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In a previous paper [10] one of the present authors has investigated
the fine Cauchy problem for a system of linear partial differential operators
and obtained the following result: Let P(t, x, Dx) be an NxN matrix of
linear partial differential operators with coefficients e C°°(Rn+ι). The fine
Cauchy problem consists in finding a solution ύ = (u1, u2y 9 uN), uj e @r(R++1)
to the equation

t, x9 Dx)ύ = f in

with initial condition

limύ(t, x) = ά,

when ά = (au a2, , aN\ aj e ®\Rn) and f=(fuf2y..,fN\ fj e &'(R$+1) are
arbitrarily given, where lim ύ denotes the distributional boundary value of

no
ύ. If there exists a solution ύ for the problem, then/ must have the canoni-
cal extension /_ over t = 0 and v = ύ^ satisfies the equation

Dtv + P(t, x, Dx)v=f-id<g>a.

Conversely, if v = (vu i72, , vN), vj e @'+(Rn+ι) is a solution of this equa-
tion, then the restriction ύ = v\R++ι is a solution for our original Cauchy
problem and ύ~ = v. If we replace P(t, x, Dx) by l(t\ an Nx N matrix of
pseudo-differential operators [cf. p. 384 for definition], we shall have a right
reason to consider the spaces @f(R^)((3'L2)x) and @'t((@ί*)x) instead of
^XRJ+x) and @'(Rn+ι) respectively. As a result, it will be natural to intro-
duce the boundary value and the canonical extension in a suitable sense.

The present paper is also designed to be the introductory part of our
subsequent paper Q12] which will appear in this journal.

In Section 1 we discuss the space ^((^£2)*) and the spaces related to it.
These spaces are all reflexive, ultrabornological and Souslin. Section 2 is
devoted to discussions concerning the ^^-boundary value and the ^£2-canoni-
cal extension. Various alternatives of these notions will also be considered.
In Section 3 we shall introduce the operator l(t) referred to above and in-
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vestigate the properties thereof. In Section 4 some pseudo-commutativity
relation for l(t) will be discussed. In particular, when applied to a singular
integral operator in the sense of A.P. Caldelόn, our result will refine Theorem
4 in [3]. The final section is concerned with the fine Cauchy problem for a
pseudo-differential system.

1. The space

Let Rn+ι = Rx Rn be an (zi + l)-dimensional Euclidean space with generic
point (ί, x\ χ=(xu .-., χn) and R%+i = {(ί, x) e RH+1: ί>0}. As usual, we

write I x I = ( Σ *?)1/2 and <*, ξ> = £ *,•£,, where ξ= (ζu ..., £,) 6 £„, the
y = i β j=i

dual Euclidean space of Rn. If p is an ra-tuple (/?i, • ••, /?„) of non-negative in-
n

tegers , the sum Σpj will be denoted by \p\ and with Dx = (Dι, • ••, Dn), Dj =
y = i

-ΊΓϊk and A=-^^-,w
Let L be a locally convex Hausdorίf space and U be its dual. We shall

denote by Lf

σ, Ub and L'c9 respectively, the weak dual, the strong dual and the
dual space V with the topology of uniform convergence on absolutely convex,
compact subsets of L. For a locally convex Hausdorff space M> following L.
Schwartz [16, p. 18], the ε-product LεM is defined as the linear space of bi-
linear forms on L'cxM'c hypocontinuous with respect to the equicontinuous
subsets of L\ M and provided with the ε-topology, that is, the topology of
uniform convergence on the products of an equicontinuous subset of U and
an equicontinuous subset of M\ If we let seB{L'c Af) be the space of continu-
ous linear maps of L'c into M with the topology of uniform convergence on
the equicontinuous subsets of Z/, it is shown [16, p. 34] that there exist the
canonical isomorphisms between LeM, ££ε (L'c M) and seε (Mf

c L). Hence
we can identify LeM with &B(L'C\ M) or with <£a(M'c\ L) in accordance with
these canonical isomorphisms.

n

As to the tensor product L(g)Λf, every Σ XJ^ΎJ £ L<ξ§M defines a bilinear
m

form on U xM\ (x\ y')-> Σ <χ\ χj> <y\ Jj> > which is certainly an ele-
y=i

ment of LεM, In view of the fact that the linear map of Lξ&M into LeM
thus defined is injective, L(g)M is regarded as a linear subspace of LeM.
Equipped with the ε-topology, the space Z(g)Af will be denoted by Lζ§>£M [16,
p. 47]. The 7Γ-topology (resp. the ί-topology) on £(g)Jlί is defined as the finest
locally convex topology on this vector space for which the canonical bilinear
map O, y)-*#(g)y of LxM into L(g)Af is continuous (resp. separately con-
tinuous). L (g) πM (resp. L(g)tM) will stand for the space L(g)M with the
π-topology (resp. the ί-topology). The notations L^€M, L'(g)πM and Lξ§tM
are used to represent the completions of L<g)M with topologies ε, π and c
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respectively. In what follows we often write L(M) instead of LεM.
In our later discussions we need the following

LEMMA 1 (cf. [17, p. 103]). Let L be a nuclear Frechet space and M a re-
flexive Frechet space, then LεM is a reflexive Frechet space and furthermore
we have (LεM)/

b = L/

bεM/

b.

