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§1. Introduction

In this note, let M™ denote a compact connected orientable C~-manifold
(with boundary) of dimension m, and R* the k-dimensional Euclidean space.
We write M™ < R* (or M™Z R¥) to denote the existence (or the non-existence)
of a C~-immersion of M™ into R*.

The purpose of this note is to discuss the immersion problem for some
manifolds M™ whose integral cohomology groups H'(M™; Z) in positive di-
mensions are finite and have no 2-primary subgroups.

We obtain the following immersion theorems of such manifolds M™ into
R*, where £ is near to 3m/2.

Turorem 1.  Let M™ be a mantfold of dimension m=4n+r (n >0, r=1, 2,
3 or 4) which has the following properties (1)—(iii):

()  H(M™; Z) s finite and has no 2-primary subgroup for any i >2n—1.

(il)  p.=0, where p; € H¥(M™; Z) is the i-th dual Pontrjagin class of M”.

(iil) H*™3(M™; Z3)=0, if r=4.

Then we have M***" < R5**7-1,

TureoreM 2. Let M™ be a manifold of dimension m=4n+r (n>1, r=1, 2;
n>2, r=38) which has the following properties (i)-(iii):

()  H(M™; Z) s finite and has no 2-primary subgroup for any i >2n—3.

(i) p.=0and p,.,=0.

(iii) H*"™Y(M™; Z3)=0.

Then we have M*""" < R"*73,

As applications of these two theorems, we obtain the following two theo-
rems about the lens space L*(p)=L"(p; 1, --., 1) of dimension 2n+1.
Tueorem 3. Let p be an odd prime. If n is an even integer such that

(~* }jz”/ #)=0 (mod p), then L(p)<= R,

Tureorem 4. Let p be a prime >3. If n is an odd integer such that

(" 2 %)=0 (mod p), then L(p)= R

*) This work was partly supported by the Sakkokai Foundation.
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The immersions of these two theorems are shown to be best possible for
some kind of p and n (Theorems 7 and 8), by the non-immersion theorems
obtained in the previous paper [57].

Finally, we remark that there is a lens space L=L"(p; qi, ---, g»), Which
has the homotopy type of L"(p) but that L< R* and L"(p)Z R*"*! (Proposition
2).

The proofs of Theorems 1 and 2 are in §3, and are based on the following
well-known theorem of M. W. Hirsch [3]:

(1.1) If M™ is immersible in R* with a transversal r-field, then M™ is
1mmersible in R*~", where m<k—r.

To apply this theorem, we use the obstruction theory for the existence
of a cross-section of the r-frame bundle associated with the normal bundle of
M™< R*. We recall in §2 some known facts about the cohomology and homo-
topy groups of the Stiefel manifolds 7, ,, which are used to determine these
obstructions.

Theorems 3, 4, 7 and 8 are proved in §4. We notice that Theorems 3 and
4 are partial improvements of the following results of F. Uchida [157:

L"(p)S R**2723%4 0 for an odd prime p.

Also notice that D. Sjerve [10] has announced the following more general
results:

L"(p; q1, - gu) S R¥ 2220 for an odd prime p.

The author wishes to express his sincere gratitude to Professor M. Suga-
wara for valuable suggestions and helpful discussions.

§2. Preliminaries

Let S” be the n-sphere and let 7, ,, be the Stiefel manifold of orthonormal
m-frames in R”. In this section we list some known results about the integral
cohomology groups and homotopy groups of ¥, , which will be used in later

sections (cf. [17],[97, [12] and [14])).
2.1) If nisodd, m is even and k=n—m >0, then
(Z Sfor i=0,2k+1,
HVum; Z)=1 Zy  for k<i<2k+1, i even,
l 0 Sor other i<2k+1.
2.2) 7(Vum)=0 Sor i<n—m.
(2.8) If nisodd, m is even and k=n—m>0, then 7V, ) 1s a finite 2-
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primary group for i <2k+1 and wop 1(Va,m) 18 1s0morphic to the direct sum of
the infinite cyclic group Z and a finite 2-primary group.

(24) Let p be an odd prime. If n>1 is odd, then n(V,2) s finite for
i >2n—3 and the p-primary component w,(V,z; p) of mVaz2) is isomorphic to
that of w(S*3%), and so

7f2n—3+i<Vn,2; P) =0 fO’r n>2, l=1, 2, 4, 5;

or n>3,i=6,
Ton(V23 3) = Z3 for n>2
Ton(Va,2; p)=0 for n>2,p>38.

