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§ 1. Introduction

The classical theory about Dirichlet problem shows that certain classes
of harmonic functions on the unit disk are given by the Poisson integral (cf.
[T]). However, as Helgason proved in [4], to obtain arbitrary harmonic
functions one has to consider the Poisson integral of "hyperfunctions". He
also proved that any eigenfunction of the laplacian (with respect to the
Poincare metric) can be given by the Poisson integral of hyperfunctions.

The present paper deals with the similar problem about eigenfunctions
of the laplacian on the rc-dimensional euclidean space.

Suggested by the work of Ehrenpreis [2], we define the map 0>x which is
an analogue of the Poisson integral [see §4].

In our case, contrary to the usual Poisson integral, it is not sufficient to
consider the hyperfunctions to obtain arbitrary eigenf unctions of the lapla-
cian, but one should consider a certain space &(Sn~1) which contains the space
of hyperfunctions on the (n — l)-dimensional unit sphere as a proper subspace.
We shall prove in §5 that our map 0>λ gives an isomorphism of @(Sn~λ) onto
the space of the eigenf unctions of the laplacian.

In this paper we deal with the case where λφO. We shall discuss the
case where λ = 0 in the forthcoming paper [ΊΓ].

§2. Review of the repesentation theory of SO(n)

In this section we summarize briefly the representation theory of SO(n).
SO(n) acts on Rn and if we denote by H the isotropy subgroup of SO(n} at
'(1, 0, , 0) = βi in Rn, then Hconsists of all elements of the form

/ I 0 \
(heSO(n-l)).

\ o h )
The orbit of ex of SO(n) is canonically isomorphic to Sn~ι, the unit sphere in
Rn. So we obtain an isomorphism

S"-1 B ω = g-e1<c—ϊgHt SO(n)/H
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where ge SO(n).
For each non-negative integer m, let Jί?n'm denote the space of all homo-

geneous harmonic polynomials on Rn of degree m. The canonical action of
SO(n) defines an irreducible (unitary) representation of SO(n) on jpn'm9 which
we denote by rm. It is known that the representation τm is of class one with
respect to H. Conversely, every irreducible representation of SO(n) of class
one with respect to H is obtained in this way. Let d(m) be the degree of τm.
We choose an orthonormal basis {ψw , ψd{m)} of jpn>m, where ψι is the unit
fixed vector for H. For each m, tm(g)(ge SO(n)) is represented by the matrix
(*7/(g))isw.ysw(m) where tfj(g) = (tm(g)ψh ψj). Since in is an #-fixed vector
we see that tfj(g) can be regarded as a function on SO(n)/H which is isomor-
phic to Sn~\ Put ψf(ω) = ̂ d(m)tfj(g) where ω = gHe S*"1 (we identify S""1

with SO(n)/H), then it is well known that, if we denote by J5»-i the Laplace-
Beltrami operator on S7*"1, each ψy(l<;j<,d(m)) satisfies the differential
equation

and {ψf; l<>j<:d(m)9 m^>0 integer} form a complete orthonormal basis of
L2(Sn~ι) which is the Hubert space of all square-integrable functions on Sw - 1

with respect to the SO(r&)-invariant measure dω on S""1.
Using the fact that Sw - 1 is compact, every function ψ in C0 0^""1) can be

expanded in an absolutely and uniformly convergent Fourier series:

More briefly we write this

ψ= Σ <Cm

here Cm=\(ψ, ^f),.. , (ψ,

<Cm Φm(ω)> =

§ 3. Some results on eigenfunctions

In this section we shall prove three lemmas which we need in the follow-
ing sections.

LEMMA 1. Let Jv(z) be the Bessel function of order v>0, then for any
complex number z, we have
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PROOF. From the power series expansion of the Bessel function
we have
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This proves (i) in the lemma.

Next we notice that

1
IΛ0OI =

Suppose that
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Then

Hence, we obtain

2Γ(v

This completes the proof of the lemma.

Fix a non zero complex number μ and let us consider the differential
equation

where

We fix one of the square roots of β and denote it by λ. We denote by C°°(βw)λ

the space of all functions / of C°°(Rn) which satisfy Jf=λ2f. Then we have
the following

LEMMA 2. For any f e C°°(Rn)x and for each non-negative integer m, there
exists a unique constant Cm e Cd(m) such that

/ ( * ) = Σ r(2-w)/2/w+(«-2)/2Ur)<CW5 Φm(ω)>

where χ=rω(r>0, ω e Sn~ι) and Jv(z) is the Bessel function of order v. The
right hand side converges absolutely and uniformly on every compact subset in
Rn.