Now let #P be a locally convex Hausdorff space contained in @'(Rn+1).
Following L. Schwartz [16, p. 7] we shall say that ^ is a space of distribu-
tions if the identical map of 3/f into ^XRn + 1) is continuous, and that J? is
normal if (i) it is a space of distributions, (ii) #F contains @(Rn+ι) as a dense
subset and (iii) the identical map of ^(JSn+1) into j f is continuous. I t is
shown in [16, p. 10] that if Jf is a normal space of distributions, then so is
JTC.

As is well known, ®'t and (@'L
2)χ are complete normal spaces of distribu-

tions enjoying the approximation properties by truncation and regularization.
It follows from Proposition 3 and Corollary 1 [16, p. 9, p. 47] that ^{ί§) f i(^ί0*
= ^ί((0£O* Since ®'t is nuclear, we have 3 ^ ε(&L2)χ= ^t^^i^x and
therefore #{((#£0*) = &t ® π(9'L*)x.

PROPOSITION 1. ^£((^i2)*) is a normal space of distributions.

PROOF. Since the identical map {βr

L^)x-^2r

x is a continuous injection, it
follows from Proposition 1 in [16, p. 20] that ^ ί ((^ί 2 )*) C ®t(@x) On the
other hand, owing to the kernel theorem [16, p. 93], Q>'Ux is identified with
@t(β'x) algebraically and topologically. Consequentely 3>f

t(3f

L2)C@uχ If w e

consider ®ttX as a subspace of @'ttX it is clear that @ttX is a dense subset of
which completes the proof.

REMARK. For any element u e ̂ ί((^£2)*)> there exists a sequence
φj 6 @(Rn+ι) such that φj converges in ̂ f

t{{^r

L2)x) to u as j-+°°. More precise-
ly, if we let {pj} and {αy} be respectively any sequences of reguralizations
and multiplications in &ι

u and let {p<} and {aft be corresponding sequences
in (@ί*)χ9 w e c a n then apply the Banach-Steinhaus theorem to conclude that
the sequence aja$(u*(pjp$)) e @(Rn+1) converges in ̂ ί ( (^ ί 2 )^) to u.

Let us denote by^CO^),.) the strict inductive limit of the Frechet spaces
®KJS®L^X>){=®KJ'^JJ&L*)X\ y = l, 2, ..-, where we have designated by ®Kj the
space of infinitely differentiable functions in Rt which vanish outside Kj =
[— 7*5/]• We see from Lemma 1 that @KJ((@L*)X) is a reflexive Frechet space.
Consequently @t((@L*)x) is reflexive. @t((3>L2)χ) consists of all infinitely dif-
ferentiable functions / in Rn+1 such that supp / C [a, δ] x Rn for some bound-
ed interval [α, ό] and max(\ \Dk

tD
p

xf(t, x)\2dx)*<°° for any k,p = (pu- - 9pn).

It is to be noted that @t(kβ 1*)%} = ®^k®L*)X In fact, ®t(&(βi*)x is clearly
a dense subset of @t((βL*)x) Let G be any locally convex Hausdorff space.
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To any separately continuous bilinear map u of ®t x (βi*)x into G, there is
uniquely associated a linear map υ of ®t®(βi*)x into G such that u = voφ, φ
being a canonical map of @t x (^zθ* into 2j&(βv)χ. Observing that '@Kj and
(βι*)x are Frechet spaces, we see that the restriction of v to @κs®(βL*)χ
becomes continuous under the π-topology and admits a unique continuous ex-
tension taking @KJ'®*(@L*)X=@KJ((@L*)X) into G, the completion of G, which
shows that υ admits a unique continuous extension which takes St((@L2)χ)
into G. Thus 3ft® J<βfz0* is a dense subspace of 3t((@L2)x), whereupon
@t((®L*)x)=@t®X@L*)χ. It is shown [17, p. 104] that ^ί((^£0*) is the strong
dual of @t((&L2)χ)- With these in mind, we can state the following

PROPOSITION 2. @t((@'L
2)χ) ̂ s a reflexive space with strong dual

A locally convex Hausdorff space E is said to be ultrabornological or of type
(/?) if E is an inductive limit of Banach spaces Bt9 eel. It follows from this
definition that an ultrabornological space is barreled and bornological, and
that a quasicomplete bornological Hausdorff space is ultrabornological.

&c(E; F) is a Souslin space, that is, a continuous image of a Polish space,
if E is a strict inductive limit of a sequence of separable Frechet spaces and
if F is a countable union of images, under continuous linear maps, of separ-
able Frechet spaces. The result was stated without proof by L. Schwartz
[19, p. 602]. We shall make use of this fact which can be verified without
much labor and show the following

PROPOSITION 3. @'t((@L2)χ) is a n ultrabornological Souslin space.

