On the Immersion Problem for Certain Manifolds*)

Teiichi Ковауаяні

(Received September 20, 1967)

§1. Introduction

In this note, let M^m denote a compact connected orientable C^{∞} -manifold (with boundary) of dimension m, and R^k the k-dimensional Euclidean space. We write $M^m \subseteq R^k$ (or $M^m \not\subseteq R^k$) to denote the existence (or the non-existence) of a C^{∞} -immersion of M^m into R^k .

The purpose of this note is to discuss the immersion problem for some manifolds M^m whose integral cohomology groups $H^i(M^m; Z)$ in positive dimensions are finite and have no 2-primary subgroups.

We obtain the following immersion theorems of such manifolds M^m into R^k , where k is near to 3m/2.

THEOREM 1. Let M^m be a manifold of dimension m=4n+r (n>0, r=1, 2, 3 or 4) which has the following properties (i)-(iii):

- (i) $H^{i}(M^{m}; Z)$ is finite and has no 2-primary subgroup for any i > 2n-1.
- (ii) $\bar{p}_n = 0$, where $\bar{p}_i \in H^{4i}(M^m; Z)$ is the i-th dual Pontrjagin class of M^m .
- (iii) $H^{4n+3}(M^m; Z_3) = 0$, if r = 4.

Then we have $M^{4n+r} \subseteq R^{6n+r-1}$.

THEOREM 2. Let M^m be a manifold of dimension m=4n+r (n>1, r=1, 2; n>2, r=3) which has the following properties (i)-(iii):

- (i) $H^{i}(M^{m}; Z)$ is finite and has no 2-primary subgroup for any i > 2n-3.
- (ii) $\bar{p}_n=0$ and $\bar{p}_{n-1}=0$.
- (iii) $H^{4n-1}(M^m; Z_3) = 0.$

Then we have $M^{4n+r} \subseteq R^{6n+r-3}$.

As applications of these two theorems, we obtain the following two theorems about the lens space $L^n(p) = L^n(p; 1, ..., 1)$ of dimension 2n+1.

Theorem 3. Let p be an odd prime. If n is an even integer such that $\binom{n+1+n/2}{n/2} \equiv 0 \pmod p$, then $L^n(p) \subseteq R^{3n+2}$.

Theorem 4. Let p be a prime >3. If n is an odd integer such that $\binom{n+1+(n-1)/2}{(n-1)/2}{\equiv}0\ (\mathrm{mod}\ p)$, then $L^n(p){\subseteq}R^{3n+1}$.

^{*)} This work was partly supported by the Sakkokai Foundation.

The immersions of these two theorems are shown to be best possible for some kind of p and n (Theorems 7 and 8), by the non-immersion theorems obtained in the previous paper [5].

Finally, we remark that there is a lens space $L=L^n(p; q_1, \dots, q_n)$, which has the homotopy type of $L^n(p)$ but that $L\subseteq R^{3n}$ and $L^n(p)\subseteq R^{3n+1}$ (Proposition 2).

The proofs of Theorems 1 and 2 are in \$3, and are based on the following well-known theorem of M. W. Hirsch $\lceil 3 \rceil$:

(1.1) If M^m is immersible in R^k with a transversal r-field, then M^m is immersible in R^{k-r} , where m < k-r.

To apply this theorem, we use the obstruction theory for the existence of a cross-section of the r-frame bundle associated with the normal bundle of $M^m \subseteq R^k$. We recall in §2 some known facts about the cohomology and homotopy groups of the Stiefel manifolds $V_{n,r}$, which are used to determine these obstructions.

Theorems 3, 4, 7 and 8 are proved in $\S 4$. We notice that Theorems 3 and 4 are partial improvements of the following results of F. Uchida $\lceil 15 \rceil$:

$$L^{n}(p)\subseteq R^{2n+2\lceil n/2\rceil+4}$$
, for an odd prime p .

