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§1. Introduction

Let ¢, be the canonical line bundle over n-dimensional real projective
space RP”, and mé¢, the Whitney sum of m-copies of it.

The purpose of this note is to study the number span mé, of the linearly
independent cross-sections of mé&,. These are related to the immersion prob-
lems of RP” in the Euclidean space R™ by [2], and also to the submersion
problems of P/=RP"— RP* ' in R™ by [7] and Theorem 2.4 below.

In §2, we study the simple properties of span mé&,. In order to make
further calculations, we consider in §3 the Postnikov resolution of the uni-
versal sphere bundle and characterize the third k-invariant by the methods
of [97], where the results obtained may be contained in [5]. These are applied
to span mé&, in §4, and we consider the submersion problems of P} in §5. The
author expresses his hearty thanks to Prof. M. Sugawara and Dr. T. Kobayashi
for their valuable suggestions and discussions.

§2. Some properties of mé,

If ¢ is a real vector bundle, we denote by span & the maximum number of
the linearly independent cross-sections of & Especially, when M is a C>-
manifold, we denote by span M the span (M), where (M) is the tangent
vector bundle of M.

The following two lemmas are well known.

Lemma 2.1.  Let f: X—Y be a homotopy equivalence between CW-complexes
X and Y, and & be a real vector bundle over Y. Then

span f*& = span &,
where f¥& s the induced bundle of & by f.

LemMa 2.2. Let & be a real vector bundle over a CW-complex X. If
dim & >dim X, then span & =dim ¢ —dim X, and

span (§D1) = 1+spané,

where P is the Whitney sum and 1 in the left hand side is the 1-dimensional
trivial bundle over X.
Now, let &, be the canonical line bundle over the n-dimensional real pro-
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jective space RP”, and mé&, be the Whitney sum of m-copies of &,.

Levva 23. If span(m+1)&,=p+1 and m—p+1=<n, then <m;—1)50
(mod 2).

Proor. If span(m+1)¢,=>p+1, then there is a bundle y over RP” such
that (m+1)¢,=(p+1)@». Then the (m—p+1)-th Stiefel-Whitney class
wm—p+1(7) Of 7 is 0 because dimy=m—p. On the other hand

Wi p 1N =Wnp (M +1)E,)= (m; 1>x"‘”’+1
for the generator » € H'(RP"; Z;). This shows the lemma. gq.e.d.
Tueorem 2.4. Let m > n, then
span(m+1)¢,=1+span(RP™— RP™ *-1),
where RP! is the empty set.

Proor. Let the natural inclusion RP"*"'C RP™ be defined by mapping
[ %o, -+, ¥m_n-1] € RP™ 1 t0 [0, -5 %mn_1, 0, ---, 0] € RP™ and let i: RP"—
RP™— RP™ "' Dbe the into-homeomorphism defined by i[xo, ---, x,]=
[0, .., 0, o, ---, x,J. Then, i is clearly a homotopy equivalence, and
i*(én| RP"— RP™ " 1=¢, where &,|RP™—RP" "' is the restriction of &,.
Hence we have

span(m+1)¢, = spcm((m +1)¢,, | RP™— RP™ ")
= span(z"P1| RP™— RP™ 1),

by 2.1 and the well known facts (m+1)¢,=:"@1, where t"=7(RP™). There-
fore, for the case m>n, this is equal to

1+ span(z™| RP™— RP™ " 1)

by 2.1 and 2.2, and the theorem is proved for this case.
Consider the case m=n, and set span RP"=d—1, then span(n+1)¢, =
span(c"@l)=d. Suppose n=x15 (mod16), then n+1=ud, d=2° (u: odd,

0<c<3)by[1] Also we have <n;1>sl (mod 2), and so span(n+1)&,<

d+1by 2.8. These show that span(n+1)¢,=1+span RP" for n2<15 (mod 16).

If there is a bundle » over RP” such that (n+1)¢,=(d+1)Py, then
*P1=(dPr)P1, and this implies that "= d@Dy for n=1 (mod 2) by [3, Cor.
1.117]. This is impossible, because d=1+ spanc”, and the above equality holds
also for n=1 (mod 2). g¢.e.d.”

