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In the present paper we consider a system of linear partial differential
operators with variable coefficients written in matrix notation

m—1 X
Lu=Dtu+ 2 > A4;,(t, x)D;Dju,  (m=1)

j=0 j+ipl<m

where the 4; ,(¢, x) are Nx N matrices whose entries lie in &K(H), H being a
slab 0<t<T, x€R,.By u € Q)’(IOI ) we mean that each component of u lies in

Q)’(I;I). To simplify the notation, similar abbreviations will constantly be
used for vector distributions. A Cauchy problem for L with =0 as initial
hyperplane has been formulated in a generalized sense in a related paper

[6]: To find in @’(ﬁ ) a solution u satisfying

o

Lu=f in H
under the condition

uo=lim(u, Diu, ..., D7 'u)=«
10

for preassigned f € Q)’(fl )and a € D'(R,). Here lim u denotes the distribu-

110
tional boundary value of » which was defined in [67] in accord with S. L.ojasie-

wicz [107]. If a solution u exists, f must have a canonical extension over
t=0. If this is a case and u satisfies Lu=f in H, then u, exists if and only

if u has an extension over :=0, that is, u is a restriction to Hof a Ue
D'((—o0, T)*% R,). Most spaces of distributions encountered in the usual
treatments of partial differential equations have such an extension property.
For example, as for &, ,(H), the property is involved in its definition [4].

The purpose of this paper is to investigate Cauchy problems for L from
our stand-points, imposing on L or L* some additional conditions such as
energy inequalities of Friedrichs-Levy type. While we regard such inequa-
lities as a priori estimates, they are usually deduced from the properties
involved in a differential system called hyperbolic.

In Section 2 we deal with energy inequalities with the aid of the lemmas
given in Section 1. The equivalence of [E«,] and [E(,] are shown. In Sec-
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tion 8 we consider a Cauchy problem in a generalized sense to make clear
our approach to studying Cauchy problems from our view-points. Section 4
is devoted to some remarks to the spaces &, ;,(H) in connection with distri-
butional boundary value, canonical extension and so on. In Section 5 we
show an approximation theorem, which, together with energy inequalities,
enables us to obtain uniqueness and existence theorems for Cauchy problems.
This was done in Section 6 through a Hilbert space approach. The results
are so arranged as to be compared with those recently established by T.
Balaban [17] for a hyperbolic pseudo-differential operator. In Section 7 we
consider more strict energy inequalities which we can deduce from assuming
[Eoy] for both L and L*. In the final section, some investigations are made
on uniqueness and existence of a solution to a Cauchy problem in a general
sense already mentioned.

1. Preliminary lemmas

We denote by x=(x1, ---, %), ¥, z points of Euclidean space R,, and by
p=(p1, ---, px) the multi-indices. We write &, for the dual Euclidean space

with points é=(&y, .., &,). <z, €>= ‘Z] x;€; is the dual pairing. As usual,
ji=1
. 7 1 n alﬂl
= NEAY) = : b — p... by b (N1 Y
we write lxl (jgllx]l ) ’ |P| ]_;an X1 xn)-Dx ( I') ax‘{laxﬁ" .
and so on.
In what follows, unless otherwise stated, we shall use the notations of
L. Hérmander [4], where the Fourier transform ¢, ¢ € #(R,), is defined by

3@ = | g da,

which is extended by continuity to a temperate distribution u € #(R,) by
the formula

<i,p>=<u, $>.

Here #(R,) denotes the space of complex valued C~-functions on R, such
!
that sup sup (1+ |x|%)?|D2p(x)| <oo for all non-negative integers [. The
|1pI<1 ¥€ER,

1
topology in #(R,) is defined by the semi-norms suSp sup (1+ | 2|52 | Dig(x)]|.
|pI<l X€ER,

By ¥’(R,) we mean the space of the temperate distributions on R,, that is,

the strong dual of ¥(R,).
Let B(R,) denote the space of complex valued C~-functions defined on R,

which possess bounded derivatives of all orders. The topology is defined by
the family of all semi-norms
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lell; = sup sup | D2a|, a € B(R,).

Let x € C3(R,) and assume that for some integer £=>0

® 2($)=0(1¢19, &0,
but that
(ii) #(¢£)=0 for all real : implies £=0 if ¢ € &,.

For our later purpose we shall need the following three lemmas gene-
ralizing the corresponding results of Héormander [ 4, Corollary 2.4.1, Theorem
2.4.2 and Theorem 2.4.3]. The proofs of these lemmas will be omitted since
it is not difficult to carry out them by modifying the methods exhibited
there.

Let us now recall that &), —co <s<+oo, is the space of temperate
distributions z on R, such that i is a function and

lullfs =g 1L+ 8177 ds <o,

Lemma 1. If (i) and (ii) are valid and s<k, it follows that there exist
positive constants C; and C,, independent of u but depending on s, ¢ and x,
such that

Cillull?i0n= S |uxxel|%ne™ 2s- 1d8+Hullm<CzHu|l<s+a) Sfor s=0,

Clllu”(s+zr) S ”u*xéll(7)8_23_1d5§62”u”(2s+a) Sfor s<0

Sor any u € X5, .

LemMma 2. Let a € B(R,) and let x satisfy (i). If s<k, there exist a non-
negative integer I and a constant C, independent of u but depending on s and
o such that we have

g la(u*xe) — (au)*xel|m8‘“ 1de<C|l[a|I|2||u||(,+s 1

for any u € gg(,Jrs_l).

LemMa 3. Let a € B(R,) and z € C3(R,). Then for any u € X _1, there
exist a non-negative integer 1 and a constant C, independent of ¢ and u but de-
pending on s, such that when 0<e<1

[la(uxxe) — (au)*xel| sy =Cllall||u| -1y,

and we have



78 Mitsuyuki ITaNoO and Kiyoshi YosHipA

a(uxx;) —(au)*x:—0 tn X, when ¢—0.

2. Energy inequalities

Let H be the slab [0, T]x R,, T>0. We shall consider a system of

linear partial differential operators:
L=D+"S ¥ A, DD,
i=0 j+ipi<m

where each A4;,is an Nx N matrix with entries in A(H), the space of C~-
funections ¢ on H such that o is bounded with its derivatives of every order.
Any function in &(H) is, as easily verified by an argument due to R.T.
Seeley [ 137, a restriction of function in A(R,.;). Thus we assume that the
entries of 4; , belong to B(R,.1).

We shall denote by C5(H)=D(H) the space of the restrictions to H of
the functions in C§(R,.:), equipped with the quotient topology. For a
vector function u=(uy, .-, uy) we write u € C5(R,,1) if u; € C5(R,11), j=
1, 2,...;, N. Then, by ||u(z, +)||sy we mean the norm defined by ||u(z, *)||%,=

N
e, 1

Now we shall introduce an inequality of Friedrichs-Levy type:

0

) m—1 . m—1 .
[Ew] % 1Dfult i1 p=CCZ ]P0, litnsn+
t
+ 1L, lltmde),  OSH=T, e C5(Ry),

where C is a constant independent of ». Similarly, for any s we shall intro-
duce

m-1 m—1 .
LEs] DDt ltesm-1-n=CCZL D700, llfsem-1-n+

t
+ Ial, ), OSST, we C5(Ru),

where C may depend on s. In what follows, by C with or without index we
shall denote a constant having a different meaning according to the cases.

In the proof of Theorem 1 below we shall need the following lemma
(cf. [2, p. 727]) which is easily verified.

LemMma 4. Let r(t) and o(t) be two real-valued functions defined in the
interval 0=t<T and suppose that r is continuous and p 18 mon-decreasing.
Then the inequality
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t
r(£)<Co(t) + Sor(t’)dt’) (C>0 is a constant)
mplies
r()=Ceo(t).
THEOREM 1. [E ] implies [ E ] and vice versa.

Proor. First we show that [E, ] implies [E;,]. Let x be a function
satisfying the conditions (i) and (ii) in Section 1. For any u € C5(R,.1) We
put u:(t)=u * x >0, where by * we mean the partial convolution with
respect to the variable x. By our hypothesis u. satisfies the inequality
[Eo)]. Hence we have

"B IDjue(t, -1 SO IDFueC0, s+
+2[ Iz @, o d’ +2 I(Ewx'z) — La)e @, ity o).

Here we can write with a constant C,

(L(ur"xe) — (Lu)*'ze)(t', +)IT

m—1 . .

=Co X 2 |(4;DiDi(ux"x:)—(A; pDiDiu)*"%e)(#', )%
7=0 j+ipl<m
m—1 . .

