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§1. Introduction

In this paper, p denotes always an odd prime number. Let A* denote
the Steenrod algebra mod p, and 4, the dual Hopf algebra of A*.

In [6] and [7; Lemma 8.9 and (3.7)7], H. Toda has calculated the kernels
of several right translations of 4* (or left 4*-modules in general). These
results can be written in the form of the exact sequences of left 4*-modules.
For example, the following circular exact sequence is proved in Proposition
1.5 0f [6]:

A* (RP—Z)* A* (RD—B)* (RZ)* A* (Rl)* A*
R’ R
\A*/A*AEBA*/A*A’/

where R,=(k+1)2'4— k4P, (Rp)*(a) =aR;, R' (a1, ay) =, 4P —a; 42" 4 and
R(a)=(ad2', a2'), using the Adem relations directly.

The above exact sequences are used in the calculations of the p-primary
components of the stable homotopy groups of spheres (see [7] and [&8]).
For example, the above circular sequence is used in the determination of the
elements «; of (2k(p—1)—1)-stem in the J-image (see [8]).

In [1] and [2], J. Cohen has discussed the dual maps of the right (or
left) translations by the elements of 4*. Calculating the kernel and the
image of the dual map of (#)*, i <p, the exactness of

1.1 gx (P)* A% (PP H)* A%, 1<i<p,

has been proved in [1;(7.11)]. By making use of Cohen’s methods, the
exactness of the above circular sequence can be reproved more simply.

In this paper, we shall prove several exact sequences (3.3-10), (4.2) and
(4.8-15) in §§3-4 below by use of Cohen’s methods. For example, we have
the following exact sequence:

*( p(b-1)bY f)*
(FPTDDT g5/ 4%+ a*@P* P d— 27 1),
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(c* denotes the conjugation of 4*), which was proved partially in [7; (3.7)].
Our results will be applied to the calculations of the p-components of
the stable homotopy groups of spheres in forthcoming paper [57].
The author wishes to express his sincere gratitude to Prof. H. Toda,
who suggested this topic, and also Prof. M. Sugawara and T. Kobayashi, who
read the manusecript and gave valuable advice.

§2 Cohen’s methods

Let c¢*: A*— A* (resp. cy: Ay—A,) be the anti-automorphism (or conju-
gation) of A* (resp. Ay) of [8]. For the multiplication ¢* and the comultipli-
cation ¢* of 4*, c* satisfies the following (see [4; Propositions 8.6 and 8.7])

(2.1) c*g*=d*T(c*Qc*), p*c*=(c*Rc*) TP*,
where T denotes the switching map, i.e., T(aRR)=(—1)derdespq,
For the simplicity, we shall denote
Pi=c*(2") and p=c*4),

the conjugation of the reduced power operation #' and the Bockstein opera-
tion 4, respectively. Then the Adem relations can be rewritten as follows,
by use of (2.1):

.<(r—i)(p—1)—1> _ _
(2.2) P’Ps= Z (=1 piprts—? for s<rp,
! s—pi
.<(r—i)(p—1)> . _
PTBPS:Z (_1)S+1 PtPr+S—lB
: s—pi
r—i)(p—1D—1

+Z(___1)s+i+1< >Pi8Pr+s—i fO’I’ Sérp.

s—pi—1
The following lemma is easy.
Lemma 2.1.  Let r<p. Then we have
2.3) P =(—=1)y2", P"""=(=1)""'2?2" p=—A.
(2.4) P?=(—1)"2"" mod A*P', P"?=(—1)"2"" mod 2'A4*.

Proor. The formula (2.3) is (1.7) and (1.8) of [6]. In particular, we
have

() P'=—2', PP=—g¢,
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By the Adem relations and (2.2), we have
rl?"?=(2?)" mod 4*2' and mod 2! 4*,
r'P"*=(P?)" mod 4*#' and mod 2! 4*.
By (%), (P?)"=(—1)"(2?)" hence
P?=(—1)"2"? mod 4*2' and mod 2! 4*. q.e.d.