1) Our original proof for the case n=15 (mod 16) is based on K-theory (and [1], [2]) which is
due to Dr. T. Kobayashi, and the above simple proof was suggested by Dr. B. Steer, to whom the author
wishes to thank.
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Remarks. (2.5) span mé, =0 if 0<m<n, because the Stiefel-Whitney
class w,(mé&,) is not zero.
(2.6) The case m=n in 2.4 is equivalent to
span RP"=n—g. dim (z"—n),

where g. dim (z”—n) is the geometrical dimension of t”—n € I?O(RP”).
As an application of 2.4 for m=n, we have

Turorem 2.7 Let M be a C*-mantfold, then
span (M x RP")<dim M+ span RP".
Especially, if M is a m-mantfold, and n is odd, then
span (M x RP")=dim M+ span RP”"

Proor. Let dim M=m and d—1=span RP”, and suppose span(M x RP™)
>m+d. Then there is a bundle & over Mx RP”" such that «(Mx RP")=
(m+ d)P&, and we have m@Pr(RP") = (m+ d)Pj* inducing by the inclusion
map j: RP"=*Xx RP"CMx RP". Hence span(1P")=d+1 by 2.2, which con-
tradicts to 2.4 for m=n, and so the first relation is obtained.

If n is odd, there exists a vector bundle  over RP” such that «(RP")=

1Dy, as span RP*>=1. So, for z-manifold M,
(M x RP")=pic(M)Dpi1D7)=pi(c(M) D1)Dpi(n)
=(dim M+ 1)Dpi(y)=dim MPpic»,

where p; is the projection map onto the i-th factor. This shows that
span (M x RP")=dimM+spanRP”", and the second equation. g.e.d.

Now, we consider the simple properties of span(né,) for n=k-+2.
Tuaeorem 2.8. Let k and n be integers such that n=k-+2.

(a) If (Z)El (mod 2), then span (n&,)=n—k.

(b) Ifk and n are even integers, then the inverse of (a) holds.

Proor. (a)is immediate from 2.2 and 2.3

(b): Let » be a vector bundle over RP” such that n&,=(n—k)@y. For
even k and n, H*(RP*; Z) and H*(RP*; Z;) are isomorphic by the mod 2-reduc-
tion homomorphism, and 7 is orientable. Therefore, the fact that » has a
non-zero cross-section is equivalent to w,(7)=0, i.e., (Z)EO (mod 2) (ef. '[6]).

q.e.d.

Turorem 2.9. Let n be even, k be odd such that n=k+2, then
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span(né)=>n—k-+1.
Moreover, if (k—’i 1) =1 (mod 2), then span (n&,)=n—k+1.

Proor. Put né,=(n—k)Qy. Since k is odd, the obstruction for % to have
a non-zero cross-section is 0w,_,(y), where 0: H*"*(RP*; Z;)—>H*RP*; Z) is
the Bockstein operator. Since this ¢ is zero, we have dw;_1(3)=0, and the
first is obtained. The rest is easy from 2.3. q.e.d.

Tueorem 2.10. Let [, m and n be integers, and d=2, 4 or 8. Then,
span(dl+m)é,=dl for 0<m<n<d-—1.

Proor. span (dl + m)é,=span (dl + m)&,_1 = span (dl&,_,) = dl because

span(RPY)=d—1. Also, span(di+m)z,<di+1 by 2.3, because <dlé§ m) —1

(mod 2). gq.e.d.

§3. Postnikov resolution of the universal sphere bundle for the third stage

Let (E, p, B, F) be a fiber space over a CW-complex B with (n—1)-con-
nected fiber F, and assume that the fundamental group 7,(B) acts trivially on
the homology group H.(F; G) with coefficient group G. Let w: B—C be a
map into the Eilenberg-MacLane space C=K({I, n+1), and (E,, P1, B, 2C) be
the principal fiber space with classifying map w [97], where 2C=K(II, n) is
the loop space of C. As is well known, the homotopy set [ B, C] is naturally
isomorphic to H***(B; II), and so we identify these. ‘Also, assume that
p*w=0, which is equivalent to the existence of the map ¢: E—~E; such that
Pieq=p-.