=Co 2 2 (4, ,((DiDIu)*'%e) — (4;,,DiD2u)*"x) (@', *)||7o)-
j=0 j+|pl<m

We first confine ourselves to the case s<0. Owing to Lemmas 1 and 2
the following estimates are valid:

m—1 1 . m—1 .
jgoSOIID;uE(t’ ')“(Zm—l—j)s—zs_ld‘sgcl EOHD},u(ta ')”(Zs+m—1-j),
m—1 1 . m—1 .
51070, s de=Co 2 1DFC0, s
1rt t
[ [ c@wsna@, Hlie s tarde< il ut, litdr,
and
1t
[ sy — @uwra, e 1avde
m—1 (t .
<68 | 1DJu (e, Mcem-sopdt'

where constants C;, j=1, 2, 3 are independent of u but depending on s.



80 Mitsuyuki ITaANO and Kiyoshi YosHIDA
3 oty j ! 7 ’
Now setting r()= 2 [IDju(t, )llfs+m-1- and o(1)= r(0)+§o||Lu(t s Dl dt’s
i=

we obtain from these estimates the following inequality
. t
()= C(o(t) + Sor(t’)dt’).

We can therefore apply Lemma 4 to obtain the estimate [ E,,], as desired.

We now turn to the case s>0. We assume that x is chosen to satisfy
the condition s<k as in Lemma 2. A slight modification of the arguments
given above will lead us to the same inequality :

rO=C+ [ r@)ar+ E IDjute, -

m—1 .
Applying Lemma 4 with o(z) replaced by o(¢)+ X ||Diu(t, *)||%-1-, We ob-
=

tain the estimate [ E,] as before.
Conversely, assume that [E,] holds. Puts'=—s. Making use of the
estimate [ E, ], we have with a constant C’

S ’
'Zo So”Diuf(t’ ')”(2s+m_1—j)€‘23 -l e
j=

1
0

m—1r1 . , t ,
SCCE | IDfe0, Memorope e+ | (L2, lltoe e’ de+

m—1 1rt . . ’ ’
+'5 2 I (@ID 2 — (y ,DIDE 2, e e de).
=0 j+Ipl<m J0J0

Suppose s'<0. Then, applying Lemmas 1 and 2, we shall obtain with a con-
stant C”

m—1 . m—1 . 4
T 1DfuCt, o1 =CCE 1D, s+ 1L, e+

m—10t X
+% ( IDfu(, itnrpde).
Consequently, by Lemma 4, we have the estimate [E, ]. When s'>0, we
assume that x is chosen to satisfy the condition s'<k as in Lemma 2. If we
take into account the corresponding part of the proof of the implication
[Eoy J=[Es], it is easy to see that the same arguments given above will
lead to the estimate [ E(,]. Thus the proof is complete.
We also consider the energy inequalities

m-1 m—1 .
[Es: ] jgollDiu(t, ')||(23+m—1—j)§c(jz=:o ID7u(T, HllEsem-1-5+



Energy Inequalities and Cauchy Problems 81

T
+{, NEat, it de).

From the above discussions it will be evident that Theorem 1 remains
valid for these energy inequalities.

CoroLLARY 1. L satisfies [ Eqy] if and only i f the principal part L, of
L satisfies [ E,].

Proor. It is easy to verify the assertion from the arguments given in
the proof of Theorem 1.

3. Some observations about the Cauchy problems

In [67] one of the authors investigated in a general framework Cauchy
problem for a system of linear partial differential equations with t=0 as
initial hyperplane. Let us first recall some notions introduced there to make

clear our stand-point. Given a distribution u € Q)’(ﬁ ) we understand the
distributional boundary value limu=c«a € @D'(R,) as follows: Let ¢ € C5(R})
tlo

be arbitrarily chosen in such a way that ¢=>0, S¢dt:1 and supp ¢ [1,27].

We put ¢5(t):%¢<%>, e>0. If ¢ is small enough, ¢.(¢+)u is a distribution
€ D'(R,,1). If £im¢,gu exists in @’(R,.,1) and equals &« for any choice of ¢
-0

with the properties just indicated, we define a=limu. Similarly we can
110

speak of the boundary value limu.
tt T

Another important notion is a canonical extension of a distribution
o t
ueD(H). Let p(t):goqb(t’)dz’ and p(g)(t):p<%>, where ¢ is a function cho-

sen as above. po¢yu will be understood as a distribution ¢ D'((—oo, T) % R,)

vanishing for :<e. If there exists a distribution u. € @'((— oo, T) x R,) such

that limpu=u. in D'((—eo, T)x R,) for any choice of ¢, u. is called a
&0

canonical extension of u over t=0. In this connection we note that if v=

D;u in f], then » has the canonical extension over :=0 if and only if lim »
tlo

exists [6, p. 14]. Similarly we can speak of a canonical extension over t= T,
denoted by »~, and therefore a two-sided canonical extension which we shall
denote by (z.)~ or (z~).. We shall frequently make use of the following

facts which will be easily verified: If lim u exists, then
tho

lim (u*'%)=(lim u)xx, x € C3(R,),
tio tlo
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lim (pu)=¢(0, 2 lim u, $ € C*(Ryi1),
tlo tlo
and
lim D?u=D2(lim u).
tlo tlo

Analogues hold also for canonical extensions.

The Cauchy problem for the differential operator L is formulated in a
generalized sense. It is to find a solution u=(uy, -, un), u; € Q)’(f[) to the
equation

m-—1 . o
Lu=Dpu+ 3 3 A;,(t, x)DiDiu=f in H,

i=0 j+ipl<m
with the initial condition

uo=lim (u, Diu, ..., DY 'u)=q,
tlo
where f=(f1, ---, fn) fi € @’(}}) and = (g, -, Am_1), & 1 € D'(R,) are given.
For the sake of simplicity, we shall write u € Q)’(}} ) if each component

u; E@’(ﬁ]). A similar abbreviation for a vector distribution will be used
when there occurs no fear of confusions.

Suppose there exists a solution u 6@’([017). As shown in [6, p. 18], u
and f must have the canonical extensions u_, f.. We shall see that u. satis-
fies the equation

L(u)= f~+7:Z;]:D’;’6®rk(0) in (—co, T)x Ry

Here we put

m  J-k
()= —i 2

j=k+11=1

(_ 1)j_l_k<j;l>D{_l—kAj(t, Xy -Dx)(xl—l’

where A;(¢, x, D,) abbreviates >, A;,(¢t, x)D? for j<m and 4, is the unit

Ipl<m—;
matrix. In fact, from the identity

0@y Diu=Di(p@yu) + DI (igeu) + Di~2(i¢e Dyu) + - + (ipe D] 1) @
it follows that
(Diu).=Di(u)+iDi " (0Qao) +iDi 2(0Ray) + - +i0Rat;_1.

Consequently

L)=f-~i%, ljle,.(t, %, DD 8 Rau_1)
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.m j oi-1 - j—l R \
—f =i 5 5 R DA~ (I DA, %, Doana)
j=11=1%k=0

m i~k : j — j

j=k+ =

—ft 3 DR —i
k=0

— -+ 5 DIORTA0).

Before proving the converse, we observe that r,_,_; is rewritten in the
form:

k=1
Tm—k——l(t)z —Lak+ Z Z Bk,q,j(t) x)ngraj) k:()) Tty m—la (2)

7=0 lql+j<k

where B, ,; is a linear combination of derivatives of the coefficient matrices
A; , of order up to at most k—1. This implies that in a special case m=1
we have 7,(t)= —ia,. In what follows, we shall use the notation

rt(a) = (To(t)a Tty rm—l(t))'

Now it is easy to see that the mapping D'(R,) 3 a—>7(0)=(7,(0), ---, rm-1(0))
€ D'(R,) is a linear isomorphism.

Suppose that a vector distribution v € D'((— oo, T) x R,) with support
in [0, T)x R, is a solution to the equation

Lo=f-+"% DIOGrs(0). @)

Then, substituting
V1=7, U2 :DIUI + i6®a0, cory Um =Dypm_1+ ia@am—Z,
the equation (3) can be written in the equivalent form

D;’Ul =vVz— i6®a0,

Dy 1=vu— i6®am—-2,

m—1
D;’I)m: - Z Z Aj_pDﬁ’Iij+l —-i6®am__1+f~.
j=0 j+ipi<m
If we apply Theorem 1 in [6, p. 18], we can conclude that u=v|f1 is a solu-
tion to the Cauchy problem in question with the initial data «, and that v is

the canonical extension of u.
In view of Proposition 7 in [6, p. 21] we can also conclude the following

ProrosiTiON 1. Let u, f be vector distributions € D'(H) and assume that
[ has the canonical extension f. over t =0 and that u satisfies the equation Lu
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=f1in H.  Then lifn u exists 1f and only if u can be extended to a vector dis-
tio
tribution € D' ((—oo, T)X R,).
Let L* be the formal adjoint of L, that is,
m-1
L*=Y. DI 4%,
ji=0
where

A¥= 3 DA% ,(t,x) forj<m, Ai=1I

|plsm—j

and by 4F, we mean the adjoint of 4, ,.
From these considerations we obtain the following

ProrposiTiON 2. Let f€ Q)’(Irol ), a € D'(R,) and assume that f has a cano-
nical extension f.. To find a solution u € @’(ﬁ ) to the equation

Lu=f

with the condition
uoElti?% (u, Diu, -, DY 'u)=«
is reduced to the problem of finding ve€ D' ((—oo, T)XR,) with supp vC
[0,T) % R, such that
(v, L*w)=(f~, w)+ ([ o(@),wo), w€CT(—o0, T)XR,) (4)
where wO:ItiH)l (w, Dyw, .., D¥ w). u and v are related by uzvlﬁ.
Remark. We note that (4) leads us to Green’s formula

((Lu)~, w) —(u~, L*w)= —("o(uo), wo).