PROOF. For each / in C°°(Rn)λ and for each real number r, we put /r(α>) =
f(rω)(ω e Sn'1). Then fr has an absolutely and uniformly convergent Fourier
expansion

dim)
/r(«>)= Σ Σ(fr,ψJ)ψj{θ>)

(See §2.). If we put bj(r) = (fr, ψj), then

fr(ω)= Σ dΣ bf(r)ψ>?(ω).
^ 0 i = l

Using the assumption that / satisfies the equation Jf=λ2f, we have
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On the other hand we know that Δ is expressed in polar coordinates in t h e
form

2 ,n-l 9 , 1 . \
rΔ r or rΔ J

If we recall that Js»-lΨ? = — m(m + n — 2)ψy, we obtain the following equation
for bf:

d2bmir+n~rl dΪ + ( ^ - ^ ^ z g l > r = 0 .

A fundamental system of solutions of this differential equation is given as
follows:

(1) r^-^2JmHn.2)ι2(λr\ r^-^2NmH^2)l2(λr)

when m + (n — 2)/2 is an integer,

(2) r( 2 -^ 2 / W + (,-2)/2Ur),r(2-^2/-W-(w-2)/2Ur)

when m + (n — 2)/2 is not an integer.

Here Jv(z) is the Bessel function of order v and Nv(z) is the Neumann func-
tion of order v. On the other hand the solution must be a restriction of C°°-
function on Rn, therefore by is a constant multiple of ri2~n)ι2JmH_2+n)ι2(λr).
Consequently, there exists a unique constant CmJ e C(l<:j<:d(m)) such that
bJ(r) = Cm>jτ^-n)ι2JmHn.2)i2{λr\ If we put CM = XCM,U.. , Cm>d(m)) 6 Cd^m) a n d
β»(ft>) = ί(Vril(β))> > Ψ%m)(ω))> then by the above formula we have

)= Σ r (

( ) ,

Now the last statement of the lemma is clear from Lemma 1, (i).

LEMMA 3. PutFm(x) = { eiX<x'ω>Φm(ω)dω. Then
)sn~1

/ 2r

where x=rω, (r>0, ωe Sn~λ) and an =

PROOF. For arbitrary g e SO(n), there exist h,hr e H such that g=huθh
f

where
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(cosθ —sin/9 \

uθ = sin θ cos θ

1,-2/

Using this decomposition, for any ψ e C°°(SO(n)), we have

Ψ ( g ) g \ [ [ [ψ(θ

f) sinn-2θdh dh'dθ.
SO(n)r ° ° / l \ ) j j r

where dg (resp. dh, dti) is the normalized Haar measure on SO(n) (resp. H).
In view of §2, if we recall that ω e S""1 is written as ω = g e1(g=huθh' e SO(n))
and ΛΓis the isotropy subgroup of SO(n) at eu we obtain by the definition of

e1) = rm(h)Φm(uθe1) and that e

ix<re^>=eix<r^hu^'^> = eiXr^\

Using the above integral formula, we obtain

2 ' A [ [πeiλrcosθ

If we remark that

( ί tfjihgh')dhdh' = dnSntΐi(g)
J H J H

for g e SO(n), we can show that every component of FJj) vanishes except
the first one. It is not difficult to see that the first component of Φm(uθeι) is
expressed in terms of the Gegenbauer polynomials. The lemma follows
immediately from the equation in ([[8], p. 71, line 1).

§4. Definitions of ^ ( 5 w l ) and ^ λ

Let jtfiS"-1) be the space of all analytic functions on S""1 and
the space of all hyperfunctions on 511"1. Then, because of the compactness of
S""1, each element of ^§{Sn'1) is regarded as a continuous linear functional on
s/(Sn~ι). In this section we fix a non-zero complex number λ once for all and
consider the analytic function e

iλ<x>ω> on the product space RnxSn~1. For
any hyperfunction T on S""1, we define a function on Rn as follows. For any
fixed x 6 Rn, we denote by f(x) the value of T at the function e

iλ<x>ω>. Here
we regard eix<x>ω> as an analytic function on 5W - 1, x being fixed. Then we
shall show below that / e C°°(Rn\. Thus, putting f=&x T, we obtain a linear
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map 0>x of ^{Sn~λ) into C°°(Rn\. As is seen below, ^ λ is not surjective, so
that we extend the domain of the definition of ^\ as follows. For any non-
negative integer m, let rm be the irreducible unitary representation of SO(n)
of class one with respect to Hon Jfn>m which is defined in §2. We denote by

oo

d(m) the degree of rw. Let Π Cd(m) be the product set of all the complex

euclidean space Cd(m) of dimension dim). Then Π Cd(m) has canonically the
m=0

structure of a vector space. We write & for the vector subspace of Π Cd(m)

consisting of all (Cm)m^0 (where Cm a Cd(m)) which satisfies Σ l|Cw||sw<oo for
all 5 (0<s<l). Now we consider the Fourier expansions of hyperfunctions
on Sn~1. For any T in @(Sn~ι) one can show that there exists a unique
element (Cm)m^0 in J5" such that

T(ψ)= Σ [ <CmΦm(ω)>dω for all ψeA(Sn-1)

where the right hand side is absolutely convergent, (see

Next we introduce the vector subspace # of all elements (Cm)m^0 ΐ

Π Cd(m) satisfying Σ ^ ^ sm<oo for all s >0.
m=0 m^O / 71 \

Then, as is easily seen, every element (Cm)m^0 e & satisfies

for any polynomial p and all s>0.

