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1. Introduction

Let G be a connected semi-simple Lie group with finite center, and g0 its
Lie algebra. Let go = ϊo + Po be a Cartan decomposition of g0 fixed through-
out. Let α.o be a maximal abelian subspace of p0, and let g, f, p and α denote
complexifications of g0, ϊo, po and σ0 respectively. Let A be the restricted
root system of g with respect to α. As an element of A takes real values on
α0, the set Λ can be regarded as a subset of αί = Homfl(α0, R). We fix a
lexicographical order in af

0 and let Λ+ be the set of all positive roots in A.
For each a e Λ, we define the root space gα by

8

α = {Jf eg; [ # , X ] = α(i7)Xfor every # e α } .

For the later use, we put p = ~^r Σ (dhncgα)α:. And we define nilpotent sub-

algebras π of g and π0 of g0 by

Then go = ϊo + cto + Πo ^s a n I w a s a w a decomposition of g0. If K, A+ and TV
denote subgroups of G generated by ϊ0, α0 and π0, G=KA+N gives an Iwasawa
decomposition of G. Let M be the centralizer of α0 in K and m0 the sub-
algebra of g0 corresponding to M. We define the subgroup B of G by B =
MA+N. The irreducibility of the representation of the group G induced
from a finite-dimensional irreducible representation ξ of B has long been
studied. First Bruhat [1] proved sufficient conditions for the irreducibility
of such representations using an analytic method. In certain algebraic way,
necessary and sufficient conditions have been given; (1) by Parthasarathy,
Ranga Rao and Varadarajan [7J in case that G is a complex semi-simple Lie
group and ζ is trivial on M (2) by Zelobenko [3] in case of complex semi-
simple Lie groups, and recently (3) by Kostant [4] in case that G is a real
semi-simple Lie group and ζ is trivial on M. We shall attempt here an ex-
tension of the Kostant's method.

Let λ = (ε, μ) be a pair of a character ε of M and an element μ e α' =
Homc(α, C), and we define the character ξx of B by
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where me M, Hea0 and n e K Let Z ( λ ) be the space of all C-valued real
analytic functions f on G such that f(xb) = ξx(b~1)f(χ) for every x e G and
b e B. We define a G-module structure πx on Z ( λ ) by setting (π\χ)f)(y) =
f(x~ιy)ίoτ x, yeG and /eX ( λ ) . The representation πλ determines the
infinitesimal representation π% of g0 on X(λ), which can be extended to the
representation of the universal enveloping algebra U=U(g) of g. For the
sake of simplicity we write xf and uf instead of πλ(x)f and n\(u)f, where
x e G, u e U and / e X(λ). Let Xλ be the subspace of X(λ) consisting of all
/ e Z ( λ ) which are X-finite. The space Xλ is not G-stable, but it is stable
under iΓ-action and U-action, and so the space Xλ has a structure of K-
module and [/-module.

Now we suppose that the X-module Xx admits a one-dimensional K-
invariant subspace throughout this paper, and we consider the irreducibility
of (7Γλ, X(λ)) under this assumption. Our method relies heavily on the way
of Kostant's constructions [4Γ\. Our results, however, not only give infor-
mations about the irreducibility of representations, but also make it possible
to find out irreducible components of reducible representations in special
cases. As an example, we shall describe in this paper how the representa-
tions of the discrete series of a real 2x2 unimodular group can be obtained
as sub-representations from reducible ones.

The author should like to express his hearty thanks to Professor K.
Okamoto for his kind advice and to Professor H. Ozeki for much encourage-
ment.

2. Some ideals in the universal enveloping algebra

By the assumption mentioned in 1, we can find a non-zero vector / λ e Xx

and a unitary character β of K such that

kfλ=σ(k)fx for every keK.

The representation σ of K defines the infinitesimal representation σ* of the
Lie algebra f. For each Xe ϊ0 and x e G, we have

Hence X/λ=σ*(X)/λ for every Xeΐ0.

Thus we have X/λ=σ* (X)/λ for every X e ΐ.
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Define the subspaces ϊ and ϊ of U by

And we define a left-ideal 8 λ in U by

then ϊ is a subspace of Sλ and the U-submodule U / λ of Xλ is isomorphic to
the U-module U/8λ.

Let U(α) be the universal enveloping algebra of α, which can be regarded
as an associative subalgebra of U. For every well, there exists a unique

pu e U(α) such that u— pu e !U + Un, where ill denotes the subspace of U gene-

rated by {uv; u e ϊ, v e U} and the same for Uπ. Let u->u* denote the linear

anti-automorphism of the associative algebra U determined by the following

conditions:

(1) X'=-X if

(2) {uυ)t = vtut f o r u,υeU.

And for each u e U, let pu e U(α) be the polynomial function on a! given by
pu(o)—put(~υ) where υ 6 a'.

DEFINITION : Let Z be a U-module. A non-zero vector η e Z is called α
highest weight vector if ?y is an eigenvector for every Xe α+rt.

Note. Let Z be a U-module. Then a non-zero vector -η e Z is a highest
weight vector if and only if (i) η is an eigenvector for every He a and (ii)
X^ = 0 for everyXe π.

The above Note follows easily from [a, rf] = n. A highest weight vector
7j e Z determines an element υ of a\ called the weight of η, by H--η = υ(H)η,
where jy e α.

For a U-module Z, let Z' denote its dual vector space. We define a U-
module structure on Z' by <z, uzf> = < ufz^ z> for every u e U5 * e Z and
/ e Z\ where <, > denotes the canonical pairing of Z and Z\ The space
Z1 equipped with this U-module structure is called the U-module dual to Z.

LEMMA 1. Let Z be a U-module and Z' the U-module dual to Z. We as-
sume that (i) there exists a non-zero vector φ e Z such that uφ = 0 for every
u 6 ϊ and that (ii) there exists a highest weight vector η 6 Zr of the weight
— βea\ Then we have

<uψ, τ/>=pu(β)<ψ, τj> for ueU.

