immersion Problem for Certain Manifolds*)

Teiichi KOBAYASHI

(Received September 20, 1967)

§1. Introduction

In this note, let Mm denote a compact connected orientable C°°-manifold
(with boundary) of dimension m, and Rk the A -dimensional Euclidean space.
We write Mm^Rk (or MmΦRk) to denote the existence (or the non-existence)
of a C°°-immersion of Mm into Rk.

The purpose of this note is to discuss the immersion problem for some
manifolds Mm whose integral cohomology groups H\Mm; Z) in positive di-
mensions are finite and have no 2-primary subgroups.

We obtain the following immersion theorems of such manifolds Mm into
R\ where h is near to 3m/2.

THEOREM 1. Let Mm be a manifold of dimension m = An + r ( Λ > 0 , r = l, 2,
3 or 4) which has the following properties (i)-(iii):

(i) H\Mm Z) is finite and has no 2-primary subgroup for any ί>2n — 1.
(ii) pn = 0, where pi e HA\Mm; Z) is the ί-th dual Pontrjagin class of Mm.
(iii) HAn+%Mm; Z3)=0, i / r = 4.
Then we have MAn+r ^R6n+r~ι.

THEOREM 2. Let Mm be a manifold of dimension m = 4n + r (ra > 1, r = l, 2;
7i > 2, r = 3) which has the following properties (i)-(iii):

(i) H\Mm Z) is finite and has no 2-primary subgroup for any i>2n — 3.
(ii) pn = 0 andρn-ι = 0.
(iii) H4n-\Mm; Z3) = 0.
Then we have MAn+r c R^+*-\

As applications of these two theorems, we obtain the following two theo-
rems about the lens space Ln(p)=Ln(p; 1, ••-, 1) of dimension 2n + l.

THEOREM 3. Let p be an odd prime. If n is an even integer such that

t h e n

THEOREM 4. Let p be a prime >3 . If n is an odd integer such that

' t h e n

*) This work was partly supported by the Sakkokai Foundation.
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The immersions of these two theorems are shown to be best possible for
some kind of p and n (Theorems 7 and 8), by the non-immersion theorems
obtained in the previous paper [5].

Finally, we remark that there is a lens space L — Ln(p; qu • •-, qn), which
has the homotopy type of L\p) but that LQR3n and L\p)ΦR3nΛ-1 (Proposition

2).
The proofs of Theorems 1 and 2 are in §3, and are based on the following

well-known theorem of M. W. Hirsch

(1.1) // Mm is immersible in Rk with a transversal r-field, then Mm is
immersible in Rkr, where m<.k — r.

To apply this theorem, we use the obstruction theory for the existence
of a cross-section of the r-ΐrame bundle associated with the normal bundle of
Mm^Rk. We recall in §2 some known facts about the cohomology and homo-
topy groups of the Stiefel manifolds Vn,r9 which are used to determine these
obstructions.

Theorems 3, 4, 7 and 8 are proved in §4. We notice that Theorems 3 and
4 are partial improvements of the following results of F. Uchida [15]

Tn(ΊΊ\CZ E>2« + 2[rc/2] + 4 ffl/yt ΠΎ) ^JJ / m. /,\W 7£> n

Also notice that D. Sjerve [10] has announced the following more general
results:

Ln(p; qλ, ••-, qn)^R2n^2ίnl2^2, for an odd prime p.

The author wishes to express his sincere gratitude to Professor M. Suga-
wara for valuable suggestions and helpful discussions.

§2. Preliminaries

Let Sn be the ^-sphere and let Vn,m be the Stiefel manifold of orthonormal
m-ίrames in Rn. In this section we list some known results about the integral
cohomology groups and homotopy groups of Vn,m which will be used in later
sections (cf. [1], [9], [12] and [14]).

(2.1) // n is odd, m is even and k=n — m>0, then

(Z for ΐ = 0, 2A + 1,

H\Vnιm;Z)=( Z2 for k<i<2k + l,i even,

[0 for other i<2k + l.

(2.2) π,<Vκ,m) = 0 for i<n-m.

(2.3) // n is odd, m is even and k=n — m>0, then Ki(Fn%m) is a finite 2-
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primary group for ί<2k + l and π2k+ι(Vnym) is isomorphic to the direct sum of
the infinite cyclic group Z and a finite 2-primary group.

(2.4) Letp be an odd prime. If n>l is odd, then πi(Vn>2) is finite for
ί>2n — S and thep-primary component 7ΐi{Vnχ,p) of πi(Vn>2) is isomorphic to
that of πi(S2n'3\ and so

7t2n-3 + i(Vn,2;p)=0 fθT 7l>2, £ = 1, 2, 4, 5

or n >3, ί = 6,

K2n(Vn>2;3) = Z3 for n>2,

τt2n(Vn>2; p) = 0 for n>2,p>3.

