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1. Introduction

Let G be a connected semi-simple Lie group with finite center, and g, its
Lie algebra. Let go=f,+p, be a Cartan decomposition of g, fixed through-
out. Let ao be a maximal abelian subspace of p,, and let g, £, p and a denote
complexifications of g, f5, P and a, respectively. Let 4 be the restricted
root system of g with respect to a. As an element of A takes real values on
ap, the set 4 can be regarded as a subset of aj=Homgz(a,, R). We fix a
lexicographical order in aj and let 4, be the set of all positive roots in A.
For each a € 4, we define the root space g* by

g*={Xe€g;[H X]=a(H)X for every He a}.

For the later use, we put pz—é— 2, (dimeg®)a.  And we define nilpotent sub-
a€eq,
algebras n of g and n, of g, by

n= 2, g% y=go/ N1

Then go=ty+ao+1, is an Iwasawa decomposition of g,. If K, 4, and N
denote subgroups of G generated by f,, a, and n,, G=K A, N gives an Iwasawa
decomposition of G. Let M be the centralizer of a, in K and m, the sub-
algebra of g, corresponding to M. We define the subgroup B of G by B=
MA.N. The irreducibility of the representation of the group G induced
from a finite-dimensional irreducible representation ¢ of B has long been
studied. First Bruhat [1] proved sufficient conditions for the irreducibility
of such representations using an analytic method. In certain algebraic way,
necessary and sufficient conditions have been given; (1) by Parthasarathy,
Ranga Rao and Varadarajan [7] in case that G is a complex semi-simple Lie

group and £ is trivial on M (2) by Zelobenko [8] in case of complex semi-
simple Lie groups, and recently (3) by Kostant [4] in case that G is a real
semi-simple Lie group and ¢ is trivial on M. We shall attempt here an ex-
tension of the Kostant’s method.

Let 2=(e, #) be a pair of a character ¢ of M and an element g €a'=
Homc(a, €), and we define the character &, of B by

$>~(m expH:n)= G(m)e“(‘y)
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where me M, Heay and n € N. Let X™ be the space of all C-valued real
analytic functions f on G such that f(xb)=$)v(b’1) f(x) for every x € G and
be B. We define a G-module structure z* on X® by setting (z*(x)f)(y)=
f(z7'y) for %, ye G and fe X™. The representation z* determines the
infinitesimal representation 7} of g, on X™, which can be extended to the
representation of the universal enveloping algebra U=1U(g) of g. For the
sake of simplicity we write xf and uf instead of 7*(x)f and 7)(u)f, where
x€G,ueland fe XM Let X* be the subspace of X™ consisting of all
fe€X™ which are K-finite. The space X* is not G-stable, but it is stable
under K-action and U-action, and so the space X* has a structure of K-
module and U-module.

Now we suppose that the K-module X* admits a one-dimensional K-
invariant subspace throughout this paper, and we consider the irreducibility
of (z*, X™) under this assumption. Our method relies heavily on the way
of Kostant’s constructions [4]. Our results, however, not only give infor-
mations about the irreducibility of representations, but also make it possible
to find out irreducible components of reducible representations in special
cases. As an example, we shall describe in this paper how the representa-
tions of the discrete series of a real 2 x 2 unimodular group can be obtained
as sub-representations from reducible ones.

The author should like to express his hearty thanks to Professor K.
Okamoto for his kind advice and to Professor H. Ozeki for much encourage-
ment.

2. Some ideals in the universal enveloping algebra

By the assumption mentioned in 1, we can find a non-zero vector f, € X*
and a unitary character ¢ of K such that

kfs=0(k)f> for every ke K.

The representation ¢ of K defines the infinitesimal representation o, of the
Lie algebra f. For each X e f, and x € G, we have

(Xf)(x)= [%fx(exp-tX -x)}

t=0

[ 4 sexmX)fi0) |
=04(X)f(2).
Hence Xfr=0%(X)f> for every Xef,.

Thus we have Xfr=04x(X)f for every Xelt.
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Define the subspaces  and f of Il by

F={X—0,(X); Xet}, F={X+0.(X); Xet}
And we define a left-ideal &, in U1 by
8)\,:{114 € 11; quZO},

then f is a subspace of £, and the U-submodule U-f, of X* is isomorphic to
the U-module 1/8,.

Let 1(a) be the universal enveloping algebra of a, which can be regarded
as an associative subalgebra of 1. For every u € U, there exists a unique
pu € U(a) such that u—p, € %u—l—lln, where Fll denotes the subspace of U gene-
rated by {uv; ue %, v € U} and the same for Un. Let u —u’ denote the linear
anti-automorphism of the associative algebra 1 determined by the following
conditions:

Q) X'=—X if Xeg
@2) (wov)'=o'u! for u,vell

And for each u € 11, let p* € U(a) be the polynomial function on o' given by
p*()=pu(—v) where v € a’.

DeriniTioN: Let Z be a U-module. A non-zero vector 7 € Z is called a
highest weight vector if 7 is an eigenvector for every X € a+mn.

Note. Let Z be a ll-module. Then a non-zero vector 5 € Z is a highest
weight vector if and only if (i) 5 is an eigenvector for every He€a and (ii)
X7=0 for everyX € n.

The above Note follows easily from [a, n]=n. A highest weight vector
7 € Z determines an element v of ', called the weight of %, by H-y=uv(H)y,
where 7 € a.

For a Ul-module Z, let Z' denote its dual vector space. We define a -
module structure on 7' by <z, uz’'>=<u'z, z/> for every uell, z€ Z and
z' € Z', where <, > denotes the canonical pairing of Z and Z’. The space
7' equipped with this -module structure is called the 1-module dual to Z.

LemMa 1. Let Z be a -module and Z' the U-module dual to Z. We as-
sume that (i) there exists a non-zero vector ¢ € Z such that u¢p=0 for every
u€f and that (ii) there exists a highest weight vector 7€ Z' of the weight
—u€ad. Then we have

<ug, 9>=p ()<, 7> for well

Proor. The vector space U can be decomposed directly in the form
U=U()PUE+nll), and the corresponding projection 1 —1(a) is given by
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u— pl.. Thus each u € I can be written in the form:
u=ph+ui+u;
where u; € Uf and u, € nll. By the conditions on ¢ and 7, we have
<ug, 9> =<¢, pun+uip>=<¢, puy>
=<¢, pu(—u)y>
=p“(u)< ¢, 7>. Q.E.D.