Also notice that D. Sjerve [10] has announced the following more general results:

$$L^n(p; q_1, ..., q_n) \subseteq R^{2n+2\lceil n/2 \rceil+2}, \quad for \ an \ odd \ prime \ p.$$

The author wishes to express his sincere gratitude to Professor M. Sugawara for valuable suggestions and helpful discussions.

§2. Preliminaries

Let S^n be the *n*-sphere and let $V_{n,m}$ be the Stiefel manifold of orthonormal m-frames in R^n . In this section we list some known results about the integral cohomology groups and homotopy groups of $V_{n,m}$ which will be used in later sections (cf. [1], [9], [12] and [14]).

(2.1) If n is odd, m is even and k=n-m>0, then

$$H^i(V_{n,m};\,Z) = \left\{ egin{array}{ll} Z & ext{ for } i = 0,\,2k+1, \ Z_2 & ext{ for } k \! < \! i \! < \! 2k\! + \! 1,\,i ext{ even}, \ 0 & ext{ for } other \,i \! < \! 2k\! + \! 1. \end{array}
ight.$$

- (2.2) $\pi_i(V_{n,m}) = 0$ for i < n m.
- (2.3) If n is odd, m is even and k=n-m>0, then $\pi_i(V_{n,m})$ is a finite 2-

primary group for i < 2k+1 and $\pi_{2k+1}(V_{n,m})$ is isomorphic to the direct sum of the infinite cyclic group Z and a finite 2-primary group.

(2.4) Let p be an odd prime. If n>1 is odd, then $\pi_i(V_{n,2})$ is finite for i>2n-3 and the p-primary component $\pi_i(V_{n,2};p)$ of $\pi_i(V_{n,2})$ is isomorphic to that of $\pi_i(S^{2n-3})$, and so

$$\pi_{2n-3+i}(V_{n,2};p)=0$$
 for $n>2, i=1, 2, 4, 5;$ or $n>3, i=6,$ $\pi_{2n}(V_{n,2};3)=Z_3$ for $n>2,$ $\pi_{2n}(V_{n,2};p)=0$ for $n>2, p>3.$

§3. Proofs of Theorems 1 and 2

To prove Theorems 1 and 2, we shall prove in the first the following

PROPOSITION 1. Let M^m be a manifold of dimension m=4n+r $(n \ge 0, r=1, 2, 3 \text{ or } 4)$ such that $H^i(M^m; Z)$ is finite and has no 2-primary subgroup for any i > 2n+1.

Then we have $M^{4n+r} \subseteq R^{6n+r+1}$.

PROOF. We remark that the manifold M^m is a manifold with boundary, because M^m is compact, connected, orientable and $H^m(M^m; Z)$ is finite. Then $H^m(M^m; G)=0$ for any abelian group G.

According to Whitney's theorem $\lceil 16 \rceil$ we have

$$M^{4n+r} \subseteq R^{2(4n+r)-1} \subset R^{8n+r+3},$$

and let ν be its oriented (4n+3)-dimensional normal bundle over M^{4n+r} and $\nu^{(2n+2)}$ be the associated (2n+2)-frame bundle of ν . The obstructions for the existence of a cross-section of $\nu^{(2n+2)}$ are contained in $H^{i+1}(M^{4n+r}; \pi_i(V_{4n+3,2n+2}))$. Here we notice that the local coefficients $\pi_i(V_{4n+3,2n+2})$ in these cohomology groups are trivial, because ν is orientable [8, p. 445].

According to (2.2) and (2.3),

$$\pi_i({V_4}_{n+3,2n+2}) = \left\{egin{array}{ll} 0, & ext{for} & i\!<\!2n+1, \ & ext{finite 2-primary group,} & ext{for} & 2n+1\!\leq\!i\!\leq\!4n+2. \end{array}
ight.$$

Therefore $H^{i+1}(M^{4n+r}; \pi_i(V_{4n+3,2n+2}))=0$ for $i \leq 4n+2$. By the above remark, $H^{4n+4}(M^{4n+4}; \pi_{4n+3}(V_{4n+3,2n+2}))=0$. Hence $\nu^{(2n+2)}$ has a cross-section and $M^{4n+r} \subseteq R^{6n+r+1}$ by (1.1).