§3. Proofs of Theorems 1 and 2

To prove Theorems 1 and 2, we shall prove in the first the following

PROPOSITION 1. Let Mm be a manifold of dimension m = 4:n + r (7iJΞ>0,
r = l, 2, 3 or 4) such that H*(Mm; Z) is finite and has no 2-primary subgroup
for any i>2π,-j-l.

Then we have M4n+r ^

PROOF. We remark that the manifold Mm is a manifold with boundary,
because Mm is compact, connected, orientable and Hm(Mm Z) is finite. Then
Hm(Mm; G) = Q for any abelian group G.

According to Whitney's theorem [16] we have

τιj4n+ r ς— n2(4n+r)-l •— n 8 « + r 4 3

and let v be its oriented (in + 3)-dimensional normal bundle over MAn+r and

v(2«+2) k e foe associated (2τι + 2)-fτame bundle of v. The obstructions for the
existence of a cross-section of y(2w+2) are contained in Hί+1(M4n+r πx(F4W+3j2w+2)).
Here we notice that the local coefficients 7Γί (F4»+3,2«+2) in these cohomology
groups are trivial, because v is orientable [8, p. 445].

According to (2.2) and (2.3),

0, for i<2n + l,

finite 2-primary group, for 2n +1 <^ ί ^ An + 2.

Therefore Hi+ι(Min+r; 7rf (Γ4ll+3,2«+2))=0 for ι^4τi + 2. By the above remark,
H4n+%M4n+i; πAn+3(^4n-,3t2n,2))=0. Hence v (2w+2) has a cross-section and M4n+r

cΛ 6 » + ' + 1 by (1.1). q.e.d.

PROOF OF THEOREM 1. By Proposition 1 we have M4n+r ^R6n+r+1. Let v
be its oriented (2n + l)-dimensional normal bundle and v(2) be the associated
2-frame bundle. According to (2.2)-(2.4), πi(F2n-i 1,2) is a finite group except
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for i = £n — 1, and

0, for ί<2n-l,

finite 2-primary group, for 2n — 1 ̂  ι' <^ 4n + 1 , i^An — 1,

Z+ finite 2-primary group, for i = 4rc — 1,

^4^+2(^2^+1,2;/?) = 0, if jo is a prime > 3 .

Since Mm is a manifold with boundary, Hm(Mm; G) = 0 for any abelian
group G. Therefore, by the assumptions (i) and (iii), the primary (and the
last) obstruction for the existence of a cross-section of v(2) lies in HAn{Mm

Let E be the total space of the bundle v(2) and let π: £-> Mm be the pro-
jection of v(2). Consider the following commutative diagram:

δ 4 w 7Γ*
JΓZ ~~ \r2n + \,2\ Z) *~ H ( £ , V2n + l,2) Zj* H yM * Z)

Hin(E; Z)

where 7: E->(E, V2n+ι>2) is the injection, π: (E, V2n+ij2)-+(Mm, *) is zr, and
5 is the coboundary homomorphism. Note that πι(Mm) acts trivially on
H*(V2n+ιf2; Z) [8, p. 445] and that Hi(V2n+ι>2; Z) is a finite 2-primary group
for i<±n-l (cf. §2). Thus, by Theorem l.B of J. -P. Serre [9, p.268], we see
that π* is a monomorphism since H4n(Mm; Z) has no 2-primary subgroup.

Theorem 30.10 of A. Borel and F. Hirzebruch [2, p. 377J implies that,
for a generator e of HAn~\V2n+\t2\ Z) = Z (cf. (2.1)), 2c is transgressive and
that

Pn(y) = ( —l)Λ+1^*""1ί(20 modulo a 2-primary group,

where pn(y) denote the n-th Pontrjagin class of v. Since HAn(Mm; Z) has no
2-primary subgroup, we have pn(v)=ρn and ρn = ( — l)n+1π*~1δ(2c).

Let c e HAn(Mm; πAn^ι(V2n+ι>2)) be the primary (and the last) obstruction
to the construction of a cross-section of v(2). Then π*c = Q [11, p. 188], and
so/*7Γ*c = 0. By the exactness of the cohomology sequence, there is an ele-
ment x e HAn~1(V2n+i,2'ί Z) such that dx = π*c. Since c is a generator, x — 2qc
or (2<jr + l)* for some integer q.

