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In this paper, all rings considered are assumed to be commutative rings.
A ring R is called an AM-ring (for allgemeine Multiplikationring) if when-
ever A and B are ideals of R with A properly contained in B, then there is
an ideal C of R such that A = BC. An ^4M-ring R in which RA = A for each
ideal A of R is called a multiplication ring2). This paper considers a ring R
satisfying property (Hm): Each proper homomorphic image of R is a multip-
lication ring. Numerous ring-theoretic properties (for example, Noetherian,
or proper prime ideals are maximal) are inherited by a ring R if these pro-
perties hold in each proper homomorphic image of R. In Section 3 of this
paper we show, however, that a ring satisfying (Hm) need not be a multiplica-
tion ring, and we give a characterization of rings with identity satisfying
property (Hm). An outline is given for constructing examples of rings with
identity satisfying (Hm) that are not multiplication rings.

Let R be a ring. We say that R satisfies property (*) if each ideal of R
with prime radical is primary. Property (*) is considered by Gilmer in [3]
and Q4] and by Gilmer and Mott in [β~]. Closely related to (*) is the property
(**) which is also studied in Q5] and in Ql] by Butts and Phillips: Each ideal
of R with prime radical is a prime power. If every proper homomorphic
image of R satisfies property (*) (satisfies property (**)), we say that R
satisfies property (#*) (satisfies property (ϋΓ**)). In Q5] it is shown that an
ΛM-ring satisfies (*) and (**) and that if 5 is a α-ring, S satisfies (**) if and
only if S satisfies (*) and primary ideals of S are prime powers. It follows
that if R contains an identity, then R a multiplication ring implies that R
satisfies (**) and R satisfying (**) implies that R satisfies (*). Hence, in a
ring with identity, (Hm) implies (#**) and (H**) implies (#*). For this
reason, we consider rings satisfying (H*) in Section 1 and rings satisfying
(ίf**) in Section 2. In particular, rings with identity satisfying (AT**) are
characterized in Section 2.

The notation and terminology is that of [9] with two exceptions: c
denotes containment and c denotes proper containment, and we do not as-
sume that a Noetherian ring contains an identity. If A is an ideal of a ring

1) This paper is a portion of the author's doctoral dissertation, written under the direction of Pro-
fessor Robert W. Gilmer, Jr. of The Florida State University. This part of the dissertation was written
under the direction of Professor Joe L. Mott, while Professor Gilmer was on leave of absence.

2) For a historical development of the theory of multiplication rings see [5, p. 40].
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R, w£ say that A is a proper ideal of R if (0) c ^ c R and that 4̂ is a genuine
ideal oί Riί AczR.

1. Rings Satisfying Property (Jff *)

We obtain in this section some results concerning rings satisfying (//**)
and give in Theorem 1.5 a partial characterization of such rings with identity.

We first, however, introduce some terminology which is used in this sec-
tion. If A is an ideal of a ring R and {Pa} is the collection of minimal prime
ideals of A, then by an isolated primary component of A belonging to Pa we
mean the intersection Qa of all Pα-primary ideals which contain A. The
kernel of A is the intersection of all the (Vs. Krull introduced the notion of
the kernel of an ideal in [βΓ\. The kernel of an ideal is also considered by
Mori in [7~] and by Mott in [β~]. In this section we use the following fact:
A ring R satisfies (*) if and only if every ideal of R is equal to its kernel [Ί5,
Theorem 4].

LEMMA 1.1. An integral domain satisfying (H*) also satisfies (*).

PROOF. Let D be an integral domain satisfying (ϋf *). We show that D
satisfies (*) by showing that each ideal of D is equal to its kernel. Let A be
a nonzero ideal of D and consider D/A. In D/A, A/A is equal to its kernel
since D/A satisfies (*). By the one-to-one correspondence between primary
ideals of D/A and primary ideals of D containing A, it follows that A is equal
to its kernel in D. Therefore, each ideal of D is equal to its kernel which
implies that D satisfies (*).

DEFINITION. Let Rbe a ring. If there exists a chain Po c Pλ c c Pn of
τι + 1 prime ideals of R where PncR, but no such chain of n-\-2 prime ideals,
then we say that R has dimension n and we write aim R — n.