PROOF. The vector space U can be decomposed directly in the form
U = U(α)φ(UΪ + πU), and the corresponding projection U-^U(α) is given by
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u-+p*ut. Thus each well can be written in the form:

where ux e UΪ and u2 e πU. By the conditions on φ and rj, we have

put7j +U

t

27J> = <φ, put7] >

p>. Q.E.D.

DEFINITION. A complex vector space Z is called a (K, U)-module if it is
both a ^-module and a U-module and if k(uz) = (ku)>(kz) for every keK,
ueU and z e Z.

Note. X λ is a (K, U)-module.

Let Z be a (X, U)-module and Z' its dual vector space. We define a in-
action on Zr by O , &/> = <k~ιz, z> for ke K, z€ Z and zr e Zf. Then the
space Zr becomes a (X", U)-module with this ^-module structure and the dual
U-module structure, which is called the (K9 U)-module dual to Z.

DEFINITION. Let Z be a (K, U)-module and Z the (K, U)-module dual to
Z. A non-zero vector -q e Z is called a K-effective highest weight vector if (i)
7] is a highest weight vector of the U-module Z' and if (ii) K-η is non-
singularly paired to Z, i.e., if only the zero vector in Z is orthogonal to K TJ.

LEMMA 2. Let Z be a (K, U)-module and Z the (K, VL)-module dual to Z.
We assume that (i) there exists a non-zero vector φ e Z such that kφ = σ(k)φ for
every ke K and that (ii) there exists a K-effective highest weight vector η e Zt

of a weight —juea\ Then we have the following:

(1)

(2) For each u e l l , the following conditions (A) and (B) are equivalent:

( (A) B 0 = O.

( (B) pv(ju) = 0 for every element v in the K-submodule of U gene-
rated by u.

PROOF. (1) By the ^-effectiveness of ηy we have

<K φ, τj> = <φ,K.v>φ{0}.

By the condition (i), we have
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Thus we have <φ, τj> φO.
(2) First suppose (A). It is sufficient to show pku(β) = 0 for every

ke K. By Lemma 1, we have

pku(β)<φ, η> = <(ku)φ, 7j> = <k(u.k-ιψ\ 7]

=σ(k-1)<k(uψ),τ/>=0.

Since <0, τ/> φO, we have pku(β) = 0.

Next suppose (B). Applying Lemma 1 to k u, we have

<(ku)φ, y>=pku(β)<φ, 7>=0.

On the otherhand,

<(ku)φ, 7]> = <k(u-k-^\ 7]>=σ(k-1)<k(uψ\

Hence σ{k~ι)<uφ, k~1η>=0 for every k e K.

Since σ(k~ι)Φ§, we have <uφ, K τ/>=0. Therefore, by the ^-effectiveness
of 7], we have uφ = 0. Q.E.D.

We shall apply the above lemmas to the (K, U)-module Z λ . Define the
element δ e (Xλ)' by </, δ>=f(e) where / e l λ , and e is the identity ele-
ment of G.

LEMMA 3. d is α K-effective highest weight vector of Xx of the weight
— β.

PROOF. For every He α0 and / e Xλ, we have

Therefore Hδ=-β(H)δ for every Heα0.

Hence Hδ = - β(H)δ for every Heα.

The same calculation as above as to X 6 rt0 shows us that

Xδ = 0 for every J e n .

Thus δ is a highest weight vector of the weight — β. Suppose that </,
K δ> = {0} for some / e l λ . Then we have f\K=0 by the definition of δ.
By the condition of / e X\ we have / = 0. Thus δ is ineffective. Q. E. D.
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Let Uκ be the subalgebra of U consisting of all infixed elements in U.

Let dk denote the Haar measure on K normalized by \ dk = l. For each

ueVL, define an element u0 e Uκ by uo=\ kudk. We put &x={u— pu(β)\
J K

ueUκ} and define left ideals 8 Γ n and 8fax in U by the following:

S λ

m a x={u <r U; jp
(ΓM)o(^) = O for every veU}.

PROPOSITION 4. 1) S S ^ C S x C S ? "

2) For a proper left ideal g m U 5 8 Γ i n C 8 implies SC£j?a x.

PROOF. 1) For u e Uκ, and ke K,

<tu-puQί)lfx, k-ιδ> = <k{lu-P\β)^fx\ d>

=σ(k)<£u-P

u(ji)lfx,δ>

= 0

where we have used Lemma 1 and Lemma 3. Thus

Owing to the ̂ -effectiveness of ί, we have \jι— pu(ju>y]f\ = O, which
implies that KλCSλ Thus S^ i n CS is proved.

Next we shall prove that SλCSχ l a x. For every u e 8 λ and v e U,

p(vuh(β)<fx, δ> = <(vu)ofχ, δ>

= <\ k(vu)dk-fx,δ>

J K

= 0.

Thus we have p(vu)o(β) = O for every u e Sλ and v e II, owing to Lemma 2 (1).

Hence u e Sj*ax.

Therefore SxCSx1^.

2) Let us assume that the assertion does not hold, i.e., we assume that
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there exists a proper left ideal S in U such that Sj?inC8 and S^Sfax. Then
we can find H e S and n i l suth that p(vu)o(μ)ΦO. Since S is a left-ideal in
U, the element vu belongs to 8, and so we can find u e S such that pu°(ju)φ0.
First we shall prove that X>SC& For every Xe ϊ and v e 8, we have

since UΪC8. Therefore expX SCS for every Xe ϊ. As the subgroup K of
G is connected, it follows that K £C%

This implies that u0 e 2, since &0= \ &&ίtt and u e S.
)κ

On the other hand, by the definition of Eλ, we have

Thus we have /?M°(A) ̂  S
Now our assumption "pUo(β)ΦO" implies that S contains a non-zero scalar
element, which contradicts the fact that 8 is a "proper" left ideal of U.

Q.E.D.

PROPOSITION 5. Sfax is a maximal left ideal in U.

PROOF. This follows immediately from Proposition 4 (2). Q.E.D.