PROOF OF THEOREM 1. By Proposition 1 we have $M^{4n+r} \subseteq R^{6n+r+1}$. Let ν be its oriented (2n+1)-dimensional normal bundle and $\nu^{(2)}$ be the associated 2-frame bundle. According to (2.2)-(2.4), $\pi_i(V_{2n+1,2})$ is a finite group except

for i=4n-1, and

$$\pi_i(V_{2n+1,2}) = \left\{egin{array}{ll} 0, & ext{for} & i\!<\!2n\!-\!1, \ & ext{finite 2-primary group, for } 2n\!-\!1\!\leq\!i\!\leq\!4n\!+\!1,\,i\!leq\!4n\!-\!1, \ & Z\!+\! ext{finite 2-primary group,} & ext{for } i\!=\!4n\!-\!1, \end{array}
ight.$$

$$\pi_{4n+2}(V_{2n+1,2};3)=Z_3,$$

$$\pi_{4n+2}(V_{2n+1,2}; p) = 0$$
, if p is a prime >3.

Since M^m is a manifold with boundary, $H^m(M^m; G) = 0$ for any abelian group G. Therefore, by the assumptions (i) and (iii), the primary (and the last) obstruction for the existence of a cross-section of $\nu^{(2)}$ lies in $H^{4n}(M^m; \pi_{4n-1}(V_{2n+1,2}))$ (= $H^{4n}(M^m; Z)$).

Let E be the total space of the bundle $\nu^{(2)}$ and let $\pi: E \to M^m$ be the projection of $\nu^{(2)}$. Consider the following commutative diagram:

where $j: E \to (E, V_{2n+1,2})$ is the injection, $\bar{\pi}: (E, V_{2n+1,2}) \to (M^m, *)$ is π , and δ is the coboundary homomorphism. Note that $\pi_1(M^m)$ acts trivially on $H_*(V_{2n+1,2}; Z)$ [8, p. 445] and that $H_i(V_{2n+1,2}; Z)$ is a finite 2-primary group for i < 4n-1 (cf. §2). Thus, by Theorem 1.B of J.-P. Serre [9, p.268], we see that $\bar{\pi}^*$ is a monomorphism since $H^{4n}(M^m; Z)$ has no 2-primary subgroup.

Theorem 30.10 of A. Borel and F. Hirzebruch [2, p. 377] implies that, for a generator ι of $H^{4n-1}(V_{2n+1,2}; Z) = Z$ (cf. (2.1)), 2ι is transgressive and that

$$p_n(\nu) = (-1)^{n+1} \bar{\pi}^{*-1} \delta(2\iota)$$
 modulo a 2-primary group,

where $p_n(\nu)$ denote the *n*-th Pontrjagin class of ν . Since $H^{4n}(M^m; Z)$ has no 2-primary subgroup, we have $p_n(\nu) = \bar{p}_n$ and $\bar{p}_n = (-1)^{n+1}\bar{\pi}^{*-1}\delta(2\iota)$.

Let $c \in H^{4n}(M^m; \pi_{4n-1}(V_{2n+1,2}))$ be the primary (and the last) obstruction to the construction of a cross-section of $\nu^{(2)}$. Then $\pi^*c=0$ [11, p. 188], and so $j^*\bar{\pi}^*c=0$. By the exactness of the cohomology sequence, there is an element $x \in H^{4n-1}(V_{2n+1,2}; Z)$ such that $\delta x = \bar{\pi}^*c$. Since ϵ is a generator, $x = 2q\epsilon$ or $(2q+1)\epsilon$ for some integer q.

If $x=2q\epsilon$, then $c=(-1)^{n+1}q\bar{p}_n$.