In a similar way we also obtain

ProrosiTioN 3. Let f € @’(I;T ) and a, B € D'(R,) and assume that f has a

two-sided canonical extension (f.)~. To find a solution u € @’(}} ) to the equa-
tion

Lu=f
with the conditions

uo=lim (u, D:u, ..., D} 'u)=q,
tlo

uTElim (ua Dtu7 tey D,tn_lu)=8
ttT
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18 reduced to the problem of finding v € Q)’(H ) such that
(v, L*w)=((f~)~ w)+ I "o(), wo) —(I'7(B), wr), w € CF(Rus1), (5)
where

wo=lim (w, Daw, ..., D7 'w) and wr=1im (w, Dyw, ..., D7 1w).
tlo T

Remark. We also note that (5) leads to Green’s formula
(((Lu)~)~ w)—((u-)~, L*w)=T"r(ur), wr) — (I o(uo), wo).

We shall denote by &’(H) the set of distributions € Q)’(I;I ), which can be
extensible to temperate distributions € #'(R,.;). The quotient topology is
introduced there. Similarly for &'((—oo, T]xR,) or &#'((0, )x R,). By
F(H) we also mean the space of the restrictions to H of the functions €
F(R,.1), equipped with the quotient topology. Now let u € #/(H). If u has
the canonical extension u. (resp. u~) and u.€ ¥ ((—oo, T]xR,) (resp.
u~ € &[0, ) x R,)), we shall say that u has the canonical ¥’-extension over
t=0 (resp. t=7T). A two-sided canonical ¥’-extension will be similarly de-
fined.

CoroLLARY 2. Let u € &' (H) and uy, ur € £ (R,) and assume that u, Lu
have two-sided camonical &’-extensions. Then for any w € P(R,,1) we have

((Lw)-)™ w)—((u-)~, L*w)=T1(ur), wr) — (I o(wo), wo)-

Proor. Take a sequence {¢;}, ¢, € C3(R,.1), such that it converges in
F(R,.1) tow. Then from the preceding remark

((Lw))™ o) — ()™ L*) =T r(ur), ($p1) — T o(uo)s (1o)-

Passing to the limit as j—co, we obtain the equation which was to be proved.

4. Some remarks on the space X, ,(H)

In the sequel the space H, (H), —oo<a, s<+oo, will play a central
role. &, s\(H) is the space of all distributions u € Q)’(I;T ) such that there ex-

ists a distribution U € &, ;(R,;1) with U=u in H. The norm of u is defined
by ||ul|@,sy=1nf ||U||¢,s) the infimum being taken over all such U. We also

consider the space goff(,,s)(H ), the space of all u € X, \(R,,1) with supp u CH.

Then %, (H) and 906(-,,_3)(11) are anti-dual Hilbert spaces with respect to
an extension of the sesquilinear form
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T o
gR SO wodids,  uw€Cs(H),  veC7(H).

The scalar product between them will be denoted by (-, ). These spaces are
stable under the multiplication by the elements of A(H). In fact, this fol-
lows immediately from repeated use of the interpolation theorem for the
Hilbert scales [8, p. 15607]. A similar reasoning will be employed in the proof

of Corollary 4 to Theorem 3 in Section 6. When 0‘>% it is known that any
u € X, -(H) has a trace u(0, -) € %@H-%)(Rn) [4, p. 55; 5, p. 14]. From the

definition of the trace it can be easily verified that it coincides with the
boundary value. In the case where c=£k is a non-negative integer, we may
assume that & ,(H) is equipped with the equivalent norm:

k T . , , 1
(2 [, 1076, lgrampde ),

which will also be denoted by the same symbol ||u||x,s). As shown in [6,
p. 167] we can see that u € X ,(H), k>0, has the canonical extension u. €
K, ((—oo, T]x R,) if and only if lim u=Ilim D,u=---=lim D4 'u =0, and

tlo tlo tlo
that every u € o,s)(H) has the canonical extension u. € X, \((— oo, T]X R,).
Similar statements about the other canonical extensions remain valid.

We note that &, (H) may be identified with ﬁﬁ(o,s)(H).
From now on, to simplify notations, we shall denote by u, f vector
distributions. The rest of this section is devoted to show the following

ProrositioN 4. If u € Ko, pssim-1y(H) satisfies Lu=f € X, s-1y(H), then
u € gg(k+m,s—1)(H)-

For the proof we need Lemma 6 below. This will in turn be shown by
making use of the following

LemmA 5. If ue€ %(0,k+s+m)(ﬂ) and Lu :f € gg(k,s) (H), then ¢) u €
gg(k-rm,s)(RrHl) fOT any (/) € C‘(,)Q(H)~

Proor. This follows by the same argument as used in [4, Theorem
4.3.17.

In what follows, we shall use the notations
H(R,) :gg(s-i-m—-l)(Rn) X gg(s+m—2)(Rn) X oo X Tesy(Ra),
H¥,,(R,) :9(1(3)(]{”) X 5’6(5+1>(R,,) Koo X gg(s+m—1)(Rn)°

Owing to the relations (2) we can easily verify that I'; is an isomorphism of
H,, onto H{,(R,) and that the sets {I";}y<;<r and {/';'},<:<r are equiconti-
nuous.
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Lemma 6. Let u € Hopssim(H) and assume that Lu=f € Xy (H) and
lim (u, D:u, ..., D’,"‘lu)zaEH(kHJ,_;_)(Rn) (resp. lim (u, Du, -, D7 'u)=
1T

ti0

BEH(HH%)(Rn)) exists. Then ¢u € Hpims(H) for every ¢e C5(R:) with
supp ¢ C(—oo, T') (resp. supp ¢ C (0, =0)).

Proor. It will be sufficient to prove the case where Lu=f¢€ H, \(H)
and hm (u, Dyuy ..., D} tu)= acH<k+s+ y(R.). In virtue of the trace theo-

rem [4 p. 55] we can find a v € X, m, s)(Rn+l) such that

lim Djv=a;, 0<j<m—1
t10

and

lim Lv=lim f, hm D,(Lv) —hm D.f, ..., lim D% 1(Lv) =1i1mD’,“1f.
tto tlo

t10 tio

Let v~ (resp. (Lv)~) be the canonical extension of » (resp. Lv) over t=0.
If we put w=u.+v~, then we X 1;s:m((—oo, T]x R,) and

Lw=L(u.)+L(v™)
=(Lw)-+ L DI@70) + (L) — L, DIs@r,(0)
=(Lu).+ (Lv)~
=f~ + (L'U)~ € gg(o,k+s)((_ 9, T:l X Rn)
It follows from Lemma 5 that we have only to show that
Dthz Dt(f-) + D;((L'I))")
=(Dyf)~— i6®(],iflg f)+(D:Lv)~+ i6®(l,if?f)

=(Dif)~+ (DiLv)~ € K o,k+s-1)((—o0, TIX R,).
Repeating this procedure, we obtain for j<k
DjLw=(Dif)~+(DiLv)~ € H(o,+s-5((—oo, TIX R,).

which implies Lw € 4, ((— oo, T]x R,), as desired.
We now turn to the proof of Proposition 4. In view of Proposition 1 we
see that lim (u, Dyu, ..., D7 ' u)=«a exists. Let we C5((—oo, T)XR,). Ap-
0

t
plying Green’s formula, we obtain
(f~: w)—(u~s L*w): _(FO(a)7 w0)3

where wo=(w(0, ), Daw(0, +), ---, DY w(0, +)).
Let us consider the space X = é’z(m,_k_s_mﬂ)((—oo, T] x R,), where
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C3((—o0, TYx R,) is dense. The anti-linear form
I: C*((—o0, T)X R,) 2 w—(f-, w)—(u~, L*w)

is continuous in the topology of X, so it can be continuously extended to the
whole space X.
Let X, be the set of v € X such that lim (v, Dsv, ..., D7 '), the trace
tlo

of (v, Div, ..., DY 'v) on t=0, vanishes. Then v € X;, can be approximated
in X by a sequence {w;}, wj€ C5((—oo, T) X R,) such that w; vanishes
near t=0. Indeed, v can be written as v=v,+v,, v; € g?(m__k_s_ml)(ﬂ), vy €
gz(m,_k_s_mﬂ)(R;H) and we know that C';;’(F}) (resp. C3(R5.1)) is dense in
goﬁ(m,_k_s_mﬂ)(H) (resp. gof(m,_k_s_mﬂ)(l—{';ﬂ)). Then we must have [(v)=0.
Since by the trace theorem X/XO:H(_,@*S_,,H% y(R,), we can conclude that

wo—> (I"y(¥), wo) can be continuously extended to an anti-linear form on
H(_k_s..m+%)(Rn)- It then follows that I'o(c) € H’*(k+3_%)(Rn)=£€(k+s_%>>< X

H(yrs+m-3y and then from the relations (2) we can see that « € H(Hsh%)(]{n}.