DeriniTiON. A complex vector space Z is called a (K, 11)-module if it is
both a K-module and a U-module and if k(uz)=(ku)-(kz) for every ke K,
veland z€ Z.

Note. X*is a (K, 1)-module.

Let Z be a (K, 1)-module and Z’ its dual vector space. We define a K-
action on Z' by <z, kz’>=<k™'z,z/> for k€ K, z€ Zand z' € Z. Then the
space Z' becomes a (K, l1)-module with this K-module structure and the dual
U-module structure, which is called the (X, 1)-module dual to Z.

DerintTion.  Let Z be a (K, 11)-module and Z’ the (K, U)-module dual to
Z. A non-zero vector y € Z' is called a K-¢ffective highest weight vector if (i)
7 is a highest weight vector of the U-module Z' and if (ii) K.y is non-
singularly paired to Z, i.e., if only the zero vector in Z is orthogonal to K-7.

LemMA 2. Let Z be a (K, N)-module and Z' the (K, 0)-module dual to Z.
We assume that (i) there exists a mon-zero vector ¢ € Z such that kp=oc(k)¢ for
every k€ K and that (ii) there exists a K-effective highest weight vector 7 € Z,
of @ weight —u € a’. Then we have the following:

1) <¢, 7>0.
(2) For each u € 1, the following conditions (A) and (B) are equivalent:

{ (A) u¢p=0.
B) p’(u)=0 for every element v in the K-submodule of 1 gene-
rated by u.

Proor. (1) By the K-effectiveness of 5, we have
<K-¢, 1>=<¢, K-y>+{0}.
By the condition (i), we have

K-p={c¢; c € C*}.
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Thus we have <¢, 7> ==0.
(2) First suppose (A). It is sufficient to show p**(#)=0 for every
ke K. By Lemma 1, we have

P <¢, 1> =<(ku)p, 7> =<k(u-k™'¢), 7>
=0k <k(ug), >=0.

Since < ¢, 7> 0, we have p**(x)=0.
Next suppose (B). Applying Lemma 1 to ku, we have

<(ku)g, 7> =p"“(1)< ¢, 7> =0.
On the otherhand,
<(kw)p, 1> =<k(u-k '), > =0 <k(ug), 7>
=0k H)<ug, k'9p>.
Hence ok Y <ug, k~l9p>=0 for every ke K.

Since o(k~')=~0, we have <u¢, K-7>=0. Therefore, by the K-effectiveness
of », we have u¢=0. Q.E.D.

We shall apply the above lemmas to the (K, 1)-module X* Define the
element 0 € (X*) by <f, 0>=f(e) where fe X", and e is the identity ele-
ment of G.

Lemma 3. 0 is a K-effective highest weight vector of X* of the weight
— .

Proor. For every He a, and f € X*, we have

<f, Ho>=<—Hf, 6 >=(—Hf)(e)

=[] | e o]

=—up(H)f(e)=<f, —p(H)0>.
Therefore Ho=—u(H)o for every HEe ay.
Hence Ho=—u(H)o for every Hea.

The same calculation as above as to X € n, shows us that
X0=0 for every Xen.

Thus ¢ is a highest weight vector of the weight —x. Suppose that <f,
K-0>=1{0} for some fe X*. Then we have f|K=0 by the definition of 4.
By the condition of f € X*, we have f=0. Thus ¢ is K-effective. = Q.E.D.
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Let U be the subalgebra of U consisting of all K-fixed elements in 1.

Let dk denote the Haar measure on K normalized by Sde=1. For each

u €1, define an element u,c 1% by uO:gKkudk. We put €,={u—p“(1);
u € X} and define left ideals 80i» and P2* in 1 by the following:

Lrin=1F4+UE,
rax={y ¢ U; p?(x)=0 for every v € U}.
ProrosiTion 4. 1) QpinCQ, CLpax
2) For a proper left ideal & tn U, LPir CQ implies L C L.
Proor. 1) For u € 1%, and k€ K,
<[u—p“(W)1fs k710> = <k(u—p“(w)]f), 6>
=0(k)<[u—p“(@)1fr, 0>
=0
where we have used Lemma 1 and Lemma 3. Thus
<[u—p“(@)]fr, K-0>=10}.

Owing to the K-effectiveness of &, we have [u—p“(«)]f>»=0, which
implies that €, C8,. Thus &rirC is proved.
Next we shall prove that &, C2®2**, For every u € &, and v € U,

PU() < fry 0> = < (vu)o fr, 0>

= <gKk(vu)dk-fx, o>

<{ Chwwipdn, 0>

< Sxd(k—l)k(vuf") dk, 0>

=0.
Thus we have p“(x)=0 for every u € &, and v € 11, owing to Lemma 2 (1).
Hence u € gpax,

Therefore Q, CRpax,

2) Let us assume that the assertion does not hold, i.e., we assume that
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there exists a proper left ideal £ in U such that 2ri»C 8 and 2L L2*x, Then
we can find z € 8 and v € U suth that p*(x)+#0. Since 2 is a left-ideal in
1, the element vu belongs to £, and so we can find u € & such that p“(x)=~0.
First we shall prove that K-8 C&. For every X e f and v € &, we have

adX-v=Xv—vXeQ
since UFCQ. Therefore expX-€C L for every Xef. As the subgroup K of
G is connected, it follows that K- C 8.
This implies that u, € &, since uo= SKkudk and u € 8.
On the other hand, by the definition of €,, we have

uo—p*(u) € 6, C 2.

Thus we have p“(x) € &.

Now our assumption “p“(x)+0” implies that £ contains a non-zero scalar

element, which contradicts the fact that & is a “proper” left ideal of U.
Q.E.D.

ProrposiTioN 5. £22* is a maximal left ideal in 0.
Proor. This follows immediately from Proposition 4 (2). Q.E.D.