Let & € Aypi_5(60=1) and ¢; € A4, be the dual elements to P'P?---P?"
and BP'P?...P?", respectively, with respect to the basis of the conjugations
of the admissible monomials. These are the conjugations (cy-images) of
Milnor’s &; and ¢; of [8]. According to Milnor’s results [3] and (2.1), the
Hopf algebra structure of 4, is given by

(2.5) A=2Z, &1, &2, JQQA(T0, T1y---),
(€)= £§05i®5£i~h x(tr) =1RQ7, + éofi®5££—ia

where ¢y 1s the dual map of ¢*, 1. e., the comultiplication of As.
For any element « € 4*, we shall denote

a*: A* > A* and a: Ay— Ay

the right translation by « and the dual map of a*, respectively. Then «a, is
given by

(2.6) <ay(a), a'>=<a, da> for any o’ € A*.
Obviously, ( )* is contravariant and ( ), is covariant, i.e.,
2.7 (aaY*=a'*a* and (aa )y =away for any «, o’ € A*.

The following theorem is due to J. Cohen ([1; Theorem 5.187] and [2;
Theorem 5.87]).

Tueorem 2.2 (Cohen). The following formulas are established.

(2.8) Pi(ab)= .;_:np;;(a)p;;(b) for a, b € Ay.
&g fO’I‘ n=0
(2.9) 1) =( &1 forn=pt?

0 for other n.
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T Sfor n=0

(2.10) Pi(ty) =1 Tr1 for n=p*~!

l 0 for other n.
(2.11) Bx(ab)=Bx(@)b+(—1)%%aBy(b),  fora, b€ Ay
(2.12) Bx(E=Bx(xD=0  for k=0,1=1,  Bu(ro)=1.

In the above, we interpret €_;=v_,=0, &,=1.

Remark. By (2.7) and this theorem, «, is determined entirely for any
a € A*.
Let n be a non-negative integer,

A (n)=Z[7,..., &b, &nin, 5n+2>-~-:|®_/1(7n+1, Tnizy o)
be the subalgebra of 4, and let
Ai(n)= Az ryré o =0, 1, r; <p""'77},
where {z,,..., a,} denotes the vector spac2 ovar Z, spannad by the elements
ai,---, ay. Then
Ay=A45(n)QAx(n),  n=0,
as vector space over Z,. Also let
(2.13) A*(n) be the subalgebra of A4* generated by 3, P',..., P*"".
In these notations, we have the following

ProrosiTioN 2.3. Let L be a linear subspace of Ai(n) and « € A*(n),
a € Ay(n), a’ € Ay(n). Then,

(214 ay(a'a) =ax(a)a, axdi(n) CAi(n),
(2.15) Ker(ay| L& Ax(n)) =Ker(ax | L)X 4x(n),
(L& Ax(n)) = (ax L) Ax(n).
Proor. Let 0<£<p"'. By (2.9) and (2.10),
Pi(@)=0  for a=&""""(i<n), & and ¢,(j=n+1),
and by (2.8), PtA4,(n)=0. Then PkL(a’a)=PkL(a)a by (2.8). Similarly, A,

(a'a) =By (a)a by (2.11) and (2.12). By use of (2.7), we obtain the first state-
ment of (2.14). Similarly, we obtain the second statement of (2.14).
Next, assume that a=2a}a; € Ker(ay| LR A4(n)), a} € L, a; € Ax(n). To
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prove a € Ker(ay | LYR A, (n), we may assume further that deg ¢/ =deg aj="--,
deg a,=deg a;=--- and that the elements a; are the monomials, a;a;(i3%)).
Then such an expression of a= ) a’a; is unique. By the hypothesis and by
(2.14), 0=ay(a) = X (ayal)a;, asal € AL(n). The uniqueness of this expression
implies ayxa}=0, i=1, 2,.... Thus,

Ker(ay| L& A4(n)) CKer(ay | L)R A4 (n).

The rest of (2.15) is an easy consequence of (2.14). q.e.d.

§3 Exact sequences

In §§3-4, we shall use the following

ConvenTiON 3.1. Let a, Bi,---, 8. € A*. We shall denote A*(Bi,---, Br)
the left A*-submodule of 4* generated by 8., ---, 8,. Composing the map a*
with the natural projection, we obtain the map of left 4*-modules 4*—
A*/M, M= A*(51,---, 8,). Then we shall use the same notation a* for this
map. Furthermore, let 7ri,..., 7m € 4* with 7,0 € M. Then a*: A*—>M in-
duces the map A*/A*(ry,..., Tm)—>A*/M, and we shall also use the same nota-
tion a* for this map.

The following lemma is immediate.