If $x=(2q+1)\iota$, then $\iota=x-2q\iota$, and hence ι is transgressive. Thus we may take $y=\bar{\pi}^{*-1}\delta\iota$. Therefore $2y=(-1)^{n+1}\bar{p}_n$. By the assumption (i), there is an odd integer 2s-1 such that (2s-1)y=0. Then $y=2s\,y=(-1)^{n+1}s\bar{p}_n$. Hence $c=y+(-1)^{n+1}q\,\bar{p}_n=(-1)^{n+1}(s+q)\bar{p}_n$.

Therefore, in both cases we see that c=0 if $\bar{p}_n=0$. Hence, by the assumption (ii), $\nu^{(2)}$ has a cross-section and we have $M^{4n+r} \subseteq R^{6n+r-1}$ by (1.1). q.e.d.

PROOF OF THEOREM 2. By Theorem 1 we have $M^{4n+r} \subseteq R^{6n+r-1}$. Let ν be its oriented (2n-1)-dimensional normal bundle and $\nu^{(2)}$ be the associated 2-frame bundle. According to (2.2)-(2.4), $\pi_i(V_{2n-1,2})$ is a finite group except for i=4n-5, and

$$\pi_i(V_{2n-1,2}) = \begin{cases} 0, & \text{for } i < 2n-3, \\ \text{finite 2-primary group, for } 2n-3 \leq i < 4n+2, \\ & i \neq 4n-5, \ 4n-2, \\ Z + \text{finite 2-primary group, for } i = 4n-5, \end{cases}$$

$$\pi_{4n-2}(V_{2n-1,2}; 3) = Z_3,$$

$$\pi_{4n-2}(V_{2n-1,2}; p) = 0, \text{ if } p \text{ is a prime} > 3.$$

Since M^m is a manifold with boundary, $H^m(M^m;G)=0$ for any abelian group G. Therefore, the assumptions (i) and (iii) imply that the primary (and the last) obstruction for the existence of a cross-section of $\nu^{(2)}$ lies in $H^{4n-4}(M^m;\pi_{4n-5}(V_{2n-1,2}))$ ($=H^{4n-4}(M^m;Z)$). In the similar way to the proof of Theorem 1, we can see that the obstruction vanishes if $\bar{p}_{n-1}=0$. Thus $\nu^{(2)}$ has a cross-section by (ii) and we have $M^{4n+r}\subseteq R^{6n+r-3}$ by (1.1). q.e.d.

§4. Applications for lens spaces

Let p>2 be an integer and let Γ be the cyclic group of order p with generator t. Let $S^{2n+1}\subset C^{n+1}$ be the unit (2n+1)-sphere in the complex (n+1)-space. Given n+1 primitive p-th roots $\alpha_0 (=e^{2\pi i/p}), \alpha_1, \dots, \alpha_n (\in C)$ of unity, define an action of Γ on S^{2n+1} by the formula:

$$t(z_0, z_1, \ldots, z_n) = (\alpha_0 z_0, \alpha_1 z_1, \ldots, \alpha_n z_n),$$

where z_j (j=0, 1, ..., n) are complex numbers with $\sum_{j=0}^{n} |z_j|^2 = 1$. The quotient manifold S^{2n+1}/Γ is called a *lens space*. Set

$$\alpha_j = \alpha_0^{q_j} = e^{2\pi i q_j/p}.$$

The lens space S^{2n+1}/Γ is written by $L^n(p; q_1, q_2, \dots, q_n)$ (or briefly L^{2n+1}). The notation $L^n(p)$ will be used for the lens space $L^n(p; 1, 1, \dots, 1)$.