2
In virtue of Lemma 6, if ¢ € C5((—oo, T)) such that ¢=1 near t=0, we

can conclude that ¢u € Hsim s_1)(H). Similarly we can show that (1—¢)u €
Hipims-1y(H). It then follows that u=du+Q1—¢)u € Xupims-1y(H). The
proof is complete.

5. Approximation theorem

It will be shown in the next section that the energy inequalities com-
bined with the following approximation theorem will play an essential role
in our approach to the Cauchy problem for differential operators. We shall
apply this theorem to obtain some generalizations of the energy inequalities
considered in Section 2.

Let & be a non-negative integer, m the order of differential operator L
and s a real number.

Tueorem 2 (Approximation Theorem). Let u € X pisim-1(H) and as-
sume that

Lu =f € gg(k,s)(H),

uOEItilrgl (u, Diu, -, DY lu)=a € H(k+s)(Rn)'

Then there exists a sequence {u;}, u; € C5(R,.1) such that
(i) uj—u m gg(k+m,s—1)(H)$
(11) (ui(O» x>> Dtuj((), Xy D;n_luj 0, x))—a m H(k+s)(Rn)5
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(iii) L(uj)—f n K, (H)

as j—oo.
Furthermore if a=0, we can take u; in C5(Ry. ).

Proor. In view of Proposition 4, we see that u € K pyms-1y(H). Let
x € C3(R,) be so chosen that x>0 and Sxdtzl. If we put ue=ux"2;, ¢>0,

then u. € Xpimy(H) and u, tends to u in Hyms-1)(H) as e>0. Further-
more the distributional limit of Dju,, j=0, ..., m—1, exists and will be writ-
ten as

lilm (D{u,g)———(lilmD{u)*xgzcz]okxé € K (oy(Ry).
tlo tlo

Now we can write

L(ue) —f=L(ue) — (Lu)x"ze) + (fx'xe — f)

m—1 . .
= ng j+§<m{A]~,p((D§Dfu)*’x5) —(4;,pDiDiu)*"xe} + (f+"xs —f).
f*'%e—f tends to 0 in L, (H) as e—0. Since DiDu € K, s-1y(H), it follows
from Lemma 3 that

1 4;,,(D}Diu)*"xe) — (4;,,DiDiu)*'xel| s, 5y—>0

as e—0.
From these considerations we have only to show that, for any fixed ¢>0,
there exists a sequence {v;}, v; € C5(R,,1), such that u.=1lim v; in X 4. m,o\(H).

] —o0

Indeed, in view of the trace theorem [4, p. 55, (Div,)(0, x) tends to a;*"x. in
K («)(Rs) as l—>oo. The existence of {v;} is evident since C5(H) is dense in
gé(ker,w)(H)-

Let us denote by &%(X ;) the space of X (,(R,)-valued continuous func-
tion of ¢ defined on the interval [0, 7]. Applying the approximation theo-
rem to the case k=0, we obtain the following

ProrposiTiON 5. Suppose that the energy inequality [ Eq, ] holds for L and
that u € Ho,s+m-1,(H) satisfies Lu=f € H,(H) and uozlirfl (w,Dsu, ..., DF71)
tio0

€H(Ry). Then u € X s_1(H). Furthermore u possesses the properties:

(1) (u, Dy, .., DY 'u) € ég(%(s+m—1)) XX é?(gg(s)) (6)
.e mol j L j
) EIDG o SCCEIDIO, Heimoront

+ {17, o de. @
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Therefore if f=0, and uo=0, then u must be 0.
Proor. Applying Theorem 2 for the case k=0, we can find a sequence

{u}, u, € C3(R,1), with the properties mentioned there. It then follows

from Theorem 1 that

L ID e, Icsmrp=CCD D0, iy +
+HiEene, sy ®

S IDtuste, ) =Dt Mlermor-

<CCE DI, )= Dlur(®, )fon-1-n+

+{ 2@ @, =@, Hlitdo. ©)

(9) means that {Dju,(t, -)} is a Cauchy sequence in &E¢(H ;s m_1-;). Let v be
the limit of the sequence {u;}. Clearly u=v. It follows from (8) that the

inequality (7) must hold true.

CoroLLARY 3.  Suppose that the energy inequality [ Eqoy] holds for L and
that w € Ho rysim1)(H) satisfies Lu=f€ X (H) and uozlirln (u, Diu, ---,
tlo

D7 'u) € Hyy 5y(Ry). Then u € Hpom,s—1y(H). Furthermore u possesses the
properties:
(1) (u, Diwty -y DE" 1) € EA T ipisim1y) X - X EUH s, 10)
. Rtm—1 m-1 )
(i) 2 IDju(s, ')ll?k+s+m_1—j>§c(j§0IIDiu(O, Mrsemer—p+

j=0
k=1 . kot o ,

+ 2 DI, Mipreront 1§ 1D, Mlieeopde). (A1)
i= j=

Therefore if f=0 and u,=0, then u must be 0.

Proor. Let u € H,s+m(H) and assume that Lu= fe K (H) and
wo € Hi;11y(R,). Then it follows from the preceding proposition that Diue

g(t)(gg(s+m—j)>, ]ém'—l, and that
m=1 X m—1 .
Z1D7ule, HMterm-p=C:( Z|1D7u(®, llEcem-p +
t
+ {1, litnde. (12)

Put v=D,u. Then v € gg(m,s_l)(H) C%(O,s+m—l)(H) and we have
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m—1 .
Lo=Dif— % 2 Di(4;,(t, x))D]Diu € X, +(H),

j=0 j+pl<m
and therefore

(’U, Dtv, ctty D;n_lv) € g?(gg(«9+frl—l)) XX g(t)(ge(s))’
m-‘l - m—1 .
T IDE0GE, Iesmor-p SCo D 1D, eemorop+
t , m—1rt . , ,
+ IDef@, M+ S (101G, Hlermpde,

where C, is a constant.
Applying Lemma 4, we obtain with a constant C;

" ID1u(t, enorop SC Z DO, Msmosop+
+ (s, e, as)
From (12) and (13) we have with a constant C
55 ID2u, Mtssmn CCZ DI, llteimep + IO, e+
+ 3 (11, Dllteapde.

Repeating this procedure, we obtain the inequality (11).

6. First main theorems on the Cauchy problems

For our later purpose we first show the following

LemmA 7. Let u € Hy(H)=\)H(H) and assume that Lu=f¢€

Ko,s\(H). Then u € X s(H) for some real s'.

91

Proor. Let I be a positive integer such that u € H(_,,,(H). Now we
consider a U € & _z,(Ryy1) With u="U| I;I, and define ¥ € & o, (H) by the equa-
tion U=(1—4)'V, where 4 is the Laplacian in R,,;. Then v= V|I§V satisfies
the equation L(A1—4)'v=f. If we let L,=L(1—4)", it follows from Pro-
position 4 that v € Himio,s(H), s =min (s,—m—2[). This implies that

u € gg(m,s/)(H).
Throughout this section we assume that [ E,] holds for L.

Prorosition 6. Let s be a fixed real number. The Cauchy problem
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Lu=f inH,
vo=lim (u, Du, ..., D7 'u)=«
tio
has o solution w € H(o,sim-1y(H) for any given f € K (H) and a € Hy(R,)
1f and only v f
L*w=0  n H

wr=lim (w, Daw, ..., D} 'w)=0
‘1T

has a unique solution 0 in X, s(H).