LEMMA 32 Let «, Bl:"'a Bl, Tl)"'a Tm’ 61;"', 671 € A* w/l'th T € A*(é\l,' cy
0,). Then the exactness of the following sequence

A @A P ABY | gxs g ) e 4% A%, -, 82)
18 equivalent to
B.1) Kerpfion---NKerpxsnKeryion--NKerys =ax(Kerd N ---NKerd,x).

To prove the exactness of the sequences of left 4*-modules, we shall
show the equalities of the form of (3.1) by making use of Theorem 2.2 and
Proposition 2.3.

In this section, we shall prove several exact sequences with respect to
the elements in 4*(1) of (2.13). For the element a € 4*(1), the map «a, is
determined by (2.7), (2.14), (2.15) and

32 Piep=(] ) Pheotn=(] Jrosi ™,

Pheap =1 )t + (L Jrost™, PhGoraeD = Jromaél
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Bx(81)=Bx(t1€7)=0, B4(Toé1) =¢£7, Bx(tot1E)) =11€1.
This is an easy consequence of Theorem 2.2.

TuaEOREM 3.3. The followings are the exact sequences of left A*-modules.
33) A ax LD g qrpt P i) g,

1% 14\ i )
B4  Ar@ax PV HP DT PDT | e pri 2<i<p.

35  AQa PV HPNT o (PUPTHE 4y

Proor. By (2.3), the exactness of these sequences is equivalent to the
exactness of the sequences, which are given by the replacement of 2 and 4
by P* and B. Using (2.14), (2.15) and (8.2), we have

KerPi={1, o, 11— 70é1, ToT1} R A4x(1),
(P'R)«(KerP})= {1, to} @ 4,(1)=KerPiNKer(P'B)y,
where {a,, -, a,} denotes the vector space over Z, spanned by the elements
a, ---,a,. By Lemma 3.2 we have the exact sequence
A%/ 4*P? (P'B)* A*/ A*P? (P'B)* s A* ) A* P,

Thus (8.3) is proved.

To prove (3.4) and (3.5), we shall use the following known fact, which is
equivalent to (1.1) of §1:

(%) KerPi=ImP% i, 1<i<p.
Then,
Im(P'BP?™ )y =(P'B)4x(ImPL™)
=(P'B)y(KerPL)=KerPLNKer(P'R)4.
Thus (38.5) is proved.
By (2.2) and the simple calculations on binomial coefficients, we have
PP=("ENP forj<p,
(%)
PiB=P'BPI"'—(i—1)RP'  for i<p.
Therefore, for i <p
(P'B)«(KerPi)=(P'BP" ") (KerPi) by (+)
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=(P'BP )(ImPL?) by (¥)
=Im(P'BP? 1), =KerPiNKer(P'R), by (8.5).
Thus, (3.4) is proved. q. e d.
Tueorem 3.4. The following sequences are exact.
BNk p—k\% k
3.6) A/ A*R, L gy g g PV ks gxp, P gxs g4,

for 1<k <p, where Ry=(k+1)P'4d— k42"

@) arpax AFUPDE gy UPTD* |
(3.8) A AP g (PP | ws gx g,
(39) 4@ ax VA UL gx PV yx) gey,

« ¥+ (24P | (dP*

(3.10) A*P 4 A*.

Proor. By (2.3), we can replace 2’ and 4 by P’ and 3 respectively.
By the direct calculations, we have

KerByNKerPk={&1(r<k), 1187(r<k—1)} RA44(1)
=(P?7")(KerRyy),
(8.11) KerR, ,NKer(P?7%),
={1G<p—k), krof{+rr 171 =p—k)} R 44(1)=PL(KerBy),

where 1<k < p. Thus (3.6) is proved.
Similarly we obtain (3.7-10). q. e. d.

§4 Exact sequences (continued)
This section consists of the exact sequences related with the elements in
A*(2) of (2.18). In this section, let r and s denote the non-negative integers

smaller than p, and set a, ,=£7%¢3.
By Theorem 2.2, we have

@D PYie e =riel 3 (1) 5 )sarii
ivi=k

& & Tr S i
Pip(z'ofzar,s)—_fofz Z ( . )( . )E{a,_;_s_j
ivji=e\ L/\]



116 Shichiré Oxka

tein 2 (N3 elor s

i+j=k—1\ 1 J

& & r S i
Pip(rorlrza,,s): ToT1T2 . )( . > {a’f—i,s~j>
itj=k\ J

where ¢, ¢ =0 or 1.