The lens space L^{2n+1} has a structure of a CW-complex with one cell in each dimension. The cohomology groups of L^{2n+1} are given as follows:

$$H^j(L^{2n+1};\,Z) = egin{cases} Z & ext{ for } j\!=\!0,\,2n\!+\!1, \ Z_{ar{p}} & ext{ for } j\!=\!2,\,4,\,...,\,2n, \ 0 & ext{ for other } j, \ H^j(L^{2n+1};\,Z_{ar{p}}) = Z_{ar{p}} & ext{ for } 0\!\leq\!j\!\leq\!2n\!+\!1. \end{cases}$$

Let $x \in H^2(L^{2n+1}; Z)$ be a generator. The total Pontrjagin class of L^{2n+1} (= $L^n(p; q_1, q_2, \dots, q_n)$) is given by the formula ([13], Corollary 3.2):

(4.1)
$$p(L^{2n+1}) = (1+x^2)(1+q_1^2x^2)(1+q_2^2x^2)\cdots(1+q_n^2x^2).$$

Let $L_0^{2^{n+1}}$ denote the set $L^{2^{n+1}}$ —Int D, where D is a (2n+1)-dimensional disk contained in the interior of the highest dimensional cell of the given CW-decomposition. Then $L_0^{2^{n+1}}$ is the compact connected orientable manifold (with boundary $S^{2n} = \dot{D}$) of dimension 2n+1. Let $j: L_0^{2^{n+1}} \to L^{2^{n+1}}$ be the inclusion map. It is easily seen that the induced homomorphism $j^*: H^i(L^{2^{n+1}}; Z) \to H^i(L_0^{2^{n+1}}; Z)$ is an isomorphism for i < 2n+1 and that $H^{2^{n+1}}(L_0^{2^{n+1}}; G) = 0$, where G is any abelian group. Thus we may identify the Pontrjagin class of $L_0^{2^{n+1}}$ and that of $L^{2^{n+1}}$.

Hereafter, we assume that p is an odd prime. We shall apply the previous results to the problem of finding the least integer k>0 such that $L^n(p)=L^n(p;1,\ldots,1)$ can be immersed in R^{2n+1+k} . According to (1.1), such an integer k>0 is equal to the geometrical dimension of $-\tau_0(L^n(p))$ (written by $g\cdot\dim(-\tau_0(L^n(p)))$), where $\tau_0(L^n(p))$ is the stable class of the tangent bundle $\tau(L^n(p))$ of $L^n(p)$. Some results about the non-immersibility and the non-embeddability of $L^n(p)$ were obtained in [4], [5] and [6].

Let x be a generator of $H^2(L^n(p)_0; Z)$ (= $H^2(L^n(p); Z)$). (4.1) shows that the total Pontrjagin class of $L^n(p)_0$ is given by the formula:

$$p(L^n(p)_0) = (1+x^2)^{n+1},$$

and so the dual Pontrjagin class is given by the formula:

$$\bar{p}(L^n(p)_0) = (1+x^2)^{-n-1} = \sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i \binom{n+i}{i} x^{2i}.$$

Since $L^{n}(p)$ is naturally embedded in $L^{n+1}(p)_{0}$, Theorems 3 and 4 are immediate consequences of the following two theorems.

Theorem 5. Let p be an odd prime. If n is an even integer such that $\binom{n+1+n/2}{n/2} \equiv 0 \pmod p$, then $L^{n+1}(p)_0 \subseteq R^{3n+2}$.

¹⁾ The geometrical dimension of $\alpha \in \widetilde{KO}(X)$ is the least integer k such that $\alpha + k = \theta(\beta)$ for some $\beta \in \varepsilon(X)$, where $\theta : \varepsilon(X) \to KO(X)$ is the natural map of the set of equivalence classes $\varepsilon(X)$ of real vector bundles over a CW-complex X into the associated Grothendieck group KO(X).

q.e.d.

Proof. By the assumption, we have

$$\bar{p}_{n/2}(L^{n+1}(p)_0) = (-1)^{n/2} {n+1+n/2 \choose n/2} x^n = 0,$$

and so we get $L^{n+1}(p)_0 \subseteq R^{3n+2}$ by Theorem 1 (for r=3).

Theorem 6. Let p be a prime >3. If n is an odd integer such that $\binom{n+1+(n-1)/2}{(n-1)/2}\equiv 0\pmod p$, then $L^{n+1}(p)_0\subseteq R^{3n+1}$.