Proor. Necessity. Consider a we H,-s(H) such that L*w=0 and
lim (w, Dyw, .., D} 'w)=0. Since w € Hm,—s-m(H) by Proposition 4, there

t1

eXISts llm (w, Daw, ..., D7 'w)=p. First we show that f=0. Let wue

Ho,sim- 1)(H) be a solution to the equation Lz=0 under the condition
hlm(u D, ..., D' 'u)=a, € C5(R,). Then, for any ¢ € C5(H) vanishing
tio

near t=1T, Green’s formula gives
_(ua L*¢)= _(FO(“); ¢0)7

where ¢, =(¢(0, +), D;¢(0, *), ---, D7 1¢4(0, +)). In view of the approximation
theorem for L*, we have

(Io(@),8)=0.

Since I'((«) may be taken an arbitrary vector function in C5(R,), it follows
that =0. Now for any vector function ¢ € C;(H), we have from Green’s
formula

(Lp, w)=0.

Owing to our hypothesis and the approximation theorem for L, we have
(f, w)=0 for any vector f € H,,(H). This implies that w=0, which is the
desired result.

Sufficiency. From the fact that [ E(,] holds for L, it is sufficient to show
that the set

G={(Lu, I'/(uo)): ueCF(H)}

iS dense in gg(o,s)(H) X H(s)(R,l). Let w € gg(o,_s)(H), ,8 € H(—s—m+1)(Rn) Such
that for any u € C5(H)

(Lu, w)+ o (uo), B)=0.
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We have only to show that w=0, 3=0. If ¢¢ Cg“(ﬁ), the relation is re-
duced to

(Lg, w)=0,
which implies (¢, L*w)=0, that is, L*w=0 in K.
If ¢ € C5(H) and ¢=0 near :=0, then by Green’s formula
0=(L¢, w)=("1(¢r),wr),

where ¢r=(¢(T, -), Dip(T, +), ---, DY7'¢(T, -)). Since I'r(4r) may be taken
arbitrary in C5(R,), it follows that wr=0.
Now for any u € C5(H), we have

(Io(uo), 8)=0.

This implies 3=0 by the same reason as above, which completes the proof.
We shall say that (CP);, holds for L if the Cauchy problem considered
in Proposition 6 is always solvable in the sense given there.

Prorosition 7. If (CP) holds for some s, then it does also for any s.

Proor. Let s, s’ be any two real numbers. Suppose (CP), holds for L.
If s'<s, it follows from Proposition 6 that (CP), holds. Therefore we have
only to show that (CP);, ) holds for L.

Given fe H,si2(H) and a € His 2y (R,), we put hA=1—4,)f € X, s\(H)
and y=(1—4,)x € H,(R,), where 4, denotes the Laplacian in R,. Let us
consider the Cauchy problem of finding v € H s, m-1,(H) such that

Lv+Mv=h in
under the condition
vo=lim (v, Dy, ..., D} v)=r,
tio
where

M="3Y % {(1—4)4;,—4;,(1—4)}(1—4,)"'DID2.

ji=0 j+lplsm

First we observe that there exists a constant C such that for any (v, D,v,
Tty D;n_lv) ¢ g(t)(gg(snum—l)) Koo X g?(gg(s))

1MGe, i =C 2 1D, lermor—pe

In fact, this follows from the following estimates with constants C, C;
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IIMv(t, ')II(S)§017:2: j+l§smll<1—4x)—1D£D{v(t: ')||(8+1)

m—1 .
G Y % |IDiDiv(, +)

j=0 j+ipl<m

A

(s—1)

m—1 .
éc',;o”l);”(ta Nles em-1-)-

Let v° € H(o,s:+m-1)(H) be chosen in such a way that

{L O=p
v3=lim (v° D° ..., D} %) =7.
tl0
This is possible because of our hypothesis. If there exists aw € H,sm—1)(H)
such that
{sz — Mw—M°
wo=lim (w, Daw, ..., D7 'w)=0,
110
then v=v"4+w will be the solution to be found. The method of successive

approximations will be successful to this end. Put #°=0 and determine
w € Ko, sim-1y(H), L=1, 2, ..., successively by

{L(w”l)z — Mw' — Mv°
(le)OEltifrol (wl+1, D,w’“, ey Dzn—lel):O.

Consequently
L' —w)= —M@w' —w'1).

In view of Proposition 5, we have with a constant C,
I I
_ZOHD?(W M —w )||(2s+m—1—j)
=

tm—1 . ,
A T CAD [ Sea
i=0

N -1 m—

t—t 4 /
éclg ( ]Z HD’wl (t’ )”(s+m 1- ])dt

NG

C, T ’
M_ sup Z HDJ’wI (@, )||(2s+m—1—j)'

= U o<ezr

From this we see that {Djw'} is a Cauchy sequence in &UH(sim-1-j). If we
let w=1im «’, then w will be the solution as desired. If we put u=(1—4,)"'v
] oo
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€ o, simi1y(H), it is easy to verify that u satisfies Lu= f and lim (u, D:u,
ti0

-y D?'u)=a. Thus the proof is complete.

Remark. Using the method of successive approximations, as stated in
the proof of Proposition 7, it is readily shown that the property “(CP),
holds for L” depends only on the principal part of L. This is because of
the fact that the same is true of [ E,].

Now we can state a uniqueness and existence theorem for the Cauchy
problem for L (cf. [12, p. 2217)).

TueOREM 3. Assume that, for some s, any solution w € K, (H) to the

equation L*w=0 wunder the condition lim (w, Dw, ..., D7 lw)=0 must be 0.
11T

Then for any non-negative integer k and for any real s, the solution u to the
Cauchy problem

Lu=f inH,

uo=lim (u, Du, ..., DY 'u)=«,
tlo

where f € X o(H), @ € Hy, o (R,) are arbitrarily given, uniquely exists in
K (- (H) and has the properties:

(1) Diu € é?(gg(k—}—s+m—1—j)), ]:0, 1, ] k+m—1’

. ktm—-1 . m—1
(i) Zo [1Dfu(ty H|Fssim—1j =C( ZO|Iaj“(2k+s+m—1—j)+
7= 7=

k=1 . k(t .
S IDIO, lltemson+ 3§ DI, Mirempde).

Proor. It follows from Propositions 6 and 7 that the uniqueness hypo-
thesis for L* implies that, for any real s, given f e H,(H) and a € Hiy(R,),
there exists a solution u € H (o s, m-1,(H) to the problem Lu=f with u,=a.
Thus, if we take into account the fact that &, \(H) CHo,r+s)(H), then the
existence of a solution u € X 1y 5,m-1)(H) to our Cauchy problem is trivial,
and the properties (i) and (ii) follow from Corollary 3. It remains to show
the uniqueness in & .y(H). Let ueH_.,(H) be such that Lu=0 and

lim(u, Diu, .., Dy 'u)=0. From Lemma 7 we see that u € K, (H) for
tlo

some s’. Since lim (u, Du, --., D7 1u)=0, it follows from Proposition 5 that
tio
u© =0, completing the proof.
Remark. Let fe #(H) and a ¢ #(R,). Then there is a unique solution

u € #(H) to the Cauchy problem associated with f and «. In fact, from the
preceding theorem, there exists a unique solution u € & (., (H)=/\H(H).
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Let % be a positive integer and put v=(1+ |x|?)*u. Then D?v=(1+ |x|*)*-
D7y and

1
CERPIR U

q
%Us

U+ | %1% Dlu =D+ (P )1+ |x|3)*DL
g\ q

where (1+ |x|%)*D?-¢ 1 7y € &(R,). If we define L by

A+

Lo=Q+ | x| LA+ | 2|2 v,
then L can be written in the form
L=L,+9,

where L, is the principal part of L and Q is a lower order differential opera-
tor. The coefficients of L are matrices whose entries lie in 8(R,.:), Now,
let us consider the Cauchy problem: Lw=(1+ |x| 2t in H with wo= 1+
| x|%)*a. Then there exists a solution w € & (.,(H). If we put u/:(l—%—%’
then u' € X (.,(H) and v’ satisfies Lu'=f in H with ui=a. From the unique-
ness of a solution it is easy to verify that w=u’. Since k is arbitrarily
chosen, u must be in #(H). The spaces ¥(H) and £(R,) are of type (F).
Owing to the closed graph theorem it follows that the mapping & (H) X
&L(R,) 3 (f, a)—u € #(H) is continuous.

ExampLE 1. Here we consider only L with constant coefficient matrices.
Recall that a Kowalevsky system L is hyperbolic if and only if the Cauchy

problem Lu=0, uo=ca € C5(R,) is always solvable in Q)’(I;T), and note that
the uniqueness theorem is valid for any Kowalevsky system. Assume that
[Eqy] holds for L. In view of Theorem 3, L will be hyperbolic. That [ E,]
holds for L remains valid under any perturbation of lower order terms.
Consequently the principal part L, is strongly hyperbolic. The converse is
also true. In fact, this is a consequence of the results due to K. Kasahara
and M. Yamaguti [ 7], H. O. Kreiss [9] and G. Strang [14].