Tueorem 4.1. The following sequence s exact.

42) LPaPargadt (P7)* + (22! P* — P 1)k 4 (PO-I7)*

4+ UPPPD* | ) gx g1,
Proor. It is proved in [6; Proposition 1.7] that the following sequence

is exact:

A* A*D A*P A 4* 4 (PP + (2272 — PP )* 4 (PODD*

A+ PO ks ax (4, 2.

So we shall prove

(%) (422 4)(Ker(d2Y)y) = 24 (Kerd, N\ Ker2L).
By the direct calculations,

(BP'B)x(Ker(BP1),) = {1} ® 4,(1) =KerB,NKerP.
Thus,
(BP**18),(Ker(BP"),)=P4(BP'R)4(Ker(BPY),)
=PL(KerB,NKerP}L).

Thus, by (2.3) the equality is proved. q. e. d.

Remark. One can prove the exactness of the sequence in the above
proof, by use of our method directly.

Now, we consider the elements
Wi=(k+1)P?P A4— kPP 4+ (k—1)dP?+2.

In [7; Lemma 3.9, H. Toda has proved the exactness of the following se-
quences:

(43) A*/A*.@l (Wp—z)*_)A*/A*yl (Wﬁ—s)* (Wz)* A*/A*.?l.
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@ty ar@ax FLH@TPEINY s gt FO* gxs g,

Sfor p>3.

45) A P A* (Wb—l)*+(Agwﬂ"'@lA)*_,A*/A*gl-(ﬂ;z—)j—»A*/A*gl,
for p>3.

4.6) A*@arpar o)+ (42042 4)* + (P* P

ax) axpr WO gy 4291, for p=3.
Let v} —t&:(i=1, 2), in the followings. By (8.2) and (4.1), we have
4.7) Wix(ar,)=0, Wix(toa,)=sa,; 1,
Wix(tiars)=ra, 1,5, Wix(t20,,0)=—(k—1Da, s,
Wis(ToT1,,s)=5T1ay,5 1~ TT0@y 1,55
Wis(ToT2a,,s) =ktoa, s+ 5720, s 1,
Wis(tit2a,,5) =rt2a,-1,s +ktia, s,
Wix(tor1t2a, )= —(k+1)toT1a, s+ ST{T2ar,s_1—TT0T2@r_1,s-
THeEOREM 4.2. With respect to Wy, the following exact sequences also hold.

(4.8) A*P AP A*D A*D A* (PVY* (AP A+ (W)  +1¥+ 75

A*M_,A*/A*yl,

where 71=A4P" APP Vb, v, =PI AP P 4P POTDL,

4.9) AP AP A* A*+(91)*+T§k A* (Wp'@l)* A*/ A*(R,-», 22),

where 7= 4P PP-Drpp-1pr-Dp
(4.10)  A*/ A*(2, gpu)w_,A*/A*(gl, P+ (W‘,,_S)*_)
ATIT, g/ a4, ).

Proor. We consider the vector spaces

L,= {ar,s((ra S)'A‘F(P-la P_l))> ap—l,ﬁ—l(if k=<1 mod P>3
ST],_ar,s—l_”-Oar—-l,s, kroar,s+3TZar,s—ls rToly-1,s +kT{ar,sa

- (k + 1)7-0710‘7,5 +37172ar,s—1 _rfofzar—l,s},
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{ror172} for k=—1mod p, p>3
{T0T1, ToT2@p 1,0, T1T2@0,p 1} Sfor k=0 mod p

{Toap_Lo, T{ao’p_l, fzap_l,p_l} fO"' k=1 mOdP

M,=
{ap-1,p-1} Sfor k=2 mod p, p>3
{@p-1,p-1, ToT172} Sfor k=2 mod p, p=3
0 Sfor k=<—1,0, 1, 2 mod p, p>3.

By use of (4.7), we have
Wix(Ker2k)=L,&Q A,(2),
Ker2inKer Wiy =(Li_1+ Mp)RA4(2).