PROOF. The strong dual of an (,LF)-space in the strict sense is ultrabor-
nological if the latter is reflexive [6, p. 111]. It follows that ^{((^ί2)*) is
ultrabornological.

That the space ^{((^ί2)*) is a Souslin space is a consequence of Schwartz's

theorem referred to just before, since we can take E=&t and F = (@f

L2)x=\J

Jf(-m). Thus the proof is complete.

As a generalization of the preceding proposition we shall show the fol-
lowing Theorem 1, where F is a closed subset of Rt and Q)r

F denotes the
subspace of ®'t which consists of all the one-dimensional distributions with
support contained in F. @'F is provided with the induced topology, so it is
nuclear.

THEOREM 1. &'?((&ί2)x) is a reflexive, ultrabornological Souslin space.

PROOF. ^ί((^z2)*) being reflexive, we see that ^£((^£0*) *s semire-
flexive as a closed subspace of ^ί((^£0*) Consequently if we can show that
@'F((L2)X) is bornological, then we can conclude that it is reflexive and ultra-
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bornological. That @'F(($'L
2)χ) is a Souslin space follows from the fact t h a t

@F((@L2)X) is a closed subspace of ^ί((^ί 2 )*) which is known by Proposition 3
to be a Souslin space. Thus to complete the proof of our theorem it remains
to show that ^£((^£2)*) is bornological. To this end, we shall first consider a
special case where F is a compact subset K of Rt. 3)r

κ is the strong dual
of a nuclear Frechet space £(K) which is obtained by restriction to the set
K of infinitely differentiate functions of t. It follows from Lemma 1 t h a t
@k((®L2)χ) is the strong dual of a reflexive Frechet space £(K)ξ§κ(@L2)X9 and
it results that ^ ( ( ^ £ 2 ) * ) is bornological. Now we shall turn to the general
case by following the process due to K. Fujikata and K. Miyazaki Q4, p. 23J.
Let {<Xj} be a partition of unity subordinate to the covering Ch/ = 1, 2, ...,

where C, ={ί e Rt: j-1—Jg-< \t \<j + " | - j , Putting

J2j-i}, F2 = FΓ\{\JC2j},

oo

2j-U 0= Σ OL2h

we obtain

( i ) F=

( i i ) (supp α)ΛFi, (supp β)Γ\FCF2 and

(iii) QjΓ\Fι, Qj'Γ\F2 are compact for each /.

Now we can write down: ^ ( ( ^ £ 2 ) , ) = Π ^ ^ ((^£2),) and
00 y = i

Π^c2X(^i2)^) Using the fact that the product space of a countable number
j = i

of bornological spaces is bornological, we see that ^ ^ ( ( ^ £ 0 * ) and @F2((@L2)X)

are bornological. Consider the map Θ: ̂ ^((^£2),) x@'F%((β'L2)x) B (ui, u 2)->
ui + i ί 2 f ^ K ( ^ x 2 W . Then 0 is linear and continuous. For any given
u e ®'F(i®Ί*)x\ if we put uι =au, u2 = βu, then Ul € @'Fl((@'L*)x\ u2 e @F2((@L*)X)

and Ui + u2 = u, that is, Θ is onto. Furthermore if u converges in @F((&ί2)χ)
to 0, then uu u2 converges respectively in @F{S&'i})x\ @'F2((^L2)X) to 0. Then
we see that the map θ is epimorphic and therefore @F((@L2)X) is isomorphic
to (βF{Sβ'ι*)x} x ^^2((^£2)Λ))/Ker θ. Consequently, ^ ( O £ 2 ) * ) is bornological,
which was to be proved.

If F=[0, oo), we shall use the notation Oί)+((^ί2)*) instead of ^
Similarly for {β'^J^β'ji)^. As an immediate consequence of Theorem 1, we
have
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COROLLARY 1. (^ί)+((^z2)*) is a reflexive, ultrabornological Souslin space.

We note that the strong dual of Oί)+(O£2)*) is ^(R^)^t(^L2)x. Here
is the set of infinitely difFerentiable functions in Rf which vanish out-

side a compact subset and it is a reflexive (LF)-space with the usual topology.
We omit the proof since the method of proving Proposition 2 will be applied.

We shall denote by @\(£β'Li)x)(R++{) the space which is obtained by re-
striction to R^+1 of all the distributions e ^{((^£0*) The space will be
identified with the quotient space ^ί((^£0*)/(^ί)-((^£2)*) equipped with the
quotient topology. We shall also denote by @(Rΐ) the closed subspace of @(Rt)
which consists of infinitely differentiate functions with support contained in
[0, oo).