PROOF. By the assumption, we have

$$\binom{n+1+(n+1)/2}{(n+1)/2} = \frac{n+1+(n+1)/2}{(n+1)/2} \binom{n+1+(n-1)/2}{(n-1)/2}$$

$$= 3 \binom{n+1+(n-1)/2}{(n-1)/2} \equiv 0 \pmod{p}.$$

Thus we have $\bar{p}_{(n-1)/2}(L^{n+1}(p)_0)=0$ and $\bar{p}_{(n+1)/2}(L^{n+1}(p)_0)=0$, and hence we get $L^{n+1}(p)_0\subseteq R^{3n+1}$ by Theorem 2 (for r=1). q.e.d.

If we combine these two results with the non-immersion theorems which we have obtained in the previous paper ([5], Theorems 4 and 5), we obtain the following results.

Theroem 7. Assume that either of the conditions I) and II) below is satisfied.

- I) p=6k+1 (k>0) is a prime, α and β are even integers such that $0<\alpha \le (2p-2)/3$ and $\beta=(2p-2)/3$, and l>1 is an integer.
- II) p=6k-1 (k>0) is a prime, α and β are odd integers such that $0<\alpha \le (2p-1)/3$ and $\beta=(p-2)/3$, and l is an integer such that l>1 if $\alpha>1$ and l>2 if $\alpha=1$.

Then, for $n = \alpha p^l + \beta$, we have

$$L^n(p)\subseteq R^{3n+2}, \quad L^n(p)\subseteq R^{3n+1}.$$

PROOF. $L^{n}(p) \subseteq R^{3n+1}$ is a consequence of Theorem 4 in $\lceil 5 \rceil$.

Under the condition I),

$$\binom{n+1+n/2}{n/2} = \binom{\frac{3\alpha}{2}p^l+p}{\frac{\alpha}{2}p^l+\frac{p-1}{3}} \equiv 0 \pmod{p^{2}},$$

and under the condition II),

²⁾ If $a = \sum_{i} a_i p^i$ and $b = \sum_{i} b_i p^i$ are p-adic expansions, then $\binom{a}{b} \equiv \prod_{i} \binom{a_i}{b_i}$ (mod p).

$$\binom{n+1+n/2}{n/2} = \binom{\frac{3\alpha-1}{2}p^l + \frac{p-1}{2}p^{l-1} + \dots + \frac{p-1}{2}p^2 + \frac{p+1}{2}p}{\frac{\alpha-1}{2}p^l + \frac{p-1}{2}p^{l-1} + \dots + \frac{p-1}{2}p^2 + \frac{p-1}{2}p + \frac{2p-1}{3}}$$

 $\equiv 0 \pmod{p}$.

Therefore, by Theorem 3, we have $L^n(p) \subseteq R^{3n+2}$.

q.e.d.

Theorem 8. Assume that either of the conditions III) and IV) below is satisfied.

III) p=6k-1 (k>0) is a prime, α is an even integer such that $0<\alpha \le (2p-2)/3$, $\beta=(2p-1)/3$, and l>1 is an integer.

IV) p=6k+1 (k>0) is a prime, α is an odd integer such that $0<\alpha\leq (2p-1)/3$, $\beta=(p-1)/3$, and l is an integer such that l>1 if $\alpha>1$ and l>2 if $\alpha=1$.

Then, for $n = \alpha p^l + \beta$, we have

$$L^n(p)\subseteq R^{3n+1}, L^n(p)\not\subseteq R^{3n}.$$

PROOF. $L^n(p) \subseteq R^{3n}$ is a consequence of Theorem 5 in [5]. Under the condition III),

$$\binom{n+1+(n-1)/2}{(n-1)/2} = \binom{\frac{3\alpha}{2}p^l + p}{\frac{\alpha}{2}p^l + \frac{p-2}{3}} \equiv 0 \pmod{p}$$

and under the condition IV),

$$\binom{n+1+(n-1)/2}{(n-1)/2} = \binom{\frac{3\alpha-1}{2}p^l + \frac{p-1}{2}p^{l-1} + \dots + \frac{p-1}{2}p^2 + \frac{p+1}{2}p}{\frac{\alpha-1}{2}p^l + \frac{p-1}{2}p^{l-1} + \dots + \frac{p-1}{2}p^2 + \frac{p-1}{2}p + \frac{2p-2}{3}}$$

$$\equiv 0 \qquad (\text{mod } p).$$

Thus, by Theorem 4, we have $L^n(p) \subseteq R^{3n+1}$.

q.e.d.