Let Zλ denote the quotient U-module U/2fax. For every ke K, uβ Sj?ax

and v e U, we have

by the definition of 8fax. Therefore ku e Sfax. Thus we have proved that
8xlax is J^-invariant. And so the U-module Zλ admits the canonical î -module
structure, and Zλ is a (K, U)-module.

Proposition 4 and Proposition 5 imply that "U/λ is an irreducible U-
module if and only if 8 λ =S^ a x . "

3. ^-module structures on Xλ

In this section we shall replace the iΓ-module structure on Xλ by a
suitable one.

Let h be a C-valued real analytic function on G such that (1) h \ K=fx \ K
and (2) h(kan)=h(k) for every k e K, α e A+, and n e N. We note that the
function h does not take the value 0 anywhere.

Let Λ0 = (l, β) be the pair of the trivial character 1 of M and element
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β € α'. Using λ0, we define π\ X(λo), Xλ° in the same way as we have defined
ones as to λ. For each f e Xλ°, hf is contained in Xλ, and /->λ/ defines a
linear isomorphism A of Xλ° onto Xλ.

For every k e K and / e l , we put τ(k)f=σ(k~1)kf. "r" determines a
"new" X-module structure on Xλ which we shall call the r(X)-module struc-
ture on X\ We note that the U-module Xλ with this r(2O-module structure
is still a (K, U)-module, which we shall sometimes refer to the (r(X), U)-
module.

LEMMA 6. The mapping A is a K-isomorphism χ K-action
of Xλ° onto the τ(K)-module Xλ, i.e., the following
diagram is commutative. A

PROOF. For every k e K and / e X\ we have Xx τ^κ>aGt%on

>

τ(k)Af=σ(k-1)k(Af)=σ(k~1)k(hf)

=σ(k-1)kh-kf=h-kf

= A(kf). Q.E.D.

LEMMA 7. The projection U->ΊI / λ is a K- γ. K-action^ γ.
homomorphism of U onto the v(K)-submodule ι i
H /x of X\ i.e., the following diagram is com- projection projection
mutative. I τ(K)-action \Ί -

u / λ > u / λ

PROOF. For every k e K and u e U, we have

=σ(k-1)k(ufλ) = τ(k)(ufλ). Q. E. D.

Note. Lemma 7 implies that the (r(X), U)-module U / λ is isomorphic to
the (K, tt)-module U/Sλ.

4. Some preparation from Kostant-Rallis Q5J, [62 and its application

The space p admits the canonical X-module structure. Let pf denote the
^-module dual to p, and let S=S(ρ) and S' = S(p') denote the symmetric
algebras over p and pr respectively. These algebras carry the iΓ-module
structures extended from ones on p and pr. The algebra Sr may be regarded
as the polynomial ring on p, while the algebra 5 may be regarded as the
ring of differential operators on Sf with constant coefficients. Define sub-
spaces / and /+ of 5 by

J={xe S; kx = χ for every k e K}
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J+ = {χ 6 /; the constant part of x is zero}

=Jr\ΣSi

ί = l

where S* is the subspace of 5 consisting of all homogeneous elements of the
degree i. And we define the subspace H' of Sr by

Hr = {fe Sf; xf=0 for every x a /+}.

The Killing form B of g determines the ^-module isomorphism of pf onto p,
which can be extended to the ^-module isomorphism of 5' onto 5. The
image of H' under this isomorphism we denote by H. The spaces H and /
are iC-submodules of 5, and so one can make up the J^-module H(g> J. The
mapping of H<g)J to 5 defined by Σ / z 0 gi^Σfigi is a ^-module homomor-

i i

phism, where /,- e H and g{ e /.

LEMMA 8. 5=i7(g)/.
PROOF. This is a result of Kostant-Rallis [5]. But we deal with a

slightly different situation, and so we need some remarks. First we put

Gc = Int g=the group of inner automorphisms of g

G = {geGc; g(QO)CQo}

Go = the identity component of G

Kθ=Kc

θίλG

K=the identity component of Kθ.

Then, as is well known, one has

Go = Intgo=the group of inner automorphisms of g0

κ=κθr\G0.

Further one can see easily that G/Z^G0 and K/Z^K, where Z denotes the
center of G.

Since the group G acts on g as the adjoint representation, we have

J={χ € S; kx = x for every k e K}.

Let / denote the space of all Kg-fixed vectors in 5, i.e.,

J={x e S; kx = x for every k e Kc

θ}
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and we define H in the same way as H by using /. Then the theorem of
Kostant-Rallis [βΓ\ shows us that

Some considerations added in the process of proving the Kostant-Rallis'
theorem lead us to / - /.(*}

Therefore H=H

Thus we have S=H<g)J Q.E.D.

Let S(g) denote the symmetric algebra of g. Then, as is well known,
there exists a unique linear isomorphism β of 5(g) onto VL such that (1)
β(Xk) = (β(X))k for every X € g and (2) (with the obvious identification) β is
the identity map on g. This mapping β is called the symmetrization and
has the following property: if Xl9 ..., Xn are elements of g, then

β(Xl >Xn)= j- Σ Xσ(iy Xσ(n)

where Sn denotes the permutation group of ^-numbers {1, , n}.
We set / * = /?(/) and H* = β(H). The spaces / * and # * are K-sub-

modules of U, since β is a K-homomorphism.

LEMMA 9. U=UΪ + ϋf*/*.

Proof. For each non-negative integer n, let IT be the set of all ele-
ments in U whose degrees are equal to or smaller than n. We shall prove
by induction on n that Un is contained in UΪ+i/*/*. This is obvious if
n = 0, since subspaces H* and / * of U contain non-zero scalar elements of U.
Now let us assume that Uw~1CUΪ+JίΓ*/*.

Let ueVLn be an element of the form u = β(Xχ Xn)9 where Xu...,Xn

are elements of g. As β is a degree-preserving linear isomorphism of S(Q)
onto U, the fact UnCViί + H*J* follows if we prove that the above u belongs
to the space Uf+ # * / * .