LEMMA 1.2. If a ring R satisfies (if*), then dim i ? < l .

PROOF. If (0) is a prime ideal of R, R satisfies (*) by Lemma 1.1. Thus,
dim7?<l [5, Theorem 1]. Assume that there exist prime ideals Pu P2, and
P3 of R such that (0)aP1c:P2QP3c:R. Then R/Px is an integral domain
satisfying (*) so that aim R/Pλ < 1 [5, Theorem 1]. Therefore, P2/Pι = P3/Pi
which implies that P2 = P3. Thus, dim R < 1.

LEMMA 1.3. Let Rbe a ring with identity satisfying (if*) such that V(0)
=P is a genuine nonmaximal prime ideal of R. If P=P2, R is a one-dimen-
sional domain. Hence, R satisfies (*).

PROOF. We show that P=(0). Assume that P=τK0) and let a e P\{0}.

Since V(0)=P, ^l(a)/(a) = (V(α) )/(α) = P/(a\ a prime ideal of R/(a). Therefore,
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(a)/(a) is, a P/(α)-primary ideal of R/(a) since R/(a) satisfies (*). Then [4,
Theorem 2] implies that (a)/(a) = P/(a) which shows that P=(a). Thus, (0)
contains a power of P and it follows that PφP2. Hence, if P=P\ P=(0)
and R is a one-dimensional domain by Lemma 1.2.

LEMMA 1.4. Let R be a ring with identity satisfying (//"*). If P is a
genuine nonmaximal prime ideal of R and P2φ(o\ then P—P2.

PROOF. Since P2φ(0\ R/P2 satisfies (*) and P/P2 = (P/P2)2 = P2/P2 [4,
Corollary 2.2]. Therefore, P=P2.

THEOREM 1.5. Let R be a ring with identity. Then R satisfies Off*) and
each nonmaximal prime ideal of R is idempotent if and only if R satisfies (*).

PROOF. (<-) If R satisfies (*), R clearly satisfies (H*) and each non-
maximal prime ideal of R is idempotent Q4, Corollary 2.2].

(->) Assume that R satisfies (jff*) and that each nonmaximal prime ideal
of R is idempotent. We consider three cases.

Case 1. V(0) is not a prime ideal of R. Let 4̂ be an ideal of R such that

<J~A=Pia a prime ideal of R. Then AΦ(0) and R/A satisfies (*). Since

VA/A = (\lA)/A = P/A is a prime ideal of R/A, A/A is a PΛ4-primary ideal
of R/A. Therefore, A is a P- primary ideal of i? and R satisfies (*).

Case 2. V(0) is a maximal ideal of R. It follows that R is a primary
ring. Therefore, R clearly satisfies (*).

Case 3. V(0) is a nonmaximal prime ideal of R. Since P=P2 by hypo-
thesis, Lemma 1.3 implies that R is a one-dimensional domain. Therefore,
R satisfies (*).

EXAMPLE 1.6. We give an example here of a ring R with identity such
that R satisfies (#*) but R does not satisfy (*) in fact, R satisfies the follow-
ing conditions: (i) Each nonzero ideal of R with prime radical is primary
(ii) R is a one-dimensional ring (iii) R contains a unique minimal prime ideal

Pφiϋ) such that P=(ά) for each a e P\{0} and P 2 = (0); (iv) V(0) = P but (0)
is not a P-primary ideal of R. This example shows that the condition "each
nonmaximal prime ideal of R is idempotent" is a necessary condition in
Theorem 1.5.

Let D = 7Γ2[X, F ] where Xand Fare indeterminates over 7Γ2, the Galois
field of two elements. Let M={X9 F), let P=(X\ and let B = (X2, XY). If
/(Z, Y)e P,

1 = 0, i>2

where each f{J e π2. Therefore, /(Z, F)=/1 0X(£). If /(Z, F) e P \ £ , /1 0 = 1
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so that B + (f(X, Y)) = P for each f(X, Y) e P\B. Note that B is not a P-
primary ideal of D since XY e B, X ξ B, and Y f P.