Let Z* denote the quotient 1-module U/P2*. For every k € K, u € {Pax
and » € 1, we have

PO F () =ptrET (4
:P(k_l”'u)ﬂ(ﬂ)

=0

by the definition of ®2*. Therefore ku € 822**. Thus we have proved that
2oax jg K-invariant. And so the U-module Z* admits the canonical K-module
structure, and Z* is a (K, 1)-module.

Proposition 4 and Proposition 5 imply that “Uf, is an irreducible 11-
module if and only if &, =8pax.”

8. K-module structures on X*

In this section we shall replace the K-module structure on X* by a
suitable one.

Let ~ be a C-valued real analytic function on G such that (1) 2| K=, |K
and (2) h(kan)=h(k) for every k€K, ae A,, and ne€ N. We note that the
function & does not take the value 0 anywhere.

Let 2,=(1, #) be the pair of the trivial character 1 of M and element
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u€d. Using A,, we define 7%, X*?, X* in the same way as we have defined
ones as to 4. For each fe X™, hf is contained in X*, and f—hf defines a
linear isomorphism A4 of X% onto X*.

For every ke K and fe X, we put t(k)f=c(k "kf. “r” determines a
“new” K-module structure on X* which we shall call the r(K)-module struc-
ture on X*. We note that the U-module X* with this ¢(K)-module structure
is still a (K, U)-module, which we shall sometimes refer to the (¢(X), 1)-
module.

LemmA 6. The mapping A is a K-isomorphism
of X™ onto the t(K)-module X*, i.e., the following
diagram is commutative. l A

X K—agt'ion) X

JA

Proor. For every k€ K and f € X, we have x* @M x*

t(k) Af =0 (k- Yk(Af) =0 (k- k(hf)
—0(k~kh-kf =h-kf
— A(kf). Q.E.D.

Lemma 7. The projection U —U-f, is a K- u— K—actwn 1
homomorphism of W onto the t(K)-submodule
U-f\ of X*, i.e., the following diagram is com- l

projection l projection
mutative.

£, (K )-actwn 1-f
Proor. For every ke K and u € 11, we have
(ku)fr=k(u-k™ ) =k(u-0(k"")f>)

=0k~ Vk(ufy) =t(k)(wfy). Q.E.D.

Note. Lemma 7 implies that the (r(K), )-module U.f, is isomorphic to
the (X, )-module 1/%,.

4. Some preparation from Kostant-Rallis [ 5], [6 | and its application

The space p admits the canonical K-module structure. Let p’ denote the
K-module dual to p, and let S=S(p) and S'=S(p") denote the symmetric
algebras over p and p’ respectively. These algebras carry the K-module
structures extended from ones on p and p’. The algebra S’ may be regarded
as the polynomial ring on p, while the algebra S may be regarded as the
ring of differential operators on S’ with constant coefficients. Define sub-
spaces J and J* of S by

={x € S; kx=x for every ke K}
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J.={x € J; the constant part of x is zero}

oo

where S’ is the subspace of S consisting of all homogeneous elements of the
degree i. And we define the subspace H' of S’ by

H'={feS; xf=0 for every x € J.}.

The Killing form B of g determines the K-module isomorphism of p’ onto b,
which can be extended to the K-module isomorphism of S’ onto S. The
image of H’ under this isomorphism we denote by H. The spaces H and J
are K-submodules of S, and so one can make up the K-module HQJ. The
mapping of HQ J to S defined by 2. f;&® gi— 2. fig: is a K-module homomor-

phism, where f; € H and g; € J.
Lemma 8. S=HXRJ.

Proor. This is a result of Kostant-Rallis [5]. But we deal with a
slightly different situation, and so we need some remarks. First we put

G°=Int g=the group of inner automorphisms of g
={g€G*; g(g0) Cgo}

o=the identity component of G

K;={geC; g®)Ctand g(p) Cp}

Ky=KsNG

Q&

K =the identity component of K, .

Then, as is well known, one has
Go =~ Intgo=the group of inner automorphisms of g,
K=K,NG,.

Further one can see easily that G/Z~G, and K/Z~K, where Z denotes the
center of G.
Since the group G acts on g as the adjoint representation, we have

J={x € S; kx=x for every k € K}.
Let J denote the space of all K;-fixed vectors in S, i.e.,

J={x€ S; kx=x for every k € K}
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and we define A in the same way as H by using /. Then the theorem of
Kostant-Rallis [ 5] shows us that

S=HRQJ.
Some considerations added in the process of proving the Kostant-Rallis’
theorem lead us to J=/.®

Therefore H=H
Thus we have S=HRJ Q.E.D.

Let S(g) denote the symmetric algebra of g. Then, as is well known,
there exists a unique linear isomorphism B of S(g) onto U such that (1)
B(XH)=(B(X))* for every X € g and (2) (with the obvious identification) 2 is
the identity map on g. This mapping B is called the symmetrization and
has the following property: if X;, ..., X, are elements of g, then

1
B(Xan):——" Z Xa’(l)"‘Xa'(n)
n. ces,

where S, denotes the permutation group of n-numbers {1, ..., n}.
We set J*=p(J) and H*=p(H). The spaces J* and H* are K-sub-
modules of 1, since g8 is a K-homomorphism.

Lemma 9. U=Uf4+ H*J*,

Proof. For each non-negative integer n, let 1” be the set of all ele-
ments in U whose degrees are equal to or smaller than n. We shall prove
by induction on » that U” is contained in Uf+H*J*. This is obvious if
n=0, since subspaces H* and J* of I contain non-zero scalar elements of 1.
Now let us assume that ' CUF+ H*J*.

Let u€el” be an element of the form u=p(X;...X,), where Xy, ..., X,
are elements of g. As S is a degree-preserving linear isomorphism of S(g)
onto U, the fact U"CUf+ H*J* follows if we prove that the above u belongs
to the space Uf+ H*J*.

The element u is written in the form

uzni!m%"Xe(l)“-X«(n) .
We shall prove u € U+ H*J* in case that (1) some of X,’s 1<i<n) are
contained in t or that (2) {Xi, ..., X,} is a subset of p. Although (1) and (2)
don’t cover all the possible cases, these 2-cases are sufficient as one can see
easily.
(1) We assume X, € f, and rewrite each term X,,--- X, in the expan-

(*) This remark is due to Mr. Sakane.
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sion of u in the following way:
Xoay  Xooy=XoyXozy - Xp - Xpmy X p(mod U 1)
=X, )Xoy - Xp - Xo(y(Xp—04(X)) (mod U"1).