The element u is written in the form

j Σ X(i)Xτ(«)

We shall prove u eUΪ + H*J* in case that (1) some of X/s (l<^'<Jrc) are
contained in ϊ or that (2) {Xu ..., Xn} is a subset of p. Although (1) and (2)
don't cover all the possible cases, these 2-cases are sufficient as one can see
easily.

(1) We assume Xp e ϊ, and rewrite each term Xσ{ιy..Xσ{n) in the expan-

(*) This remark is due to Mr. Sakane.
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sion of u in the following way:

Since Xσ{l)Xσ{2y..Xp...Xσ{n)(Xp-σ*(Xp)) eVd and IT^CUΪ+tf*/* by the in-
ductive assumption, it follows that

therefore ueUt + H*J*.
(2) The element Xλ...Xn e S(p) = H<g)J can be decomposed into the

form:

m

Xl Xn= Σ uivi

we have

U=

(mod IP-1).

m ^

Since Σ β(m)β(vi) e ίΓ*/* and IΓ^CUI + ff*/* by the inductive assumption,
l

ί = l

the element u is in UΪ+ #*/* . Q.E.D.

PROPOSITION 10. The projection u-^u fx induces a K-homomorphism of
H* onto the τ(K)-module U /λ, that is,

PROOF. By Lemma 9, it is sufficient to prove that (1) ufx = 0 if u e ϊ, (2)

Assertions (1) and (3) are obvious by the definitions of ϊ and #*, so we
shall prove the assertion (2). First we note that the subspace V of Xx con-
sisting of all elements / e l λ such that kf=σ(k)f for every k e K is one-
dimensional, since each fe V is entirely determined by /(e). Therefore

V={cfλ;ctC}.

Let u be an arbitrary element of /*. Then for every k e K,

since u eUκ and by the definition of fλ.
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Hence ufλ e V.

Therefore ufx = cfx for some c e C.

Thus the assertion (2) holds since CC/*. Q.E.D.

5. Irreducibility theorem

Let Γ be the set of all equivalence classes of irreducible K-modules
which admit non-zero M-fixed vectors, and, for each γ e Γ, let VΊ be a K-
module in the class γ. If γ e Γ, then f will denote the class of ^-modules
contragredient to VΊ. Let l(γ) — dim F^=the dimension of the subspace of
VΎ consisting of all M-fixed vectors in VΎ. Then the multiplicity of γ in the
i£-module Xλ° is equal to l{γ) by Frobenius' reciprocity theorem. The re-
sults in Kostant-Rallis [6] and the same remark as in the proof of Lemma 8
lead us to the assertion that the ^-module Zλ° is isomorphic to H*. Hence
the r(X)-module Xx is also isomorphic to the î -module H*, and the multi-
plicities of r in H* and in the r(X>module Xx are both equal to l(γ). Let
iί* denote the isotypic component of £Γ* of type r, that is, H% is the sum of
all K-submodules of H* which are isomorphic to Fγ, and let Xj denote that
of Xx of type γ. Then H* and Xλ decompose directly in the following
form:

XX=ΘXX

Ύ

where both H% and Xx are isomorphic to a direct sum of /(r)-copies of the
K-module VΊ.

Our main purpose is to study the U-module structure of Xλ with the
help of the r(iQ-module structure of X\ Since the (r(iQ, U)-submodule
U / λ of Xx is isomorphic to the (X, U)-module U/Sλ, the multiplicity of γ in
U/8λ is equal to or smaller than l(γ) for each γ e Γ. Moreover as the
canonical projection U/Sλ->Zλ=U/2λ

nax is a surjective i^-homomorphism, the
multiplicity of γ in U/Sfax is not larger than that of U/Sλ. Therefore we
have the following inequality:

the multiplicity of γ in Zx<^l(γ) for each γ e Γ.

Now consider the following diagram,
where notations " = " and " c_>" denote a
(K, U)-module isomorphism and a (τ(K\ homomorphism)
U)-module inclusion respectively. If the
multiplicity of γ in Zx is equal to l(γ) for Zλ=U/Sλ

n a x
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every γ e Γ, then every mapping in the above diagram must be a ^-module
isomorphism, which means in turn a U-module isomorphism since each of
them is a (K, U)-homomorphism. Hence the U-module Xλ is isomorphic to
the irreducible U-module Z λ , and so Xλ is an irreducible U-module.

Conversely, if the U-module Xλ is irreducible, every mapping in the
above becomes a U-isomorphism, which is, at the same time, a X-module
isomorphism. Therefore the multiplicity of γ in Zx is equal to l(γ) for
every γ e Γ. Thus we have proved the following theorem:

THEOREM 11. The U-module Xx is irreducible if and only if the multi-
plicity of γ in Zλ is equal to l(γ) for every γ e Γ.

In the following we shall give formulae for the multiplicities of γ in
U / λ and Z λ , which are a key to determine the U-module structure of Xλ.

For / e Γ, we put

=the space of all X-homomorphisms of VΎ into

where γ' denotes the class of X-modules contragredient to VΊ. The if-module
VΊ> may be identified with the dual i^-module (K9 Vf

Ύ) whose vector space is
the dual space of VΊ and the inaction on which is contragredient to that on
VΎ. Let d(j) denote the dimension of VΎ, which is equal to that of V'Ί. Let
ivj}ι^j^d(Ύ) be a basis of F 7, and {vj}i^j^d(7) its dual basis. Define the bi-
linear mapping of EΎ> x EΎ to U by

y=i

where φ' e EΊ* and φ e EΊ.

LEMMA 12. (1) The mapping Z does not depend on the choice of a basis

(2) Image of Z is contained in Uκ.

PROOF. The first assertion (1) is an easy exercise of the linear algebra.
As the i^-module V'Ί is contragredient to VΎ9 {kvj}ι^j^d(Ύ) forms the dual
basis of {kvj}i^j&d(>Y) for each k e K. And so, using (1), we have

d(7) d(Ύ)

ΣΦ'(kv'j)φ(.kvj)= ΣΦ'(v'j)φ(vj)

Therefore
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kZ(φ'9φ)=Σkφ'(v'j)-kφ(v3)
7 = 1

= ΣΦ'(kυ'J)φ(kυ))

d(Ύ)

= Z(φ\φ). Q.E.D.

