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Introduction

Recently B. Hartley [37] and I. Stewart [9, 107 investigated the structure
of infinite-dimensional Lie algebras in the spirit of infinite group theory.
They considered subideals as the Lie analogue of subnormal subgroups of
infinite groups and studied the connections between subideals of a Lie al-
gebra and the structure of the algebra as a whole.

A subideal of a Lie algebra L is a member of a finite series of subal-
gebras ending with L such that each member is an ideal of the following.
A class ¥ of Lie algebras is called coalescent [107] if in an arbitrary Lie
algebra the join of any two subideals belonging to X is always a subideal
belonging to X. It has been shown in [37] that if the basic field is of charac-
teristic 0, the class i of finite-dimensional Lie algebras and the class NNF
with R the class of nilpotent Lie algebras are coalescent. We may ask whe-
ther there exist coalescent classes besides ¥ and NNE.

A finite-dimensional Lie algebra has two kinds of radicals, the solvable
radical and the nilpotent radical. As the Lie analogue of radicals of infinite
groups, several radicals corresponding to the nilpotent radical in finite-di-
mensional case have been introduced for a Lie algebra L which is not neces-
sarily of finite dimension [ 3, 10]. The Fitting radical v (L) is the sum of all
nilpotent ideals of L. The Hirsch-Plotkin radical p (L) is the unique locally
nilpotent ideal of L. If the basic field is of characteristic 0, on the base of
the coalescency of MNR, the Baer radical 5 (L) is defined as the subalgebra
generated by all subideals of L belonging to 8N\%. As for the interrelation
of these radicals it is shown [3, 10] that if the basic field is of characteristic
0, (L)< B(L)< p(L) and these are different in general, although these reduce
to the nilpotent radical in the case where L is finite-dimensional. They are
called locally nilpotent radicals. However, no study has been made about
the ideals corresponding to the solvable radical in finite-dimensional case.
We define local solvability of a subalgebra just as local nilpotency, that is,
we call a subalgebra H of L locally solvable if every finite subset of H lies in
a solvable subalgebra. Thus we may ask what can be said about locally
solvable radicals of L.

The purpose of this paper is to investigate the structure of infinite-
dimensional Lie algebras, especially to search for coalescent classes of Lie
algebras and to study locally nilpotent and locally solvable radicals of a Lie
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algebra.
Part I will be devoted to the study of coalescent classes. For a class %
of Lie algebras, we define X, (resp. X,) as the class of Lie algebras L such

that L/L™ (resp. L/L®) belongs to ¥, where L= /”\L(") and L°= f\L”.
n=0 n=1

Denoting by & the class of solvable Lie algebras, we consider the operations
of getting, from ¥, other classes €%, "X, FNX, %, and X,. By applying
these operations to § and N, NG where & is the class of finitely generated
Lie algebras, we obtain thirteen classes ¥ SN, NRNF, Foys Fos RNE) (wys
CNFor CNFo)wy Ny NB NN, BNRN,NG, (NNB),y and (BENN,N ).,
(Theorem 3.7). We show that these classes are all coalescent if the basic
field is of characteristic 0 (Theorem 4.4). We shall also show some general
theorems on coalescent classes (Theorems 4.1, 4.2 and 4.3).

In Part II, we shall study the locally solvable and the locally nilpotent
radicals of a Lie algebra. Denote by LS (resp. LN) the class of all locally
solvable (resp. locally nilpotent) Lie algebras. For a class ¥ such that either
eNFcxci® or RNFS X LN, we define the radical Radz_;(L) (resp. Rad:
(L)) as the subalgebra generated by all the subideals (resp. ideals) of L be-
longing to X. Then Rady(L)=y(L), Radg~5_.;(L)=R(L) and Radin(L)=p0(L).
We show that Radg~3(L) is the union of all the ideals belonging to RN, is
a locally nilpotent characteristic ideal of L and is different from v (L), B (L)
and ¢(L) in general (Theorems 7.1 and 7.2). It of course reduces to the-
nilpotent radical when L is finite-dimensional. @We show that if the basic
field is of characteristic 0, Rade~3(L), Radenn,~o(L), Radeng, (L), Rade(L),
Radeng-si(L), Radeqn,~o-si(L) and Rade~g, (L) are the union of all the
ideals or subideals belonging to the corresponding classes, are locally solva-
ble characteristic ideals of L and are different from each other in general
(Theorems 8.1, 8.3 and 8.5), although these radicals reduce to the solvable
radical when L is finite-dimensional. It is furthermore shown that for any
one ¥ of the thirteen coalescent classes stated above, the subalgebra genera-
ted by all subideals (resp. ideals) of L belonging to X is a characteristic ideal
of L and every finite subset of the subalgebra lies in a subideal (resp. ideal)
of L belonging to ¥ (Theorems 6.3 and 6.10).

PART I. COALESCENT CLASSES

§1. Definitions and lemmas

We shall be concerned with Lie algebras over a field ® which is not nec-
essarily finite-dimensional. Throughout this paper, the basic field & will be
of arbitrary characteristic and L will be an arbitrary Lie algebra over a field
@, unless otherwise specified.

We write H<L when H is a subalgebra of L and H<] L when H is an
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ideal of L. We denote by <Kj,..., K,> the subalgebra generated by subsets
K, ..., K, of L. The concepts of subideals and coalescency are fundamental
in this paper. So we first recall their definitions.

DeriniTioN 1.1. A subalgebra H of L is called an n-step subideal of L if
there is a finite series of subalgebras

H=H,<H, <. <H,=L

such that H;<AH;,(0<i<n). We then write H n-si L. H 1is called a sub-
ideal of L 1f it is an n-step subideal of L for some n>0. We then write H
st L.

DeriniTioN 1.2. A class X of Lie algebras over a field @ is called coales-
cent if H, K si Land H, K€% imply <H, K> si L, €X.

We need the following classes of Lie algebras over a field @:

% is the class of finite-dimensional Lie algebras.

& is the class of finitely generated Lie algebras, that is, the class of Lie
algebras L such that L= < K> where K is a finite set.

9 is the class of abelian Lie algebras.

N is the class of nilpotent Lie algebras.

& is the class of solvable Lie algebras.

We furthermore introduce the following concepts.

DeriniTiON 1.8. Let X be a class of Lie algebras.

(1) We denote by LX the class of locally X Lie algebras, that is, the class
of Lie algebras L such that every finite subset of L lies im a subalgebra of L
belonging to X.