If the number of the non-zero terms of the *p*-adic expansions of n is larger than 2, we have many types of results corresponding to Theorems 7 and 8. For examples, we have the following (cf. $\lceil 5 \rceil$, Theorems 4' and 5').

THEOREM 7'. Assume either of the conditions I') and II') below is satisfied. I') p=6k+1 (k>0) is a prime; m>2 is an integer; α_i (i=1,2,...,m) are even integers such that $0<\alpha_i\leq (2p-2)/3$ for $i\geq 2$ and $\alpha_1=(2p-2)/3$; and $l_i(i=1,2,...,m)$ are integers with $l_m>l_{m-1}>...>l_2>l_1=0$.

II') p=6k-1 (k>0) is a prime; m>2 is an even integer; α_i $(i=1,2,\dots,m)$ are odd integers such that $0<\alpha_i\leq (2p-1)/3$ if i is even, $0<\alpha_i\leq (p-2)/3$ if i

is odd>1, and $\alpha_1=(p-2)/3$; and $l_i(i=1, 2, ..., m)$ are integers with $l_m>l_{m-1}>\ldots>l_2>l_1=0$.

Then, for $n = \sum_{i=1}^{m} \alpha_i p^{l_i}$, we have

$$L^n(p)\subseteq R^{3n+2}, \quad L^n(p)\subseteq R^{3n+1}.$$

Theroem 8'. Assume that either of the conditions III') and IV') below is satisfied.

III') p=6k-1 (k>0) is a prime; m>2 is an integer; $\alpha_i(i=2,3,...,m)$ are even integers such that $0<\alpha_i\leq (2p-2)/3$, and $\alpha_1=(2p-1)/3$; and l_i (i=1,2,...,m) are integers with $l_m>l_{m-1}>...>l_2>l_1=0$.

IV') p=6k+1 (k>0) is a prime; m>2 is an integer; α_i (i=3, 4, ..., m) are even integers such that $0<\alpha_i\leq (2p-2)/3$, α_2 is an odd integer such that $0<\alpha_2\leq (2p-1)/3$, and $\alpha_1=(p-1)/3$; and l_i (i=1, 2, ..., m) are integers with $l_m>l_{m-1}>...>l_2>l_1=0$.

Then, for $n = \sum_{i=1}^{m} \alpha_i p^{l_i}$, we have

$$L^n(p)\subseteq R^{3n+1}, L^n(p)\subseteq R^{3n}.$$

The proof of Theorem 7' (or Theorem 8') is similar to that of Theorem 7 (or Theorem 8), and so we omit the details.

§5. Remarks

In this section we shall give an example of the lens space $L=L^n(p; q_1, q_2, \dots, q_n)$ which has the homotopy type of $L^n(p)$ but has the geometrical dimension of the stable normal bundle different from that of $L^n(p)$.

First, we recall Theorem VI of P. Olum [7, p. 468] about the homotopy types of lens spaces:

(5.1) Two lens spaces $L^n(p; q_1, q_2, ..., q_n)$ and $L^n(p; q'_1, q'_2, ..., q'_n)$ have the same homotopy type if and only if

$$q_1q_2\cdots q_n=\pm k^{n+1}q_1'q_2'\cdots q_n' \qquad (\bmod p)$$

for some integer k relatively prime to p.