§3. Proofs of Theorems 1 and 2
To prove Theorems 1 and 2, we shall prove in the first the following

Prorosition 1. Let M™ be a manifold of dimension m=4n+r (n=0,
r=1, 2, 3 or 4) such that H'(M™; Z) 1s finite and has no 2-primary subgroup
for any 1 >2n+1.

Then we have M***" < RS*+7+1,

Proor. We remark that the manifold M” is a manifold with boundary,
because M™ is compact, connected, orientable and H"(M™; Z) is finite. Then
H™(M”; G)=0 for any abelian group G.

According to Whitney’s theorem [ 16 ] we have
M4n+r c R2(4n+r)—1 <R8n+r43

and let v be its oriented (4n+ 3)-dimensional normal bundle over M*"*” and
p@"+2 be the associated (2n +2)-frame bundle of v. The obstructions for the
existence of a cross-section of v®**? are contained in H***(M*"*"; 7i(Vun.3,20+2))-
Here we notice that the local coefficients 7;(Vyy,3.2.,2) in these cohomology
groups are trivial, because v is orientable [ 8, p. 4457].

According to (2.2) and (2.3),

J’O, for i<2n+1,
7Ti{(Vin 3,zn+z) =
! 1 finite 2-primary group, for 2n+1<i<"4n+2.

Therefore H**(M*"*"; 7{(Vin,3,22:2))=0 for i <4n-+2. By the above remark,
H" M5 4005(Vian3,20:2))=0.  Hence v***? has a cross-section and M*"*”
C RS"*7+1 by (1.1). g.ed.

Proor or Turorem 1. By Proposition 1 we have M***"c RS*+7+1, Let p
be its oriented (2n 4 1)-dimensional normal bundle and »*® be the associated
2-frame bundle. According to (2.2)-(2.4), 7:{(V2.,1,2) is a finite group except
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for i=4n—1, and
0, for i<2n-1,
Ti{(Vaner,2) = ¢ finite 2-primary group, for 2n —1<"i <<4n+1, i=x4n—1,
Z+finite 2-primary group, for i=4n—1,
Tanio(Vani1,2; ) =23,

Tanr2(Vani1,2; P) =0, if P is a prime >3.

Since M™ is a manifold with boundary, H™(M™; G)=0 for any abelian
group G. Therefore, by the assumptions (i) and (iii), the primary (and the
last) obstruction for the existence of a cross-section of v® lies in H*/(M™;
7T4n—1(V2n+1,2)) (:H4n(Mm; Z))

Let E be the total space of the bundle v® and let 7: E—~ M™ be the pro-
jection of »®. Consider the following commutative diagram:

0 Pt
H4"_I(V2n+1,2; Z)——+H4”(E, Vaonit,2; Z)‘*“HM(M"I; Z)

]*\ /71'*

H™(E; Z)

where j: E—(E, Vi,,1,2) is the injection, 7: (E, Vy,.12)—(M™, %) is 7, and
0 is the coboundary homomorphism. Note that 7,(M™) acts trivially on
H,(Vani12; Z) [8, p. 4457 and that H(V3,.12; Z) is a finite 2-primary group
for :<4n—1 (cf. §2). Thus, by Theorem 1.B of J.-P. Serre [9, p.2687], we see
that 7#* is a monomorphism since H**(M™; Z) has no 2-primary subgroup.

Theorem 30.10 of A. Borel and F. Hirzebruch [2, p. 377 implies that,
for a generator ¢ of H"" '(Vy,.1,2; Z)=Z (cf. (2.1)), 2¢ is transgressive and
that

pu(¥) = (=117 10(2¢) modulo a 2-primary group,

where p,(v) denote the n-th Pontrjagin class of v. Since H*(M™; Z) has no
2-primary subgroup, we have p,(v)=p, and p,=(—1)""'7*"10(2¢).

Let ¢ € H*™(M™; 74,-1(V2s.1,2)) be the primary (and the last) obstruction
to the construction of a cross-section of »®. Then n*c=0 [11, p. 1887, and
so j*7*c=0. By the exactness of the cohomology sequence, there is an ele-
ment x € H” ' (V3,,1,2; Z) such that dx=7a*c. Since ¢ is a generator, x=2q¢
or (2¢+1) for some integer g.