LEMMA 13. Let γ e Γ and φe EΎ be fixed. Then φ(VΎ) CSfa x holds if and
only ifpZiφ''φ)(ju) = O for every φf € Er.

PROOF. First we assume that φ(VΎ) CSf a x Since £fax is a left-ideal in
U, φ(VΎ)C%\™ implies that Z(0', 0)CSfax for every φ' e £>. Hence by the
definition of 8^ax and by Lemma 12 (2), it follows that pZ(V'φ\ju) = 0 for
every φί e Er.

Next we assume that φ(VΎ) ζS?ax. Then any non-zero element u e
is not contained in S^a x since φ(VΎ) is X^-irreducible and £χ*x is ^-stable.
By definition of Sfax, there exists veU which satisfies p(vu)o(ju)φθ. In the
following, we use some notations which will be introduced in 6. Since the
projection #*-^U/£_! x

2 /> is surjective and the space H* is stable under s-
operation, U can be decomposed in the form of U=^Γ* + (S!?|X2/>)S. Using
Lemma 19 in 7, we obtain

p =/v/^K- β + 2p) = p ^ s \ - β + 2p) = 0,

for every i/ e (8^x

r2/,)5. So we can assume that the above v eU belongs to
the space H*. The r'-component vy> of v can be written as follows:

vr=d(r')[ Ίc^(k) kvdk=d(r)[ xΎ(k-ι) kvdk,
J K j K

where χ7(resp. %7/) denotes the character of /(resp. γ'). Then we have

This implies that pLH*r"φ(Vr)lo(μ)=/= {0}, and one can find ^ e EΊ> which satisfies
pίφ'iVr')φiVrΏo(/ji)ΦO. Now we define an endomorphism/of VΊ* as follows:

</(*)> J > =jσι:φ/(x)φ(j'):io(/ί) for every x e Vr and j e Γy.

It is easy to prove that / is a X-homomorphism and the image of / is not
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{0}. Since Vr is ^-irreducible, there exists a e C— {0} satisfying f(x)=ax
for every x e Vr. Thus we obtain

Σ < υ'i9

=ccd(r)φθ. Q.E.D.

Both dimensions of EΎ and EΊ* are equal to l(χ). Let {^ }i^y^/(7) and
be bases of EΎ and £> respectively. We set PΎ

ij=pφJ(Vί) for
l ^ ^ K r ) and RΎ

ij=pZ(φlφ^) for l ^ ί ^ Z ( r ) , l = w ^ K r ) . We.
define matrices Pγ(/ί) and R7(λ) by Pγ(/t) = (Pϊy(A)) and ΛiyU) = (lϊ?y(/ί)). We
note that, for a different choice of bases of EΎ and i v , the matrices P7(λ)
and i?7(λ) are replaced by P7(λ)B and ARΎ(λ)B where A and 5 are invertible
l(γ) x /(j)-matrices with coefficients in C. Thus ranks of these matrices are
determined independent of the choice of bases of EΎ and Er.

THEOREM 14. For each γ e Γ, we have
(1) the multiplicity of γ in VL fx = rank of PΎ(γ)
(2) the multiplicity of γ in Zλ= rank of RΎ(λ).

PROOF. (1) We put

s=the multiplicity of γ in U / λ .

As the rank of the matrix PΎ(λ) is independent of the choice of a basis of
EΎy we select the basis {φι, ..., φi(7)} of EΎ such that X-submodules φi(VΎ), ,
φs(VΎ) are mapped isomorphically into U / λ and φs+ι(VΎ), •• 5 ^ ( T ) ( F 7 ) fall
into the null-space under the projection H*->U-fλ. With such a selection of

h o n e has

φj(υdfx = 0 if 1 ^ ί ^ d ( r ) and 5 + l ^ y ^ Z

Using Lemma 1 and Lemma 2, one has

pΦΛ'i)(jι) = 0 if l<,i<:d(r) and s + l^j

Hence the rank of PΎ(λ)<Ls.

To prove the equality, we shall prove that vectors {xu ..., Λ;S} are linear-
ly independent, where x/s are defined by

xj= for

Let αi, ..., α5 be such scalars that Y1ajxj=Q. If we set φ= Σi^iΦi £ Ey> then
j=\ ί=l

we havepφ(z;ί)(A) = 0 for every i. Using Lemma 2 (2), we have
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φ(v)fλ = O for every v e VΊ.

Hence Σ ajΦj(v)f\ = O for every v e VΊ.
y=i

On the other hand, {φj(vi)fλ; l^i^d(r), l<^/<^} form a basis of U / λ

by the choice of {φj}. Therefore we have au , αs = 0.
(2) Let t be the multiplicity of γ in Z \ As the rank of the matrix

R7(λ) is independent of the choice of a basis of EΎ, we select the basis
{0i, •• ,0/(7)} of EΎ such that Z-modules φi(VΎ), •• ,0*(J7

7) are mapped iso-
morphically into Z λ and φt+i(VΎ), ••-, Φi(Ύ)(VΎ) fall into the null-space under
the projection # * - » Z λ . With such a selection of {φj}, one has φj(VΎ)C^ίX

if t + l<Lj<,l(γ). By Lemma 13, one has R7

ij(/i) = 0 for 1<^'<IK)O a n d
ί + l ^ y ^ Z ( r ) . Hence

the rank of RΎ(λ)<:t.

To prove the equality, we shall prove that vectors {ji, •••, yt} are linear-
ly independent, where y/s are defined by

( RΎ ( nΛ \ ί -nz^> $i)( /Λ \

for 1 ^ / ^ ί . Let au , at be such scalars that Σ«yry = 0. If we set 0 =

t

Σ^jΦj^Ery, then pZ(φί)ψ)(/*) = 0 for every ί. Hence ^(F^CSλ 1 ^, by using

Lemma 13. This means that the image of φ(VΎ) is equal to zero under the
projection H*-+Zx. On the other hand, each X-module φj(VΎ) is i^-isomor-
phic to its image in Z λ for l<>j^t. Therefore we have au ••, at = 0.