(2) We denote by X, the class of Lie algebras L such that L/L“ € ¥ and
by X, the class of Lie algebras L such that L/L° € X, where L(*)= F\L(”) and
L= f\lL” as usual. "

We here state the following three fundamental lemmas, which are known
and may be used without reference.

Lemma 14. (1) If Hsi Land K<L, then HNK si K.

(2) If Hsi Kand K si L, then H si L.

) If Hsi Land KL, then H+ K si L.

(4) Let f be a homomorphism of L onto a Lie algebra L. If H si L, then
f(H) si L. If Hsi L, then f~*(H) si L.

The proofs of these are all immediate ((3, Lemma 7] and [7, Theorem

17).
Lemma 1.5, NNGCG.
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Proor. Let Le "G, Then L=<x,, .-, x,>. L is spanned by all pro-
ducts [..-[x;, x,], ---, x;,_J, where only finitely many of them are non-zero
since L€ 9. Hence Le .

Lemma 1.6. If H si L, then H® and H are characteristic ideals of L.

Proor. Let (L) be the derivation algebra of L and let M be the semi-
direct sum L+(L). Assume H n-si L. Then H (n+1)-si M, since L is
an ideal of M. Hence for £>>1 we have

(M, H**"]< M(adyH)**"
C H(adyH)**=H*.

It follows that [M, H*]< H*, that is, H°<IM. Therefore H® is a character-
istic ideal of L. On the other hand, we can see by induction on % that

(M, HEcH®, k>0,

It follows that [M, H“]< H, that is, H®<{M. Thus H® is a character-
istic ideal of L.

§2. Coalescency of NtN\F
TueoreM 2.1. For a field @ of characteristic 0, "NF s coalescent.

This has been shown by B. Hartley in [3, Theorem 27]. But it will play
a fundamental role for the development of our study in this paper. So in this
section we shall give his proof with a slight modification. @ is of character-
istic 0 throughout this section.

oo

If D is a nil derivation of L, then exp D= Y, D"/n! is an automorphism
n=0
of L.

Lemma 2.2. Let D be a nil derivation of L and M be a subspace of L.
Then

oo

MDC 3, MeetD),

n=1

Proor. Let x € M and xD*=0. Then there exist a,,---, a; € @ such that
k .
Zann’/ilzau (z=0,, k'—l)
n=1

Hence Y a,x**"P)=xD, from which the result follows.

Let M be a finite-dimensional subspace of L. For a subset S of the deri-
vation algebra (L), the subspace M is defined by MS=> MD,...D, summed
over all choices of D,,..., D, € S for any k>>0. For a subset 4 of the auto-
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morphism group of L, < 4> is the subgroup generated by 4 and the sub-

space M<*> is defined by M<#>=3M*. Then we have
a€elA>

Lemma 2.3. If M is a finite-dimensional subspace of L and S s a finite-
dimensional nil subspace of D(L), then

MS = M <S> = ﬁM"‘i, a; € <expS>.

i=1

Proor. By Lemma 2.2, for any D € S we have
(M<cxpS>)D c i (M<expS>)cxp(nD) c M<cxpS>.
n=1

It follows that

M S (M<ex5>)S € M<e®S> ¢ Y S

and therefore M®=M<*r5> Let {Dy, ..., D,} be a basis of S. Since S is nil
and M is finite-dimensional, there exists m >0 such that MD;...D; =(0) for
any iy, -, in €41, 2, ..., n}. Therefore M" is finite-dimensional.

Lemma 24. If K si L, € N, then ad K is nil.
Proor. Let K n-si L and let m be the class of nilpotency of K. Then
L@d K)""cK(ad K)"=K™"1=(0).

Lemma 25, If H, K si L and H, K € "N\ and 1f [ H, K]S H, then H+K
st L, e RNG.

Proor. Let H n-si L. Then
H=H,<H,<...-<H,=L.

Let 4=<exp(ad K)> and put ;= N\ H?. Then Hy=H, H,=L and H;<{ H;, .
a€A

By Lemma 2.2, [ A;, K ]< H; and therefore H;<1H;.,+K. Since K si H;,,+K,

H;+K si H;.,+K. It follows that H+K si L. If K k-si L and K™*1=(0),

by Lemma 2.4 we have

(H+K)*™ ' c H*+(H+K)(ad K)**"=H?.

Thus H<H+K, HeN and H+K/H*€e€N. Hence H+Ke N (see [2]) and
therefore H+ K € RN, completing the proof.

We can now prove the theorem. Assume that H n-si L, K si L and
H, Ke "NgE. We must show that J=<H, K> si Land € RN\E. We show
it by induction on n. If n=1, then H</L and therefore H+K si L, € "N\F
by Lemma 2.5. So we assume that n>1 and put m=n—1. Then

H:HQQ H1< Qqu H,,ZL.
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Since ad K is a finite-dimensional nil subspace of ©(L) by Lemma 2.4, it fol-
lows from Lemma 2.3 that

<HYE>_—<H®* ... H% >  «a;€<exp(@adK)>.

Now H4:=H,, whence H* m-si H, and H% € RN for each i. By induction
hypothesis

<H®,...,H%>si H,, € RNF.

Therefore < H*X>si L, € RNG. Obviously J=K+ < H**X> and [ < H*¥ >,
K]c <H*¥X>. Therefore by Lemma 2.5 we see that Jsi L, ¢ RN\E. Thus
NNE is coalescent. This completes the proof of Theorem 2.1.

§8. Thirteen classes of Lie algebras
First we give the following definition for our convenience.

DeriniTiON 3.1. A class X of Lie algebras is said to have the property (P)
tf LeX and NJL imply L/N € X.

‘LemMA 3.2. If X has the property (P), then X, and %X, have the property
P) and X%, X,

Proor. Suppose that L€ %, and N<L By Lemma 1.6, (L/N)“<L/N
and therefore (L/N)®=M/N with M<{L. Hence L)< M and therefore L/M
~(L/L®)/(M/L®). Since L/L* ¢ % and ¥ has the property (P), we see that
L/Me¥%. From the fact that

(L/N)/(L/N)=(L/N)/(M/N)=L/M,

it follows that L/N € %,,, that is, X,, has the property (P).

The proof of the statement that %, has the property (P) is similar.

Now assume that LeX. Since L<L by Lemma 1.6, L/L*“ ¢ ¥ and
therefore L € X,). Thus Xc%,,. Next assume that L€ %, Since L“L,
L/L™ €%. L/L° is the quotient algebra of L/L® by L°/L®. Hence L/L° € %,
that is, L € X,. Thus ¥X,,<X,, completing the proof.