Let R — D/B=-TZ1{_X,Y'^/{X2, XY). Since D is a two-dimensional domain,
it is clear that R is a one-dimensional ring. Also, P/B is the unique minimal
prime ideal of R, P/B is principal and is generated by any nonzero element

in P/B, and (P/B)2 = B/B. If A is a nonzero ideal of R such that JA=P/B,

A —P/B. If A is a nonzero ideal of R and if V̂ 4 is a maximal ideal of i? or
is equal to R, A is clearly a primary ideal. Therefore, each nonzero ideal of
R with prime radical is primary. This implies that R satisfies (H*). But

\]B/B = P/B and B/B is not a P/£-primary ideal of R since B is not a P-
primary ideal of D. Thus, R does not satisfy (*).

2. Rings Satisfying Propetry (H**)

In this section Theorems 2.2, 2.3, and 2.5 and Lemma 2.4 give a charac-
terization of rings with identity satisfying (#**). In Example 3.13 an ex-
ample will be given of a ring with identity satisfying (Hm), but not (**).

DEFINITIONS. Let R be a ring. If A is an ideal of R, we say that A is
simple if there exist no ideals properly between A and A2. If R contains
an identity, R is called a primary ring if R contains a unique genuine prime
ideal. Finally, a primary ring R with genuine prime ideal M is called a spe-
cial primary ring (special P. I. R.) if R is a principal ideal ring such that
Mk = (0)for some k 6 w.

LEMMA 2.1. Let R be a ring satisfying (H**). If P is a prime ideal of
R such that P2Φ(0), then P is simple.

PROOF. If P=P2, P is clearly simple. Assume that P 2 c P and let A be

an ideal of R such that P2czA^P. Then R/P2 satisfies (**) and VZ/P2 =

\ a prime ideal of R/P2. Thus, A/P2 = (P/P2)n for some ne w.
Since P 2 c A^P, it follows that τι = l. Therefore, A/P2 = P/P2 which implies
that A = P. This shows that P is a simple ideal of R.

THEOREM 2.2. Let R be a ring with identity. If R is not a primary ring,
R satisfies (//**) if and only if R satisfies (**).

PROOF. («-) If R satisfies (**), R clearly satisfies (i/**).
(—•) Assume that R satisfies (£Γ**). Let A be a genuine ideal of R with

prime radical. We show that A is a power of its radical by considering three
cases.

Case 1. \l A =M is a maximal ideal of R. Since R is not a primary ring,

Aφ(0). Therefore, R/A satisfies (**) and 4A/A = M/A which implies that
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A/A = (M/A)n for some new. This shows that A = Mn + A. Hence, MnΩA
c £ Since R is not a primary ring, M2Φ(0) and it follows from Lemma 2.1
that M is simple. Thus, A — Mk for some k e w []5, Lemma 3].

Case 2. V̂ 4 = P is a nonmaximal prime ideal of R and V(0) is not a prime
ideal. It follows that Aφ(0) and that P2φ(0). Since J? satisfies (#**) , i?
satisfies (#*) [5, Theorem 15]. Thus, P=P2 by Lemma 1.4. Since i?/J

satisfies (**) and VA/A = P/A, A/A = (P/A)n for some new. But (P/A)n =
(Pn + Λ)/^ = (P+ A)/A = P/A so that A/A = P/Λ. Therefore, ^ = P.

Case 3. \lA=Pis & nonmaximal prime ideal of R and V(0) is a prime

ideal. Since R satisfies (#*), V(0) = P by Lemma 1.2. If P=(0), A = P.
Therefore, assume that Pφ(0). We want to show that P 2 = (0). Assume
that P2Φ(0). Then Lemma 1.4 implies that P—P2 and it follows from Lemma
1.3 that R is a one-dimensional domain. Thus, P=(0) which yields a con-
tradiction. Therefore, P 2 = (0). If * e P \ { 0 } , Λ / ( * ) satisfies (**) and
P/U) = (P/U))2 = (P 2 + (^))/U) = (o;)/W [4, Corollary 2.2]. It follows that
P = ( Λ ; ) and that P is a simple ideal of R. Thus, either A = P or A = P2.