Q.E.D.

Combining Theorem 11 and Theorem 14, we have the following:

COROLLARY 15. 1) The U-module Xx is irreducible if and only if the
matrix RΎ(λ) is regular for every γ 6 Γ.

2) The U-module U / λ is irreducible if and only if the rank of PΎ(λ)
is equal to that of RΎ(λ) for every γ e Γ.

6. A formula for the matrix RΎ(λ)

The matrix RΎ(λ) depends on the choice of bases of EΎ and iv , and the
different choice of their bases changes RΎ(λ) into a matrix of the form
ARΎ(λ)B, where A and B are non-singular l(γ) x /(r)-matrices with coef-
ficients in C.

Let {,} be a ^-invariant positive definite Hermitian inner product on VΎ,
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which is C-linear on the first component, we fix an orthonormal basis
{ î, •••, vd{Ύ)} of VΎ with respect to {,}, and let {v[, • ••, vd(Ύ)} be its dual basis
of V'Ί. Then we can define the conjugate-linear JR-isomorphism TΎ of V'Ί
onto VΊ by

ι = l

d(Ύ)

where au •• , ad(Ύ) e C. We can see easily that the mapping TΎ has the fol-
lowing property:

LEMMA 16. 1) vf(v) = {v, TΊυ'} for every v € VΎ and v e VΊ'
2) The mapping TΎ commutes with K-actions on VΊ and VΊ>, i.e., the

following diagram is commutative:

τr K-action Ίλ

K-action
-> V^

We define a β-linear isomorphism u -> us of U by the conditions:
(1) Xs=-X if Xeβo
(2) (uv)s = vsus f o r u,veU
(3) (au)s=aus for a e C and u e U.

Then u->us is a conjugate-linear anti-automorphism of the universal en-
veloping algebra U. As one can see easily, this mapping has the property:

{ku)s — kus for every i e I and u e U

PROPOSITION 17. For every γ e Γ, we have

PROOF. Let φ be an arbitrary element of Ey, and we consider the fol-
lowing commutative diagram:

V ry
φ ΓLrγ

^-action I K-action
I

' y

Π TΎ . TZ Φ .

i^-action

(H*y

^-action

(my

We set φs=soφo TΎ. Then φs is a C-linear ίΓ-homomorphism of V'Ί into {Ef)\

i.e., φs e Hom^CΓγ, (H%)s). And so the i^-module (H%)s contains i£-sub-
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modules which are isomorphic to V'Ί.
Now let {0i, • •, φιω} be a basis of EΎ. Then we have /(r)-numbers of

^-homomorphisms φs

u ..., 0f(y) of V'Ί into # * , which are linearly independent.
As the images of ψ{9 ..., 0f(γ) span the ίΓ-submodule Off*)5 of ZΓ*, we have

As we have already explained in the previous section, H^ is a sum of l(γ)-
copies of X-submodules of H* of type r ? and so equality holds, i.e., (H%)s =
H*>. Q.E.D.

Note. Let {vu • ••, vd^)} be an orthonormal basis of VΎ with respect to
{,}, and let {v[, ..., v'diΎ)} be its dual basis of V'Ί. Then for every φ e E79 we
have

since φs(v^) = (soφo τΎXv^ = (soφ)(Vj)=φ(vj)\
If {0l5 • ,0/(7)} is a basis of £V, then {φ[, ,0f(γ)} is a basis of £>.

Henceforward we shall make it a rule to use these bases of EΎ and Ey* when
we construct the matrix RΎ(λ), and further make it a rule to use orthonormal
basis of VΊ with respect to {,} when we construct the matrix PΎ(λ). With
respect to these bases, the matrix RΎ(λ) is given by

Let us define — β by the following conditions:

(1) (-β)(H)=-β(H) for every He σ0

(2) — μ is a C-valued C-linear function on α, i.e., —μe a'.
The pair — λ + 2p = (ε, — μ + 2p) of a character ε of M and an element — μ +
2pea! defines a character of B, and by using — λ + 2p, we define π~%+2p,
7Γjx+2/), χ(-^+2^>5 Z-% + 2^, in the same way as we have defined ones about λ.
We can find an element/6 X"x+2/J such that f\K=fx\K, which we denote by
f-x+2p- Obviously one has

π^+2?(k)f-x+2p=σ(k)f-x+2p for every keK.

We can choose fλ and f-χ+2p such t h a t / λ ( e ) = / _ x + 2 / > O ) = l , and from now on,
we fix/λ a n d / _ x + 2 / , as such.

For each feXλ and g e X~x+2p, we put

Then it is well known that (,) is a non-singular pairing of the U-modules Xx

a n d Z - χ + 2 ' , i.e.,
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for every i i 6 l l , / c Γ and g e X~x+2p.

Note. (/λ,/_x+2,) = l.

The relation between matrices RΎ(λ) and P7(λ) is established by the
following theorem.

THEOREM 18. Kr(λ) = PΎ(

for every γ e Γ9 where * denotes the Hermitian conjugate of the matrix.

PROOF. Let {vj}i^j^d(Ύ) be an orthonormal basis of VΎ with respect to
{,}. The ^-action on VΊ defines a matrix representation T of K by

(kvu ..., kvdω) = (vu •••, vd(Ύ))'T(k)

where Γ(A:) is a unitary matrix for every k e K, i.e.,

U(d(γ))

since {,} is X^-invariant. The well-known orthogonality relation tells us
that

By Lemma 1 and Lemma 2, we have

f-X+2f)

d(v)

Σ(πUΦj(

d(Ύ)Γ

X

d(7) Γ

= Σ
t ,m,n=lJ

=lJ K

Σ {

Σ? %
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Q.E.D.

7. Hermitian structures

In this section we shall consider under which conditions the (K, U)-
module Zx admits non-degenerate or positive-definite invariant Hermitian
structures.