Finally we shall show

PROPOSITION 4. @t((@ί2)χ)(RΪ+ι) is a reflexive, ultrabornological Souslin

space and @'t((@i*)xXRi+i) i s isomorphic to $XR ά

PROOF. According to the reasoning just before Proposition 2,
is reflexive and an (ZF)-space in the strict sense. Here we can infer

that ®'(RϊX(β'Lι)x) is the strong dual of i>(ΛJ~)c§tOz0* It follows that
@/(Rΐ)((@/

L2)x) = (@(Rΐ)(ϊξjι(@L2)xy is ultrabornological. Consider the identical
map /: @(R't)'ξ§AβL*)χ-+@(Rt)®£βL*)x which is a monomorphism. The dual
map *J: Ot((@'L2)x)->@XRi)((@/

L2)x) is continuous and onto. Here ^ί((^z2)*)
is a Souslin space and ^'(.RJ")((^ίO*) is ultrabornological. The open mapping
theorem [19, p. 604] then shows that */ is an epimorphism, whereupon

*) is isomorphic to the quotient space @/

t((@'L2)x)/KertJ=@/

t((@/

L2)x)/
)=®Ά®rLύx)(Rn+ι) Thus we can also see that ^{((^

is are reflexive, ultrabornological Souslin space. The proof is complete.

2. î £2-boundary values and ^2-canonical extensions

Given φ e @(R~ί), then φx, A>0, will be defined by letting ^x(0="y

LEMMA 2. Let E be a locally convex Hausdorff space and v a continuous

linear map of &>(RX) into E. If we assume that v(φ) = v(φx) for every non-

negative φ 6 @(R't) with \ φ(t)dt = l, then there exists a unique e0 6 E such that
Jo
\
Jo

υ(φ) = {\ φ(t) dtje0 for every φ

PROOF. It is clear that v(φ) = v(φλ) holds for every φ e @(Rΐ). Now let
e be any elemeht of E\ and consider a linear form @(R\) B φ^» <e\ v(φ)>.
Since it is continuous, there exists a unique distribution TV e &'(Rΐ) such
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that < TV, φ> = <e\ v(φ)>. It follows then from our assumption that
<Tβ',φ> = < TV, 0 λ >, which implies that 7V(f)= Tβ>(λt) for every λ>0 and

therefore -^-TV = 0, that is, v(-^) = 0 for any 0 e ̂ (ΛJ"). Let 0O be a fixed

non-negative element of @(Rt) such that \ φo(t)dt = l. If we put eo = v(0o),
Jo

then, since any 0 6 3>(Rΐ) can be written in the form Φ=(\ Φ(t) dt)Φo + —τrx,

x 6 ̂ CRJ"), we obtain t;(0) = Π $(*) Λ k , as desired.
Now let us consider a distribution u e ̂ /(i?J")((^£2)Λ)c;^/(^»+i) which is

identified with a continuous linear map of ^(ΛJ") into (^£2)*. Suppose α(εί, #)
converges in @'(R't)((@ί*)χ) to a distribution *; as ε j 0. Then Lemma 2
shows that v is independent of t and can be written in the form Fj (g)α, where
Γ, is the Heaviside function and a e (β'ι*)x. a is called the ^^-boundary
value of u and denoted by ^2-lim u. From this definition we also see that

Πo

if @L2-\im u=a and γe£(Rt), then ^2-lim r^ = r(0)α. By making use of
t10 tio

this observation, we shall show that @'L2-limu = a is equivalent to saying
MO

that φεu converges in ^ί((^ί2)*) to ff,(g)α for any non-negative φe@(Rϊ)

with \ φ(t)dt = l. Suppose that @'L2-\imu=a. Then for any ψ e @(Rt) we
JO ί 40

have <φ€(t)u(t, ), ψ(t)> = <(ψu)(εt> •)> Φ(t)>, and the product ψu has the
^£2-boundary value ψ(0)a e (β'L*)x. Thus lim <φ€u, ψ> =ψ(0)a= <ί/(8)α,

θ 4 0

ψ>. Conversely if φεu converges in ^{((^ί*)*) to 5ί(8)α and if Ψ e @(Rt) is
such that ψ(t) = l in a 0-neighborhood, then <φ£u, ψ> converges in {βr

L^)x to
<dt<g>a,ψ>=φ(0)a=a. Since <φεu,ψ> = <u,φ6ψ> = <u,φ£> for suf-
ficiently small ε>0, it follows that <u(et, \φ> converges in {βr

L^)x to a.
LEMMA 3. Let s be a real number. If a sequence {uj}, Uj e Jί?(S)(Rn), is

bounded in jfCs)(Rn) and converges in (β'Li)x to 0, then UJ converges in «^(s_i)CRw)
ίoO.

PROOF. By our assumption there exists a constant C such that

I uj 12(1+ I ξ 12)sdξ<,C. Given ε>0, we can take N so large that

where ύj is the Fourier transform of uj. Let % be the characteristic func-
tion of the set {$ e Ξn\ \ξ\ <Ξ7V} and we put {)y = χ(f)ώy(l+ \ξ|2)s. For any
integer Z with Z + 5 ̂  0 we have
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which shows that the sequence {#;} is bounded in (@L2)X> Since {uj} con-
verges in {βr

Li)χ to 0 as j->°°, it follows that sup \(uj, vk)\ = s u p | <uh ϋk> \
k k

converges to 0 as j —• °o. Consequently the inequalities

sup I (uh υk)\^\ (uh υj) I =-&-yr\ I ύj 12(1+ I ξ 12)sdξ

yield that { \ύj\\l+ \ξ\2y-1dξ<2ε for sufficiently large /, which com-

pletes the proof.