Proposition 2. Let $n=3\cdot 5^l+1=2m$ (l>1), and let

$$L=L^{n}(5; 1, \dots, 1, 2, \dots, 2).$$

Then we have

- 1) L and $L^{n}(5)$ have the same homotopy type.
- 2) $L^{n}(5) \subseteq R^{3n+2}$ and $L^{n}(5) \not\subseteq R^{3n+1}$, that is, $g \cdot dim(-\tau_{0}(L^{n}(5))) = n+1$.
- 3) $L \subseteq R^{3n}$, that is, $g \cdot dim(-\tau_0(L)) \le n-1$.

PROOF. 1)
$$2^{m+1} = 2^{5^l + 2 \cdot 5^{l-1} + \dots + 2 \cdot 5 + 4}$$

= $2^{5^l} \cdot 4^{5^{l-1} + \dots + 5} \cdot 16 \equiv \pm 2^{5^l} \equiv \pm 2 \pmod{5}$,
 $2^{n+1} = 2^{3 \cdot 5^l + 2} \equiv -8^{5^l} \equiv 2^{5^l} \equiv 2 \pmod{5}$.

Thus, by (5.1) we see that L and $L^{n}(5)$ have the same homotopy type.

- 2) This fact is a consequence of Theorem 7 in §4.
- 3) Consider the (2n+3)-dimensional manifold (with boundary)

$$L_0' = L^{n+1}(5; \overbrace{1, \dots, 1}^m, \overbrace{2, \dots, 2}^{m+1})_0.$$

According to (4.1), we have

$$\begin{split} p(L_0') &= (1+x^2)^{m+1}(1-x^2)^{m+1} = (1-x^4)^{m+1}, \\ \bar{p}(L_0') &= (1-x^4)^{-m-1} = \sum\limits_i \binom{m+i}{i} x^{4i}. \end{split}$$

Thus,

$$\bar{p}_m = {m+m/2 \choose m/2} x^n = {2 \cdot 5^l + 5^{l-1} + \dots + 5 + 2 \choose 3 \cdot 5^{l-1} + \dots + 3 \cdot 5 + 4} x^n = 0$$

and, clearly, $\bar{p}_{m-1}=0$. Therefore, by Theorem 2 (for r=3), we have $L_0 \subseteq R^{3n}$. Since L is naturally embedded in L_0 , we obtain $L \subseteq R^{3n}$. q.e.d.

References

- [1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207.
- [2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, II, Amer. J. Math., 81 (1959), 315-382.
- [3] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242-276.
- [4] T. Kambe, The structure of K_Λ-rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146.
- [5] T. Kobayashi, Non-immersion theorems for lens spaces, J. Math. Kyoto Univ., 6 (1966), 91-108.
- [6] R. Nakagawa and T. Kobayashi, Non-embeddability of lens spaces mod 3, J. Math. Kyoto Univ., 5 (1966), 313-324.
- [7] P. Olum, Mappings of manifolds and the notion of degree, Ann. of Math., 58 (1953), 458-480.
- [8] J.-P. Serre, Homologie singulière des espaces fibrés, Ann. of Math., 54 (1951), 425-505.
- [9] J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math., 58 (1953), 258-294.
- [10] D. Sjerve, Geometric dimension of vector bundles over lens spaces, Notices Amer. Math. Soc., 14 (1967), 67T-439.
- [11] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, 1951.
- [12] E. Stiefel, Richtungsfelder und Fernparallelismus in Mannigfaltigkeiten, Comm. Math. Helv., 8 (1936), 3-51.
- [13] R. H. Szczarba, On tangent bundles of fibre spaces and quotient spaces, Amer. J. Math., 86 (1964), 685-697.
- [14] H. Toda, Composition Methods in Homotopy Groups of Spheres, Princeton Univ. Press, 1962.
- [15] F. Uchida, Immersions of lens spaces, Tôhoku Math. J., 18 (1966), 393-397.

[16] H. Whitney, The singularities of a smooth n-manifold in (2n-1)-space, Ann. of Math., 45 (1944), 247-293

Department of Mathematics, Faculty of Science Hiroshima University