If x=2g¢, then c=(—1)""gp,

If x=(2¢g+1), then ¢=x—2q¢, and hence ¢ is transgressive. Thus we
may take y=a*"'0¢c. Therefore 2y=(—1)""'p,. By the assumption (i),
there is an odd integer 2s—1 such that (2s—1)y=0. Then y=2sy=(—1)"""sp,.
Hence c= y+(—1)""¢p,=(—1)"""(s+ q)pn-
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Therefore, in both cases we see that ¢=0 if p,=0. Hence, by the as-
sumption (ii), v® has a cross-section and we have M*"*" < R®"*"-1 by (1.1).
qg.ed.

Proor oF Tueorem 2. By Theorem 1 we have M*" " "c R®"*"~1, Let v be
its oriented (2n —1)-dimensional normal bundle and v‘® be the associated 2-
frame bundle. According to (2.2)~(2.4), 7:(V3,_1.2) is a finite group except for
i=4n—>5, and

0, for i<2n—3,
finite 2-primary group, for 2n —3 <i<4n+2,
i>4n—5, 4n—2,

71':‘(V2n-1,2) =

Z+finite 2-primary group, for i =4n —5,
Tan—a( Von-1,2; 3)=123,

Tan-2(Van-1,2; p)=0, if p is a prime>3.

Since M™ is a manifold with boundary, H"(M™; G)=0 for any abelian
group G. Therefore, the assumptions (i) and (iii) imply that the primary (and
the last) obstruction for the existence of a cross-section of y® lies in H*"~*(M™;
Tans(Von-1,2)) (=H"*(M™; Z)). In the similar way to the proof of Theorem
1, we can see that the obstruction vanishes if p, 1 =0. Thus »® has a cross-
section by (ii) and we have M*"*" < R5"*7~3 by (1.1). g.e.d.

§4. Applications for lens spaces

Let p>2 be an integer and let I” be the cyclic group of order p with
generator ¢. Let S**1CC”"' be the unit (2n41)-sphere in the complex
(n+1)-space. Given n+1 primitive p-th roots «, (=e**'?), a;, ..., a,(€ C) of
unity, define an action of " on S ! by the formula:

t(ZO, Z1y vy zn)z(aon, (2473 PREEEN anzn)a
where z; (=0, 1, ..., n) are complex numbers with Z”] [z;|?=1. The quotient
7=0

manifold S*"*!/I" is called a lens space. Set

aj = ' = e?"il?,
The lens space S$***!/I" is written by L"(p; g1, g2, -+, ¢u) (or briefly L****). The
notation L”(p) will be used for the lens space L*(p; 1, 1, ..., 1).

The lens space L?**! has a structure of a CW-complex with one cell in
each dimension. The cohomology groups of L***! are given as follows:
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Z  for j=0,2n+1,
HI™Y; 2)=1( Z, for j=24,..,2n,

0 for other j,
H(L*™ Zy) =2, for 0=;<2n+1.

Let x ¢ HAL**'; Z) be a generator. The total Pontrjagin class of L2"*!
(=L"(p; q1, q25 > g»)) is given by the formula ([137], Corollary 3.2):

@D pT =1+ DA+ gl L+ giad) - (Lt g2a?).

Let L2"*! denote the set L*”*'—IntD, where D is a (2n+1)-dimensional
disk contained in the interior of the highest dimensional cell of the given
CW-decomposition. Then L2"*! is the compact connected orientable manifold
(with boundary S**=D) of dimension 2n+1. Let j: L}"*'— L***! be the in-
clusion map. It is easily seen that the induced homomorphism j*: H'(L*"*';
Z)— H'(L3"*'; Z) is an isomorphism for i< 2n +1 and that H***'(L{"*'; G)=0,
where G is any abelian group. Thus we may identify the Pontrjagin class
of Lz*'! and that of L*"*,

Hereafter, we assume that p is an odd prime. We shall apply the previous
results to the problem of finding the least integer ¥>0 such that L*(p)=
L*(p; 1, ...,1) can be immersed in R*"*!**. According to (1.1), such an in-
teger k>0 is equal to the geometrical dimension” of —ro(L"(p)) (written by
g-dim(—7o(L"(p)))), where to(L"(p)) is the stable class of the tangent bundle
t(L*(p)) of L"(p). Some results about the non-immersibility and the non-
embeddability of L"(p) were obtained in [4], [5] and [6].