REMARK. Let / be a ^^-valued continuous function of t with support
C[0, a] such that f(t) = o(tk) in {β'L%)x as t j 0. Then there exists a non-
negative integer m such that / is an Jf (_w)-valued continuous function of t

and ||/(f)ll(-».) = *(**) as t j 0. In fact, the set j ^ φ U i s bounded in ( i ^ ) ,
I t ) 0<t<a

and therefore there exists a non-negative integer m such that /(ί) e Jf (-w+i)
and ||/(ί)||(-m+i)=O(ί*). By Lemma 3, /(*) is an valued «^(_m)-continuous
function of t and lim J!ZΦ]kz»>- = 0.

LEMMA 4. Lei E be a Frechet space and F an inductive limit of Banach
spaces Fj, 7 = 1, 2, , with norm || ||(/) ot̂ icί assume that every bounded subset of
F belongs to some Fj and bounded there. Let {u7}7(=r be a family of continuous
linear maps uΎ of E into F and assume that {uΎ(x)}Ύi=r is bounded in F for
every x e E. Then there exists an m0 such that uΎ(x) e Fmo for any x e E and
the seminorm #->sup | |^ 7 0) | | ( W o ) is continuous.

PROOF. Let us consider the set

F m = { { y γ } γ e Γ : yΊ e Fm and {||y7||(w)}7er is bounded}.

If we put ||{yγ}|| =sup || j 7 | | ( m ) for {γΎ}Ύ^Γ € Fm, then Fm is a Banach space with
norm || ||. Gm={(χ, {uΎ(x)}Ύξ=Γ) e ExFm} is a Frechet space and closed in
ExFm. Consider the projection Pm of Gm into E. As a continuous image of
a Frechet space, the set Em = Pm(Gm) is of the 1st or of the 2nd category. On
the other hand we have E = \jEm. In fact, let x e E. Since {uΎ(x)}Ύ€=Γ is

m

bounded, there exists an m such that uΎ(x) e Fm and {|k7(^)| | ( w )}7 er is bound-
ed, that is, (x9 {uΎ, (x)}) eGm and therefore x e Em. Since E is a Frechet
space, it follows that E—Em^ for some m0. Then the projection PmQ has a con-
tinuous inverse E B X->(X, {UΎ(X)}) £ GmQ. This means that uΎ(x) 6 FmQ for
any xeE and the norm Λ ; - > S U P | | U 7 O ) | | ( W ) is continuous. Thus the proof is
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complete.

Let u e @'(Rt) and /= (α, ό) C C (0? °°) u is said to be of order ^ / on /
if there exists a constant C such that \<u,φ>\ ^Csup|D\φ(t) | for any φ e

@(R^). Then, Qij being dense in @ι

h u will be uniquely extended to a con-
tinuous linear form on Q>\.

Now we are prepared to apply S. Lojaciewicz's method [13, p. p. 17-18]
in proving the following

THEOREM 2. Let a be any positive number. Given u e @'(Rt)(Sβ'i*)χ\ then
^2-lim u = a e (@L2)χ if and only if there exists a {βrτ2)x-valued continuous

tio

function fit), t e [Ό, α], such that for a non-negative integer k,

in (0,a)xRn

and

= o(tk) as 110.

More precisely, f can be chosen an Jf\_m)-valued continuous function with
») = o(ί*) as ί->0, for some non-negative integer m.

PROOF. Let u be written in the form as asserted in our theorem. Let

g(t) = fy . Now, given φ e ^(ΛJ"), there can be found a ψ e ^(ΛJ") such that

Λfr6 = tkDk

tφ€. Since, then, g(t)^»0 in 3)r
L2 as t \ 0, we obtain for ε \ 0

</)*/, φε> =(-l

This means that ^£2-limZ)f/=0, so we have
tio

'L2-\\m u=@'L2-\im (Yt(g) a + D)f)
ί 4 0 t40

ί 40

Suppose ^£2-lim^=α holds. Without loss of generality, we may assume
f 40

that a = l and a = 0. Let us consider the intervals J=(0,1) and Iv = {0v+2, Θv),

v = 0, 1, ..., where ^ = ^ - , and we put uv(t9 χ) = u{Θvt, x). Now we can regard

uv as a continuous map of @io into {S>f

L2)x. Here @io is a Frechet space and

(@L2)X= \J Jf(-m)' In view of Lemmas 3 and 4, we can take a non-negative

integer m and a 0-neighborhood V of @i{j such that | |u y (^) | | ( _ w ) ^l and lim

||iiv(^)||(_W) = 0 for any φ e V, where V={φ e @ΪQ: s u p | D ^ | ^ l } , I being a non-

negative integer. @ι

ϊo is the closure of @ΪQ with respect to the norm sup | D\φ \,
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so that uv can be uniquely extended to a continuous map of 2\Ώ into Jf (_w ).
By the same method as in [9, p. 399] we can find a function G € @1

ΪQX -IQ such
that if we put /„(*) = uv(gt)9 where gt(s) = G(t, s), then fu(t) is an «#V^-valued
continuous function with support C Λ and

(1) uv=D2ί+2fv in/o.

