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Introduction

Recently several theorems have been shown on nonimbedding of nilpo-
tent Lie algebras. Chao [2] has proved that a non-commutative Lie algebra
L such that (1) the center is 1-dimensional or (2) L/L? is 2-dimensional can-
not be any C*N, k>>1 of a nilpotent algebra N where C*N, k>0 is the descend-
ing central series of N. This result has been improved by Ravisankar [ 6]
as follows: Such an algebra L cannot be any N[, k>>1 of a D-nilpotent
algebra N for a collection ® of derivations of N containing all inner deriva-
tions. Here the NC*V are inductively defined by Nt°'= N and NC¥V=N-17D
for £ >0, and N is called D-nilpotent if N"I'=(0) for some n, generalizing
the definitions of N'*J and characteristic nilpotency. On the other hand, it
is known [ 4] that a characteristically nilpotent Lie algebra L such that (3)
the center is annihilated by (L) or (4) L®(L)< L? cannot be the derived
algebra of any Lie algebra H. It seems natural to ask other conditions put
on L and a larger class of subalgebras of N or H to which L cannot be equal.
The purpose of this paper is to investigate nonimbedding of algebras on this
line and to generalize and sharpen these results.

In Section 1, we shall give two equivalent definitions of ®-nilpotency of
nonasgociative algebras and show scme fundamental lemmas. In Section 2,
we shall search for a class of subalgebras of such an NN as stated above, to
which any non-commutative Lie algebra L satisfying each of the conditions
(1)-(4) and the condition (5) dim L/L®=3 cannot belong. The results for
Lie algebras satisfying the condition (1) or (2) will generalize the results,
stated above, of Chao and Ravisankar. We shall make similar investigation
on non-commutative associative algebras. In Section 3, we shall show that
any characteristically nilpotent Lie algebra L satisfying each of the condi-
tions (1)-(5) cannot belong to a certain type of class of subalgebras of any
Lie algebra H. Especially for Lie algebras satisfying the condition (3) or (4)
it will generalize the result in [4] stated above. Similar results for charac-
teristically nilpotent non-commutative associative algebras will be also given.
In Section 4, we shall show some results on nonimbedding of nonassociative
algebras satisfying the condition similar to (1) or (5). Section 5 will be
devoted to discussing several examples of algebras in connection with the
results in Sections 2-4 and the conditions (1)-(5). Especially the examples
of a characteristically nilpotent commutative and a characteristically nilpo-
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tent non-commutative associative algebras will be shown there.

§ 1.

By a nonassociative algebra we mean an algebra which is not necessarily
associative, that is, a distributive algebra. For a nonassociative algebra A4
over a field @, we denote by Z(A) the center of 4 and by D (A) the set of all
derivations of 4. Especially when A4 is Lie (resp. associative), we denote by
X (A4) the set of all inner derivations of 4, that is, the set of D,, x € 4, with
yD,=[y, x] (resp. = yx—xy) for ye€ 4.

Ravisankar [ 6] has introduced the notion of ®-nilpotency of an algebra
for a set ® of its derivations which coincides with nilpotency and character-
istic nilpotency in special cases. We shall here give his definition of D-
nilpotency [6, Definition 4.17] and another equivalent definition by making
use of an ascending series, with our notations which seem to be more useful
for our purpose.

Let ® be a set of derivations of a nonassociative algebra 4 over a field
®. For a set Mc A, we denote by MD the subspace of A spanned by all xD
with x € M, De®. A subalgebra B of A is said to be a D-ideal provided
B®c B. Put AD°= 4 and define 4D*=(4D*1)D inductively for £ >1. Put
ADy,=(0) and define 4D, inductively for £.>>1 as the subspace of 4 consist-
ing of all x such that xD € 4D, _, for every D € D. Then it is immediate
that 4®*=(0) if and only if 4D,=A4. A4 is called D-nilpotent provided it
satisfies one of the following equivalent conditions:

1) AD"=(0) for some n.
(2) A49D,=4 for some n.