Consider the following commutative diagram in [ 9]

2C = 2Cc
i’ 1xq I3 ‘L
QCx E—>R2Cx E,—>F
iﬂ P lp'
E _— B

where u is the action map and = is the projection map.

Put y=uo(1xgq). If s: E=xx ECRCx E is the inclusion map, then vos is
homotopic to ¢ [97].

Under the above notations, it follows:

Turorem 3.1. [9, Cor. 1] For any abelian group G, the sequence
. To . * R
> H(QCXE; G ——>H"*YB, E; G)—>H'"YE,: G)

S HIQC X B3 G) > HY(QC x E; )
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is exact, where (B, E) should be considered as (M, E) (M, is the mapping
cylinder of p), l=jop:(j: B—>(B, E) is the inclusion map), and v, is the relative
tramsgression homomorphism.

CoroLLARY 3.2. Assume that the following two conditions (a) and (b) hold
for a positive integer i (< 2n—1) and for a coefficient group G:
(a) Ker pfDKer p* in dimension i,
(b) p* is surjective in dimension i.
Then, the sequence

0— > H(Ey; G)—> H(2C % E; G)——> H*(B; G)
is exact, where v,=j*ot,.

Proor. (a) implies Im/* = p¥(Im;*) = p¥(Kerp*)=0, and so v* in the
above sequence is monomorphic by 3.1.

By the exact sequence of (B, E) and (b), j*: H*Y(B, E; G)—> H"*'(B; G) is
a monomorphism, and so Kerry=Kerr;. These and 3.1. show the exactness.
g.e.d.

Let n>4, and S”_IL»BSO(n — 1);B SO(n) be the universal oriented (n—1)-
sphere bundle. 7 is homotopically equivalent to the natural inclusion
BSO(n—1)C BSO(n).

The Postnikov resolution of 7 for the third stage is as follows:

BSO(n—1)——>E ——>K(Z;, n+2)

q\ q’/p/ k
) l E—>K(Z, n+1)
VeI
BSO(n)—){—)K(Z, n)

where X, € H"(BSO(n); Z) is the Euler class, (E, p, BSO(n)) is the principal
fiber space with classifying map X,, ¢ is the map such that peg=m, £ is the
second k-invariant, (E', p’, E) is the principal fiber space with classifying map
k, ¢’ is the map such that p'oq’=g¢, and %’ is the third k-invariant.

The two conditions of 3.2 for the bundle (BSO(n—1), 7, BSO(n), S**)
hold for 0<i <2n—38 and G=2, by [9, p. 20]. So,

(%) 0—>H(E; Zo)>H(K(Z, n—1)x BSO(n—1); Z)>H"* (BSO(n); Zy)

is exact for 0<i=2n—3 by 3.2, where v=uo(1xq), #: K(Z, n—1)x E~>E is
the action map.
Also, the invariant & is characterized uniquely by the equation [9, p. 217:

v¥k = Sq*R1+ (RQus
where ¢ is the generator of H" Y(K(Z, n—1); Z;)=Z,, w; € H(BSO(n—1); Z,) is
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the i*th Stiefel-Whitney class, and Sq is the Steenrod square operation.
Now, to consider the characterization of %', we consider the bundle
(BSO(n—1), q, E). For the conditions of 3.2 of this bundle, we have:

Lemma 3.3 For n =5, and for coefficient group Z., we have
(a) Kerp*DKerg* in dimn+2,
(b) g¢* is surjective in dimn +2.

Proor. (a): Since yos is homotopic to ¢ and n =5,
v*: H*"%(E; Z;)NKer ¢* ~Kertr;\Ker s* N\H""*(K(Z, n—1)x BSO(n—1); Zy)

is isomorphic by the exact sequence (**) for i=n-+2, where s: BSO(n—1)
—K(Z, n—1)x BSO(n—1) is the inclusion map. ‘
The right side is Z, generated by cQws;+ Sq°c®1, because

t1(cQws) = waws,
t1(S¢*®1) = Sg°ri(¢®1) = Sq’w, = wyws
by [8],[9] and a formula of Wu [117]. On the other hand,
v¥Sq'k = Sq'v*k = Sq'(Sq*eR1+ c(RQus)
= S¢'Sq*®1+ R Sq'wz + Sq'tQ@wz = Sq*c Q1+ Quws,

and so, H"**(E; Z,)NKer ¢* is equal to Z, generated by Sq' k. Also, p'*Sq'k
= Sq'p'*k=Sq'0=0, and we have (a).

