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§1. Introduction

The classical theory about Dirichlet problem shows that certain classes
of harmonic functions on the unit disk are given by the Poisson integral (cf.
[1]). However, as Helgason proved in [4], to obtain arbitrary harmonic
functions one has to consider the Poisson integral of “hyperfunctions”. He
also proved that any eigenfunction of the laplacian (with respect to the
Poincaré metric) can be given by the Poisson integral of hyperfunctions.

The present paper deals with the similar problem about eigenfunctions
of the laplacian on the n-dimensional euclidean space.

Suggested by the work of Ehrenpreis [27], we define the map £, which is
an analogue of the Poisson integral [see §4 .

In our case, contrary to the usual Poisson integral, it is not sufficient to
consider the hyperfunctions to obtain arbitrary eigenfunctions of the lapla-
cian, but one should consider a certain space #(S”') which contains the space
of hyperfunctions on the (n —1)-dimensional unit sphere as a proper subspace.
We shall prove in §5 that our map 2, gives an isomorphism of #Z(S*~') onto
the space of the eigenfunctions of the laplacian.

In this paper we deal with the case where 1==0. We shall discuss the
case where 2=0 in the forthcoming paper [5].

§2. Review of the repesentation theory of SO(n)

In this section we summarize briefly the representation theory of SO(n).
SO(n) acts on R” and if we denote by H the isotropy subgroup of SO(n) at
‘1, 0,...,0)=e; in R", then H consists of all elements of the form

1 0
< > (h € SO(n—1)).
0 h

The orbit of e; of SO(n) is canonically isomorphic to S*~!, the unit sphere in
R”. So we obtain an isomorphism

S"'30=ge <> gHe SO(n)/H
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where ge SO(n).

For each non-negative integer m, let #™™ denote the space of all homo-
geneous harmonic polynomials on R” of degree m. The canonical action of
SO(n) defines an irreducible (unitary) representation of SO(n) on s#™", which
we denote by 7,. It is known that the representation r,, is of class one with
respect to H. Conversely, every irreducible representation of SO(n) of class
one with respect to H is obtained in this way. Let d(m) be the degree of 7,.
We choose an orthonormal basis {yr,--, Yam} 0f #™™, where + is the unit
fixed vector for H. For each m, r,.(g)(g € SO(n)) is represented by the matrix
@ (@i isamy Where t7.(g)=(tn(@ri, ¥;). Since v is an H-fixed vector
we see that :7,(g) can be regarded as a function on SO(n)/H which is isomor-
phic to $".  Put y7?(0)=vd(m)t7;(g) where v=gHe S"~' (we identify S"~!
with SO(n)/H), then it is well known that, if we denote by 4s--: the Laplace-
Beltrami operator on S"°!, each v7(1<j< d(m)) satisfies the differential
equation

41y =—m(m+n—20",

and {y7; 1<j< d(m), m =0 integer} form a complete orthonormal basis of
L*(S"') which is the Hilbert space of all square-integrable functions on S”~*
with respect to the SO(n)-invariant measure dw on S*~.

Using the fact that S”-! is compact, every function v+ in €~(S""!) can be
expanded in an absolutely and uniformly convergent Fourier series:

d(m)
W)= T2 G ¥PYI).
More briefly we write this
11[/\: go < Cm’ wﬂl(w) > b}

here Cm=t(("/’s ‘/’71”)3 ] (‘/’a ";Win(m))) € Cd(M)s
mm(w) = ’(1/’71”(0))" ] '\//:1"(1”)(0))),

<Gy 0n0)> =2 (1 VIV

§3. Some results on eigenfunctions

In this section we shall prove three lemmas which we need in the follow-
ing sections.