Since {gt}t<=i0 forms a compact subset of ^/0, it follows from the Banach-
Steinhaus theorem that the sequence of ^f(_m)-valued continuous functions
fv(t) uniformly converges t o O a s V - > M 5 hence we can choose λv>0 so that

(2)

Since, for any ψ e 2ίy, we can write

u(ψ)=<u(t, )yψ(t)>t=<u(Θ

t, -\Θvψ(θvt)>t

so Fv(t) = θv(2l+2)fv(θ~vt) will be an ^r(_m)-valued continuous function with sup-
port C ϊy such that

(3) u=D]

(4)

If we put qv(t)=Fv+1(t) — Fu(t), t eΊv+1Γ\ϊv, then, since D2

t

ί+2ql) = 0 in Iv+1Γ\Iv,
so there is a polynomial qv such that qv(t) = qv(t) for t e ΪV+1Γ\ΪV9 where grv is
determined by taking to = θv+2<tι< -<t2ι+i = Oi'+ι and by putting qv(t) =
2/ + 1 + _ *

Σ ^y(iy) x Π *. By a simple estimation we obtain
y=o jΦktj — tk

(5)

(6) | | ^ ω i l ( - ) ^ ^ , ^ ( ^ ( 2 / + 1 ) + ί2/+1) for ί e [^+2, 1],

where K is a constant independent of v. Now let us define continuous func-
tions Fv{t) on [0 y + 2 , Γ] by putting F0 = F0 and

ί F v on lv

\

for v = l, 2,... Note that the restriction of Fv to [0V + 1, (9y] is equal to Fy_i +
5fv_i. For any v ^ v 0 , v0 being any given positive integer, we have for t €

2
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This shows that {F,} uniformly converges on [β"<>+1, Γ]. Let/(ί)=limί\,(f),

t e (0, 1J. / is an ^f(_OT)-valued continuos functions on (0, 1J and

(7) /(ί)=Λ(0+ Σ fr(t), ί e [0
+2

whence D2l+2f=u in / since D2l+2Fv = u in (fl1^2, 1) and i)? / + 2^ = 0. Owing
to the estimates (4), (5), we have for t e Iv

(8) \\

(9) ||

(10)

From these, together with (7), we obtain that f(t) = o(t2l+2) as t j 0. Thus the
proof is complete.

Let φ e @(Rΐ) be such that 0J>O and \ φ(t) dt = l. Let p= Y*φ and put
Jo

t) = p(-~\ for any ε>0. Consider a u e @XRΐ)((@'L2)x). Then ρ(€)u will

always be understood an element of ^((^£2)*). If p(£)u converges in ^J(
to vφ as ε j 0, then vφ does not depend on the choice of φ. In fact, this follows
from Lemma 2, together with the equations vφ = vΦλ, λ>0, which can be easily
verified. The limit element v will be referred to as the ^2-canonical exten-
sion of u over t = 0 and denoted by u^. It is to be noticed that (u^ \ R£+1)^ =
u^. The same will be the case for u e ^ ( i ^ X ^ ^ ) * ) . Then its canonical
extension over ί = 0 will be denoted by u~.

PROPOSITION 5. Let u e ^XRJXC^ίa)*)- // @f

L2-\im u=a, then u has the
tio

@'L2-canonical extension u^.

PROOF. Owing to Theorem 2 we have a local representation of u:



380 Mitsuyuki ITANO and Kiyoshi YOSHIDA

u=Yt<g)a + Dk

tf in (0,α)xi?w,

where / is an ^(_w)-valued continuous function with the properties described
there. Then we have for t<a

J

whence, observing that p(£)f^f and (DJ

tP(£))f-+0 in @r( — oo, a)(£β'L*)χ) a s

ε j 0, we can establish the conclusion of our proposition.