Definition. A non-degenerate Hermitian form < , > on Zx is called
invariant if (1) < uz, w> = <z, usw> for every u e U and z, w e Zx and if
(2) <kz, kw> = <z, w> for every k e K and z, we Zx.

LEMMA 19. For every u e U^, we have

(1) pu(β)=pu\

(2) pu(-ju)=pus(β-2p)

PROOF. (1) Let ( , ) be the U-invariant pairing of Xλ and χ-χ+2^ as is
defined in the previous section. Then for every u e VLK, we have

Thus we have proved (1). The assertion (2) follows immediately from (1)
and pu(ju)=put(-ju). Q.E.D.

PROPOSITION 20. The following conditions are equivalent:
(1) Zx admits a non-degenerate invariant Hermitian structures

(2) p

u{β)=pu\μ) for every ueUκ

(3) pu( — β) =pu(β — 2ρ) for every ueUκ.

PROOF. Let φ be the image of 1 e U under the projection U ^ Z λ =
fax.
[Proof of (1)^(2)] First we shall prove <ψ, φ> Φ0. For every

ll, we have

[ kudk-ψ,ψ> = [ <(ku)ψ,φ>dk
K J K
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= ( <k(uφ), φ>dk
J K

= \ <uφ, ψ>dk=<uφ,

)κ

On the other hand, uoφ=pu°(ju)φ since uo—pu°(β) e SxCSj?ax. Thus we have

< u φ , φ>=pu°(β)<φ, φ > f o r e v e r y uβU.

Now assume <ψ, 0>=O. Then we have <uφ, φ>=0 for every well,
which contradicts the non-degeneracy of Hermitian form < , >. Thus
<φ, φ>Φ0. For every u e Uκ, we have

= <uφ, 0> = <0, u

sφ>

Therefore pu(/ϊ)=pu\u) for every u e Uκ.
[Proof of (2) =4(1)] First we shall show that p{υSu\β) is determined

only by uφ and υφ.
(i) "If uφ = u'ψ, then p{vSu\β)=p{vSu'\/i) for every veil." In fact,

the condition uψ = ufφ means that u — z/e 8fax. By the definition of %\zx,
we have

0 for every v e U .

Therefore p(vSu)o(β)=p(vSu'\β) for every v 6 U.

(ϋ) <y»'«)o(^)=y«''>o(A)"for every w, v 6 U." In fact, by the condition
(2), it follows that

=P(vSu)o(β)

(iii) "If vφ = v'φ, then p{v'Su\β)=p{υSu\β) for every ι* eU." By using
(i) and (ii) we have

Assertions (i) and (iii) tell us that p{vSu\β) is determined just by uφ and
vφ, and so we can define <uφ, vφ> e C by
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The assertion (ii) shows that < , > is a Hermitian form on Z\
(iv) " < , > is invariant."

For each u, v, w e U and k e K, we have

<wuφ, vφ> =p(vSwu\ju)=p((wSv)Su\β)

= <u0, wsυψ>

<kuψ,

= <uφ, vψ>.

(v) " < , > is non-degenerate."
Let u ε U be an element such that < uφ, vφ>=0 for every veil. Then by
the definition of < , >, we have

pW\β) = 0 f o r e v e r y veU.

Hence u e Sfax. Thus we have uφ = 0, which proves the assertion (v).

[Proof of (2)4=>(3)] By using Lemma 19, the condition (2) is equivalent
to pu(ju)=pu( — β + 2p) for every u e U, which is again equivalent to pu( — μ) =
pu(fl-2p). Q.E.D.

Note. When there exists a non-degenerate invariant Hermitian struc-
ture < , > on Zλ, the isotypic components Z\ and Z\ are orthogonal to each
other with respect to < , > if γ Φ δ. In fact, xΎ denotes the character of γ,
then we have for every z e Z\ and w e Z\

, w> = <d(γ)\ XΎ(k)kzdk,
J K

zy \ XΎ(k)kwdk>
J K

= 0 .

Note. As one can see easily from the proof of Proposition 20, a non-
degenerate invariant Hermitian structure on Zx is, if it exists, uniquely
determined up to scalar multiples.

REMARK 1. Let W denote the Weyl group of the Riemannian symmetric
pair (G, K). If ε is the trivial character of M and fx\K=l, the polynomial
function/?* on α has the following property: for υ9 υ

f e α', v + p and υ' + p are
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JF-conjugate if and only if pu(v)=pu(v') for every u e VLK. (cf. Helgason[2]).
Therefore, one can state that "when ε is the trivial character of M and fλ | K
= 1, the (K, U)-module Zλ admits a non-degenerate invariant Hermitian
structure if and only if μ — p and — (β — p) are W-conjugate." This theorem
is given explicitly in Kostant [_4Γ\.

REMARK 2. The author has the conjecture that conditions in Proposition
20 are equivalent to the condition that "β — p and —(β — p) are W-conjugate".
In case of real 2x2 unimodular group, this conjecture can be shown true.

THEOREM 21. Assume that λ satisfies conditions of Proposition 20. Then
(1) RΎ(λ) is a Hermitian matrix for every γ e Γ.
(2) The Hermitian structure on Zλ is positive definite if and only if the

matrix RΎ(λ) is positive semi-definite for every γ e Γ.