Lemma 33. ©N%(,)=6N%X and
9'3/\}',,,, =9?f\3’,(,,,)=92/\$.

Proor. If Le®&, L®=(0). Therefore L€ %, if and only if LeX.
Hence @N%,,=SN% and NRNE,,)=NNE. NNEX,=NNZX is similarly proved.

Lemma 34. (BN%)w)=%.) Jfor XS, and
RNEX), =(@N%),=%, for XcN,.
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Proor. If Le%,), L/L“ €X. Since Xc&,, (L/L“)"=(L/L)“=(0)
and therefore L/L“ € €%, that is, L € (€N¥),,. Hence X,,=(SNX),).
The other formula is similarly proved.

Lemma 3.5, If XcX,y<X, then
Xoo =010 =Xo() =X AN X(u)w) =X()-
Proor. It is evident that
Rw o %(w)m o %ww and X(,‘,) e %(w)(w).

If Le%,,, then L/L° € %,. Since (L/L*)*=(0), L/L* € ¥ and therefore L € %X,
Thus %,,<%,. Similarly %X, S¥.) Hence X,=%),=%,, and X,=%qyw)-

Finally, since (L/L®)/(L/L“)*~L/L*, L/L*“ €%, if and only if L/L®€X.
Hence %,,,=%X,, completing the proof.

Lemma 36. (1) Fc&,.

2) B TN
3) B I, RNG, Fos ©NG, NuNG and @NN,NS have the property (P).

Proor. (1) and (2) are evident. &, N, NNF, © and & obviously have
the property (P). By Lemma 3.2, §, and 9, have the property (P) and
therefore so do SNg,, N.NG and SN, NG. Hence (3) is proved.

By making use of these lemmas we shall now prove the following

Tueorem 3.7. We consider the operations of getting, from a class X of
Lie algebras, the classes

X, @N¥X, NNE, FNE, X, X,.
(1) By applying the above operations to F, we have
B ENG, RN, Fopy T
RNy ©NBos (CNF) @y Ry G-

(2) By applying the above operations to N,NGS, we have the following
classes besides the classes in (1).

N.NG, BNRNNG, N.NG) @y, GNNNB),).
Proor. (1) First we have
%9 @f\%, ET%/\%, %(w)a Vo

Applying the operations to @NF and NNF, we obtain (NNF)., For, by
Lemmas 3.4 and 3.6

GNF ) =B
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ENFo=RNFo=For
Applying the operations to ¥, and §., we obtain €NgF,. For, by Lemma 3.3
BNBwy =GN,
NRNFy=NRNF. =NNF;
by Lemmas 3.2 and 3.6
FNB=BNF=5;
by Lemmas 3.2, 3.5 and 3.6
By = Bon
Bwro=Bow) = oo = Tor

Applying the operations to (RNF)(.), we obtain N, ,N\F. For, by Lemma
3.3

CNRNF) @y =SNNNF) =NNF,
ROARNF) W =ROARNF)=RNF;
by Lemmas 3.2 and 3.6
INARNE ) =F NNy Ty =Ny N3
by Lemmas 3.2, 3.5 and 3.6
RN @)0r = RNF )
RN o =RNF)o =T
Applying the operations to €Ng,, we obtain (ENR,)w.). For, by Lemma 3.3
RNGNF,)=NNF;
by Lemmas 3.2 and 3.6
@NF)NF=BNF;
by Lemmas 3.4, 3.5 and 3.6
(BNBo)o= Fao = Tor

Applying the operations to N, N\F, we obtain no new classes. For, by
Lemma 3.3

CNRHNF=(OCNAR)NF=NNG,
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by Lemmas 3.2, 3.5 and 3.6
Ry Ny =Ry @) F0) = Ty NFwy = (RN F 5

by Lemmas 3.2, 3.4, 3.5 and 3.6

(o) NFo=N(w)o N Fo =N NFo = (RNF)o = -
Applying the operations to (€NF,)w), we obtain no new classes. For, by
Lemma 3.3

CNECNF)wy=CNOCNF,)=CNFK.,

NRNECNF) @) =NN(ONF.) =NNF, =NNF;
by Lemmas 3.2, 3.5 and 3.6

FNECNF) @ =FNC ) NBo@ =B NG NFo=T;
by Lemmas 3.2, 3.4, 3.5 and 3.6
(@NFo) @@ =(GNFu)wy
@NFod@o=(ENFo)o=TFoo=To-
(2) By the first application of the operations we have
N.NG, BAR,NG, (RNG) ().
For, by Lemmas 1.5, 3.2 and 3.6
RANRNG=NNG=NNF;
by Lemma 3.6
FANNG=F NN, =F;
by Lemmas 1.5, 3.2, 3.4, 3.5 and 3.6
N.NG), =9, NS,=N,NG,=(NNG),=(NRNF)o=Fo-

Applying the operations to SN\N,NE, we obtain (SNN,NS)). For by
Lemma 1.5

NRNGNANNE)=NRNEG=NNF;
by Lemma 3.6
FNECENARNG)=CNF;
by Lemma 3.4
enRXNG),=N,NG),=F..
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Applying the operations to (3,N\®).,, we obtain no new classes. For by
Lemmas 1.5 and 3.3

SNNRNG) (), =CNN,NG,
RNANRNG) () =RNRNB)=RNF;
by Lemmas 3.2, 3.5 and 3.6
BNTNG) () =F NNy NGy =FN RN B0y =F;
by Lemmas 3.2, 3.5 and 3.6
(R NE) 3ty = (R NG a),
RoNB®)ye =NNG),=F..

Applying the operations to (&N\N,NB)., we obtain no new classes.
For by Lemma 3.3

GNENARNG),)=NENRNE)=ENN,NG,
RNECNARNB)(,y=NNE@NRNNE)=NNS=NNF;
by Lemma 3.6
FNGCNARNG)((y=FNSyNRNG) () =F;
by Lemmas 3.2, 3.5 and 3.6
| GNRNB) =GN R NG,
(GNRN®) 0y =BNRNEG), =

Thus the theorem is completely proved.
We shall here ask whether or not the classes in the theorem are differ-
ent from each other.

ExampLE A. Let L be the 2-dimensional non-abelian Lie algebra, that
is, L=(«, y) with [x, y]=y. Then L does not belong to

NNF, RNy RwyNB,
but L belongs to
B> ENG, Blor Bor NGy (ENFodws
N.NG, SNNNG, (N, NGy, (BNNNS) (.