Since X, 1, X,2y Xp - Xoiny( X — 04 (X)) € UE and U**CUf+ H*J* by the in-
ductive assumption, it follows that

X,y Xony € UE+ H*J*,

therefore u € UE+ H*J*.
(2) The element X;...X,e¢ S(p)=HX®J can be decomposed into the
form:

mezﬁﬁm
we have
u:§ﬁ@m)
= 3 B@)B()  (mod").

Since f] B(u;))B(v;) € H*J* and U*~* CUf+ H*J* by the inductive assumption,
i=1
the element » is in Uf+ H*J*. Q.E.D.

Prorosition 10. The projection u— u-f, induces a K-homomorphism of
H* onto the t(K)-module U-f,, that s,

W-fr=H*f, .

Proor. By Lemma 9, it is sufficient to prove that (1) uf,=0 if u €, (2)
J*fL,=C-f, and (3) CCH*.

Assertions (1) and (3) are obvious by the definitions of f and H*, so we
shall prove the assertion (2). First we note that the subspace 7 of X* con-
sisting of all elements fe X* such that kf=0(k)f for every ke K is one-
dimensional, since each f € V is entirely determined by f(e). Therefore

V={Cf),; cE€ C}.
Let u be an arbitrary element of J*. Then for every k€ K,
k(ufx) = (ku)(kfx) Zd(k)’ufx

since u € ¥ and by the definition of f,.
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Hence ufr€V.
Therefore uf,=cf,  for some ce€C.
Thus the assertion (2) holds since CC J*. Q.E.D.

5. Irreducibility theorem

Let I' be the set of all equivalence classes of irreducible K-modules
which admit non-zero M-fixed vectors, and, for each rerl, let 7, be a K-
module in the class y. If ye ", then v’ will denote the class of K-modules
contragredient to V,. Let I(y)=dim V¥ =the dimension of the subspace of
V., consisting of all M-fixed vectors in 7,. Then the multiplicity of y in the
K-module X* is equal to I(y) by Frobenius’ reciprocity theorem. The re-
sults in Kostant-Rallis [ 6] and the same remark as in the proof of Lemma 8
lead us to the assertion that the K-module X™ is isomorphic to H*. Hence
the r(K)-module X* is also isomorphic to the K-module H*, and the multi-
plicities of 7 in AH* and in the r(K)-module X* are both equal to I(y). Let
H¥ denote the isotypic component of H* of type 7, that is, H¥ is the sum of
all K-submodules of H* which are isomorphic to 7., and let X} denote that
of X* of type y. Then H* and X* decompose directly in the following
form:

H*= @ H¥

YET

X =@ X}
YeEr
where both H¥ and X) are isomorphic to a direct sum of I(y)-copies of the
K-module 7,.

Our main purpose is to study the U-module structure of X* with the
help of the r(K)-module structure of X*. Since the (¢(K), U)-submodule
u.f, of X* is isomorphic to the (K, U)-module U/&,, the multiplicity of y in
U/8, is equal to or smaller than I(y) for each ye /. Moreover as the
canonical projection /&, - Z*=1/8P** is a surjective K-homomorphism, the
multiplicity of 7 in 1/2f** is not larger than that of U/8,. Therefore we
have the following inequality :

the multiplicity of y in Z*<I(y) for each y € I".

U/Sx;u—fxC_}X)‘
Now consider the following diagram, ical oot
: €~ 2 13 ) canonical projection
where notatlon§ =~ aI‘Id <, denote a (surjective (K, U)-module
(K, )-module isomorphism and a (z(K), homomorphism)
N)-module inclusion respectively. If the
multiplicity of v in Z* is equal to I(y) for Z,=0/8px
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every 7€ I', then every mapping in the above diagram must be a K-module
isomorphism, which means in turn a U-module isomorphism since each of
them is a (K, 11)-homomorphism. Hence the U-module X* is isomorphic to
the irreducible l1-module Z*, and so X* is an irreducible 1-module.

Conversely, if the U-module X* is irreducible, every mapping in the
above becomes a U-isomorphism, which is, at the same time, a K-module
isomorphism. Therefore the multiplicity of 7 in Z* is equal to I(y) for
every v € I'. Thus we have proved the following theorem:

TuaeoreM 11. The U-module X* s irreducible if and only if the multi-
plicity of v in Z* is equal to I(y) for every r € I.

In the following we shall give formulae for the multiplicities of 7y in
Uu-f, and Z*, which are a key to determine the 1l-module structure of X™.
For y € I', we put

E,=Hom x(V,, H¥)
=the space of all K-homomorphisms of 7, into H¥
E,=Hom x(V,, H¥)

where 7’ denotes the class of K-modules contragredient to 7,. The K-module
V,- may be identified with the dual K-module (K, V;) whose vector space is
the dual space of 7, and the K-action on which is contragredient to that on
V,. Let d(y) denote the dimension of V,, which is equal to that of 7. Let

{v;}1=j=a¢ry b€ a basis of V,, and {v;}i1- 4, its dual basis. Define the bi-
linear mapping of E,. x E, to U by

26, 9= 28 o)
where ¢’ € E,- and ¢ € E,.

Lemma 12. (1) The mapping Z does not depend on the choice of a basis

{Uf}‘léf§d<v)-
(2) Image of Z is contained in NX,
Proor. The first assertion (1) is an easy exercise of the linear algebra.

As the K-module 7y is contragredient to V,, {kv;}i<;=s,, forms the dual
basis of {kv;}1<;<ay) for each k € K. And so, using (1), we have

o) am
PACHECAEDWACHIICHR

Therefore
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d()
kZ(¢, ¢)= iZ=.'lk¢/(v,’-)'k¢(vj)
d(r)
= 2 (ko))(kvy)

da)
=28 )

=Z(4, $) . Q.E.D.

Lemma 13. Let v € I’ and ¢ € E, be fixed. Then ¢(V.) CLP2* holds 1f and
only if p?*"*(u)=0 for every ¢’ € E,..