The formula of Cauchy-Hadamard about the radius of convergence implies
that # contains «f as a proper subspace. Let ^{Sn~λ) be the set of all ψ
in s/(Sn~λ) such that the series

, Φm{ω)>ψ(ω)dω

is convergent absolutely for any (Cm)m^0 e # . We remark that every element
of the orthonormal basis {ψ* \ 1 < i ̂  d(m), m ̂ 0 , } lies in ^{Sn~x). For any
(Cm)m^0 6 # , we define a linear mapping T{χcm)m^Q~] from sέ(Sn~ι) into C by

for any ψ in stf(Sn~ι). Moreover we denote by @(Sn~ι) the set of all
where (Cm)m^0 e # .
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PROPOSITION 1. The mapping

& * (Cm)m*o I —

is an onto-isomorphism.

PROOF. By definition it is easy to see that the mapping is linear and
surjective. So we have only to prove that it is injective. Let (Cm)m^0 be an
element of β' such that

Then we have

Σ \sn_ι<
c™> Φm(ω)>ψ(ω)dω = O for all ψ e

As we remarked before, ts^(Sn~1) contains a complete orthonormal system.
It follows at once that Cm = 0 for all m^>0. This completes the proof.

Since & is contained in # as a proper subspace, ό§(Sn~ι) is a proper
subspace of S(Sn~l). The following proposition assures that the domain of
the definition of «̂ λ can be extended to

PROPOSITION 2. For any T[_(Cm)m^ in

/ ( x ) = Σ [ eiλ<x'ω> < Cm, Φm(ω) > dω

is absolutely and uniformly convergent on every compact subset in Rn, and f
defines an element of C°°(Rn)x.

PROOF. We fix ro>O. For any x in Rn such that | |Λ;||<Γ0, putting x=rω,
we have

eix<*'t><CmΦm(ξ)>dS
m^O \jSn-1

<*\an\ Σ

γ{2-n)\2 2

λr + (n-2)l2

m + jTT e x p ( i τ L ) ' i ( " )l|c-

( _i_ n
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- ) Σ2 ) V 4

Since (Cm)m&0 e & and d(m) is a polnomial in m, the above series is convergent.
This shows the absolute and uniform convergence of /. Next if we notice

„ Φm(ω)>dω

= λ2ί[ eix<" "><Cm,Φm(ω)>dω

It follows immediately that / lies in C°°(Rn)x by the uniform convergence of
/. This completes the proof of Proposition 2.

Finally we define the map 0>x of @(Sn~ι) into C°°(Rn)x as follows. For any
Γ = Γ[(Cm)mg£θH in ^{Sn-λ\ we define 0>XT to be the element / of C°°(Rn)x

which is given in Proposition 2.

§5. The surjectivity of ^ λ .

Let us consider the differential equation Jf=λ2f. Then the following
theorem says that every solution can be represented by an analogue of t h e
"Poisson integral" of a unique element of <%(Sn~ι).

THEOREM. The map 0>x is an isomorphism of ^{Sn~ι) onto C°°(Rn)x.

PROOF. Lemma 2 in § 3 and Proposition 2 in §4 show that 0>x is injective.

Let / be an arbitrary element of C°°(Rn)x. By Lemma 2 in § 3, there
exists (Cr

m)m^0 such that

/ r ( o > ) = Σ r(2-B)/2/OT+(»_2),2(Ar)<C;, Φm(ω)>.

We put

C 1 ( λ Y""2 ) / 2.c /
OT imαB V 2 /

First, we show t h a t (C m ) m a 0 e # . From the absolute convergence, we have

= Σ \r^-"^JmH^2)l2(λr)\2\\C,

2

/ \ \ 2
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Using Lemma 1, (ii),

2-n 2-n -I

λr

Γ\

— I „ I 2 V

~ 4 | α κ l . 4

From the Cauchy-Hadamard test,

lie

So,

This implies that

lim

lim

+ (n-2)l2

•lie.

Γ
oo for all r.

Since Λ^05 we have that (Cm)m^Q lies in J^.

Next, we put Γ= T\JCm)m^~], then Γe ^(S"" 1). Then, using Lemma 3,
it is easy to obtain 0>xT=f. This completes the proof of the theorem.
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