If x = 2qc9 then c = (-l)n+1

qpn.
If x = (2q + l)c, then c = x — 2qc, and hence c is transgressive. Thus we

may take y=π*-ιδc. Therefore 2y= ( — X)n^ιρn. By the assumption (i),
there is an odd integer 2s —1 such that (2s —l)y=0. Then γ=2sγ=( — l)n+1spn.
Hence c =
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Therefore, in both cases we see that c = 0 if ρn = 0. Hence, by the as-
sumption (ii), v(2) has a cross-section and we have M4n+r c ^ + ? > 4 by (1.1).

q.e.d.

PROOF OF THEOREM 2. By Theorem 1 we have Af4Λ"rcJR
6Λ+r-1. Let v be

its oriented (2n — l)-dimensional normal bundle and v(2) be the associated 2-
frame bundle. According to (2.2)-(2.4), πi{V2n-ι,2) is a finite group except for
i — ̂ n — 5? and

0, forϊ<2rc-3,

finite 2-primary group, for 2n — 3<^<4rc + 2,

ί^ψ 4n — 5, 4^ — 2,

Z+finite 2-primary group, for i = An — 5,

7Γ4ίf-2(fΓ2»-i,2;/>)=05 if/? is a p r i m e > 3 .

Since Mm is a manifold with boundary, Hm(Mm; G) = 0 for any abelian
group £. Therefore, the assumptions (i) and (iii) imply that the primary (and
the last) obstruction for the existence of a cross-section of v{2) lies in H4n~4(Mm;
τtAn-5(V2n-i,2)) (=HAn~\Mm Z)). In the similar way to the proof of Theorem
1, we can see that the obstruction vanishes if jόw_i = O. Thus v(2) has a cross-
section by (ii) and we have M4n+r c R**+'-* by (1.1). q.e.d.

§4. Applications for lens spaces

Let p > 2 be an integer and let Γ be the cyclic group of order p with
generator t. Let s2n+ιCCn+1 be the unit (2n + l)-sphere in the complex
(tt-fl)-space. Given n + 1 primitive p-th roots a0 ( = e2πilp\ <xu •••, tfn( ̂  C) of
unity, define an action of Γ on s2n+ι by the formula:

n

where z} (/ = 0, 1, , π-) are complex numbers with Σ Uy|2 —1 The quotient

manifold S2nΛλ/Γ is called a Zews space. Set
α y - α o ^ = e

2niq>ιp.

The lens space S2n+ι/Γ is written by I w (p; ? l 5 q2, ..., ? Λ) (or briefly L2w+1). The
notation !/"(/?) will be used for the lens space L\p\ 1, 1, ••-, 1).

The lens space L2n+1 has a structure of a Cΐ^-complex with one cell in
each dimension. The cohomology groups of L2n+ι are given as follows:
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Z for y = 0, 2n + l,

r

p
 for y = 2, 4, ..., 2

v
 0 for other /,

H
j
(L

2n+1
;Z

p
) = Z

p
 for

Let x e H\L2n+1\ Z) be a generator. The total Pontrjagin class of Z 2 w + 1

(=Ln(p; qu q2, •••, ?»)) is given by the formula ([13], Corollary 3.2):

(4.1) p(L2^1) = (l + x2)a + qlx2)a + q22X2)'-'a + q2nX2)

Let L2

0

n+ι denote the set L2n+1-lntD, where D is a (2n + l)-dimensional
disk contained in the interior of the highest dimensional cell of the given
CW-decomposition. Then L2

Q

n+1 is the compact connected orientable manifold
(with boundary S2n = D) of dimension 2n + l. Let /: L2

0

n+1 - * L 2 n + ι be the in-
clusion map. It is easily seen that the induced homomorphism /*: HXL2n+1;
Z)-+HXLlH+1; Z) is an isomorphism for i<2n + l and that H2n+1(L2n+1; G) = 0,
where G is any abelian group. Thus we may identify the Pontrjagin class
of L ^ 1 and that of L2n+1.

Hereafter, we assume that/? is an odd prime. We shall apply the previous
results to the problem of finding the least integer A;>0 such that Ln(p)=
L\p; 1, •-., 1) can be immersed in R2n+1+k, According to (1.1), such an in-
teger &>0 is equal to the geometrical dimensionυ of —τo(Ln(p)) (written by
g dim(—τo(Ln(p)))\ where vo(Ln(p)) is the stable class of the tangent bundle
t(Ln(p)) of L\p). Some results about the non-immersibility and the non-
embeddability of Ln(p) were obtained in [4], [5] and [6].