Let x be a generator of H*(L"(p).; Z) (=H*(L"(p); Z)). (4.1) shows that
the total Pontrjagin class of L"(p), is given by the formula:

P (pl) = (L+x7)"",

and so the dual Pontrjagin class is given by the formula:

[ni2] . ; .
AL = Aty = B (1)
Since L"(p) is naturally embedded in L"*'(p),, Theorems 3 and 4 are im-
mediate consequences of the following two theorems.

Tueorem 5. Let p be an odd prime. If n is an even integer such that

<TL +i/‘|‘2n/2>50 (mOd p)’ then L"+1(P)0§R3"+2,

1) The geometrical dimension of a € I’(\Z)(X ) is the least integer k£ such that a+k=60(8) for some
B e &(X), where g: e(X)—>KO(X) is the natural map of the set of equivalence classes ¢(X) of real vector
bundles over a CW-complex X into the associated Grothendieck group KO(X).



On the Immersion Problem for Certain Manifolds 167
Proor. By the assumption, we have
pn/Z(L'Hl(P)O):(— 1)nl2<n +3,:/_;n/2> X" = 0’
and so we get L""'(p)o < R*** by Theorem 1 (for r=3). q.e.d.
Tueorem 6. Let p be a prime >3. If n is an odd integer such that
(n +(n+_(il>/2 )/ =0 (mod p), then L**'(p)o< R*"*™.
Proor. By the assumption, we have

<n+1+(n+1)/2>_ n+1+(n+1)/2<n+1+(n——1)/2>
(n+1)/2 N CES Y (n—1)/2

+1+(n—1)/2\ _
=3(" (n—(:’ll)/2)/ )=0  (mod p).

Thus we have pe_1y2(L" " 1(p))=0 and pe.1y(L"*(p)s)=0, and hence we get
L"Y(p)oc R**** by Theorem 2 (for r=1). q.ed.

If we combine these two results with the non-immersion theorems which
we have obtained in the previous paper ([5], Theorems 4 and 5), we obtain
the following results.

TueroeMm 7.  Assume that either of the conditions I) and II) below is satis-
fied.

I) p=6k+1(k>0) s a prime, @ and 8 are even integers such that 0<«
<(2p—2)/3 and =(2p—2)/3, and 1 >1 is an tnteger.

II) p=6k—1(k>0)1is a prime, « and 3 are odd integers such that 0<«
<(2p—1)/3 and 3=(p—2)/3, and [ is an integer such that I>1 if a>1 and
1>21f a=1.

Then, for n=ap'+ 3, we have

Ln(p) c R3"+2, L”(p)gR““.
Proor. L"(p)ZR*''is a consequence of Theorem 4 in [57].

Under the condition I),

§gp’+]7

n+1+n/2 —/2 =0 (mod p)?
= . = P) s

< n/2 > \52?5_])1+P31

and under the condition II),

2) Ifa=3a;p’ and b=73.b, p’ are p-adic expansions, th EN=1( % d p).
) a ‘Z ptan ’Z P P xpansions, then (b) i<b'> (mod p)
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3a—1 ; p—1 ,,4 p—1. p+1
<n+i/-;n/2) az 1P1+P21P1 1+ +p21P2+P31P 2P_1)
T Pty p et e Tyt e
=0 (mod p).
Therefore, by Theorem 3, we have L"(p)< R*"*2. q.e.d.

Tueorem 8. Assume that either of the conditions III) and IV) below is
satisfied.

III) p=6k—1(k>0)is a prime, @ is an even integer such that o<a =
(2p—2)/3, 8=2p—1)/3, and I >1 is an integer.

IV) p=6k+1(k>0) is a prime, a is an odd integer such that 0<a <
(2p—1)/3, 8=(p—1)/3, and | is an integer such that I >1 if a>1 and 1>2 if
a=1.