ExampLE B. Let L be a finite-dimensional semisimple Lie algebra over
a field @ of characteristic 0. Then L does not belong to
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BNg, NN, GNF., ENN.NS,
but L belongs to
%’ %(m), %w) (mm%)(w)’ (@m%w)(w)a SJa(m)/_\%’
RNG, (RNG) 0y, (BNNNG) (.

ExampLE C. Let 4=(ey, €1, e2,---) be an infinite-dimensional abelian Lie
algebra over a field @ of characteristic 0. Let x, ¥ and z be the following
linear transformations of A4:

X.e;—€i1 (l:Oa 1; 29)
y: eg—0, e;——ie; 3 (i=1,2,..)
z.e;—e; (l:0> 1, 2:)

Then [x, y]=z, [x, z]=[y, 2]J=0. Therefore («, y, z) is a nilpotent Lie al-
gebra over @. Let L be the semi-direct sum (see B. Hartley [3])):

L=A+(x, y, z).
Then L@ =L®=(0) and L°=L*= 4. Hence L does not belong to
B BNG, Feon
but L belongs to
s ENFar (GNFodyy NNG,
SNN.NG, R,NG) @y, (BNN,NSB) ).

ExampLe D. Let L be the following subalgebra of the Lie algebra in
Example C:

L=A+(z).
Then L@=L®=(0) and L*=L?=A4. Hence L belongs to
Bor ONFar (BNFo)oy
but L does not belong to
N.NG, BNARNNG, (R.NO) 0y, (BNANRNG)().

ExampLE E. Let L; be the 3-dimensional simple Lie algebra over a field
0 of characteristic 0 (i=1, 2,..-). Let L be the direct sum of all L;, Then L
does not belong to

N.NG,
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but L belongs to
(Sjamm@)(wb (@mgawm(&)(w)'

ExampLE F. Let A=(ey, ey, es,---) be an infinite-dimensional abelian Lie
algebra over a field @ of characteristic 0. Let x, y and z be the following
linear transformations of 4:

x:e;——e;, (i=0,1,2,...)
y: eg—0, e,——i(i—1)e; (i=1,2,...)
z: e;—2ie; (=0,1, 2,...).
Then (x, y, z) is the 3-dimensional simple Lie algebra over @ such that
[, 2]=2x, [y, z]=—2y, L%, y]=2
Now let L be the semi-direct sum:
L=A+(x, y, 2).
Then L does not belong to
& RNBs
but L belongs to
By RNF) oy

Finally we have no examples to show

%w#(@ /\%m)(w) and (%m N @)(w)?&(@ f\gém N @)(m).

§4. Coalescency of the classes obtaired in the preceding section

In this section we show three general theorems on coalescency of classes
of Lie algebras and also show the coalescency of the thirteen classes obtain-
ed in Theorem 3.7.

We begin with

TueoreM 4.1.  Let X be a class of Lie algebras over a field @ having the
property (P). If X is coalescent, then so are X,y and X,.

Proor. Assume that X is coalescent and that H, K si L and H, K € X, for
any Lie algebra L. Put J=<H, K>. By Lemma 1.6, H®<L and K<L
and therefore I=H“+K“ L. Hence (H+1)/I, (K+1)/IsiL/I. We
have

(H+1)/I~=H/(INH)>~(H/H®)/(INH)/H®)
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and H/H™ ¢X. Since X has the property (P), it follows that (H+1)/I¢X.
Similarly, (K+1)/I€¥%. Since X is coalescent,

J/I=<H/I,K/T> si L/I, €%.
Hence J si L. It is clear that I J“. Therefore
J/J@=J/D)/(J@/T).

Since J/I ¢ % and % has the property (P), it follows that J/J ¢ X, that is,
J€%,. Thus %, is coalescent.
The coalescency of X, is similarly proved.

TueorREM 4.2. Let X be a class of Lie algebras over a field @ contained in
N, and having the property (P). If X and NNX are coalescent, then so is SN
x.

Proor. Assume that ¥ and tNX are coalescent and that H, K si L,
€ @NX for an arbitrary Lie algebra L. Put J=<H,K>. Then JsilL,
€ X since ¥ is coalescent. By Lemma 1.6 I=H*+K“<]L. Hence (H+1)/I,
(K+I1)/Isi L/I. We have

(H+1)/I~H/(INH)~(H/H*/(INH)/H*

and H/H® € Nt since XcN,. It follows that (H+1)/I e N. Since X has the
property (P), it follows that (H+I)/I€%. Similarly, (K+1)/Ie¢RNX. We
now use the coalescency of MtN\X to see that J/Te "NX. Combining with the
fact that 1€ &, we see that Je¢&. Thus &@NX is coalescent, completing the
proof.

Turorem 4.3. Let X be a class of Lie algebras over a field @ having the
property (P). If X and NNZX are coalescent, then so is N,y X.

Proor. Assume that X and MtN\X are coalescent and that H, K si L, €
NHyNE for an arbitrary Lie algebra L. Then J=<H, K> si L, € X since X
is coalescent. Put I=H“+ K@, Then I<1L by Lemma 1.6. Hence (H+I)
/I, (K+1)/Isi L/I. We have

(H+1)/I~H/(INH)~(H/H™)/((INH)/H®)

and H/H® € N since He Ny It follows that (H+1)/IeN. Since He X
and ¥ has the property (P), it follows that (H+1)/I€%. Similarly (K+1)/
TeNNZ%. Since RNX is coalescent, J/ T e NRNX. But then J™c IcJ@ for
some n and therefore I=J“. It follows that Je N,y Thus N,NZX is coa-
lescent, completing the proof.

Now we are in a position to show the main theorem of Part I which con-
tains as part the results of B. Hartley [ 3, Theorems 2 and 5.
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TureorReM 4.4. If @ is of characteristic 0, then the thirteen classes

%s @f\%, mm%> %(w)’ %m
(%m%)(w), @m%m (gm%w)(w)a SR(m)/_\'(&)
RN, SNARNEG, (RNB)yy (ENIRNG)e,

are all coalescent.
If @ is of arbitrary characteristic, any classes containing 2, e.g. €, N, LS,
LN, are not coalescent.

Proor. (1) NG is coalescent by Theorem 2.1.

(2) Coalescency of % and N, NG: Assume that H, Ksi L and H, K€ R,
NG (resp. ) for an arbitrary Lie algebra L. Put J=<H, K>. We have
H°=H*QL and K°=K?‘<L by Lemma 1.6 and therefore I=H*+K*<L.
Hence we have (H+1)/1Isi L/1,(K+1)/Isi L/I. We also have

(H+I)/I~H/(INH)~(H/H?)/(INH)/H?) € RNG=NNG.
Similarly (K+1)/Ie€RNF. Since NNF is coalescent by (1),
J/I=<(H+1)/I, (K+1)/I>siL/I, € "RNG,.