A D-nilpotent algebra A is said to be of class n provided 4D"'+(0) but 4D"
=(0).

For a D-nilpotent algebra A of class n, we have obviously
AD'C AD,_; for 0 <<i<nm.

In the case where D=3(4), AD(A)* coincides with A% and D(A4)-nilpo-
tency is nothing but characteristic nilpotency. We shall denote 4D(A4); by
Aryy- In the case where A is a Lie algebra and ®@=J(4), we have

AN(Ar=A1=C*"4 and AS(A)y=CiA

and & (4)-nilpotency is just nilpotency.

Every associative algebra 4 may be endowed with the structure of a Lie
algebra by employing the commutator of two elements as their new product.
The Lie algebra thus obtained from 4 is denoted by 4;. Then every subal-
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gebra of A4 is that of 4;. Every derivation of A4 is that of 4;. Every inner
derivation of A is that of 4; and conversely. For subsets M, N of A, the
subspace [M, N] of A4 spanned by all the commutators x y— yx of x ¢ M and
y € N is obviously the product of M and N in 4;.

We shall here show the following two lemmas which are fundamental
for the development of our main results.

Lemma 1. Let A be a Lie or associative algebra over a field @. Let D be
a set of derivations of A containing J(A). Then

(1) [AD, AD | C AD 1,
@) [AY, AD]CAD, ;1.

Proor. We shall show the assertions by induction on i.
As for the assertion (1), when i =0,

(4, AD']C(AD)J(A) S (AD)D= AD*.

Assume that (1) holds for i=k. Then by taking account of the remark
preceding the lemma, we infer

[AD* ], ADT]C[ADH, AD/ D+ [ ADE, AD+1]
Q(A®k+j+l)©+A@k+(j+l)+l
:A@(k+1)+j+1,

which shows that (1) holds for i=£+1.
As for the assertion (2), when i =0,

[4, AD;]< (AD)J(A) S (AD)DC AD;_;.
Assume that (2) holds for i=%. Then we infer
[AD* L AD ) C[AD, ADID+ [ AD, AD;_1]
CSADj_ 4 )D+ADj-1)-k-1
S ADj_rr1)-1-
Hence (2) holds for i=k£-+1, and the proof is complete.

Lemma 2. Let A be a Lie or associative algebra over a field ®. Assume
that A is D-nilpotent of class n for a set D of derivations of A containing
X(A4). Then

(1) AD"1C AD, C Z(A).
() AD"PCZ(ADYNZ(AD,.1)  for n>3.
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Proor. It is obvious that AD""'c 4D, and
[AD;, 4]1S(AD)JF(A) S (AD1)DC AD,=(0),
proving the assertion (1). For n>>3, AD" ?C AD'C 4D, ; and Lemma 1 (2)
shows that
[AD" % AD,_ 1S ADy=(0).

Hence we have the assertion (2).

§2.

In this section we study nonimbedding of non-commutative nilpotent Lie
or associative algebras satisfying each of the conditions (1)-(5) stated in the
introduction.

We begin with

TueoreMm 1. Let A be a mon-commutative Lie or associative algebra over
a field @ satisfying the condition:

(@) The center of A is 1-dimensional.
Then A cannot be any subalgebra B of a D-nilpotent algebra N of class n>3
(resp. =2) for a set D of derivations of N containing J(IN) such that

ND,_12BDOND*"? or BSND*? or BCND, (resp. BCND1).

Proor. By Lemma 2, N®"%(n>>3) and N®, are commutative. Hence
AZND"? and AZND;. Now assume that ND, 2 4DOND"? for n>3.
Then by Lemma 2 (2) we have N®" 2c Z(ND,_,) and therefore N®" % Z(A4).
It follows that

dim Z(A4)> dim N®"2>2,
which contradicts the condition (a). Thus the assertion is proved.