(b): This follows from the fact that 7* is an epimorphism for coefficient
group Z, in all dimensions. q.e.d.

By 3.2 and 3.3, we have

CoroLLARY 3.4. For n =5,

0—>H" (' Zo)>H" (K(Zs, n)x BSO(n—1); Zo)>H""(E; Z,)

18 an exact sequence, where v', ti, are defined similarly as before.
The following characterization of %’ is obtained [5]:

TaeoreM 3.5. For n=>6, k' € H""%(E'; Z,) 1s characterized uniquely by the
equation:

V*E = ¢ Qus+ SqPd Q1
where ¢ is the generator of H"(K(Zs, n); Zs)=Zo.
Proor. By [9, Property 2, p. 14], we have
t1(¢ @wz) = kp*w,,
(S ®1) = SgPri(!R1) = S¢k.
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These are not zero and mapped to the same element by v*, because
v¥(kp*ws) = v¥E\Uv*p*w,
= (Sg°e QL+ Qw) 1Qws) = Sg°cQw;+ cRuws,
v*Sq’k = Sq*v*k = Sq*(Sq*R1+ Q)

= S¢°Sq* @1+ Sq*cQws + Sq'® Sq'ws + ¢ Sq*w,

= S¢°Sq* 1+ Sg*c Rz + Qw3 = Sg*c Qw2+ (Ruws.
As n=>6, these and the exactness of (**) show that

£1(¢ Qus) = t{(Sg% D),

And so, (' Qw;+ Sq’¢’®1 is the only non-zero element of v*(Kerg'*). There-
fore, we have 3.5. gq.e.d.

§4. Obstructions for cross-sections of vector bundles

Now, let X be a CW-complex and & be an orientable real vector bundle of
dimension n over X. The equivalence class of & corresponds bijectively to a
homotopy class of a map & X— BSO(n).

Consider the diagram (*) and suppose that ¢*X,=0. Then there is a map
7: X— E such that poy=¢. We define, as in [107],

k(&) =\Jn*k CH" (X; Zy),

where the union is taken over all maps 7: X— E such that pey=¢. Asis well
known, k(¢) 3 0 if and only if € has a non-zero cross-section over the (n+1)-
skeleton of X.

We obtain the following theorem as a special case of [107].

Tureorem 4.1. For n >4,
k(&) € H" Y (X; Zy)/(w,Q1+ 1®Sq2)-H"‘1(X; Zs)
where the dot operates by & [107].2

Proor. Put fi*=u*—pf, where y: K(Z, n—1)x E—E is the action map
and po: K(Z, n—1)x E—E is the projection. Then

(Ix @y**k = (v*— (1 x ¢)*p§) (k)
=v¥—(1 % )*ARk) = vk = S¢* Q1+ Qus.
Because Imi*C Y H"/(K(Z, n—1); Z)QH(E; Z) and ¢*: H(E; Zy)
0

=i =2

2) This means that (w;X)1 +1QSq?)- H*~1(X; Z;)= {wy(€)x +Sq?x | x € H*~Y(X; Z,)}
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—H(BSO(n—1); Z,) is injective for i <2, we have
¥k = Sq* @1+ (Qp*w, = (w: Q1 +1® S¢*)-(«®1),

where the dot operates by pepo, and the proof is completed by [10]. g.e.d.
Suppose 7 be a map such that pey=¢. Define similarly

E(p) = \§/C*k’ CH" ¥ X; Z»)

where the union is taken over all maps {: X—E such that p'e{=7. Then,
k'(p) 3 0 if and only if & has a non-zero cross-section over the (n+ 2)-skeleton

of X.
Using 3.5, we have

Tueorem 4.2, For n =6,
K () € H(X; Z)/(wsQ14+1R8¢*)-H(X; Z»),
where the dot operates by &.
Proor. By 3.5 and the same technique as in the proof of 4.1, we see that
K () € H" X X; Z,)/(p*w: Q1+ 1R S¢*)-H'(X; Zy),
where the dot operates by . But, we have
(p*w.R1+1QS¢®)-H"(X; Z5) = (w2 R1+1R Sq*)-H (X5 Z»)

by the definition of the operations, and 4.2 is obtained. gq.e.d.
Now, we shall apply these two results to the bundles over RP™".