Proor. First we assume that ¢(7,) C2P2*x. Since &p#x is a left-ideal in
u, ¢(V,) CLe** implies that Z(¢', ¢) CLPex for every ¢ € E,.. Hence by the
definition of 2P** and by Lemma 12 (2), it follows that p?@"®(x)=0 for
every ¢ € E,..

Next we assume that ¢(V,) £ €P2*. Then any non-zero element u € ¢(V,)
is not contained in £P** since ¢(V,) is K-irreducible and {f2** is K-stable.
By definition of 272, there exists » € I which satisfies p(””)ﬂ(,a);&O. In the
following, we use some notations which will be introduced in 6. Since the
projection H* —11/8m2%,, is surjective and the space H* is stable under s-
operation, 1 can be decomposed in the form of U= H*+({™2%,,)*. Using
Lemma 19 in 7, we obtain

P9 =P =+ 20) =p (= i+ 20) =0,

for every o' € (822%,,)°. So we can assume that the above » € 11 belongs to
the space H*. The 7’-component v, of v can be written as follows:

v, = d(r’)SK 2 () kv dk= d(7) Sny(k‘l)-ku dk,
where x,(resp. x.,-) denotes the character of y(resp.7’). Then we have

Pl () = Pdm [ECDE Cko-uodk( ;)
zpcwdmj B L LN
=pt" (1) #0.

This implies that pt###»Js(4) =~ {0}, and one can find ¢’ € E,» which satisfies
pr Vi Vile(4)=£0. Now we define an endomorphism f of ¥, as follows:

<f(x), y>=pt¥®@eOo(y) for every xe€ ¥V, and ye V,.

It is easy to prove that f is a K-homomorphism and the image of f is not
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{0}. Since ¥, is K-irreducible, there exists a € C—{0} satisfying f(x)=ax
for every x € V... Thus we obtain

d(v) ooy ) d(v)
PZ(‘I) :4’)(#): Z:lp[:‘f’ (Uz)‘i’(”z)]()(ﬂ): .Zla<fv;’ vi>
i= i=

=a-d(r) #0. Q.E.D.

Both dimensions of E, and E,. are equal to I(y). Let {¢;}1<;=i,, and
{¢;}1=j=i) be bases of E, and E, respectively. We set P7,=p*? for
1<i<d(p), 1<j<I() and R}=p"“* for 1<i<Uy), 1=<<I(). We
define matrices P”(2) and R”(2) by P"(1)=(P7;(#)) and R"(2)=(R7;(#)). We
note that, for a different choice of bases of E, and E,., the matrices P”(1)
and R"(1) are replaced by P"(A)B and 4AR”(2)B where 4 and B are invertible
1(7) x I(y)-matrices with coefficients in C. Thus ranks of these matrices are
determined independent of the choice of bases of E, and E,..

Tueorem 14. For each 7 € I', we have
(1) the multiplicity of v in U-fy=rank of P"(y)
(2) the multiplicity of v in Z*= rank of R"(2).

Proor. (1) We put
s=the multiplicity of y in U.£, .

As the rank of the matrix P”(1) is independent of the choice of a basis of
E,, we select the basis {41, ---, i)} of E, such that K-submodules ¢:(V,), ---,
#¢s(V,) are mapped isomorphically into U-f\ and ¢,.:1(V,), ---, diy(¥,) fall
into the null-space under the projection H*—U-f,. With such a selection of
{¢J'}1_S_j§_l(7); one has

$;(v:)fr,=0 if 1<i<d(r)and s+1<;<10).
Using Lemma 1 and Lemma 2, one has

prew=0 if 1<i<d(y)and s+1=;=<1({).
Hence the rank of P"(1) <s.

To prove the equality, we shall prove that vectors {xy, -.-, x,} are linear-
ly independent, where x,’s are defined by

<P¢{(01>(ﬂ)
xj==

: > for 1<j<s.
P¢j(”d(7))(ﬂ)

Let ay, ---, a; be such scalars that Zs}ajx,:O. If we set ¢= Zs}aiqs,-e E,, then
ji=1 i=1

we have p*’9(4)=0 for every i. Using Lemma 2 (2), we have
P
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d()fr,=0 for every wveV,.

Hence ) a;¢;(v)fL=0 for every veV,.
=1

J

On the other hand, {#;,(v:)fy; 1=i<d(y), 1=j=<s} form a basis of U-f,
by the choice of {¢;}. Therefore we have a,, -, a,=0.

(2) Let ¢ be the multiplicity of v in Z* As the rank of the matrix
R7(2) is independent of the choice of a basis of E,, we select the basis
{1, -, dimy} of E, such that K-modules ¢,(V,), ---, ¢.(V,) are mapped iso-
morphically into Z* and ¢,..(V,), ---, di,y(¥,) fall into the null-space under
the projection H*— Z* ~With such a selection of {¢;}, one has ¢,(V,) C&pax
if t+1<j=<I(r). By Lemma 13, one has R};(#)=0 for 1<:<I(y) and
t+1=<j=1I(r). Hence

the rank of R7(1) <.

To prove the equality, we shall prove that vectors {yi, .-, y:} are linear-
ly independent, where y,’s are defined by

<R'{j(ﬂ) > <PZ(ft>’1, #(41) >
yJ: . = :/
R?(v)j(ﬂ) pz(‘ﬁt(r)»%)(ﬂ)

for 1<j<¢. Let ay, ---, a; be such scalars that Ztajy,-:O. If we set ¢=
i=1

Zt} a;; € E,, then p?@¢i®(u)=0 for every i. Hence ¢(V,)CLf**, by using
i=1

Lemma 13. This means that the image of ¢(V,) is equal to zero under the
projection H*—Z* On the other hand, each K-module ¢;(V,) is K-isomor-
phic to its image in Z* for 1<"j<_¢. Therefore we have a, .., a,=0.

Q.E.D.

Combining Theorem 11 and Theorem 14, we have the following:

CoroLLARY 15. 1) The U-module X* is irreducible if and only if the
matriz R"(2) is regular for every v € I'.

2) The U-module N-f, is irreducible vf and only if the rank of P"(2)
1s equal to that of R"(A) for every vy e I.

6. A formula for the matrix R7(2)

The matrix R7(2) depends on the choice of bases of E, and E,., and the
different choice of their bases changes R’(1) into a matrix of the form
AR(2)B, where A and B are non-singular [(7)xI(y)-matrices with coef-
ficients in C.