If [Eqy: | ] holds for L*, the requirement for L* in Theorem 3 is satisfied
by Proposition 5 with [ E(,, ] replaced by [Eq): | .

With the aid of the interpolation theorem for the Hilbert scales [8,
p. 1507, we can show

CorROLLARY 4. With the same assumption as in Theorem 3, there exists
Sor any f €K, o(H) and acH,(R,), 0 being a positive number, a unique
solution u € X .,(H) to the Cauchy problem for L associated with f and c.
u belongs to Hims—1y(H) and the mapping (f, ®)—>u s continuous from
Ko, 5(H) X Hgy 55(Ry) 1180 Hgym,s—1y(H).
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Proor. Since X, (H)C H,-+5(H), Theorem 3 implies the uniqueness
in & _.,(H) and the existence in H»,,.s_1,(H) of the solution u. Here the
mapping K, (H) x H, o(Ry) 3 (f, @)= u € X ot s-1)(H) is continuous.

Let % be a positive integer such that k>0. Put Do=H o, (H) and H,=
K, s(H). 1f we denote by |||, and ||-||; the norms of $, and H; respect-
ively, 9; is dense in 9, and ||u|[¢<||u||; for any u € ;. Then there exists an
unbounded self-ad joint operator J in , (called a generating operator) with
domain 9;, which generates a Hilbert scale {9,}_.r<.~, Where we denote by
|||, the norm of ©,. On the other hand, if x runs through (—oco, o),
K, s)(Rus1) (resp. H,, (R,)) forms a Hilbert scale. Let S be the restriction

mapping of U € H, (R..1) to the slab H. With an obvious modification of
Seeley’s method [13, p. 625, we can construct a continuous linear extension
T of C5(H) into C3(R,.1) such that for any u € C5(H)

||u||o§||TUH(o,s)éCoHuHo,
]|u||1§|| Tu||(k,s)§cll|u||1-

Consequently it follows that T can be continuously extended to a mono-
morphism of 9, into & (R,,1), which we denote by the same symbol 7T
and that 7 is also a monomorphism of $; into &« (R, 1). S is a conti-
nuous linear mapping of X, ,(R,.1) into D, and of K, (R,.1) into D, as
well. In view of the interpolation theorem applied to the mappings S and T
and to the families {# . \(Rsi1)}o<u<r and {Dy}o<r<1, We can conclude that
=& (H) within the equivalent norms. In fact, T(D,) CHor, s (Rus1)s
S(Hr,sy(Ru1)) CHr and ST is the identity on ,. This implies that 7' is a
monomorphism and S an epimorphism. From Theorem 3 we know that the
mapping (f, a)—u, which assigns a solution » to the data (f, «), is conti-
nuous for

gf(o,s)(H) X Hy(Ry) 3 (f, a)—>u € gg(m,s—l)(H)
and for
K,y (H) X Hip 5y(Ry) 3 (fy, @)>u € Hpsm,s-1y(H).

Applying again the interpolation theorem we shall reach the conclusion of
Corollary 4.

COROLLARY b. Ifu € @’(ﬁ) has a bounded support, Lu=0 in ﬁ, and uy=
lim (u, Dy, -+, DF~'u) =0, then 1=0 in H.
tlo

Proor. Let u. be the canonical extension of u over t=0. Let ¢(¢) €
C~(R) be such that supp ¢ C(—eo, T) and ¢ is equal to 1 for :<<t,< T. Clear-
ly ‘¢(t)(u~) € é/(Rrwl) ng(—en)<Rn+l) and
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L(p()(u-))=L(u.)=0 for ¢ <t¢,,
(@) (w-~))o=0.

Applying Theorem 3 to u in a slab 0<¢<¢,, we have u=0 for :<t,. Since
to is arbitrarily chosen, © =0 in ji8
We can now prove an existence theorem for the Cauchy problem for L*.

TrEOREM 4. Given g€ Hio,—s—mi1y(H) and F=(Boy -5 Bm-1) € H_s_mi1)(Rn),
there exists a solution v € X, (H) to the Cauchy problem :
L*v=g m 11;,
vr=lim (v, Dy, ..., D7 v)=4.
ttT
Proor. Consider the subspace A4 C Ko s\(H) % H;)(R,) consisting of
(Lu, ) such that u € X, som-1y(H), Lu € X(o,5y(H), and uo=lim (u, Dsu, ---,
tlo
DY 'u)=a € Hi)(R,). Consider the anti-linear form
l: 45 (Lu, @)—>(u, g)+{'r(ur), B).

(Lu, @)—u (resp. ur) is, by Proposition 5, continuous from 4 into o, s m-1y(H)
(resp. Hiy(R,)). It follows that [ is continuous. Owing to the Hahn-Banach
theorem, we see that there exist v € H(,_(H) and 7 € H_;_m 1y(Rs) such
that

(u, @+ U 'r(ur), vr)=(Lu, v)+ (), 1), (14)
and that

llollfo, -+ Il =cl|7||®

H ;=

with a constant C. Thus for any u € C5((0, ) % R,) we have
(Lu, v)=(u, g+ U 'r(ur), B).

In virtue of Proposition 2 with L and :=0 replaced by L* and t= T respect-
ively, we see that v is a solution to L*v= g with v7=4, and this proves the
theorem.

Remark. For our later purpose we shall give an estimate for ||[||.
First recall that 7", is an isomorphism of H(R,) onto Hf,(R,) and that the
sets {1} o<i<r and {I';7'}o<:<r are equicontinuous. Then, from the estimates

|(u, )+ 'r(ur), )|

1 1
=Ci(llullfo,sem-n +lluzllE,)2 Ul glIto, - s—men T 18Il _,_ i)
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1 1
écch(”a”H(s) + HLuH%o.u)z (| gl|%0,—s—m+1> + HBH%I(_S_,,,“))z )

where C,, C, are constants, we obtain with a constant C

IZI=Clgll0,-s-m+1y+ 1Bllm sy

Before stating the next result let us introduce notations. By &_(H) and
&’ (H) we mean the subspaces of ¥(H) and &'((— oo, T]x R,) respectively
defined in accordance with the conditions: for the former u € ¥(H),
Dju(T, -)=0, j=0, 1, ..., and for the latter u € #'((— o, T]x R,), supp u C H.
Then &, (H) and &_(H) are regarded as anti-dual spaces with respect to an
extension of the sesquilinear form

( (opaas, ge0.0, 90 ),

where O, (H) is the subspace of C;(H) defined according to the conditions:
u € C5(H), Diu(0, -)=0 for j=0,1, 2, .... Similarly for D_(H).

TaeoreEM 5.  Assume that [ Eyy ] and [ Eqy: | ] hold for L and L* respect-
wely. Let fe ' (H) and a € ¥ (R,) and assume that f has the canonical &'~
extension f.€ S ((—eoo, T]x R,). Then there exists a unique solution u €
&'(H) with the canonical & -extension u. € ¥’ ((—oo, T X R,) to the Cauchy
problem Lu= f with uo-——ltiln(r)l (u, Du, ..., D} 'u)=a. Here the mapping (f-, @)

—u. 18 continuous under the topology of <\(H)xS'(R,) and the topology
FL(H).

Proor. Because of the remark after Theorem 3, given ge &_(H), there

can be uniquely determined a we€ & _(H) such that L*w= g in H. It then
follows that the mapping g—w is a topological automorphism of &_(H).
Now, for any given f" € &/ (H) we consider the anti-linear form g—(f’, w).
The continuity is easily verified. So we can find a unique v ¢ . (H) satisfy-
ing (v, @) =(f", w). Since (v, g =(v, L*w)=(Lv, w), it follows that (Lv, w)=
(f’, w), which implies that Lv= f" and such a v is unique. In virtue of the
closed graph theorem, the mapping f'—v of &/ (H) into itself is a topological
automorphism.

We now turn to the proof of the statements of the theorem. If we put

m—1 X
f=f-~+ 2 D0QU ((x)); and consider a » € #4(H) associated with it in the
i=0

above arguments, then, as observed in Section 3, v|H is a desired solution
and v is the canonical extension of u over :t=0. The converse is also true.
Thus we see that z is unique. Since the mapping (f., a)—>u. is decom-

posed into the product of the mappings (f., ®)—f = f~+mZ_}1D{6®(I’ o(a@))j,
i=o

f/—v and v—>u~=(v|ﬁ)-, we can conclude that the last statement of the
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theorem is true. Thus the proof is complete.