Then, for n=ap'+ B, we have

Ln(P)gRSnH, L"(P)ZRS"

Proor. L"(p)ZR* is a consequence of Theorem 5 in [5]. Under the
condition III),

3051

n+14(n-1)/2) g PtP )
2 3

and under the condition IV),

Ba—1, p—1 0, P:_l2 ptl
<n+1n_l_—(n_/_21)/2> (a%-lpl—'—p-z—l 1_1+ +p 1 2+p21P 2p—2
g PP ety Tyt g
=0  (mod p).
Thus, by Theorem 4, we have L"(p)< R*"*™. g.e.d.

If the number of the non-zero terms of the p-adic expansions of n is
larger than 2, we have many types of results corresponding to Theorems 7
and 8. For examples, we have the following (cf. [5], Theorems 4’ and 5).

Turorem 7. Assume either of the conditions I') and I1') below is satisfied.

IY p=6k+1 (k>0) is a prime; m>2 is an integer; «a; (i=1,2, ..., m)
are even integers such that 0<a; < (2p—2)/3 for i =2 and a,=(2p—2)/3; and
L(i=1, 2, ..., m) are integers with L, >1,_,>... >1,>1;=0.

II") p=6k—1(k>0) 1s a prime; m>2 is an even integer; «; (L— 1,2 ....,m)
are odd integers such that 0<a; << (2p—1)/3 if @ is even, 0<a; <(p— 2)/3 zf i
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is odd >1, and a;=(p—2)/3; and l(i=1, 2, ..., m) are integers with L, >1, >
>0 >0=0.

m
Then, for n=7), a;p’, we have
i=1

L"(p)§R3"+Z, L"(p)@R”“.

Tueroem 8. Assume that either of the conditions III') and IV’) below 1s
satisfied.

') p=6k—1 (k>0)is a prime; m>2 is an integer; a(i=2,3, ..., m)
are even integers such that 0<a; <(2p—2)/3, and a;=(2p—1)/3; and I; (i=1,
2, ..., m) are integers with l,>1, 1>-.->1>1,=0.

IV") p=6k+1(£k>0) is a prime; m>2 is an integer; a; (i=3, 4, ..., m)
are even integers such that 0<a; <(2p—2)/3, a, is an odd integer such that
0<a,<(2p—1)/3,and ar=(p—1)/3; and I; (=1, 2, ..., m) are integers with
In>lpa> - >1>10=0.

m
Then, for n= 7}, a;p", we have
i=1

Ln(p)g R3n+1’ L”(p)gR:’”

The proof of Theorem 7’ (or Theorem 8) is similar to that of Theorem 7
(or Theorem 8), and so we omit the details.

§5. Remarks

In this section we shall give an example of the lens space L=_L"(p; q1, ¢o,
---, ¢») Which has the homotopy type of L"(p) but has the geometrical dimen-
sion of the stable normal bundle different from that of L"(p).

First, we recall Theorem VI of P. Olum [7, p. 4687 about the homotopy
types of lens spaces:

(8.1) Two lens spaces L" (p; q1, qz2, ---, gu) and L* (p; q1, 3, ---» q») have the
same homotopy type 1f and only 1 f

0192 9n= =k 'qiq;---q,  (mod p)
Sfor some integer k relatively prime to p.

Prorosition 2. Let n=38-5'+1=2m (I >1), and let

m—1 m+1

PN N
L:Ln(5; 13 ] 1) 2’ Tty 2)

Then we have
1) L and L*(5) have the same homotopy type.
2) L"B)S R and L"(B)Z R**, that is, g-dim(—rto(L"(5)))=n+1.
3) LS R*, that s, g-dim(—co(L)<n—1.
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1) 2m+1=251+2.51-14 424544

=2%.4771 4016 =22"=%2  (mod 5),
2n+1=23.5l+25_851525152 (mod 5)

Thus, by (56.1) we see that L and L*(5) have the same homotopy type.

2) This fact is a consequence of Theorem 7 in §4.
3) Consider the (2n + 3)-dimensional manifold (with boundary)

m m+1

L(/) :L"+1(5; 1a Tty la 2, ) 2)0°

According to (4.1), we have

P(Lé) — (1+ xZ)m+1(1__ x2)m+1 — (1___ x4)m+1’

ALy ==y = 2 (M)

Thus,

po= (") = (P 5T T o

and, clearly, p,,_1=0. Therefore, by Theorem 2 (for r=3), we have Lj< R*".

Since L is naturally embedded in L, we obtain L< R*". q.e.d.
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