Let x be a generator of H2(L%p)0; Z) (=H2(Ln(p); Z)). (4.1) shows that
the total Pontrjagin class of Ln(p)0 is given by the formula:

and so the dual Pontrjagin class is given by the formula:

in 123

ί = 0

Since Ln(p) is naturally embedded in Ln+\p)0, Theorems 3 and 4 are im-
mediate consequences of the following two theorems.

THEOREM 5. Let p be an odd prime. If n is an even integer such that

), then Ln+ι(p)0QR3n+2.

1) The geometrical dimension of a e KO{X) is the least integer h such that a + k = θ(β) for some

β e ε(X), where Q : ε{X)->KO(X) is the natural map of the set of equivalence classes ε{X) of real vector

bundles over a CM^-complex X into the associated Grothendieck group KO(X).
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PROOF. By the assumption, we have

nn/2

and so we get Ln+1(p)0QR3n+2 by Theorem 1 (for r = 3). q.e.d.

THEOREM 6. Let p be a prime >3 . If n is an odd integer such that

' t h m Ln+\p

PROOF. By the assumption, we have

(n + ΐ)/2

Thus we have ρ(n^ί)ι2(Lnn(p)o)=O and p(n+ι)j2(Ln+ι(p)o)=O, and hence we get
Ln+ι(p)o^R3n+1 by Theorem 2 (for r = l). q.e.d.

If we combine these two results with the non-immersion theorems which
we have obtained in the previous paper ([5], Theorems 4 and 5), we obtain
the following results.

THEROEM 7. Assume that either of the conditions I) and II) below is satis-
fied.

I) p=6k~\-l (&>0) is a prime, a and β are even integers such that 0<a
<X2jo—2)/3 and β = (2p — 2)/S, and I > Us an integer.

II) p = 6k — 1 (&>0) is a prime, a and β are odd integers such that 0<a
<ί(2p—1)/3 and β=(p — 2)/3, and I is an integer such that Z>1 if a>l and
l>2ifa = l.

Then, for n — apι + β, we have

Ln(p)^R3n+2, L"(p)£R3n+1.

PROOF. Ln(p)<£R3n^1 is a consequence of Theorem 4 in [ΊΓ].

Under the condition I),

and under the condition II),

2) If a = ΣaίPί a n d δ = YfitP1 are/?-adic expansions, then ( ? J Ξ / 7 Γ ^ Λ (mod/?).
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2 p 2 P 2

Ξ 0 (mod />).

Therefore, by Theorem 3, we have L\p)QR3n+2. q.e.d.

THEOREM 8. Assume that either of the conditions III) and IV) below is
satisfied.

III) p=6k — 1 (λ>0) is α prime, a is an even integer such that
(2p-2)/3, #=(2p-l)/3, αwcϊ l>lisan integer.

IV) p=6A: + l (&>0) is α prime, a is an odd integer such that
(2p—1)/3, β=(p—ΐ)/39 and I is an integer such that Z>1 if a>l and l>2 if
α = l.

Γ/̂ ê , /or ?ι = α/?/ + β, we have

Ln(p)^R3n+\ Ln(p)£R3n.

PROOF. Ln(p)g=R3n is a consequence of Theorem 5 in [5]. Under the
condition III),

/
(n-X)/2

and under the condition IV),

— 1 / D — 1 j_i p — 1 2

\ P + F P + + ^ + ^

= 0 (mod p).

Thus, by Theorem 4, we have Ln(p)^R3n+1. q.e.d.

If the number of the non-zero terms of the /?-adic expansions of n is
larger than 2, we have many types of results corresponding to Theorems 7
and 8. For examples, we have the following (cf. [5], Theorems 4; and 5').

THEOREM T. Assume either of the conditions Γ) and IΓ) below is satisfied.
Γ ) p = 6k-{-l ( & > 0 ) i s α prime; z τ ι > 2 i s a n integer; a{ ( i = l , 2, •••, /τi)

are even integers such that 0<a{^(2p—2)/S for ί^>2 and aι = (2p — 2)/3; and
li(i = 1, 2, , m) are integers with lm > Zw_i > > l2 > h = 0.

IΓ) p=6k — 1 (&>0) is a prime; m>2 is an even integer; a{ (ί = l, 2, ..., TΛ)
are odd integers such that 0 < a I ^(2p—1)/3 i / i is e'yew, 0 < a t ^(/?—2)/3 ΐ / f
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is odd>l, and aχ — {p—2)/3; and li(i = 1, 2, , m) are integers with lm>lm-ι>

m

Then, for n = Σ ctipU w e have
» = 1

THEROEM 8'. Assume that either of the conditions IIΓ) and IV7) below is
satisfied.