Let {,} be a K-invariant positive definite Hermitian inner product on 7,
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which is C-linear on the first component. we fix an orthonormal basis
{v1, ---, va}y of V, with respect to {,}, and let {v{, ---, vjy} be its dual basis
of V). Then we can define the conjugate-linear R-isomorphism 7, of V7
onto V7, by

d(v) d(v)
T,(Xawi)= ) ayw;
i=1 i=1
where ay, -, as,) € C. We can see easily that the mapping T, has the fol-
lowing property:

Lemma 16. 1) o' (v)={v, T,v'} for everyve V,and v' €V,
2) The mapping T, commutes with K-actions on V., and V.., i.e., the
Sollowing diagram is commutative:

v, K-action v,

|
l T, T,
M

K-action v,

7

We define a R-linear isomorphism z — ©° of 11 by the conditions:

1 X=—-X if Xego

2) (uv)*=v'u’ for u,vell

3 (auw)’'=au® for aeCand uell
Then u—u® is a conjugate-linear anti-automorphism of the universal en-
veloping algebra 1. As one can see easily, this mapping has the property:

(kuw)*=ku® for every ke Kand uell
(H*)*=H*,.
Prorosition 17. For every v € I', we have
(HY)'=H} .

Proor. Let ¢ be an arbitrary element of E,, and we consider the fol-
lowing commutative diagram:
T,

v, v, P omr S (mpe

|
K-action !K—action lK—action }K—aotion

A\
S

vp v, Py Sy

We set ¢*=so¢po T,,. Then ¢° is a C-linear K-homomorphism of V', into (H¥)°,
i.e., ¢*€c Homg(V,, (H¥)®). And so the K-module (H¥)° contains K-sub-
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modules which are isomorphic to V7.

Now let {¢i, ---, di,y} be a basis of E,. Then we have [(y)-numbers of
K-homomorphisms ¢3, ---, ¢35y of ¥ into H*, which are linearly independent.
As the images of ¢3, .-, ¢§, span the K-submodule (H%)® of H*, we have

(HY)*CHY .

As we have already explained in the previous section, H,. is a sum of I(y)-
copies of K-submodules of H* of type 7, and so equality holds, i.e., (H¥) =
H¥. Q.E.D.

Note. Let {v1, ---, vaey} be an orthonormal basis of 7, with respect to
{,}, and let {v{, ---, vy} be its dual basis of V;. Then for every ¢ € E,, we
have

(0} =4())°

since ¢*(v)) = (sogo T,) (v)) = (s08)(v)) = $(v,)".

If {¢1, ---, by} is a basis of E,, then {¢5, ---, #3»} is a basis of E,..
Henceforward we shall make it a rule to use these bases of E, and E,. when
we construct the matrix R”(2), and further make it a rule to use orthonormal
basis of V7, with respect to {,} when we construct the matrix P7(1). With
respect to these bases, the matrix R”(2) is given by

R"(2)=(p?@e#2(p)).

Let us define — i by the following conditions:

Q) (—p)H)=—u(H)  for every Hea,

(2) —p is a C-valued C-linear function on q, i.e., —g € a’.
The pair —\+20=(¢, —a+20) of a character ¢ of M and an element —z+
20 € a’ defines a character of B, and by using —\+2p, we define 7= **+%,
mEr e, X(-x+2e) - X—%+Zr in the same way as we have defined ones about Z.
We can find an element f € X-**?¢ such that f|K=/f,|K, which we denote by
f-x+2,- Obviously one has

PR 512, =0(k)f 5z,  forevery k€K,

We can choose f, and f_5., such that f,(e)=f_5.2,(¢)=1, and from now on,
we fix f, and f_5,2, as such.
For each f e X* and ge X **?¢  we put

f 9=, fWgdk.

Then it is well known that (,) is a non-singular pairing of the 1-modules X*
and X~ **% j.e,

(mx@)f, &=(f, ax****(u*)g)
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for every u €11, fe X* and ge X **?7,

Note. (fy, f-x+2,)=1.

The relation between matrices R7(1) and P”(1) is established by the
following theorem.

Tueorem 18. R"(A)=P"(—\+20)*P"(2)
for every v € I, where * denotes the Hermitian conjugate of the matrix.

Proor. Let {v;}1<j=4¢r) be an orthonormal basis of 7, with respect to
{,}. The K-action on ¥, defines a matrix representation T of K by

(kviy -y kvae)) =01, -5 Vi) T(k)
where T(k) is a unitary matrix for every k€ K i.e.,
T (k) € U(d(1))

since {,} is K-invariant. The well-known orthogonality relation tells us
that

Ojm

Tkl Ton )l = 522 T,

By Lemma 1 and Lemma 2, we have

RY;()=p* () (fry f-5+2)
= (w5 (Z(B5, $))frs f-5+20)

— @ (LB BN fx120)

=B @GNS, TGS 502

Il

] LR AIE ) X TR TG0 rras JE )k

AR TN O e X en e O

= B TR @)1 T B Gelom] 52 Ko db

t,m,n=1

d(r)

= 5 [ LD T dlop o () -p (= 5 20)

tm,n=1

= % e 1 (e)-Py,(0)-PL(—+20)
T LEd) €) Lomj ni 0
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FILY) -
=2 P ()P (—%+20)

=[P"(—=\+20)*-P"(A)J;; . Q.E.D.

7. Hermitian structures

In this section we shall consider under which conditions the (K, 1)-
module Z* admits non-degenerate or positive-definite invariant Hermitian
structures.

Definition. A non-degenerate Hermitian form < , > on Z* is called
wmvariant if (1) <uz, w>=<z, uw> for every u €l and z, we Z* and if
(2) <kz, kw>=<z,w> for every k€ K and z, we Z*.

LemMa 19. For every u € UX, we have
¢h pH(w)=p“(—p+20)
) Pu(— 1) =pus(p—20)

Proor. (1) Let (,) be the U-invariant pairing of X* and X **%¢ ag is
defined in the previous section. Then for every u € U¥, we have

PW=pW(fr, f-x+25)
=1k (W) frs f-x+20)
=(for TE5 2P (W) f o5 120)
=p"(—B+20)(frs f-5+2,)
=p*(—a+20).