7. Some remarks on energy inequalities

Owing to Proposition 5, we know that generalized energy inequalities
remain valid for L if we assume [E,,] for L. Now we show that if, in addi-
tion, [ E,] is assumed for L*, we shall obtain more precise inequalities.

Prorposition 8. Suppose that [Eqy ] holds for L and L*. Then for any
fixed real s, there exists a comstant C such that if Lu € X, (H) and wo=
lim(u, D,u, sy D',"‘lu) € H(s)(Rn) fO’r u € gC(O,s+m—1)(H)’ then

tio

m—1 . m-1 .
LE ] j@OHDfu(tla Msem-1-H=C( jZJlHDfu(th MNsem-1-5+

+{Eate, i)

for any to, t1, 0=t,<t, T, where constant C does not depend on u.

Proor. Consider a slab H;=[0, ¢, ]x R,. In view of Theorem 4, we can

find, for any given p € H_;_».1)(R,), a v € X (o, _,(H;) such that L*»=0 in }}1,

vy,=lim (v, Dy, ..., D} 'v)=(. From the arguments given in the remark
ttt

after Theorem 4, we may assume that there exists a constant C; independent
of ¢; such that

||vo||n(,s_m+l)§61HBHH(_,%H)-

In the rest of the proof,C,, ..., Cs will denote constants independent of ¢, and
t1. That [ Ey,] holds for L* yields

lvellm oy =Cllvolla_, ., =CllBlla_, .-

Applying Green’s formula, we obtain

(T, =T, v+ Lult', 2, o, Nar,

and consequently

(o), Y= Colllun i oo+ § 1L o llo@s Hl-e-mende'}

t
ZCullBlla v N, + § 1R, D).

This implies that we have
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el = Collag i, + § L' Dllorde),

proving the result.

Using these inequalities we can deal with Cauchy problems for L in the
case where f is assumed to be & ,,(R,)-valued and integrable in the sense of
Bochner.

In the preceding section we have dealt with the conditions under which
Cauchy problems for L with initial hyperplane :=0 are solvable in the sense
given there. In this connection we can show the following

Prorosition 9. Suppose that [ Ey ] holds for L and L*. The assumption
made in Theorem 3 for L* is equivalent to the following:

mey moy
]ZO 1D7utos l¢sem-1-H=C( ZE)HD?U(% M¢sem-1-5+
= 7~

31
+ (1L, wded, e CRuD,

for any to, t1, 0=t,<t, =T, where constant C does not depend on u.

Proor. Since we can proceed along a similar line as in the proof of
Proposition 8, the proof will be omitted.

Remark. Suppose L is a linear differential operator, that is, N=1. L is
regularly hyperbolic if and only if [Ey,] holds for L. Indeed the “only if”
part is well known. So we shall consider the “if” part. The complex con-
jugation of coefficients transforms the principal part of L into that of L* so
that [E,,] holds for L and L*. It follows from Proposition 8 that we have
for any u € C3(R,.1)

m—1 . m—1 .
_ZOHD?u(tl: Nlm-1-5=C( ZOHDfu(tOV)H(m—l—f)‘*‘
i= i=

+{M12a, Yl (15)

for any t,, t;, 0<t,<<¢;<_T, where constant C does not depend on u.

Let M be the principal part of L. When the variables are fixed, we ob-
tain differential operators with constant coefficients. Denote by M, ., such
an operator associated with M when the point (zo, xo) € H is fixed. We shall
show that for 0<¢, < T the following inequalities must hold with a constant
C’ independent of (zo, x):

m—1 ) m—1 .
EOHDW(’% Nlm-1-5=C'( ]Z=:0||Dfu(0, Mm-1-5+
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12
+ [ 1My @' Mwdt), € Co(Rar). (16)

We shall confine ourselves to the case (¢o, x¢)=(0, 0) and write M, instead of
M,0. The other cases will be treated with an obvious modification.

Put ¢,.(¢, x)=u(it, Ax), A>1. For any fixed ¢ with 0<¢:<T, we define ¢;
by Aty=t. Consider (15) with u replaced by ¢, and divide both sides by

A"-1-3. In view of the relations

123 Mweron=, Z, | #2B("T YDiD Ol

Ipl<m—1—j

(1260, e = 1 lmppuce, -+

m—1
+Y Oy avng ( = )Dfmu(t Moy de’s

i=0 j+lpl<m
and, letting A— oo, we obtain the estimate

m—1

(™) IDiDzu, li?

i=0 Ij)] m 1-j
m—1 1— ! ’ /
<c{Z(, .3, (" DD, it e+ § I1Mou(e’, Dl }
or, in terms of A4,

Z lA™ " Diu(t, +)|l0y=C{ Z 1477~ D}u 0, )l +

t
+SOHMou(t/, Nloydt'}, am

where A4 is defined by (Au)"=|¢|a(s, &). If we take u(z, x)e’<*f> &=
1,0, ..., 0), instead of u(z, x), its partial Fourier transform can be written
i(t, €—&), and therefore we shall obtain

m—1 L. m—1 L.
jgoll(A(Dx+$o)>’”‘1‘fDiu(t, Moy=C( EOII(A(Dx+60))""1‘1D§u(0, Moy +

t
+ IMu(Ds, Dt-£0u(e', D), (18)

where A(D,+&,) is defined by (A(D,+&)u)" = |&+&,|a.
From (17) and (18), together with the estimates with constants C;, C,,

where C; depends on Inlnax | 4;,500, 0)],
j+lpl=m

m—1 .
||Mo(Dyy Dy+€0)u(t’, lloy=||Mou(t’, ')||(0)+Clj§0||Dfu(t’: Mlm=1-7y
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1

(L €1 IS P14 gy | 21D
2

=CiA+ ¢,

we obtain

1 m—1 . m—1 .
o 2 [1Dju(ty Hllm-1-»H=C(Cz 2 [|D;u(0, )|[m-1-5+
2 j=0 ji=0

t moict
+2S0[|Mou(t/, loydt’+ Cy ZOSOIIDiu(t’, MNm-1-55de").
F=

Consequently, owing to Lemma 4, we obtain the estimate (16).

Now, by letting ¢, 1 T, we see that (16) holds for any (zo, x,) € H with
the same constant C'.

My, ., is strongly hyperbolic as shown in Example 1. Hence the coeffi-

cients of M are real. Let K be a constant such that  sup sup | 4; ,(t,x)|
j+lpl=m,j<m (t,x)€H

<K and let M represent the set of all differential operators with constant
real coefficients

m—1 .
P(D)=D7+ %, 3, a;,Di{D}

i=0j+lpl=m
such that
| aj,p |=<K

and
m—1 . m—1 .
Jgollﬂiu(t, Nm-1-H=C'( ];‘EOHDfu(O, MNem-1-5F

t
+{IPDX, Dwde),  OSIZT, u € C(Rar)-

Every P(D) € M is strongly hyperbolic. Let / be the number of the indices
(j, p) such that j+ [p|=m, j<m. It is easy to see that the points {a; ,}
form a compact subset of R,. For each ¢, || =1, P(r, &) is a polynomial in
 with simple real zeros only. Let 45(¢) be its discriminant. Since it is a
continuous function of {a;,} and &, it follows that 4p(§)=d>0 for a cons-
tant d. Thus we see that L is regularly hyperbolic.

8. Further existence and uniqueness theorems for Cauchy problems

By H,(H: loc) we mean the set of all u € @’(EOI) with the property that
du € Ko,y (H) for any ¢ € Cy(R,). Here the topology is given as a local
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space. Then X, (H: loc) is an (F)-space. Let K, s 1)(H: comp) be its
antidual. We also consider H(R,: loc) and H((R,: comp) which are defined
in a similar fashion.

We can prove the analogue of Proposition 4 for these local spaces:

ProrosiTioN 4. If u € Ko krsem(H: loc) satisfies Lu=f € Hu, s (H: loc),
then u € K gy m,\(H: loc).

The proof can be obtained with slight modifications of the arguments
made in the proof of Proposition 4, and so will be omitted.

Throughout this section we assume that [E,,] and [Eq,: | | hold for L
and L* respectively.

ProrosiTion 10. Let s be a fived real number. Then the following condi-
tions are equivalent :

(1) Given feHq,o(H:loc) and a € Hi(R,: loc), there exists a unique
solution u € K, s.m-1y(H: loc) to the problem

Lu=fin H, and w,=lim (u, D, ---, D™ 'u)=a.
tlo

(2) The condition (1) with o replaced by 0.
3) Given g€ Ho,-s—ms1y(H: comp) and 8 € Hi_;_p,1)(R4: comp), there ex-
ists a solution v € K, _\(H: comp) to the problem

L*v=gm f}, and vr=lim (v, Dy, ..., D}"1)=4.
1T

(4) The condition (3) with 8 replaced by 0.