Hence Jsi L. Since J/IeN, J*cIc]J for some m and therefore I=J°.
Hence J € N,NG. (resp. Since J/I and ey, we have Je€F.) Thus NNG
(resp. §§) is coalescent.

B F NN and N,NG have the property (P) by Lemma 3.6 and are
coalescent by the first part and Theorem 2.1. Hence by Theorem 4.1 F.), Fos
NRNY) @y and (N,NG),, are coalescent.

By Lemma 3.6 F< N, and § has the property (P). Since § and NNF are
coalescent, by Theorem 4.2 @N\§ is coalescent.

By Lemma 3.6 §, <N, and §, has the property (P). Since &, and "NF,
=NNG are coalescent, so is ENG, by Theorem 4.2. It follows from Lemma
3.6 and Theorem 4.1 that (&Ng,). is coalescent.

Since § has the property (P) and &, "G are coalescent, by Theorem 4.3
we see that 9, is coalescent.

N.NG has the property (P) by Lemma 3.6 and R, NS, ROAR,NGS)=NN
% are coalescent. Hence by Theorem 4.2 @R, NS is coalescent.

If follows from Lemma 3.6 and Theorem 4.1 that (8NN, NO),,, is coales-
cent.

(4) It has been shown by I. Stewart [10, Theorem 12.1] that there ex-
ists a Lie algebra L over an arbitrary field @ having the following properties:
1) L=V +J is the semi-direct sum with V<L and €¥; 2) J= < H, K> where
H, K<L, H, Ke¥, K is l-dimensional and H is infinite-dimensional; 38)
H 5-si L, K 5-si L; 4) J=1;(J), whence J is not a subideal of L. This
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example shows that any class containing 2 is not coalescent.

Thus the theorem is completely proved.

It should be noted that the assumption on the characteristic of @ is es-
sential in the first part of Theorem 4.4. If we drop it, the theorem does not
hold. In fact, the example 7.2 in [ 3] shows that if @ is not of characteristic
0, any class containing AN is not coalescent. Therefore any class of Theo-
rem 4.4 is not coalescent.

PART II. RADICALS

§5. Definitions

When we are concerned with a finite-dimensional Lie algebra L, we have
two kinds of radicals, the solvable radical and the nilpotent radical. Fur-
thermore, if we restrict the basic field @ to be of characteristic 0, it is known
[7] that the subalgebra generated by all the solvable (resp. nilpotent) sub-
ideals of L coincides with the solvable radical (resp. the nilpotent radical) of
L.

However, if we take off the restriction of finite-dimensionality, we are
in a different situation. As the Lie analogues of the radicals introduced in
[1, 4, 6] in the study of infinite groups, several radicals corresponding to the
nilpotent radical were introduced to a Lie algebra L over a field @ which is
not necessarily of finite dimension ((8, 107]). The Fitting radical v (L) is the
sum of all nilpotent ideals of L and the Hirsch-Plotkin radical o(L) is the
unique maximal locally nilpotent ideal of L. If @ is of characteristic 0, the
Baer radical B(L) is the subalgebra generated by all finite-dimensional nilpo-
tent subideals of L. If @ is of characteristic 0, v (L)< f(L)cp(L) and these
are different in general ([3, Section 7.1 and [10, Corollary to Theorem
12.17).

However, no study has been made in [3, 107] about the ideals which cor-
respond to the solvable radical of a finite-dimensional Lie algebra. Thus in
this part of the paper, we shall give the general definition of radicals which
correspond to the solvable radical of a finite-dimensional Lie algebra and
make use of the coalescent classes of Lie algebras found in Part I to intro-
duce the seven kinds of such locally solvable radicals. We shall furthermore
introduce one more locally nilpotent radical which together with v (L), 8 (L)
and p(L) reduces to the nilpotent radical in finite-dimensional case.

DerIniTION 5.1. Let X be a class of Lie algebras over a field ®. We call a
subideal (resp. ideal) of a Lie algebra L over @ an X subideal (resp. ideal) of
L if it belongs to X.

DEerFINITION 5.2. Let L be a Lie algebra over a field @ and let X be a class
of Lie algebras over @ such that
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CNFXCLS (resp. RNFSXSLN).

We call the sum of all the X ideals of L the X radical of L and denote it by
Rad;(L). We call the subalgebra of L generated by all the X subideals of L the
%-si radical of L and denote it by Rady_,;(L).

The existence of these radicals are known by Zorn’s lemma. According
to this definition, Rady(L)=y(L) and Radis(L)=p(L). If @ is of character-
istic 0, Radgng-.:(L)=F(L) and B. Hartley has shown that Radgy_,;(L) exists
and is equal to F(L) (see [10, Theorem 10.47]). Radi(L) for LeH and
Radz_ (L) for L e and @ of characteristic 0 reduce to the solvable or the
nilpotent radical of L.

§6. Characteristic ideals

Before we begin the discussion on radicals, in this section we shall
derive several general theorems connected with radicals from the results in
Part I. We shall show that if @ is of characteristic 0 and if % is any class
of Lie algebras stated in Theorem 4.4, then the subalgebra generated by all
¥ subideals (resp. ideals) of L is a characteristic ideal of L belonging to LX.

LemMma 6.1. Let % be a class of Lie algebras having the property (P). As-
sume that the sum of two X ideals of any Lie algebra is an X ideal. Then the
sum of two X,y (resp. X,) ideals of any Lie algebra is an %, (resp. X,) ideal.

Proor. Let H and K be X, ideals of a Lie algebra L. Then H®, K*
and (H+K)* are characteristic ideals of L. Hence H/H® and K/K*® are
¥ ideals of L/H” and L/K° respectively. (H+(H+K)*)/(H+K)* and (K+
(H+K)*)/(H+K)* are %X ideals of L/(H+K)*, since they are respectively
isomorphic to

(H/H*)/(HN(HA+K)*)/H?), (K/K*)/(KN(H+K)*)/K*)

and X has the property (P). By our assumption, it follows that (H+K)/
(H+K)* is an X ideal of L/(H+K)°. Hence H+K is an %, ideal of L.
The statement on %, is similarly proved.