Tueorem 2. Let A be a non-commutative Lie or associative algebra over-
a field @ satisfying the condition:

(b) D(A) annihilates the center of A.
Then A cannot be any D-ideal B of a D-nilpotent algebra N of class n>>8 (resp.
=2) for a set D of derivations of N containing J(N) such that

ND®, 12B2ND" % or BSN®? or BSND, (resp. BS ND,).

Proor. We have AZND"*(n>>8) and AZND; since NO*? and ND,
are commutative by Lemma 2. Now assume that 4 is a ®-ideal of N such
that N®,_ 124D ND"? for n>3. Then by Lemma 2 (2), we have N®"2¢
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Z(N9D,_,) and therefore N®"*c Z(A4). Since 4 is a D-ideal of N, it follows
that

N '=(ND" H)DSZ(A)DS Z(A)D(A) .

Therefore by the condition (b) N®*!=(0), which contradicts the definition
of n. Thus the theorem is proved.

CoroLLARY 1. Let A be a non-commutative Lie or associative algebra over
a field @ satisfying one of the conditions (a) and (b). Then A cannot be any
subalgebra B of a D-nilpotent algebra N of class n for a set D of derivations
of N containing J(N) such that

N 2B ND+! fori>1, or
N@iQBQN@i_l fO’I' z_{n—landz#2

Proor. A subalgebra B of N in the statement is obviously a ®-ideal.
Hence the statement follows from Theorems 1 and 2.

CoroOLLARY 2. Let L be a mon-commutative Lie algebra over a field @
satisfying the condition (a) (resp. (b)). Then L cannot be any subalgebra (resp.
ideal) B of a nilpotent algebra N of class n >3 such that

C,.1N2B2C"*N or BcC"*N or BCCN

and of class n=2 such that B< C\N, and L cannot be any subalgebra (resp.
characteristic ideal) B of a characteristically nilpotent algebra N of class n >3
such that

Nipo172B2N™21 or BSNY™ 2 or BC N,
and of class n=2 such that B < Ng,.

Proor. This follows from Theorems 1 and 2 as a special case where ®
is (V) or D(N).

CoroLLARY 8. Let L be a non-commutative Lie algebra over a field @
satisfying one of the conditions (a) and (b). Then L cannot be any subalgebra
B of a nilpotent algebra N of class n such that

C'N2B22C*'N  fori>1, or
C:N2B2C;_1N Jor i<n—1and i=+2,

and any subalgebra B of a characteristically nilpotent algebra N of class n
such that

NUI2BONUI  for i>1, or
Niiy2B2Npiy fori<n—1and i+2.
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Proor. This follows from Corollary 1 if we take J(IV), D(N) for .

It may be here remarked that the part of Corollary 1 related to (a) and
B=N%' is [ 6, Theorems 4.6 and 4.87] and the part of Corollary 3 related to
(a) and B=C'N is [ 2, Theorem 17].

TueorReM 3. Let A be a mon-commutative Lie or associative algebra over
a field @ satisfying one of the conditions:

() dim A= dim [[4, 4], 4]+3.
(@) dim A= dim [4, 4]+2.

Then A cannot be any subalgebra B of a D-nilpotent algebra N for a set D of
derivations of N containing J(N) such that

N® 2B NDH! for i>1.

Proor. Let A satisfy the condition (¢). Assume that N 24D N *!
for i>>1. Let N be D-nilpotent of class n, that is, NO" ! DND"=(0). Then
n>2andi<n—1. Wehavei=~n—1since NO"!is commutative by Lemma
2. Hence i <n—2 and therefore n>>3. Then by Lemma 2 N®" % is com-
mutative and therefore is~n—2. It follows that :4+3<n. Hence N®*?D
N®*325(0). Thus

dim 4> dim N®"**+3.
But by Lemma 1
[([4, 4], AJS[[ND, ND'], ND'Jc ND¥*+2,
Therefore by using the condition (¢) we have
dim N®**2> dim [[ 4, A7, A]> dim ND'*3,

Hence ND¥* 2o N®*3, 1t follows that 3;:+2<i+3 and therefore 2; <1,
which is a contradiction. Thus A4 is not such a subalgebra B of N as in the
statement.