IIΓ) p = 6k — 1 (&>0) is a prime; m>2 is an integer; ai(ί = 2, 3, •-, m)
are even integers such that 0<α*<(2p—2)/3, and <Xι=(2p—1)/3; and U (i = l,
2, ..., τ?ι) are integers with lm>lm-ι> - >h>h = 0.

IV') p = 6k + l (A>0) is a prime; m>2 is an integer; at (i = 3, 4, ••, m)
are even integers such that 0 < a ^ ( 2 p — 2 ) / 3 , a 2 is a^ odd integer such that
0<a2<:(2p—1)/S, and a i = ( jp—1)/3; and Zf (i = l, 2, •••, 7̂ ) are integers with

lm>lm-l> ~>h>h = 0.
m

Then, for n=Σ <Xip\ we have
1

The proof of Theorem 7' (or Theorem 8') is similar to that of Theorem 7
(or Theorem 8), and so we omit the details.

§5. Remarks

In this section we shall give an example of the lens space L=Ln(p; qu q2,
• ., qn) which has the homotopy type of L\p) but has the geometrical dimen-
sion of the stable normal bundle different from that of Ln(p).

First, we recall Theorem VI of P. Olum [7, p. 468] about the homotopy
types of lens spaces:

(5.1) Two lens spaces Ln (p; qu q2, • , qn) and Ln (p; q'u q2, •-, qr

n) have the
same homotopy type if and only if

for some integer k relatively prime to p.

PROPOSITION 2. Let n = 3-5' + 1 = 2m (I > 1), and let

Then we have
1) L and Ln(5) have the same homotopy type.
2) L"(S)cR*"+2 and Ln(5)<£R3n+\ that is, g-dim(-τo(Ln(5)))=n
3) L^R3n, that is, g dim(—τo(L))<^n — l.
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PROOF. 1) 2m+1 = 25l+2'5l~u •• + 2 5 + 4

= 2 5 ^ 4 5 ^ I + . . . + 5 . 1 6 Ξ ± 2

5 ^ ± 2 (mod 5),

r i = 2 3-^2 s _ 8 5^2^2 (mod 5).

Thus, by (5.1) we see that L and L\5) have the same homotopy type.
2) This fact is a consequence of Theorem 7 in §4.
3) Consider the (2τι + 3>dimensional manifold (with boundary)

According to (4.1), we have

Thus,

_ fm + m/2\ n

P™ = \ m/2 ) x

and, clearly,ρm_ι = 0. Therefore, by Theorem 2 (for r=3), we have Lr

0^R3n.
Since L is naturally embedded in Z,ό, we obtain Z c i?3w. q.e.d.

References

[1] A. Borel, Sur la cohomologie des espaces fibrέs principaux et des espaces homogenes de groupes de Lie com-

pacts, Ann. of Math., 57 (1953), 115-207.

[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, II, Amer. J . Math., 81

(1959), 315-382.

[3] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc, 93 (1959), 242-276.

[4] T. Kambe, The structure of Kj-rings of the lens space and their applications, J . Math. Soc. Japan, 18

(1966), 135-146.

[5] T. Kobayashi, Non-immersion theorems for lens spaces, J . Math. Kyoto Univ., 6 (1966), 91-108.

[6] R. Nakagawa and T. Kobayashi, Non-embeddability of lens spaces mod 3, J . Math. Kyoto Univ., 5

(1966), 313-324.

[7] P. Olum, Mappings of manifolds and the notion of degree, Ann. of Math., 58 (1953), 458-480.

[8] J.-P. Serre, Homologie singuliere des espaces fibres, Ann. of Math., 54 (1951), 425-505.

[9] J.-P. Serre, Groupes d'homotopie et classes de groupes abέliens, Ann. of Math., 58 (1953), 258-294.

[10] D. Sjerve, Geometric dimension of vector bundles over lens spaces, Notices Amer. Math. Soc, 14 (1967),

67T-439.

[11] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, 1951.

[12] E. Stiefel, Richtungsf elder uud Fernparallelismus in Mannigfaltigkeiten, Comm. Math. Helv., 8 (1936),

3-51.

[13] R. H. Szczarba, On tangent bundles of fibre spaces and quotient spaces, Amer. J . Math., 86 (1964),

685-697.

[14] H. Toda, Composition Methods in Homotopy Groups of Spheres, Princeton Univ. Press, 1962.

[15] F. Uchida, Immersions of lens spaces, Tόhoku Math. J., 18 (1966), 393-397.



On the Immersion Problem for Certain Manifolds 171

[16] H. Whitney, The singularities of a smooth n-manifold in (2n — \)-space, Ann. of Math., 45 (1944), 247-

293.

Department of Mathematics,
Faculty of Science

Hiroshima University