THEOREM 2.3. Lei R be a primary ring satisfying (#**) wiίfo maximal
ideal M. Then

(a) E'αcfe proper homomorphic image of R is a special primary ring.

(b) // M2φ(0), R is a special primary ring. Thus, R satisfies (**).

PROOF. Let R be a proper homomorphic image of R. Then Λ satisfies
(**) and if Rφ(0\ M is the unique genuine prime ideal of i?, where M is the

image of M in R. Now V(0) = M so that (0) = Mw for some π, 6 ^. Since ϊ?
satisfies (**), Mis clearly a simple ideal of R. Therefore, R, M, M2, ••-, Mn

= (0) is the collection of ideals of R. lί x e M\M2, then (x) = M. Hence, £
is a special primary ring.

It follows that each proper homomorphic image of R is Noetherian, which

implies that R is Noetherian. Since V(0) = M, there exists a positive integer
A: such that Mk = (0). Let k be minimal with the property that Af* = (O).
Then if M2φφ\ R, M, M2, ..., Λf*=(O) is the collection of ideals of R by
Lemma 2.1. If ye M \ M 2 , then (γ) = M and i? is a special primary ring.

LEMMA 2.4. Let R be a primary ring such that M2=(0) where M is the
maximal ideal of R. Then M is simple if and only if R is a special primary
ring.

PROOF. If Λf=(0), the lemma is clear. Therefore, we assume that

(-•) If M is a simple ideal of R, M=(x) for each x e M\{0}. Hence, R
is a special primary ring.

(«-) This is a consequence of [9, Corollary 1, p. 237].
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THEOREM 2.5. Let Rbe a primary ring satisfying (fΓ**) such that R is
not a special primary ring and M2 = (0) where M is the maximal ideal of R.
Then the following conditions hold in R:

(i) M is generated by any two elements in M which do not compare that
is, if x, ye Mare such that (x) <£ (y) a>nd (y) ξ£ (x), then (x, y) = M.

(ii) M is not simple.
(iii) If A is an ideal of R such that (0)(zAaM, A is a principal ideal of

R.
(iv) R does not contain a chain of five ideals.
(v) R is Noetherian.
Conversely, if conditions (i) and (ii) hold in R, then each nontrivial proper

homomorphic image of R is a special primary ring. Thus, R satisfies (Hm).

PROOF. Let #eM\{0} . Then Lemma 2.4 shows that (x)czM. This
shows that (ii) holds. If ye M\(x), (0)a(x)^(x, y)cAf. Since R/(χ) satis-
fies (**), M/(x) is a simple ideal of R/(χ); there do not exist any ideals
properly between M/(x) and (M/(x))2 = (M2 + (χ))/(χ) = (χ)/(χ). Therefore,
M=(χ, y) which proves condition (i). Let A be an ideal of R such that (0)c
AczM. If ae A\{0}, (0)c(β)ςici l ί . Since there are no ideals properly
between M and (a), A = (a); that is, condition (iii) holds. This also shows that
conditions (iv) and (v) hold in R.

Conversely, if conditions (i) and (ii) hold in R, it is clear that R/A is a
special primary ring for each proper ideal A of R. For if A — M, R/M is a
field and if (O)c^cM, M/A is the only proper ideal of R/A. Thus, R satis-
fies (Hm).

3. Rings Satisfying Property (Hm)

We are now in a position to give a characterization of rings with identity
satisfying (Hm). In particular, Theorem 3.8 shows that in a rionprimary
ring R with identity, R satisfying (Hm) is equivalent to R being a multiplica-
tion ring. This section concludes with an outline for constructing examples
of rings with identity satisfying (Hm) that are not multiplication rings.

THEOREM 3.1. Let A be an ideal of a ring R with identity satisfying (Hm)

such that A^(0). If B is an ideal of R containing A, there exists an ideal C

of R such that A = BC. Therefore, if V(0) = (0), R is a multiplication ring.