We here remark that, for a non-commutative nilpotent Lie algebra L, the
conditions (c) and (d) are equivalent. This is easily seen by observing the
fact that the dimension of L/L? is >>2. Hence we have the statement for a
non-commutative Lie algebra satisfying the condition (d). We use this to
see the statement for a non-commutative associative algebra satisfying the
condition (d) by considering the Lie algebras associated to associative algebras
and by taking account of the related remark in Section 1. This completes
the proof.

Tueorem 4. Let A be a nmon-commutative Lie or associative (resp. Lie)
algebra over a field @ satisfying the condition :
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(e) AD(A)c<[ A4, 4].

Then A cannot be any subalgebra B of a D-nilpotent algebra N for a set D of
derivations of N containing J(N) such that

B=N®' or N®2B2ND*! for i>2
(resp. N 2 B2 ND+! for i>1).

Proor. Assume that N is D-nilpotent of class n. In the case where
A=N®D!, since 4 is a D-ideal of N, by using the condition (e) and Lemma 1
we have

ND?= ADC AD(A) [ 4, A]c ND?,

from which it follows that N®?=(0) and therefore [ 4, 4 ]=(0), that is, 4 is
commutative.

Now suppose that N 2 4D ND'*! for i >2. Since 4 is a D-ideal of N,
we have

N2 =(ND*HDC AD(A4).
By using the condition (e) and Lemma 1 we have
NY*2c[ A4, AJS[ND', N | ND¥+1,

from which it follows that i +2>>2i+1 and therefore ; <1, which contradicts
our supposition i >2.

It remains only to show that we cannot have N®'D 4D ND? in the case
where 4 is a Lie algebra. So suppose the contrary. Then A is a ®-ideal of
N. Hence by the condition (e) we infer

NDC ADC AD(A) < A>.
It follows from Lemma 1 that
ND'C A*DC[AD, AJC A3 (ND) < ND°.

Hence N®*=(0) and therefore 43=(0). Take a complementary subspace U
of A2in 4. Then A=U+U? and UNU?=(0). Therefore the identity endo-
morphism of U is extended to be a semisimple derivation of 4. It follows
that A4 is not characteristically nilpotent. But, since a ®-nilpotent algebra
N for D2 J(V) is nilpotent, A4 is nilpotent and therefore by the condition (e)
A is characteristically nilpotent, which is a contradiction. Thus the proof
is complete.

CoroLLARY 1. Let L be a mon-commutative Lie algebra over a field @
satisfying one of the conditions (c), (d) and (e). Then L cannot be any subal-
gebra B of a nilpotent Lie algebra N such that
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C'N2B2C™*'N  fori>>1,
and any subalgebra B of a characteristically nilpotent Lie algebra N such that
NUIo>Bo NU+1D for i>1.

Proor. This follows from Theorems 3 and 4 as a special case where
is (V) or D(N).

CoroLLARY 2. Let L be a mon-commutative Lie algebra over a field @
satisfying one of the conditions (a), (b), (c), (d) and (€). Then L cannot be the
Frattini subalgebra of any nilpotent Lie algebra.

Proor. The Frattini subalgebra ¢(/N) of a Lie algebra N is the intersec-
tion of all maximal subalgebras of N. If N is nilpotent, ¢(N)=N? as can be
easily seen ([ 2, Theorem 37]). Hence we have the assertion as an immediate
consequence of Corollary 8 to Theorems 1, 2 and the preceding Corollary 1.

We here remark that the part of Theorem 3 related to a Lie algebra
A, (d) and B=N%' is [ 6, Proposition 4.107, the part of Corollary 1 related to
(d) and B=C'N is [ 2, Theorem 27, and the part of Corollary 2 related to (a)
and (d) is [ 2, Corollaries 1 and 2 to Theorem 3.