Lemma 6.2. Let X be any one of the classes
&, & NG, RNFs By Bor RNF @)y ©NBor (BNBo) @)y
NRyNG, NoNG, SNAN,NG, NR,NO) (@), (GNNR,NG) (o).
Then the sum of two %X ideals of any Lie algebra L is an X ideal of L.

Proor. The statement is immediate for X=&, §, ©8Ng, "N, N, S. By
Lemmas 3.6 and 6.1, it holds for X=Fw), Fuy NN w)s Ny N, and therefore
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for @NG.y Ny NG, NoNG, SNN,NEG. It follows from Lemmas 3.6 and 6.1
that the statement holds for X=(€NF.)w) TS, ENN,NEG),), com-
pleting the proof.

TueoreM 6.3. (1) Let X be any one of the classes

@s [3}) @f\%, %f\%, %‘(w)a L’(}wa (%/\%)(m), @m%m (@m%w)(m)a
RG> NoNG, SNANNEG, (NNB) (o), (EBNI,NG),.

Let M be the sum of all the X ideals of any Lie algebra L. Then every finite
subset of M lies in an X ideal of L. Especially, M belongs to L¥.

(2) Let % be any one of the above classes except &. Let M be the subalgebra
generated by all the X subideals of any Lie algebra L. If @ isof characteristic
0, every finite subset of M lies in an X subideal of L. Especially, M belongs to
LX.

Proor. (1) Assume that x,,.--,x, € M. Then each ¥; belongs to the sum
of a finite number of X ideals of L. Hence < xi,...,x,> is contained in the
sum of a finite number of X ideals of L, which is an X ideal of L by Lemma
6.2.

(2) Assume that x,, ..., x, € M. Then each x; belongs to <x,y, ..., Kim, >
with x;; € N;;, where all NV;; are X subideals of L. Hence <xi,..., x,> < <Ny,
<oy Num,>. Since X is coalescent, <Ny, .-, Ny, > is an X subideal of L.

Thus the theorem is proved.

To show that the ideals and subalgebras generated respectively by all
the ¥ ideals and subideals of L in Theorem 6.3 are all characteristic ideals of
L, we first employ the method of constructing Lie algebras of formal power
series that B. Hartley used in [37].

Let L be a Lie algebra over a field @ of characteristic 0. Let @, be the

field of formal power series a= T:‘ a,t’, a, €0, and L, be the set of all formal

power series x = f x,t", x, € L. Ly is a Lie algebra over a field @, as follows:
For y: Zyuzv, :yv E L)

x+y=2(x,+ y)t’
Ex9 y]:sztya Z,= Z [xh yJ]

i+J=v
ax=u,t’, u,= ), a;x;.
i+i=v
For any D € (L), the automorphism exp(¢D) of L, is defined by
(L2 =Fw,e’, w= 3 x;D7/jl.
i+i=v

For M <L, we denote by M* the set of all elements x € L, with x, € M for all
y. Then we have
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Lemma 6.4. (1) If MAQN<L, then M*<{N*<L*=L,.

(2) If M"=(0), then M**=(0).

B) If M™=(0), then M*"=(0).

4) If M is finite-dimensional over @, then M* is finite-dimensional over
D,.

Proor. We can show by induction on n that M*™c M*™, (8) follows
from this. (1), (2) and (4) are proved in [ 3, Section 4.2].

For K,<L,, we denote by K} the set of all leading coefficients of ele-
ments of K,, together with 0. Then

Lemma 6.5. (1) If Ko<IM, <L, then K} <M} <Lj=L.
(2) If Kz=(0), then K}*=(0).
B) If K{=(0), then K};™ =(0).

Proor. We can show by induction on n that K} c K{®*. (8) follows
from this. (1) and (2) are proved in [ 3, Section 4.2]].

LemmA 6.6.  Let @ be of characteristic 0. Then every derivation of a Lie
algebra L maps any NNG subideal (resp. ideal) of L into an NRNF subideal
(resp. ideal) of L.

Proor. Let D be a derivation of L and put a=exp(¢tD).

(1) Let H be an NN subideal of L. Then by Lemma 6.4 H* is an NN
% subideal of L, and therefore so is H**. Since NNF is coalescent by Theo-
rem 4.4, it follows that Ko= < H?®, H**> is an RN\E subideal of L,. Putting
N=K}, we see by Lemma 6.5 that N is an 9 subideal of L. For any x € H,
x € H* and therefore x* € K,. Hence x*—x=txD+ - € K,. It follows that
xD € N. Therefore HDCN. As a finitely generated subalgebra of a nilpo-
tent algebra N, <HD> is an NN subideal of N and therefore of L.

(2) Let N be an NN ideal of L. By the first part (1), <ND> is an
NNG subideal of L. Since NNF is coalescent, M =N+ <ND> is an NNF
subideal of L. For any x € L,

[x, ND]c[x, N]D+[xD, NJSND+NcM.

Hence M is an ideal of L. Thus ND is contained in an NN ideal M of L.
This completes the proof.

LemMma 6.7. Let X be a coalescent class of Lie algebras having the property
(P). Assume that every derivation of any Lie algebra maps any X subideal
(resp. ideal) into an X subideal (resp. ideal). Then every derivation of any
Lie algebra L maps any %, subideal (resp. ideal) and any X, subideal (resp.
ideal) of L into an X, subideal (resp. ideal) and an X, subideal (resp. ideal)
of L respectively.

Proor. Let H be an %(w)‘subideal (resp. ideal) of L. Then H® is a char-
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acteristic ideal of L by Lemma 1.6. Hence H/H is an X subideal (resp.
ideal) of L/H and a derivation D of L induces a derivation of L/H“.
Therefore by assumption (HD+ H®)/H is contained in an ¥ subideal (resp.
ideal) K/H® of L/H®. PutJ=<H,K>. Then J/H® is an X subideal
(resp. ideal) of L/H™ since X is coalescent. Therefore J is a subideal (resp.
an ideal) of L. Since

J/](w) ~ (J/H(“’))/(J(“’)/H("'))

and ¥ has the property (P), we see that J/J“ € %X, that is, J € X,,. Thus HD
is contained in an %, subideal (resp. ideal) of L.
The statement for %, is similarly proved.

LemMA 6.8. Let X be a class of Lie algebras such that H € X if and only if
He, H/H® € X. Assume that NNZX is coalescent and every derivation of any
Lie algebra maps any NNX subideal (resp. ideal) into an NNX subideal (resp.
ideal). Then every derivation of any Lie algebra L maps any N,NX subideal
(resp. ideal) of L into an N,NX subideal (resp. ideal) of L.