Proor. It suffices to prove the implications (2)=(3) and (4)=(1).

Ad (2)=(3). Let u be the solution indicated in the condition (2) for
given f. Let ¢ € C;(R,). Actual calculation will show that L(¢u)—@Lu €
Ko, (H). Then,

L(gu)=¢f+ (L(pu) —pLu) € Ko, (H)
and
l,i}g’ ($u, D(gu), ---, DY~ (du))=¢a € Hiy(Ry).
Consequently, on account of Theorem 3, we obtain
Di(¢u) € ENH (sm-1-i)), j=0,1,...,m—1.
It then follows that
(uy Diuy -y DY) € ENH (s im-1y(Ry: l0€)) X -+ X EWH (sy( Ry loC)).

We can apply the closed graph theorem to conclude that the mapping
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gg(o,s)(Hl lOC) 3 f—>(LL, ILT) € gg(o,s+m_1)<H1 lOC) X H(s)(Rn . lOC)

is continuous, because this is possible since these spaces are of type (F).
Let g€ Ho,—s—m+1y(H: comp) and B € H_,_ . 1,(R,: comp) be given, and
consider a linear form

Ko, \(H: loc) 3 f>(u, &)+ 'r(ur), B).

In virtue of the above arguments, the linear form will be continuous.
Therefore we can find a v € X, _(H: comp) such that

(f, v):(u, g)+(rT(uT)9 B)'

It follows from Proposition 2 that L*v= g, and vy =45.
Ad (4)=(1). Let v be the solution in the condition (4) for any given
& and consider the mapping

L: Ho,—s-mr1y(H: comp) 3 g—v € Ho,-5(H: comp).

In view of Theorem 3, the mapping is continuous from K, _s_m.1)(H: comp)
to H,-s)(H). Since K, _s_mi1)(H: comp) is of type (LF), we can apply Theo-
rem B in A. Grothendieck [3, p. 17] to infer that [/ is continuous. Let f¢€
Ho,(H: loc) and a € H;y(R,: loc) be given. Then the anti-linear form

Ko, s-mr1y(H: comp) 3 g—>(f, v)+ (I o(), vo)

will be continuous, and therefore we can find a u € (g, s.m_1)(H: loc) such
that

(u, g)z(fa v)+(r0(a)> 'UO),

which implies by Proposition 2 that Lu=f and u,=«, completing the proof.
Another equivalent result is the following

ProrosiTion 11.  The conditions in Proposition 10 are equivalent to each
of the following ones:

(B) Given f> C~(H) and a € C*(R,), there exists a unique solution u €
C=(H) to the problem

Lu=f1in I;f, and u,=a.

(6) The condition (5) with a replaced by 0.
() Given ge C3(H) and 8 € C3(R,), there exists a solution v e Cy(H) to
the problem

L*v=gin I-OI, and vr=_.

®) Given geD_(H), there exists a solution v € D_(H) to the problem
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L*v=gin H.

Proor. If the condition (8) holds, then so does the condition (4) for any
s. To see this, let v € D_(H) be the solution associated with ge D_(H) as
indicated in the condition (8). Then, owing to Theorem A in Grothendieck
[3, p. 16, there exists for any given compact subset K C R, a compact subset
KiCR, such that supp gC[0, T]x K implies supp vC[0, T]x K, and the
mapping g—v will be continuous from D_(H) into itself. Now, let g’ €
Ho,-s-ms1y(H) and assume that supp g’ is bounded. We can find a se-
quence {g;}, g; € D_(H) such that gj— g’ in H(o,—s_m+1)(H) as j>oo. Here
we may assume that suppg; C[0, T]x K for some compact subset K. Let
v; € D_(H) be the solution corresponding to g; as indicated above. It fol-
lows from Theorem 3 that v} converges in &, (H) to a v'. Clearly Lv'= g’
and v4+=0. This shows that (4) holds for any real s. As the implication
(4)=(8) is trivial, we can conclude that the conditions in Proposition 10 hold
for any real s whenever one of those does hold for some s.

Assuming that (1) holds for any real s, we shall prove (5). Let fe¢
C~(H) and a € C°(R,). Then fe H,,s(H: loc) and « € H,y(R,: loc) for any
real s, and therefore (1) implies that there exists a unique solution u €
Ho,y(H: loc) to the problem Lu=f with uo=a. Proposition 4’ shows that
u € H(y(H: loc).

The implications (5)=(6) and (7)=(8) are trivial and (6)=(7) will be
proved by a similar reasoning as in the case (2)=(8). Thus the proof is
complete.

Now we introduce some notations with the aid of which Theorem 6 will
be stated.

By QD'(H) we mean the set of distributions ¢ Q)’(I?I ) which can be
extensible to distributions € D’'(R,.:). The quotient topology is intro-
duced in @(H). Similarly for @'((—oo, T]x R,). It is to be noted that
D'((— o0, T)x R,) has a different meaning.

By @ (H) we mean the set of all distributions € D'((—oo, T]x R,) with
support contained in [0, T)x R,. D,(H) is equipped with the induced to-
pology. The space is the strong dual of D_(H).

By @;(I;V ) we mean the set of all distributions € D'((—oo, T)x R,) with
support contained in [0, T)x R,. @i(f} ) is equipped with the induced to-
pology. The space is the strong dual of D((—<o, T)x R,)|H, the space of
the restrictions to A of the functions in D((—oo, T) X R,).

All these spaces are ultrabornological (or (3)-) Souslin spaces. We shall
make use of the Borel graph theorem of L. Schwartz [11, p. 49].

TureoreM 6. Suppose that equivalent conditions in Proposition 11 hold.
Then there exists a unique solution u € @’(I-} ) to the Cauchy problem
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o

Lu=f inH
under the condition

wo=lim (u, Diu, --., D} 'u)=«
10

for any preassigned f € D'(H ) and a € D'(R,), where we assume that f has the
canonical extension f. over t=0. The mapping (f., ax)—>u. s continuous
under the topologies of @ﬁr(ff) x D'(R,) and Q)i(ﬁ).

In addition,

() if feD'(H), that is, f is extensible over t= T, then u € D'(H) as well,
and the mapping (f-, a)—>u. is continuous under the topologies of D,(H)x
D'(R,) and D' (H).

(ii) if f has the canonical extension f~, then ur exists.

Proor. First we show that if f E@Q(fl), then there exists a unique

u' € @L(I;I ) such that Lu'=f". Take an arbitrary 7, 0< 7; < T, and consider
a slab Hy =[0, T:]x R,. For any given ¢ € D_(Hr) we can find a unique
¢ € D_(Hr,) such that L¥¢=¢. Since [E«,:| ] holds for L*, ¢—¢ defines a
topological automorphism of D_(Hr) and therefore of D((—eo, T) X R,)|H
as well. Thus the anti-linear form ¢—(f, ¢) on D((—eo, T) X R,)| H is con-

tinuous, and we can find a unique u’ € Q);(ﬁ] ) such that (u/, ¢)=(f", ¢), that
is, (u’y L*¢)=(f", ¢). This implies Lu'=f". It is easy to see that v’ is a
unique solution of Lu'=f". Consequently the linear mapping L is a bijective
and continuous endomorphism of @;(fq). Owing to the Borel graph theo-
rem of Schwartz, we can infer that f'—u’ is a topological automorphism of

D (H).
To prove our statement, we put f'= f~+mi}10{6®(1" o(@));, Then the
i=0

solution v’ € @;(I;I ) considered above gives rise to the unique solution to the

Cauchy problem, that is, uzv’lﬁ satisfies Lu=f and u,=a. Here we note
that v'=u_.. The continuity of the mapping (f., a)—>u. is evident from the
above considerations.

Now we shall show the statement (i). If we consider f' € D.(H) and
take T,=T, then the linear mapping ¢—¢ is a topological automorphism of
D_(H). Thus the anti-linear form ¢—(f’, ¢) is continuous, and we can find
a unique v’ € DL(H) such that Lv'=f. Then a similar reasoning leads to the
conclution of (i).

(ii) follows from Proposition 1.

Thus the proof is complete.

Remark. Making use of Propositions 10 and 11 and applying Theorem
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6 we can show the following: Suppose the equivalence conditions of Pro-
position 10 holds. Then for any given f ¢ K, (H:loc) and « ¢ K., (H: loc),
k being a non-negative integer, the solution u to the Cauchy problem

Lu=f  ind,

uoElim (lL, Dtu, ceey D',"'Iu)zaf
tlo

uniquely exists in Q)’(ﬁ) and u € X pim,s-1)(H: loc). In addition, » may be
chosen so that Dju € EXH s 5im-1-5(Ra: loc)), j=0, 1, ..., k+m—1.
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