§3.

In this section we shall strengthen the results in the preceding section
for a special class of non-commutative algebras, characteristically nilpotent

non-commutative algebras.
We first show

Lemma 3. Let H be a nonassociative algebra over a field @ and let D be a
set of derivations of H. If a characteristically nilpotent algebra A is contain-
ed in H as a D-ideal and contains HD* for some k>0, then H is D-nilpotent.

Proor. Since A4 is a D-ideal of H, we have
HY*1=(HD)DC AD(A4) = A"
By induction on m we can establish
HDF+mc 40 for m>1.

Since 4 is characteristically nilpotent, 41=(0) for some m. Hence HD**™
=(0) for such an m. Therefore H is ®-nilpotent, completing the proof.
In virtue of Lemma 3, we first establish the following

Tueorem 5. Let L be a characteristically nilpotent Lie algebra over a field
@ satisfying one of the conditions (a), (b), (¢c), (d) and (e) in the preceding
theorems. Then L cannot be any subalgebra B of a Lie algebra H such that
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H® 2> B2 HY ! for i>1
where D is a set of derivations of H containing J(H).

Proor. If L is equal to a subalgebra B of H as in the statement, then
H obviously satisfies the condition in Lemma 3. Hence H is ®-nilpotent.
Since a characteristically nilpotent Lie algebra is not commutative, this con-
tradicts Corollary 1 to Theorems 1, 2 and Theorems 3, 4.

CoroLLARY. Let L be a characteristically nilpotent Lie algebra over a field
O satisfying one of the conditions (a), (b), (¢), (d) and (e). Then L cannot be
any subalgebra B of a Lie algebra H such that

C'H2B2C*'H or
HYIo B U+ Sor i>1.

Proor. This follows from Theorem 5 as a special case where ® is J(H)
or D(H).

It may be here remarked that the part of Corollary related to (b), () and
B=H? is [4, Corollary to Lemma 3 and Corollary to Theorem 7.
We next establish the following

TueoreEM 6. Let A be a characteristically nilpotent non-commutative as-
sociative algebra over a field @ satisfying one of the conditions (a), (b), (¢c) and
(d) (resp. the condition (e)) in Theorems 1-4. Then A cannot be any subalge-
bra B of an associative algebra H such that

HY®2B2HD ! for i>1
(resp. B=HD' or HY 2 B2 HD'*! for i>2)
where D is a set of derivations of H containing J(H).

Proor. This follows from Lemma 3 and from Corollary 1 to Theorems
1, 2 and Theorems 3, 4, as in the proof of Theorem 5.

§4.

In this section we generally deal with nonassociative algebras satisfying
one of the conditions similar to (a) and (¢). We note that a nilpotent non-
associative algebra A4 is of class n provided 4”=~(0) but 4”*1=(0).

ProrosiTion 1. Let A be a mon-zero monassociative algebra over a field @
satisfying the condition :

(@) The annthilator ideal I of A is 1-dimensional.
Then A cannot be any subalgebra B of a mnilpotent algebra N of class n>3
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(resp. =2) such that
N:2B2N"' or BCSN"'! (resp. BSN?).

Proor. In the case n=2, we cannot have 4< N? since N2N2c N*=(0)
and A is non-zero, that is, 445~(0). So assume that »n>>8. Then AZN"!
since N*"IN*"'c N**'=(0). Suppose that N22 4> N”""'. Then it is im-
mediate that N""'4=AN""'=(0) and therefore N"-*c 1. It follows that

dim 7> dim N*"1>2,
which contradicts the condition (a”), completing the proof.

ProrosiTioN 2. Let A be a mon-zero nonassociative algebra over a field @
satisfying the condition :

(¢) dim A= dim 43+3.
Then A cannot be any subalgebra B of a nilpotent algebra N such that
Ni2BoN*'  fori>2.