Lemma 1. Let J,(z) be the Bessel function of order v>0, then for any
complex number z, we have
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Proor. From the power series expansion of the Bessel function J,(z),
we have
z 2n
z \* 1 = (—1)n< )
J”(z)"(T) I'(v+1) 1+ El L+n+1)
N N OES)
2n
Put o= 3 (_1),,(%) Then it i
u = n§1 m . en it is easy to see
YT+

z 2n

< 3 2 _ [z]® )
91= 2, W +1) exD{4(u+1)}

For y >0 and arbitary z € C,

exp {—I—ZL}—1<exp<|z|2>—1

4(v+1) 4
shows that
|z|?
()

14+ ]0])<

———1+16]) r( -
This proves (i) in the lemma.

Next we notice that
1

A—=16D.

Suppose that

|z|2§4log—23—(v+l).
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Then
1

2
01 < expl 2t —1= 4

4(v+1)

Hence, we obtain

v

z
v 1 5
o+ 100=5r0 11y

L) = |5

This completes the proof of the lemma.

Fix a non zero complex number g and let us consider the differential
equation

Af =uf, feC (R,

where

__ s 9
4= ;;1 0x;?

We fix one of the square roots of # and denote it by 1. We denote by C~(R"),
the space of all functions f of C~(R") which satisfy 4f=4%f. Then we have
the following

Lemma 2. For any f € C*(R"), and for each non-negative integer m, there
exists a unique constant C,, € C*™ such that

f(x)'—_ ZOT(Z_n)/ZJm+(n—z)/2(/lr)<Cm, Qm(w)>

mz

where x=rw(r>0, w € S"') and J,(z) is the Bessel function of order y. The
right hand side converges absolutely and uniformly on every compact subset in
R".

Proor. For each f in C*(R"), and for each real number r, we put f,(0)=
fGow)we S*1). Then f, has an absolutely and uniformly convergent Fourier
expansion

F@)= B8 G vv30)
(See §2.). If we put 67(r)=(f,, v7), then
fiw= I 5 b o).
Using the assumption that f satisfies the equation 4f=4%f, we have
Abyrg(0) = 2267 (r )7 ().
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On the other hand we know that 4 is expressed in polar coordinates in the
form
2 _
A: a +n 1 a + 12 Asn—l> .

“\or2 r or r

If we recall that 4sr-17=—m(m+n—2)y?, we obtain the following equation
for b7:

.

a®?  np—1 db7 , m(m+n—2)\ =
dr r dr +</I r? )bj_o'

A fundamental system of solutions of this differential equation is given as
follows:

(1) r(2~n)/2Jm+(n—2)/2('Zr)a T(zﬁn)lszun—z)/z(lr)
when m+(n—2)/2 is an integer,
(2) T(z_n)/2]m+(n—2)/2(lr)) r(2~”)lzj~m~(n—2)/2(lr)

when m+(n—2)/2 is not an integer.

Here J,(z) is the Bessel function of order v and N,(z) is the Neumann func-
tion of order y. On the other hand the solution must be a restriction of C~-
function on R", therefore 47 is a constant multiple of r® /2], 5. . 2(A7).
Consequently, there exists a unique constant C,, ; € C(1<j=< d(m)) such that
b;"(l‘)z Cm,jr(z_n)‘/ZJm_f_(,,_z)/z(lT). If we put C,,,=’(C,,,,1,- cey Cm,d(m)) € Cd(m) and
0,,(0)="(P (), -, v7m(®)), then by the above formula we have

fr(w)z ZO r(z_n)lzjm+(n—-2)/2(lr)<Cmg mm(w)>

mz

Now the last statement of the lemma is clear from Lemma 1, (i).