PROOF. (1) We select bases of VΎ, Vr, EΊ and EΊ* as in the previous
section. Then we have,

d(Ύ)

diΎ)

Σ
d{7)

Σ

=Z(ΦU ΦJ)

Therefore, by Proposition 20, we have

(2) Suppose that the Hermitian structure on Zλ is positive definite. It
HΎ)HΎ)

is enough to prove that the inequality 2 ί̂-R/y(λ)2ry^0 holds for every
i,j = l

HΎ)

Oi, ..., zK7)) eCι(Ύ\ We put uk= Σzjφj(vk) for each l^k<,d(γ). Then we
•7 = 1

have

Σ

d(Ύ) HΎ)

= Σ Σ
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d(Ύ) /

= Σ p(us*UkHβ)

d(Ύ)

Σ

where φ e Z λ is the image of 1 e U under the projection U -* Z\
For each γ e Γ the Hermitian form < , > may be regarded as a K-

invarinat non-degenerate Hermitian structure on Zx by Note to Proposition
20. Since K is compact, we can find iΓ-submodules Zλ and Z2 of Z\ such that
(i) Z)=ZιφZ2 (direct sum), (ii) < , > is negative definite on Z1 and posi-
tive definite on Z2 and (iii) ZλA_Z2 with respect to < , >. We choose a
basis {0i, ..., φι(Ύ)} of EΎ such t h a t (a) φi(VΎ)φCZ1 if l^i<^s, (b) Φi(VΎ)φCZ2

iίs + l<,ί<;t and (c) φi(VΎ)φ = {0} if t + l<Li<:i(r). Let {t i, .. ,vdω} be

an orthonormal basis of VΎ with respect to { , }. As the matrix RΎ(λ) is
positive semi-definite, we have in particular

li(ΐ)^0 for l<,ί<:

Hence

for

This inequality combined with the fact that < , > is negative definite on Zx

implies Zi = {0}.
Therefore Z\ = Z2 i.e., < , > is positive definite on ZX

Ί.
Thus we have proved the sufficiency of the statement (2). Q.E.D.

8. An example

As an application of our theorems, we can construct all irreducible
unitary representations of SL(2, R) in a unified way. In case of 51,(2, R),
conjecture in Remark 2 is true, and one knows necessary and sufficient con-
ditions in order that the U-module Xλ or U / λ is irreducible, and those in
order that the (K, U)-module Z λ admits a non-degenerate or positive definite
invariant Hermitian structure.

We choose ϊ0, po and so on as follows:
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{

A -\(a °

The non-zero root system Λ is given by Λ — {a, —a} where a is defined by

a(H) = 2a for every H=((i ) e σ. We introduce the order in Λ such that

a becomes a positive root. Then π, π0 and N are given by

«.-{(» »);»<•} n={(» J);

For each ^ e Z, let Γ2« be the i^-module such that (1) the space V2n is isomor-
phic to C, and (2) the K-action on V2n is defined by kθv = e2inθv for kθ e K and
i; e V2n Let r2« denote the equivalence class of all irreducible iC-modules
which are isomorphic to V2n, then the set Γ is given by

Γ={r2n; nez}

[) and X = ̂  Z{We put x

+=^(i _ i ) a n d JT_ = ^ - ( x _ ί 1 ^

Then by a theorem in Kostant-Rallis [8] and by an easy calculation, one can
see that

where n is a positive integer.
Each function of Xλ is entirely determined by its value on K, and so

henceforward we shall regard each element / e l λ not as a function on G but
as a function on K.

Since d i m c α ^ l , every μeά is a scalar multiple of a, whose scalar we
denote by ju.

If we choose function fx such that fx(kθ) = eivθ where v e Z , then we have

σ*(X)=-ίυθ where %=(°_θ J) e f
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And matrices PΎ2n(λ) and RΎ2n(λ) are given explicitly in the following form:

By means of these matrices one obtains the following conclusions:
[Case 1] λ = (1, β) where 1 denotes the trivial character of M.
We define the function / λ by fx \ K= 1. In this case matrices PΎ2n(λ) and

RΎtn(λ) are given by

x{β-l){β-2) - {β-\n\)

Then one can see:
(1) Xλ is irreducible if and only if μ is not integer.
(2) Among the above Λ, Xx admits an invariant positive definite

Hermitian structure if and only if either (i) ju — -^ is pure imaginary or (ii)

β is real and #
The representations (i) are called the representations of the principal series
of class 1, while (ii) are called the representations of the supplementary
series.

(3) When β is an integer, Xx is not irreducible and Zx admits a non-
degenerate invariant Hermitian structure.

In order to make a further investigation in the case (3), we replace fx

by the function fx(kθ) = eivθ where v is an even integer. Then by using
matrices PΎ(λ) and RΎ(λ), one finds out that

(I) Suppose β is a positive integer, then
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is an even integer)
) c

and

_ .»„. n is an even integer)
- £β ) c

are irreducible U-submodules of Xλ and there exists a positive definite in-
variant Hermitian structure on each of them. And there are no proper U-
submodules of Xλ other than them.

(II) If β is a non-positive integer, Xλ has three proper U-invariant
subspaces X%2μ> X%-2μ-> a n ( i X%2μ^%%-2μ> among them only the U-module
X\2μΓ\X)k-2μ is irreducible, and X%2μΓ\X\~2μ admits a positive definite in-
variant Hermitian structure only when β = 0 (in this case, X%2μrΛX%-2μ=C)

The representations of (I) are representations of a branch of the dis-
crete series.

QCase 2~] A = (—1, μ) where —1 denotes the alternating character of M.
Let us define the function fλ by fλ(kθ) = eivθ where v is an odd integer.

Using matrices PΎ(λ) and RΎ(λ), one can see:
(1) Xx is irreducible if and only if μ is not a half-integer.

(2) Among the above Λ's, Z λ admits a positive definite invariant Her-

mitian structure if and only if β—— is a pure-imaginary number. These

unitary representations are representations of another branch of the princi-
pal series.

(3) When β is a half-integer, Xλ contains proper U-invariant subspaces.
And one can see:

(I) If β is a positive half-integer, Xλ has only two U-invariant sub-
spaces X%2μ

 a n d X\-2μ defined by

v\ _ ί inθ n is an odd integerl

and

nθ n is an odd integer)
n<^-2β ( c '

and they are irreducible U-submodules of X\ which admit positive definite
invariant Hermitian structures. The unitary representations thus obtained
are representations of another branch of the discrete series.

(II) If β is a negative half-integer, Xλ has three proper U-invariant
subspaces X|2^? X\-2μ a n d X%2μ^X%-2μ- Among them only the U-submodule
Z|2/iΠXi_2/ί is irreducible, and none of them admit positive definite in-
variant Hermitian structures.
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