PROOF. Let a e A\^J(O). Then there exists an ideal TV of R such that
A/(a) = (B/(a))(N/(a))=(BN+(a))/(a) and an ideal N' of R such that (a)/(a2)
= (B/(a2))(N'/(a2)) = (BNr + (a2))/(a2). Hence, A = BN+ (a) = BN+ (BNr + (a2))
= B(N+N') since a2 e BN. The ideal N+Nf is the desired ideal C in our
theorem.
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THEOREM 3.2. If R is a ring with identity satisfying (Hm\ then R satisfies
(*). Therefore, each ideal of R is equal to its kernel.

PROOF. If R is a primary ring, each ideal of R with prime radical is
primary. If R is not a primary ring, R satisfies (**) by Theorem 2.2. Thus,
R satisfies (*) [5, Theorem 15].

REMARK 3.3. Let R be a ring with identity satisfying (Hm). Assume

that V(0) = P is a prime ideal of R. If P is a maximal prime ideal of R, R is
either a special primary ring by Theorem 2.3 and Lemma 2.4 or R is a primary
ring satisfying conditions (i) through (v) in Theorem 2.5. If P is a non-
maximal prime ideal of R, V(0)=P is the unique minimal prime ideal of R and
R is not a primary ring. Therefore, R satisfies (**) by Theorem 2.2. Since
R also satisfies (*), (0) is a P-primary ideal of R. Thus, P=(0) [4, Theorem
2] and R is a Dedekind domain by Theorem 3.1 and Q8, p. 429].

THEOREM 3.4. Let R be a ring with identity satisfying (Hm). If V(0) = P
is a genuine nonmaximal prime ideal of R, then P=(0) and R is a Dedekind
domain.

PROOF. This is an immediate consequence of Remark 3.3.

COROLLARY 3.5. Let R be a ring with identity satisfying (Hm). If P is
a nonmaximal prime ideal of R, P=P2.

PROOF. If P 2 = (0), then V(0) = P and Theorem 3.4 shows that P=(0). If
P 2 ^ ( 0 ) , P/P2 = (P/P2)2 = P2/P2 [4, Corollary 2.2]. In both cases we have
that P=P2.

LEMMA 3.6. Let R be a ring and let x be a nonzero nilpotent element of R
such that R/(χ) contains a nonzero, nonidentity, idempotent element. Then R
contains a nonzero, nonidentity, idempotent element.

PROOF3 ). Let e = e-\-(x)besL nonzero, nonidentity, idempotent element of
R/(χ) where e e R. Then e({x) and e + 0*0=(e + (A?))2 = e2 + 0*0 which im-
plies that e2 — e e (x). By an inductive argument, it is clear that ek — e€ (x)
for each k e w. Since e f (x), ekφθ for each k e w. Now e2 — e=rx for some
r e R. There exists an odd positive integer n such that χn = 0. Therefore,
(β2 — e)n = (rx)n = 0. It follows that sen+1 — en = 0 where s is a combination of
powers of e. This shows that (e

n+1) = (en). Thus, (e

n)2 = (en)φ(0). Since
(0)a(en)tzR, (en) is generated by a nonzero, nonidentity, idempotent element
[2, Corollary 2].

LEMMA 3.7. Let e be an idempotent element of a ring R, let A = Re={re:
r e R}, and let B={x — xe: x € R}. Then the following conditions hold:

3) The method of proving Lemma 3. 6 was suggested to me by Professor Gilmer.
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(a) B is an ideal of R.
(b) A is a ring with identity, namely e.
(c) R

PROOF. The proofs of (a) and (b) are clear. Thus, we prove only part
(c). If x 6 R, x = xe-\-(x — xe) e A + B which implies that R = A-\-B. There-
fore, to show that R is a direct sum of A and B we show that A nfi = (0).
Let a 6 An B. Then ae = a since a e A, and a = x — xe for some xeR since
a€B. It follows that a = ae = (x — xe)e = xe — xe2 = xe — xe = 0. Thus, A Π B
=(0) which shows that R =

THEOREM 3.8. Let R be a ring with identity. If R is not a primary ring,
then R satisfies (Hm) if and only if R is a multiplication ring.

PROOF. (<-) This half of the proof is clear.