(%)

Therefore to prove (4.8), it is sufficient to show the following relations:
Tox(T0T1)280, Tox(T0T20p-1,0) =7 0x(T17200,p-1) =ToxLp-1=0,
T1x(T07285-1,0)7%0, 715(7071) =71x(717200,p-1) =T1xLp-1=0,

725 (T172@0,p-1)3F0, 725(T0T1) =T 25(T0T285-1,0) =725Lp-1=0,

where 7,=42'4=—8P'B. By (2.3),

11=BP'P?RP?*-V? gnd y,=— PRPPPI-1p-11

and so the above relations are verified by the routine calculations.
To prove (4.10), we consider the vector space

Ny=Aa,(r<p—1), ap_1 (if k=<0 mod p), toa,r<p—1),
toap—1 (if k20 mod p), rria,_1+(k+1)7ia,,
reotza, 1+ (k+1)totia,},
where a,=a, =¢]?. Then by (3.2), (4.1) and (4.7), we obtain
Wiw(Ker2i NKer?2 1) = N, R A4(2) for all k,
Ker W ."Ker2iNnKer?4 =N, 1R A+(2) Sfor k==+1, 0 mod p.

Thus (4.10) is proved.
By (38.2) and (3.11), we have

2L (KerR, ;xNKer2%)={1, vo, t{} ®A441)
= {ar,sa ToQr,s Tiar,.s‘) T2Qr,sy ToT2Qr,sy T{Tzar,s}®A*(2)-

Then by (4.7), we have
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(ng’l)*(KeI‘Rp_g*/\Ker.@?k)= {a,,s, fzaf,s except fzap_l,p_1}®A*(2).
On the other hand,
Kerd, NnKer2k= {1} QA4,(1)={a,.s, t2a,,} QAs(2).

Therefore to prove (4.9), it suffices to show the following relations, which
are verified by the direct calculations:

Tax(ar,)=0 for all (r,s), rsx(t2a,)=0 for (r,s)>x(p—1, p—1),
7‘3*(72(11;_1,;,_1)3?0. q. e. d.

Remark. From (%) of above, the exactness of (4.3-6) can be verified
immediately.

Tueorem 4.3. The followings are exact.

(4.11)  A*D AP A*D A A* 4 (PLY* 4 (PPH1)* 4 (P2P)* P

(PO gxy 4%, W),

(412) A*®A*@A* (91)*—}—(@14)*_}_(9)172—1)* g+

(PINPDT L ax ) 4K, 774),

(4.13) For p>3,

NI € kel oo W X {6 e Coiiid PR

25 pl\%
PIPV gx) ax(2?, 224, PPV,

For p=3,

AP AP arPa* PV PN+ (P N+ (2421 D) 4

6 p1l\k
PPV ax) 4%, 224, PPV

Here W=+ 1)P?P d—kP? 4+ (k—1) 4P,

Proor. In the above, by (2.3) and (2.4), we can replace 4, 2'(i<p),
PriL, e pt'ol ) po=Db PPl and PP 4214 by B, PP, P'P?, P**, PPl pUD2,
p@-2p p2t+l and P'RP?*13 respectively. By the routine calculations, we
can verify the followings:

(PP=D2B)(KerPiNKer Wis) ={1, a1} ® 4x(2)

=Kerp,NKerPiNKer(P'P?),NKerP%?,



120 Shichiré Oka

(PPN (KerPinKer(P2B)) = {a, (s<p—1), toa,,(s<p—1),
T2a,,s(s<p—2),75a, p—2, ToT2ar,s(s<p—1)} R A44(2)
=KerPinKer(P'B),NKer(P?-1p-1r)
(P21, (KerPi Ker(P2g), nKer(P1P?*1),)
=4a,(r<p—2), voa,(r<p—2), 2t{a,+rrsa, 1r<p—1),
2tot1a,+r7oT2a,1(r<p—1)} & A4,(2)
KerPinKer(P'P?),nKerW,,NKerP? 2%, for p>3

Bl KerPLnKerPiNKer(P'P3g),NKer(P'BP*B), for p=3,

where a, ¢ =¢&7?, vi=1,—ro&:(i=1, 2).
Thus the exactness of (4.11-13) is verified. q.e. d.

Turorem 4.4. The followings are exact.

(4.14) AXD AP A* 44 (2  +(20)* A*

p+1 1 ES
UPTAPAY 43/ 4%(2", W),

where W, 1 =P 4—2427*1,

(4.15) A A* (2Y)* + ("~ 1y* A* (P21 ply% ™

Proor. The exactness of (4.15) is equivalent to the exactness of

p2-1 p+1 1
(4.15) R Gt MNP M i WLy P
The proofs of (4.14) and (4.15) are similar to the proofs of theorems already
stated. q. e. d.
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