Proor. Assume that N'2 4D N*! for i >2. Let N be nilpotent of class
n. Then n>>2. Wehave i=~n, for if not A4 N?**=(0). Hence2 <i<n—
1 and therefore n>8. We have i=~n—1, for if not 44< N**~-2c N"*1=(0).
Hence 2 <i <n—2 and therefore i +3 <n+1. It follows that

dim 4> dim N**3+3.
But 43c (N?)®c N* and by the condition (¢’) we have
dim N% > dim 43= dim 4 —8.

Consequently dim N3* > dim N*3. It follows that N3% 2> Ni*%. Hence 8; <i
+ 3 and therefore 2i <8, which is a contradiction. This completes the proof.

CorOLLARY. Let A be a mon-zero monassociative algebra over a field @
satisfying one of the conditions (a’) and (¢’). Then A cannot be any N°, i >2
of a milpotent algebra N.

We note that the part of Corollary related to (a’) is [6, Proposition 4.97].

§5.

This final section is devoted to discussing the results obtained in the pre-
ceding sections and to observing several examples of algebras in regard to
the conditions considered there.

Examples of non-commutative nilpotent Lie algebras satisfying the condi-
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tions (a), (¢) and (d) have been shown in [2]. A simple example of non-
commutative nilpotent associative algebras satisfying the conditions (a), (¢)
and (d) is the algebra of upper nil triangular matrices of degree 3. The
condition N®, ;2B2ND"2on B in Theorem 1 and the condition N®'2
B2 N®*! for i >>1 on B in Theorem 3 cannot be weakened as can be shown
by example both for Lie and associative algebras. We shall not write the
examples. We only write an example showing that the case N®,> BDOND,
cannot be included in the statement of Corollary 1 to Theorem 1. Let N be
a Lie algebra over a field @ described in terms of a basis x, x3,---, x¢ by the
following table [57]:

Exl, xzjzxs, Exh x5]=xe, [x3, x4:]=x6.

In addition, [x;, x;]=—[x; %;] and for i <j [&;, x;]=0 if it is not in the
table. Take ®=J(N). Then N is D-nilpotent of class 3 and B=(x3, x4, x¢)
is a non-commutative ®-ideal of N satisfying the condition (a) and such that
N®,DOBDOND,. It is open whether Theorem 4 holds with the condition
ND'D BD ND? for associative algebras as for Lie algebras.

The characteristically nilpotent Lie algebra in [ 1, p. 1237 satisfies all the
conditions (a), (b), (¢), (d) and (e). The characteristically nilpotent Lie alge-
bra in [ 3] satisfies the conditions (b) and (e), but not the conditions (a), (c¢)
and (d). In connection with Theorem 6, it should be noted that a character-
istically nilpotent associative algebra is not necessarily non-commutative,
contrary to Lie case, and that there actually exist characteristically nilpotent
non-commutative associative algebras. An example for the first fact is the
1-dimensional algebra spanned by an idempotent element, which is obviously
commutative, associative and characteristically nilpotent of class 1. As an
example for the second fact, we observe the following 4-dimensional nilpo-
tent associative algebra. Let A be an associative algebra over a field @
described in terms of a basis x1, x2, x3, x4 by the following table:

X1X1= X4y X1X2=X4y X2X2— X3,
X2X3= X4y X3X2= X4.

In addition, all other products x;x; are 0. Then A is not commutative. Let
D be a derivation of 4 and put x;D=7}4;jx;, 2;; €. Then the matrix cor-
7

responding to D is
0 i3 A14
—213 0 2y on
0 0 0 —213+22s
0

0 0
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Hence A is characteristically nilpotent of class 4.

Let 4 be a nonassociative algebra over a field @ with a basis x1, x2,---,
%, (n>>38) such that x,x;=x;,, for i=2, 3,..., n—1, and all other products are
zero. Then A satisfies the conditions (a") and (¢’). When we consider the
two characteristically nilpotent Lie algebras quoted above as nonassociative
algebras, the conditions (a’) and (c¢’) are satisfied by the former, but not by
the latter.
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