(—•) Assume that R satisfies (Hm). If V(0) = (0), R is a multiplication

ring by Theorem 3.1. If (0)c V(0), let x e V(0)\{0}. Then we consider the
multiplication ring R/(x). If R/(χ) is indecomposable, R/(χ) is a Dedekind
domain [Ί5, Theorem 16]. Thus, there exists a prime ideal P of R such that

P=(x). Since x is a nilpotent element of i?, V(0) = P. It follows from Theo-
rem 3.4 that i? is a Dedekind domain. If !?/(#) is decomposable, R/(χ) con-
tains a nonzero, nonidentity, idempotent element. Therefore, R contains a
nonzero, nonidentity, idempotent element which implies that R is decompo-
sable. It follows that R can be written as the direct sum of two multiplica-
tion rings. Thus, R is a multiplication ring.

REMARK 3.9. Let R be a ring with identity satisfying (Hm). If R is not

a primary ring and (0)cV(0), the proof of Theorem 3.8 shows that R/(χ) is a

decomposable ring for each x e V(0)\{0}.

COROLLARY 3.10. Let R be a ring with identity satisfying (Hm) such that

(0)c V(0) and let x e V(0)\{0}. // R/(x) contains no proper idempotent ideal,
R is a primary ring.

PROOF. Since a decomposable ring with identity contains proper idem-
potent ideals, R/(χ) is indecomposable. But R/(χ) is not a Dedekind domain
since (0)cV(0). Therefore, R/(χ) is a special primary ring [5, Theorem 16].
This implies that R is a primary ring.

COROLLARY 3.11. Let R be a ring with identity. If R is an indecom-
posable ring satisfying (Hm), R is either a primary ring or a Dedekind domain.

PROOF. If R is not a primary ring, R is a multiplication ring by Theo-
rem 3.8. Then [5, Theorem 16] implies that R is a Dedekind domain.
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ΊWOREM 3.12. Let Rbe a ring with identity. If R is a primary ring
with maximal ideal M, R satisfies (Hm) if and only if R is either a special
primary ring or R satisfies the following three conditions:

(i) M2 = (0).
(ii) M is generated by any two elements in M that do not compare that is,

if x, y£ M such that (x)φ(y) and (y)^(x\ then M=(x, y).
(iii) M is not simple.

PROOF. (->) Assume that R satisfies (Hm). Then R also satisfies (JET**).
If M2Φ(0\ R is a special primary ring by Theorem 2.3. If M2=(0) and M
is simple, R is a special primary ring by Lemma 2.4. Finally, if M2 = (0)
and M is not simple, R satisfies conditions (i), (ii), and (iii) by Theorem 2.5.

(<-) If R is a special primary ring, R clearly satisfies (Hm). If R sat-
isfies conditions (i), (ii), and (iii), each nontrivial proper homomorphic image of
R is a special primary ring. Thus, R satisfies (Hm).

EXAMPLE 3.13. If R is a ring with identity satisfying (Hm), R need not
be a multiplication ring. We give here an outline for constructing such ex-
amples in general.

Let M be a maximal ideal of the ring S with identity such that M/M2,
considered as a vector space over S/M, has finite dimension n>l. (Thus, if
S is Noetherian, M is any maximal ideal which is not simple.) Now, M/M2

contains an n-2 dimensional subspace A/M2 where A is an ideal of S. There-
fore, if x z M\A, A + (χ) is an ideal of S such that AaAΛ-(χ)czM. If
γeM\A such that A + (x)£A + (y) and A + (y)<£A + (x), then A + (x)a
A-\-(x, y)^M. Since the dimension of M/M2 over S/M is equal to n and the
dimension of A/M2 over S/M is equal to n-2, A-h(x, y) = M.

Let R = S/A. Then R is a primary ring with maximal ideal M/A such
that R satisfies (Hm) by Theorem 3.12. But R is not a multiplication ring
since M/A is not a simple ideal of R; in fact, R does not satisfy (**).

For a particular example, let S=K[Xι, , Xm~] where K is a field, Xu ...,
Xm are indeterminates over K, and wz>l. Then any maximal ideal of S satis-
fies the required conditions since any maximal ideal of S has a basis of m, but
no basis of m — 1, elements.
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