Levma 3. Put F,,,(x)zg e*<2>0 (w)dw. Then

Sn-1

Ar
2

. (2-n)/2
F(x)= z"’an( ) s n-2)12(Ar) D (),

(-
where x=rw, r>0, v € S*') and an=—S_2—>'
n

Proor. For arbitrary ge SO(n), there exist h, »’ € H such that g=hwu A’
where
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cosf® —sinf
uy= | sind cos 0 oo,
1n—2

Using this decomposition, for any v» € C*(SO(n)), we have

L
S som?(8)48= %SJJ:«NLLLMO sin"~20dh dh'do.

where dg (resp. dh, dh’) is the normalized Haar measure on SO(n) (resp. H).
In view of §2, if we recall that w € S”~! is written as w= g-e:(g=hu,h’ € SO(n))
and H is the isotropy subgroup of SO(n) at e;, we obtain by the definition of
0, that 0,(hueh’-e1)=7,(h)0,(uge;) and that e*<7ere>= M <renhugh’er>— girrcosd

Using the above integral formula, we obtain

Fm(r)=iﬂg S S”efwwr,,,(h)q;,,,(u,,el)(sino)"-zdadhdh'.
\/EF("’—;I> a0

If we remark that
SHSHt?"f(hé’h/)dhdh/=5i16i1t'1”1(g)

for ge SO(n), we can show that every component of F,(r) vanishes except
the first one. It is not difficult to see that the first component of 0, (uge;) is
expressed in terms of the Gegenbauer polynomials. The lemma follows
immediately from the equation in ([8], p. 71, line 1).

§4. Definitions of #(S”"!) and 2,

Let «/(S""') be the space of all analytic functions on S”! and #2(S"!)
the space of all hyperfunctions on S”~!. Then, because of the compactness of
S"~! each element of #(S"!) is regarded as a continuous linear functional on
&(S"1). In this section we fix a non-zero complex number 2 once for all and
consider the analytic function ¢”*<**> on the product space R”x S”~'. For
any hyperfunction 7 on S”°!, we define a function on R” as follows. For any
fixed x € R”, we denote by f(x) the value of T at the function e*<**>, Here
we regard e*<*°> as an analytic function on S"!, x being fixed. Then we
shall show below that f € C*(R"),. Thus, putting f=2, T, we obtain a linear
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map 2, of #(S" ') into C*(R"),. As is seen below, 2, is not surjective, so
that we extend the domain of the definition of £, as follows. For any non-
negative integer m, let z,, be the irreducible unitary representation of SO(n)
of class one with respect to H on s#™™ which is defined in §2. We denote by

d(m) the degree of r,. Let ﬁ C*™ Dbe the product set of all the complex

m=0

euclidean space €*™ of dimension d(m). Then ﬁ C’™ has canonically the
m=0

structure of a vector space. We write & for the vector subspace of ﬁ cim™
m=0
consisting of all (C,)nzo (Where C,, € C*™) which satisfies Y} ||Cy||s"<oo for
0

m=

all s (0<s<1). Now we consider the Fourier expansions of hyperfunctions
on S*!. For any T in #(S"!) one can show that there exists a unique
element (Cp)mzo in &# such that

)= I { . <Co Ou)>do  forall ye A"

m=0
where the right hand side is absolutely convergent, (see [3]).

Next we introduce the vector subspace & of all elements (C,)nzo in

T ¢ satisfying 3 _Ms’”<oo for all s>0.

m=0 mz0 F(m+—y2—>

Then, as is easily seen, every element (C,)n-0 € & satisfies

'p(m)| ”Cm” "< oo
m=Z0 n
r(m+-2—)

for any polynomial p and all s>0.

The formula of Cauchy-Hadamard about the radius of convergence implies
that & contains & as a proper subspace. Let o7 (S"') be the set of all
in &(S"') such that the series

Z SS"—1<C"” mm(w)>‘/’(w)dw

m=0

is convergent absolutely for any (C,)nz0 € #. We remark that every element
of the orthonormal basis {y7?|1<i<d(m), m=0, } lies in &/ (S"'). For any
(Cn)mzo € F, we define a linear mapping T[(Cp)mzo] from o (S”"!) into C by

T Cnmaa = T | < Coy Op(0)> (@) do

m=0

for any v in &7 (S”"!). Moreover we denote by Z(S"') the set of all
T[(Cm)mgo:] Where (Cm)mg_o € g"—:.
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Proposition 1. The mapping
52"' 3 (Cm)mgo [—> T[(Cm)mgoj € @(Sn_l)
18 an onto-isomorphism.