We shall say that u e @f

t((@'L2)x) is ^^-canonical if (u\R++1)~ = u holds.
In what follows, we shall write u instead of (u\R++1)^. Then we can show
the following

PROPOSITION 6. Let u e (^)+((^ί2)*) and put v=Y*u. u is & ̂ -canonical
if and only if υ has the Si ̂ -boundary value 0 and is 3)12-canonical,

PROOF. Suppose that u is ^2-canonical. We shall first show that
; = 0. Let φ be an arbitrary element of @(R^) such that 0(ί)i>O and

tio

jφ(t)dt = l and γ an element of @(Rt) such that γ(t) = l in a 0-neighborhood of
Rt. Then, observing that <(1 — r)u, Ϋ*φ€>=0 for ε>0 small enough, we
obtain

-γ)u, Ϋ*φε>

u, Y*φ€>

which implies that lim< Y*u, φ£> =0, that is, ^^-limv^O as desired. That
eio no

v is ^2-canonical can be seen as follows. Owing to Proposition 5, (Y*u)^
exists. Let aθ9 au •• , ak e (βr

L*)x be such that

Differentiating both sides of the equation and noting that Dt(\impi€)(Y*u)) =
6iO

— ίu, we have

Dtδ<g)ao+ +Dk

t

+1δ<g)ak = O,

whence ao = =ak = O, that is, Y*u is ^^-canonical.
The converse is trivial from the equations

since, then, Ump{£)u = iDt(Y*u) = u. Thus the proof is complete.
£ ,10
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REMARK. In a previous paper [10], it is really shown that, given the
space jf((ΓfS)(R++1) [7, p. 51], where σ and 5 are fixed, then (1) the ^2-l im u

exists for every u e jr(er>s)(R++1) if and only if ^>-o~, (2) the ^£2-canonical

extension u^ exists for every u e Jί?iσ>s)(Rjι+1) if and only if σ> — -g-, (3)

u^ e jf(σ>s)(Rn+i) for every u e Jί%fO(.R;ί"+i) if and only if |σ | <~2~

Let u e 0{((^£2)*) If, for ε j 0, a(eί, *) converges in ^{((^£0*) to a
limit independent of ί, we can write lim u(εt9 x) = l / ® α with α 6 ( ^ i θ *

When this is the case, we shall call a the section of u for ί = 0 and denote it
by ι*(0, •) [13, p. 15]. We shall also say that u has no mass on the hyper-
plane ί = 0, if εu(et, x) converges in ^{((^£2),) to 0 as ε-»0 [13, p. 23]. I t is
clear that if u has the section for ί = 0, then u and Dtu have no mass on t = 0.
Now we can show the following Theorem 3 which is an analogue to Theorem
2. However, the proof will be omitted since it can be carried out in a similar
way as shown there.

THEOREM 3. Let a be any positive number. Given u e^ί((^£2)*)> then
&(0, *)=a e (β'i*)x if and only if there exists a (@f

L2)x-valued continuous func-
tion f(t)9 t e H—α, α], such that for a non-negative integer k,

in ( —α,

and

More precisely, f can be chosen an 3^^mrvalued continuous function with
(-»i) = o(|ίI*) as 11 0, for some non-negative integer m.

PROPOSITION 7. Let i ίe(^J)+((^ί 2 W Then u is 3>^-canonical if and
only if u has no mass on ί = 0.

PROOF. Suppose u is ^^-canonical. Then by Proposition 6, (F*^)(εί, x)
converges in ^{((^£0*) t° 0, whence Dt{(Y*ii)(εt9 x)} =— iεu(εt9 x)-+0 in
@t((@L2)χ) Thus u has no mass on t = 0.

Conversely, suppose u has no mass on t = 0. Let φx e @(Rΐ), φi e &(Rj)
be such that φχ(t)^O, φ2(t)^>0, fφi(t)dt = fφ2(t)dt = l. If we put pι= Y*φu

p2=γ*φ2^ then χ = ρ1 — p2 e &(Rt). Now x(€)u converges in 0ί((^£a)*) to 0 as
ε I 0, and (1 — p2(€))u = 0 Since we can wri te p1(£)u = u + x(i£)u — (l — p2(€))u, i t
follows that ρί(£)u converges in ^{((^£0*) to u, which completes the proof.

In an entirely similar way we can show the following

PROPOSITION 8. Let u 6 ^ί((^£ 2)*) have no mass on t = 0. If m = u\ R»+i
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has the & ̂ -canonical extension uι^, then u2 = u \Rή+ι has the Q>^-canonical ex-
tension u,2, and we can write u = uι^ + u2.

When u has no mass on t = 0, we shall obtain

PROPOSITION 9. Let u e ̂ ί((^£0*) If u has no mass on t = 0 and Q)r

L2-
\imuι=&/

L2-\imu2=<x, where uι = u\R£+1 and u2 = u\R~+u then u has the sec-
t iO tίθ

tion a for t = 0.
PROOF. For any a>0 there exist integers k, m^>0 and ^(_m)-valued

continuous functions fι(t) and f2(t) defined, respectively, on [0, aΓ\ and on
[_—α, 0], for which

+Dkf u2 = (X-Y)<&a+Dk

tf2 in (-α,o)x ί« ,

where ||/i||(_»), Wf2\\{-m) = o(\t\k) as 11 0 and we define /χ(ί) = 0 for t<0 and
/ 2 (ί) = 0 for ί > 0 . Whence we have

which means that ux^ + u2 has the section a for t = 0. Since u — ui^ — uζ has
no mass on t = 0 and, in addition, its support lies on t = 0y we must have that

Let u e 0'CRJ")((0£O*) We shall say that u has a weak ^-boundary
value a and we write w-@/