The statement holds with N replaced by NNF and also with H*, N, replac-
ed by H(w), 9’3(,,,).

Proor. Let H be an N ,N% subideal (resp. ideal) of L. Since H® is a
characteristic ideal of L, H/H* is an "N\X subideal (resp. ideal) of L/H* and
every derivation D of L induces a derivation of L/H*. Hence (HD+ H*")/H*
is contained in an NNX subideal (resp. ideal) K/H® of L/H®. Put J=<H,
K>. Then J/H® is an NRNZX subideal (resp. ideal) of L/H® since NNX is
coalescent. Hence J is a subideal (resp. ideal) of L. Since J*< H* for some
n, it follows that jo=H". Since J° € X, we have J € ¥ by our assumption on
X. Thus Jis an N ,N% subideal (resp. ideal) of L containing HD.

The other parts are similarly proved.

TueorEM 6.9. Let L be a Lie algebra over a field @ of characteristic 0.
Let X be any one of the classes

(7}’ @/\%, 92/\%, %(w)’ %m (mm%)(m)s @m%m (@m%w)(w)’
RyNGs NoNG, SNAN,NG, (R.NB)wy, (GNNNG) (.

Then every derivation of L maps any X subideal (resp. ideal) of L into an X
subideal (resp. ideal) of L. Furthermore, it maps any S (resp. N) ideal of L
into an & (resp. N) ideal of L.

Proor. (1) The case X=NNF is proved in Lemma 6.6. It is evident that
¥, © and SNG satisfy the first assumption of Lemma 6.8. Since FcN,, SN
FN, and (RNF).,=F. by Lemmas 3.4 and 3.6, the cases X=F, NG, SNG.
and N,y of the theorem are immediate from Lemma 6.8.
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2) (=6"\N.NG: Let H be an ENN,NG subideal (resp. ideal) of L.
Then H/H® is an R"NF subideal (resp. ideal) of L/H* and every derivation D
of L induces a derivation of L/H°. Hence by (1) (HD+ H*)/H* is contained
in an NNF subideal (resp. ideal) K/H® of L/H®. Put J=<H, K>. Then
J/H® is an NG subideal (resp. ideal) of L/H® since NNF is coalescent.
Hence J is a subideal (resp. ideal) of L. It follows that Jj°=H°. Hence
JeN,. Since He S, H° ¢ S and therefore J € &. Since He & and K/H* € §, H
=<x1,--,%,> and K/H*=(y,+H®, ..., y,+H*) with y; € K. Then it follows
that J= <1, %m Y1, -+, ¥»>. Thus J is an NN, subideal (resp. ideal)
of L containing HD.

The case X=N,N& is similarly proved.

(8) The statement for the cases X=F.), Fos NNTw)y (ENFud@ys FaN
®) (), (€NN,NG)(,) now follows from (1) and (2) by Lemmas 3.6 and 6.7.

(4) Let D be a derivation of L and put a=exp(tD). Let H be an &
(resp. N) ideal of L. By Lemma 6.4 H* is an & (resp. N) ideal of L, and there-
fore so is H**. Put Ko=H*+H**. Then K, is an & (resp. N) ideal of L,.
Denote N=K}. It follows from Lemma 6.5 that N is an & (resp. N) ideal of
L. As in the first part of the proof of Lemma 6.6, for any x € H we have
xD € N. Therefore HD is contained in an & (resp. N) ideal N of L.

Thus the theorem is completely proved.

As an immediate consequence of Theorem 6.9 we have the following

THeOREM 6.10. Let L be a Lie algebra over a field & of characteristic 0.
Let X be any class of Lie algebras stated in the preceding theorem. Then the
subalgebra generated by all the X subideals (resp. ideals) of L and the sum of
all the & (resp. N) ideals of L are characteristic ideals of L.

We here note that the parts on 9N ideals, "N\ subideals and & subideals
of Theorems 6.9 and 6.10 are Theorem 1, Theorem 3 and its corollary, and
Theorem 5 in [3].

§7. Locally nilpotent radicals

We know three locally nilpotent radicals Rady(L), Rady~g_.:(L) and
Radip(L). For any class X such that RNF< XS LN, we have

Radygng(L) < Rads(L) € Radig(L)

and therefore Rad (L) is a locally nilpotent ideal of L. If @ is of character-
istic 0, for any class X such that "NFSX <N we have

Radg~g-si(L)=Radz_ (L) =Radg_:(L).

We shall here examine the properties of Radg~g(L).



Radicals of Infinite Dimensional Lie Algebras 199

Tueorem 7.1. Let L be a Lie algebra over a field @.

(1) Radgp~g(L) is the union of all the "N\ ideals of L.

(2) Radgp~g(L) s locally milpotent.

B) If @ is of characteristic 0, Radg~5(L) is a characteristic ideal of L.

Proor. (1) and (2) are consequences of Theorem 6.3 and (8) follows from
Theorem 6.10.

TueoreEM 7.2. Let L be a Lie algebra over a field @ of characteristic 0.
Then Radg~5(L) ts generally different from Radg(L), Radp~g_s:(L) and
Radng(L)

To see the theorem it suffices to show that Rady~z(L) need not equal
Radgy(L). We need the following

Lemma 7.3. Let L be the Lie algebra in Example C in Section 3. Then
(1) Ewvery mon-zero ideal of L contains A.
(2) There exist no non-zero F ideals of L.
(3) Ewvery & subideal of L is contained in A.
Proor. (1) Let N be a non-zero ideal of L. Then N contains a non-zero
element u= iaie;—i- bx+cy+dz.
i=0

In the case ) a;e;5~0, we may suppose a,=0. Since
i=0

1

[u, z)(ad )" =($aie)(ady) = nlases,

we have e, € N. It follows that e,=eo(adx)* € N. Therefore A< N.
In the case joa,.eizo, if 560, then [u, y]=bz. If ¢c=~0, then [u, x]=

—cz. If b=c=0,then d==0 and dz€ N. Thus in this case we have z € N.
It follows that e,=[e;, z]€ N. Therefore 4 N.

(2) is an immediate consequence of (1).

(8) Let H be a non-zero § subideal of L. Then H m-si L for some m.

Now assume that HZ 4. Then there exists a non-zero element u= Zn]a,-ei+
i=0
bx+cy+dzin H\ 4. If -0,

m+k—
ex@du)"=b"en o+ 3 fiei€ H, k=0,1,2, ...
i=0
Hence H¢ . 1f =0 and d=0,

k-1
ek(adu)m=d'”ek+ Z,'f,-e,- € H; ]CZO, ]., 2, e
i=0
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Therefore Ho A, whence H¢ . If b=d=0 and c=~0,
erim(@adu)”=(k+m)lc"e,/k!, £=0,1,2, ...,

whence H 2 4 and therefore H ¢ §. Thus in any case we have a contradic-
tion. Therefore we conclude that Hc 4.
Thus the proof of the lemma is completed.