Tueorem 4.3. Let k and n be integers such that n >k+2=>7. Suppose
one of the following two conditions (a) and (b) holds:

(3) n=0 (mod 4), k=0 (mod 4), <Z>EO (mod 2),
(b) n=2 (mod 4), k=2 (mod 4), (Z)EO (mod 2).
Then,
span(néy) =n—k+2.

Proor. By 2.8(b), there is a (k—1)-dimensional vector bundle y over RP*
such that n&,=(n—k+1)PHy. As H*'(RP*; Z)=0, 7 has a non-zero cross-
section over the (k—1)-skeleton of RP* and the final obstructions of the non-
zero cross-section of 7 extending to RP* form a coset of

(w14 1R S¢*)-H**(RP*; Z,),

where the dot operates by », by 4.1. But we have easily
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(w,R1+1R Sq¢*)-H**(RP*; Z,)=H*(RP*; Z;)

by the assumption. So, 7 has a non-zero cross-section and the proof is com-
pleted. gq.e.d.

TuroreMm 4.4. Let k and n be integers such that n =k+2>7. Suppose one
of the following conditions (a) and (b) holds:

(a) n=0 (mod 4), k=1 (mod 4), (kﬁl)zo (mod 2),
(b) n=2(mod 4), k=3 (mod 4), (kﬁl)zo (mod 2).
Then,
span(néy) =n—k+2.
Moreover, vf k=8,
span(néy) =>n—k+3.

Proor. By 2.9, we can write né,=(n—k+1)@7;, where 7, is the (k—1)-
dimensional vector bundle over RP*.

As H**(RP*; Z) is isomorphic to H* (RP*; Z,) by the mod 2-reduction
homomorphism, it follows by the assumption that the Euler class X(7,) of 7,
is zero. By 4.1, the obstructions of the non-zero cross-section of 7, extending
to RP* form a coset of

(’WZ®1 + 1®Sq2)‘Hk42(RPk H Zz),

which is equal to H*(RP*; Z,) by the assumption.

So, 7; has a non-zero cross-section and we can write né&,=(n—k+2)Py.
where 7, is the (¥ —2)-dimensional vector bundle over RP*.

Now, the Euler class X(.) of 7, is zero, because H*-2(RP* Z)=0. So, 7,
has a non-zero cross-section over the (k—2)-skeleton of RP*, and the obstruc-
tions extending to the (¢ —1)-skeleton of RP* form a coset

(w:R1+1RQS¢g*)-H*((RP*; Z»),

by 4.1, where the dot operates by 7., and this group is equal to H*"}(RP*; Zy).
So, 7, has a non-zero cross-section over the (k—1)-skeleton of RP*, and
the obstructions extending to RP* form a coset of

(W R1+1R Sq*)-H**(RP*; Z,) = H*(RP*; Z,)

by 4.2.
So, 7, has a non-zero cross-section over RP* and the proof is completed.
q.e.d.
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§5. Applications to the submersions of P;

Let M" be an open C~-manifold of dimension n, and W? be a C*-manifold
of dimension p. Then by [7], we say a differentiable map f: M"— W? (n=p)
is a submersion if £ has rank p at each point of M”. In this case, we say
that M” submerges in W?. R? denotes the p-dimensional Euclidean space.

Now, we consider the problem of submersions in R?. Our results are
based on the following theorem of [7]:

Turorem 5.1.  M” submerges in R? if and only i.f span M"=p.
By RP"< R™*, we mean that RP” is immersible in R"*%,

TueorREM 5.2. RP"*— RP*! submerges in R" 1f and only 1f RP"C R"**,

Proor. By [2, Theorem 1.17, span(n+k+1)¢,=>n+1 if and only if
RP"< R***. So, the proof follows from 2.4 and 5.1. gq.e.d.
By 2.4 and 5.1, we have also

Lemma 5.3. If RP"**—RP* ' submerges in R”, then RP""*— RP* sub-
merges in R* and RP"***'— RP* submerges in R".