Thus we have proved (1). The assertion (2) follows immediately from (1)
and p“(u) =put(— ). Q.E.D.

ProrositioN 20. The following conditions are equivalent:

(1) Z* admits a non-degenerate invariant Hermitian structures
2 p“w=p“(e)  forevery uelX

@ pu(—m)=pp—20)  forevery uelU~.

Proor. Let ¢ be the image of 1€¢1l under the projection U1 —2Z*=
u/Qpax,

[Proof of (1)=(2)] First we shall prove <¢, ¢>=+0. For every
u € 1, we have

<uo, 9> =<\ kudkg, §> ={ <G, p>an
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= <k(up), p>dk
= <ug, k9> db
K

=§K<u¢,¢>dk=<u¢, o>,

On the other hand, u¢ =p“ ()¢ since u,—p“(x) € €, CLP**. Thus we have
<ug, o> =p"(u)<¢, > for every uwell.

Now assume <¢, ¢>=0. Then we have <u¢, ¢ >=0 for every uell,
which contradicts the non-degeneracy of Hermitian form <, >. Thus
<¢, ¢> 0. For every u € UX, we have

P<p, o> =<up, p>=<¢, u'd>
=p“ ()<, p>.

Therefore p*(1)=p*“(x) for every u € UX,

[Proof of (2)=(1)] First we shall show that p®"*(x) is determined
only by u¢ and v¢.

(i) “If up=u'p, then p"N(u)=p»"“(y) for every vel.” In fact,
the condition u¢=u'¢ means that u—u’ € 2P**. By the definition of {P2x,
we have

prre () =0  for every wvell.

Therefore p*"“»(u) =p”** o(y) for every v € .

(i) “p"(u)=p™(u) for every u, v €1.” In fact, by the condition
(2), it follows that

P =i )
:P(”x”)n(ﬂ).

(ili) “If vp=v'g, then p"“N(x)=p***“(u) for every u € I.” By using
(i) and (ii) we have

P () =p“ () = p“ ()
=p""(a).

Assertions (i) and (iii) tell us that p**“(x) is determined just by uz¢ and
v¢, and so we can define <u¢, vy > € C by

<u¢}, ’U¢I> :P(vsu)u(la) .
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The assertion (ii) shows that < , > is a Hermitian form on Z*.
(iv) “<, > is invariant.”
For each u, v, we 1 and k € K, we have

wug, v > = pl () = p( N Wo( 1)
=<up, wop>
<kug, ko> = pltonla( ) — plev' k(1)
=p""(u)
=<ug, vp>.

(v) “<, > is non-degenerate.”
Let u € U be an element such that <u¢, v¢ > =0 for every v € 1. Then by
the definition of < , >, we have

P (p)=0 for every vell.
Hence u € 8¢2*. Thus we have u¢ =0, which proves the assertion (v).

[Proof of (2)<(3)] By using Lemma 19, the condition (2) is equivalent
to p“(#) =p“(—p+2p) for every u € 11, which is again equivalent to p,(—x)=
pulp—20). Q.E.D.

Note. When there exists a non-degenerate invariant Hermitian struc-
ture < , > on Z*, the isotypic components Z} and Z} are orthogonal to each
other with respect to < , > if y==9. In fact, x, denotes the character of 7,
then we have for every z € Z) and w € Z3,

<z, w>=< d(T)ngy(k)kzdk, w>
=d(1)<z, ngn,(k)k‘lwdk>

—d(P)<z, ngv(k)kwdk>
—0.

Note. As one can see easily from the proof of Proposition 20, a non-
degenerate invariant Hermitian structure on Z* is, if it exists, uniquely
determined up to scalar multiples.

Remark 1. Let W denote the Weyl group of the Riemannian symmetric
pair (G, K). If ¢ is the trivial character of M and f,|K=1, the polynomial
function p, on a has the following property: for v, v’ €/, v+p and v'+p are
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W-conjugate if and only if p,(v)=p.(v") for every u € UX. (cf. Helgason[2]).
Therefore, one can state that “when ¢ is the trivial character of M and f,|K
=1, the (K, U)-module Z* admits a non-degenerate invariant Hermitian
structure if and only if #—p and —(a—p) are W-conjugate.” This theorem
is given explicitly in Kostant [4].

Remark 2. The author has the conjecture that conditions in Proposition
20 are equivalent to the condition that “x#—p and —(a—p) are W-conjugate”.
In case of real 2 x 2 unimodular group, this conjecture can be shown true.

TaeoreMm 21.  Assume that 1 satisfies conditions of Proposition 20. Then

(1) R(2) s a Hermitian matrix for every y € I'.

(2) The Hermitian structure on Z, s positive definite 1f and only 1f the
matrix R"(2) is positive semi-definite for every v € I'.

Proor. (1) We select bases of V,, V., E, and E,. as in the previous
section. Then we have,

283, 6 =L 2 b1
dal)
—[2 40 i)’
SO
daw)
SHIUCATICN

Therefore, by Proposition 20, we have
R;{T[) :PZ(¢;:¢i)(ﬂ) :PZ(¢;.¢>,-)‘(/J)
= PP () = RY,(2)
(2) Suppose that the Hermitian structure on Z, is positive definite. It

)
12,-R"{j(,1)zj20 holds for every

1
is enough to prove that the inequality i
1,]=
1)
(21, -5 Zimy) €C'™. We put u= )] z;6;(v,) for each 1<k<d(y). Then we
i=1
have

m 1D ene)
le,-R"{,-(l)zj= Z lziP #*2(1)z;
1

ij= =

d) 1(7)
— Eipfﬁbi(”k)’tﬁj(vkﬂo(ﬂ)zi
k=1 1,j=1
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d(7)
=", P
k=1

d()

=k§1<uk¢1, up>=0

where ¢ € Z* is the image of 1 € U under the projection U1 — Z*.