Proor. By definition it is easy to see that the mapping is linear and
surjective. So we have only to prove that it is injective. Let (C,)mz0 be an
element of & such that

TT(Cw)mz0]=0.
Then we have
M Ss < Coy Op(0)>y(0)d0=0  for all yr € Z(S"D).
mz0 n-1
As we remarked before, 2 (S"!) contains a complete orthonormal system.
It follows at once that C,, =0 for all m=0. This completes the proof.

Since # is contained in % as a proper subspace, #(S""!) is a proper
subspace of Z(S""!). The following proposition assures that the domain of
the definition of £, can be extended to #(S™1).

Prorosition 2. For any T[(Cp)mzo] in Z(S" 1),

f(x): Z Ssﬂ_leix<x,m><cm, ¢m(a))> dow

m=0

s absolutely and uniformly convergent on every compact subset in R", and f
defines an element of C*(R"),.

Proor. We fix r,>0. For any » in R” such that ||x||<r,, putting x =rw,
we have

[P <Cn, Ba(0)> at

m0

<la.| m§0 IT(Z_")IZJm+(n—2)/z(lT)<Cm, D(w)> |

= la. | 2 |r(2'”)/2]m+(,,_2)/2(lr)| d(m)||C,,,||

mz0
ir_ m+(n—2)/2
<lal % ’(2_")'2%@1_?)'6’“) (& amyca
2

_ A\ |Ar|? dm)||Call / r \™
'“"'( 2 > exp( 1 >m§o F(m+—;—)\ 2)
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<o | (12 exp (1Al2) 2 ;l((m)ﬂc |l>< ay

Since (C)mzo € # and d(m) is a polnomial in m, the above series is convergent.
This shows the absolute and uniform convergence of f. Next if we notice

4(( P <y Bp(0)> do)

=22({ e <y Bn(w) > do)

It follows immediately that f lies in C*(R"), by the uniform convergence of
f. This completes the proof of Proposition 2.

Finally we define the map £, of Z(S"!) into C~(R"), as follows. For any
T=T[(Cw)mzo] in F(S* '), we define 2,T to be the element f of C=(R”),
which is given in Proposition 2.

§5. The surjectivity of 2,.

Let us consider the differential equation 4f=21%f. Then the following
theorem says that every solution can be represented by an analogue of the
“Poisson integral” of a unique element of #Z(S*%).

TueorEM. The map 2, is an isomorphism of #(S™ ') onto C*(R"),.
Proor. Lemma 2 in §3 and Proposition 2 in §4 show that 2, is injective.

Let f be an arbitrary element of C*(R"),. By Lemma 2 in §3, there
exists (C;)n=o such that

fr(o)= §OT(Z_")/ZJm+(n—2)/2(Zr)<C,/m Opn(w)>.

We put

. 1 A )("—2)l2 ,
Crn=—r (T Cy.

i"a,
First, we show that (C,)nz0€ #. From the absolute convergence, we have

o0 > (|| f 1l 2¢sn-1))?

] S FE R a2 CLl P

mZ

= |a.|

2-n
I IR P AR BTL TS
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Using Lemma 1, (ii),

~ Ar m+(n—2)/2 2
2-n 2—n
00> a2 5| el L L 2 Cal
mZ0 ( )
ar |m
_ 1 5 | Gl
=7 lax

m=0 F<m+Tn>

From the Cauchy-Hadamard test,

Air |m T
[z el
lim Y <1.
r(mt+) |
m _1
— | Gl ™
So, lim L=+ ' <.
L o).

This implies that
m=0 n
r(m+-4-)

Since 10, we have that (Cy)m, lies in Z.

<+ oo for all r.

Next, we put T= T[(Cn)mzo], then T € Z(S*'). Then, using Lemma 3,
it is easy to obtain 2, T=f. This completes the proof of the theorem.
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