We denote by s(n, k) the number s such that P;= RP”— RP*! submerges
in R® and not in R**!. Then, we have the following results, using 2.8, 2.9,
2.10, 4.3 and 4.4:

(5.4) Let k and n be integers such that n > £+2.
(a) If (Z>51 (mod 2), then s(n—1, n—k—1)=n—k—1.
(b) If £ and n are even integers, then the inverse of (a) holds.

(5.5) Let n be an even integer, k& be an odd integer such that n >%k+2,
then s(n—1, n—k—1)=n—%.  Moreover, if <k21>51 (mod 2), then
stn—1, n—k—1)=n—k.

(5.6) Letl, mand n be integers, and d=2,4 or 8. Then s(dl+m—1,
dl4+m—n—-1)=dl—-1for 0<m<n<d—1.

(56.7) TUnder the assumptions of 4.3, s(n—1, n—k—1)=n—k-+1.

(5.8) Under the assumptions of 4.4, s(n—1, n—k—1)=>n—k+1for k=5
and s(n—1, n—k—1)=n—k+2 for £ =>8.

By 5.3 and (5.4)-(5.6), s(n, k) are determined partially as follows:
5.9 s(n+8,k+8)=8+s(n, k) for n—7T<k<n,
s(n+8, k)y=s(n, k) for 0<k<1<6 where n=8m+I.
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Moreover, we have the following table of s(n, k) for n <<30=2°—2, which
is a partial improvement of the table of [7, p.2017]. The symbols in the table
are used in the following sense:

777 is determined by (5.9).

# comes from 5.2 and the known results concerning the immersion of RP™.
O is a consequence of (5.8).
¥ comes from (4, Th. I, (vi) and Prop. 3].
A comes from K-theory as in [7].
P 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
(0) 8 0 1 0 3 0 1 0 7 0 1 0 3 0 1 0
1 sa00812fF 1 13| 3|1 ] 19177 7 7 )
| 2 | 8,10/812/812f 2 | 3 | 3 |3 | 217 |77 |7
3 8,10 /8,12 /8,12 | 8,13} 3 3 3 3 7 7 7 7
_H 8,1:) 8*,1A2 8,1*2 8,13 8,13} 4 5 4 7 7 7 7 7
5 g,l{i) ll,lAB 8,12 E,li 3,13 ?,13 O5 5 7 7 7 7 7 7
| 6 | 9,14 |11,13]11,14/12,14| 9,13 { 9,13 /| 9,13 } 6 7 7 7 7 7 7 7
7 ] 9,16 II,IAS ll,ﬁ 12,15|12,16| 9,13 | 9,13 1*5 7 7 7 7 7 7 7 7
8 15 111,1611,16 12,1A5 12,16(12,16 9,13 15 15 8 9 8 1912 8 9 [ 8
9 15 15 411,16/12,1612,16]12,16|12,16| 15 15 15 9 9 |10,12{9,12| 9 1[ 9
| 10 | 15 15 15 112,16 lCI)i,lG 12,16 1%,16 15 15 15 15 10 1 10,12| 11 : 10
(11 | 15 15 15 15 113,16(13,16|13,16| 15 15 15 15 15 11 11 11 11
| 12 | 15 15 15 15 15 413,16{13,16] 15 15 15 15 15 15 12 13 12
13 15 15 15 15 15 15 114,16] 15 15 15 15 15 15 15 13 13
14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
| 16 | 16 17 16 19 16 17 16 16 17 16 |17,20| 16 17 16
17 17 17 19 19 17 17 17 17 |18,20)17,20| 17 17
18 18 19 19 19 18 18 19 |18,20] 19 18
;;;j 19119 | 19 | 19 // 19 119 |19 | 19
20 n n 20 | 21 | 2 v 20 | 21 | 20
21 v e 2. 2 /PR
2 k_" : ‘ k=it | 2 2
23 s(n, k)=s s<s(nk)<t 7 T
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