Proor or THEOREM 7.2,

Let L be a Lie algebra in the above lemma. Then by the second part of
the lemma, Radg~3(L)=(0). By the first part of the lemma, Radg(L)2 4.
As a matter of fact, it is immediate that Rady(L)=4. The theorem is prov-
ed.

§8. Locally solvable radicals
In this section we shall study several locally solvable radicals.

Tueorem 8.1. Let L be a Lie algebra over a field @.  Then the radical
Radz(L) for each X of SNF, SN\N.NG, SNG, and & is the union of all the
% ideals of L. If @ is of characteristic 0, the radical Rad;_,;(L) for each X of
SN, SNN.NG and SNG, is the union of all the X subideals of L.

Proor. The statement follows from Theorem 6.3.
We have the following inclusion:

Rad@f\g(L) c Rad@nmm,—\@(L) - Rad@(\gm(L) c Rad@(L)
The relation follows from

Lemma 82. SNFSNANNG<CNF, <.

Proor. If LeN,NS, then L/L* e RNSCF by Lemma 1.5. Hence L¢
%o Therefore NN, NG <SNF,. The other parts are immediate.
When 0 is of characteristic 0, we have the following inclusion:

Radeng-«i(L) S Radenn,no-si(L) S Radeng, —si(L).

Turorem 8.3. Let L be a Lie algebra over a field O.

(1) The radical Radz(L) for each % of SNF, SN\N,NG, NG, aud S s
locally solvable. If @ is of characteristic 0, the radical Radz_,;(L) for each X
of NG, SN\N.NGS and NG, 1s locally solvable.

(2) If 0 1isof characteristic 0, the seven radicals of L stated in (1) are
characteristic ideals of L.

Proor. (1) is a special case of Theorem 6.3 and (2) follows from Theo-
rem 6.10.
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CoroLLARY 8.4. For any class X such that @NFcX<S Radz(L) is a
locally solvable ideal of L. If @ is of characteristic 0, for any class X such
that ENFX SN, Radz_ (L) s locally solvable.

We finally show the following

THEOREM 8.5. Let L be a Lie algebra over a field @ of characteristic 0.
Then the radicals

Rade~5(L), Radeqn,no(L), Radeng, (L), Rads(L),
Rad@f\%—si(L)a Rad@r\‘.ﬁwﬂ@—si(L)) Rad@f\%w—si(lf)
are different from each other in general.

Proor. (1) Let L be the Lie algebra in Example C in Section 3. By
Lemma 7.3 (2), only (0) is an ©N\g ideal of L. Hence Rads~z(L)=(0). Since
the @N\g subideals of L are the finite-dimensional subspaces of 4 by Lem-
ma 7.3 (8), we have Rads5_.:(L)=4. It is obvious that L& =(0) and L*=L3
=A. Hence L e @N\N,NG and therefore Rads n,~s(L)=L. Thus we have

Rad@mg}(L) 7& Rad@f\mwﬂ@(l’)
+ + I
Rad@f\;}_s,’(L) 7& Rad@nmwr\@—si(L)'

(2) Let L be the Lie algebra in Example F in Section 3. Then the &N
N.NG subideals of L are the finite-dimensional subspaces of 4. In fact, if
H is a finite-dimensional subspace of 4, then H<] A<]L and therefore H si L.
Conversely, let H# be an @"\N,N\S subideal of L. If HZ A, then (H+ A)/A
is a non-zero solvable subideal of L/ A4, which contradicts the fact that L/A4
is a three-dimensional simple algebra. Therefore HC 4. Since He ®, H is
a finite-dimensional subspace of 4. Thus we have Rade n,~¢-si(L)=4.

Next we see that only (0) is an @N\N,NG ideal of L. In fact, if H is
such an ideal, then H is a finite-dimensional subspace of 4. If H+~(0), H

contains u= Z":a;ei with a,=~0, and it follows that
i=0

u(adx)k=i'a,-e,~+k €eH k=0,1,2, ...
i=o

This shows that H ¢ §, which is a contradiction. Hence H=(0). Therefore
we have Radenn,~o(L)=(0). Thus

Rad@rm,,,n@i(L) #+ Radena,no-si(L).

(8) Let L be the Lie algebra in Example D in Section 8. Then the &N
N.NG subideals and the SN, NG ideals of L are both the finite-dimensional
subspaces of 4. In fact, it is immediate that any finite-dimensional subspace
of 4 is an @N\N,NG ideal of L. So conversely let H be an SN\RN,NS sub-
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ideal of L. If HZ A, then there exists u= Y a;e; +bz with b=0in H. Hn
-si L for some n. It follows that

ei(adu)"=b"e; € H i=0,1,2, ...

and therefore H 2 4, which contradicts He &. Therefore HC A. Since He ®,
H is a finite-dimensional subspace of 4. Thus

Radeng,no(L) =Rade g, ne-i(L) = 4.

Furthermore, L*=L*= 4 and therefore Le@&N g, Hence we have
Radeng,(L)=L. Thus we have

Radenn,~s(L) #+ Radeng,(L)

I =+ I
Rad@nifiwm@f q(L) #+ Rad@f\?}m—si(l‘)'

(4) Let L be the subalgebra 4+ (x) of the Lie algebra given in Example
Cin Section 3. Then the @N\g, subideals of L are the finite-dimensional sub-
spaces of 4. In fact, it is immediate that a finite-dimensional subspace of 4
is an @Ng, subideal of L. Conversely, let H be an &N, subideal of L.
H n-si L for some n. If HZ A, H contains u=7) aje;+bx with 6£0. It
follows that

e;(adu)’=b"e,,; € H, i=0,1, 2, ....

Hence Ho (e, €ni1,---). Since L°=(0), H*=(0). It follows that H ¢ ., which
is a contradiction. Therefore H< A. Since H € §,, it follows that H is a
finite-dimensional subspace of 4. Thus Radeng,-si(L)=4.

It is immediate that only (0) is an &, ideal of L. Therefore Radeg, (L)
=(0). Since Radg(L)=L, we have

Radeny, (L)  #+ Rads(L)
&

4
Rad@ngm_ s,’(L).

Thus the theorem is completely proved.
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