For each 7ye " the Hermitian form < , > may be regarded as a K-
invarinat non-degenerate Hermitian structure on Z} by Note to Proposition
20. Since K is compact, we can find K-submodules Z; and Z, of Z) such that
(1) Zy=Z,P Z, (direct sum), (ii) < , > is negative definite on Z; and posi-
tive definite on Z, and (iii) Z, L Z, with respect to <, >. We choose a
basis {¢1, ---, by} of E, such that (a) ¢,(V,)¢p CZ, if 1<i<s, (b) ¢:(V.,)p 2,
if s+1=i=<¢ and (c) ¢;(V,)¢p=A10} if t+1<i<<I(y). Let {vy, ---, va)} be
an orthonormal basis of 7, with respect to {,}. As the matrix R*(Q) is
positive semi-definite, we have in particular

R7;(rn=0 for 1<i<s.

Hence
d()
k21<¢i('vk)¢)s ¢i(w)p>=0  for 1<i<s.

This inequality combined with the fact that < , > is negative definite on Z;
implies Z;={0}.

Therefore Z;=2, i.e., < , > is positive definite on Z7.

Thus we have proved the sufficiency of the statement (2). Q.E.D.

8. An example

As an application of our theorems, we can construct all irreducible
unitary representations of SL(2, R) in a unified way. In case of SL(2, R),
conjecture in Remark 2 is true, and one knows necessary and sufficient con-
ditions in order that the U-module X* or U-.f, is irreducible, and those in
order that the (K, 11)-module Z* admits a non-degenerate or pcsitive definite
invariant Hermitian structure.

We choose f,, p, and so on as follows:

w0 Pren =, Pieed
(G tpmremh v=fs _Lhaved)
(6 Spoer o=l Opoce]

I
Il

Po

Il
Il

Qo
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K=5S0(2, R) = {ka =(_§?§3 zggg) fe R}

wel 9 (3 9)
1{g L)oo

The non-zero root system A is given by A={«a, —a} where « is defined by
a(H)=2a for every H= <g _2) €a. We introduce the order in 4 such that

« becomes a positive root. Then n, ny and N are given by

wof§ pved ey Boce)

v={o 1)sbery

For each n € Z, let V,, be the K-module such that (1) the space V5, is isomor-
phic to €, and (2) the K-action on V5, is defined by kyv=e?"%» for k, € K and
v €V,,. Let ry, denote the equivalence class of all irreducible K-modules
which are isomorphic to 7;,, then the set I” is given by

rZ{TZn; n GZ}

We put X+:%<1i _D and X‘:%G—i :L1>

Then by a theorem in Kostant-Rallis [87] and by an easy calculation, one can
see that
HY =C-X7

Y2n
H , =C-X"

where n is a positive integer.

Each function of X* is entirely determined by its value on K, and so
henceforward we shall regard each element f ¢ X* not as a function on G but
as a function on K.

Since dimca’'=1, every ux€a’ is a scalar multiple of o, whose scalar we
denote by 4.

If we choose function f, such that f,(ks) ="’ where v € Z, then we have

G(kg) == e_i"g

0x(X)=—iv0 where X:<O_0 g)Gf.
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And matrices P":»(2) and R”*»(2) are given explicitly in the following form:

p=(a-g)o- +9)- (g 1)

T e R T )

(o g - (o)

proct=(us 5t 1) (o yon)

Ren)=(—1"(a+ 5 +n—1)(at 5 +n—2)(ut g +1)n+2)

(g 32 (o)

By means of these matrices one obtains the following conclusions:

[Case 1] 1=(1, x) where 1 denotes the trivial character of M.

We define the function £, by f,|K=1. In this case matrices P"»(1) and
R"=(2) are given by

P =pu(u+1)---(u+|n|—1)
R =(—D"(g+ In|—D(u+|n|—2)-(#+Du
X (u—=D(u—2)---(u—|nl)

Then one can see:

(1) X*isirreducible if and only if # is not integer.

(2) Among the above 1, X* admits an invariant positive definite
Hermitian structure if and only if either (i) ,a——;— is pure imaginary or (ii)
u is real and 0< 4 < 1.

The representations (i) are called the representations of the principal series
of class 1, while (ii) are called the representations of the supplementary
series.

(8) When « is an integer, X* is not irreducible and Z* admits a non-
degenerate invariant Hermitian structure.

In order to make a further investigation in the case (3), we replace f,
by the function f,(k;)=e’’ where v is an even integer. Then by using
matrices P7(1) and R”(), one finds out that

(I) Suppose x is a positive integer, then
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X, gm0, T is an even integer
z2p =3¢ > c

n=2u
and
o { pind. T is an even integer}
=2 > —g_ —2,(! c

are irreducible N-submodules of X* and there exists a positive definite in-
variant Hermitian structure on each of them. And there are no proper U-
submodules of X* other than them.

(I) If x is a non-positive integer, X* has three proper U-invariant
subspaces X2,,, X% ,., and X2, ,N\XX_,, among them only the U-module

2w X% ,, is irreducible, and X%,,N\XZ%_,, admits a positive definite in-

variant Hermitian structure only when #=0 (in this case, X2,.,N\X%_,,=C).

The representations of (I) are representations of a branch of the dis-
crete series.

[Case 2] A=(—1, x) where —1 denotes the alternating character of M.

Let us deflne the function f, by f.(ks)=e"® where v is an odd integer.
Using matrices P7(1) and R?(1), one can see:

(1) X*is irreducible if and only if « is not a half-integer.

(2) Among the above 2’s, X* admits a positive definite invariant Her-

mitian structure if and only if ,u—% is a pure-imaginary number. These

unitary representations are representations of another branch of the princi-
pal series.

(8) When y is a half-integer, X* contains proper U-invariant subspaces.
And one can see:

(I) If x is a positive half-integer, X* has only two U-invariant sub-
spaces X%,, and X% _,, defined by

X :{eme, n is an odd integer}
Z2p ’ nzzﬂ c

and

x> :{e,-ng, n is an odd integer}
=24 > n g _2,U c 5

and they are irreducible U-submodules of X*, which admit positive definite
invariant Hermitian structures. The unitary representations thus obtained
are representations of another branch of the discrete series.

(II) If x4 is a negative half-integer, X* has three proper U-invariant
subspaces X2,,, X% ,,and X2,, N\ X% ,.. Among them only the U-submodule
XX, ,NX%_,, is irreducible, and none of them admit positive definite in-
variant Hermitian structures.
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