L2-\imu=a if <uy φ€> converges weakly in (βfj2)x
tio

to a as ε j 0, where 0 is chosen an arbitrary non-negative function e
with \

Jo

PROPOSITION 10. Let u e @'(Rt)((@ίi)χ) Then w-@'L2-limu exists if and
tio

only ifliτnu exists and the set {u(εt, #)}o<£ î is bounded in &f(Rΐ)((&L2)χ)
tio

PROOF. The "only if" part is trivial. The "if" part can be verified as
follows: u£ = u(εt, x) is considered as a continuous map of @(Rΐ) into (^£2),.
We can apply the Banach-Steinhaus theorem to conclude that < u6, φ>
weakly converges in (β'Li)x.

Along the same line as in the proof of Theorem 2 we can prove the
following

THEOREM 2'. Let a be any positive number. Given u e ^'CRJO

then w-@L2-\imu=a e ̂ £2 if and only if for some non-negative integer m there
tio

exists an jf^m)-valued continuous function f(t), t e Q0, άj9 such that for a non-
negative integer k

u = Y<g>a+Dh

tf in (0, a) x Rn
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and

<f(t\ψ>=o(tk) astiO

for any ψ e (βL*)χ.

C°°

Let φ e 9(Rt) be taken in such a way that φ^>0 and \ φ(t)dt = l\ and let
Jo

p ( e ) be defined as before. Let u e @XRX)((βf

Ll)^). We shall say that u has a
weak ^2-canonical extension if, for any φ e ®(Rt\ <P(€)u, φ> converges
weakly in (β'L*)x. When this is the case, there exists a unique υ e (^ί)+((^£2)*)
such that lim <p(€)u, φ> = <v, 0 > . Here *; is called the weak ^2-canonical
extension and denoted by u^.

PROPOSITION 11. Let u e ^ ' ( i ^ X ^ W * ) . Then u has the weak ^^-canoni-
cal extension u^ if and only if P(€)u converges in &r(Rn+ι) and the set
{P(ε)u}o<£^i is bounded in 3>f

t((@r

L2)x) for any φ.

If the limit in defining the notions such that the ^2-canonical, the sec-
tion and the like is understood in the weak sense, then we can show the cor-
responding analogues to Theorem 3 and Propositions 5, 6, 7, 8 and 9.

A sequence {φk}, φk e @(Rt\ will be referred to as a ^-sequence if <^Ξ>0,
jφkdt = l and supp φk converges to {0} as k-+°o. Let u e @f(Ri)((@'L2)x). If
<u,φk> converges in {βΊ*)x for every tf-sequence {φk}> where φk e @(Rf),
then the limit is called the strict ^2-boundary value of u. The strict ̂ £2-
canonical extension of u over t = 0 will be defined in an obvious way. Simi-
larly for the section of u for t = 0 in the strict sense if u 6 ̂ {((^£0*) With
the aid of these concepts, we shall be able to give some refinement of the re-
sults already obtained in this section. For instance, the following proposi-
tion is a refinement of Theorem 2.

PROPOSITION 12. Let u ζ @(R't)((@'L2)x). u has a strict @f

L2-boundary
value a € (β'jβ)x if and only if for some non-negative integer m and α>0, there
exists an J>ίf^m)-valued bounded measurable function w(t) in t e Q0, cΓ\ such that

u=w in ^ ( ( 0 , a) x Rn)

and

lim ||«;(ί)—<z||(-m) = 0.
f 40

This can be shown by making use of Lemma 3. But the proof is omit-
ted.
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3. Operator of order r which maps {βr^)x into itself

Let r be an arbitrary real number and let 0 P r be the set of linear maps
of (β'L2)χ into itself which are at the same time continuous operators of e^ ( s + r )

(Rn) into Jf(S)(Rn) for any real s. 0 P r is a locally convex Hausdorff space,
where the topology is defined by the operator norms || | |(s+r_>5) of the spaces
jS?(.#%+r), .#%)). Let I be a non-negative integer or oo. We denote by <£(r)

the set of OPr-valued Cι functions of t e Rt. We shall note that any 0 P r -
valued Cι function A(t) defined on [0, oo) can be extended to a function
6 (£[r). It is trivial if I < oo. Let I = oo. In [20] R. T. Seeley considered the

oo

s e q u e n c e s {ak}> {bk} of r e a l n u m b e r s such t h a t (i) bk<0, ( i i) Σ l « * l \bk\n<
k = 0

oo

oo for 7z = 0,1, , (iii) Σ^kb
n

k = lίor n = 0,1, and (iv) bk-> — oo as λ->oo.

Let φ be a C°° function on Rt with φ(t) = l for 0<ί ί < ; i , φ(t) = O for ί > 2 . We
OO

define ^4(ί)= Σ akφ(bkt)A(bkt) for ί < 0 . It is easy to verify that A(t) is a C°°

function on ( —oo3 0). We can write

Σ akφ(bkt)A(bkt)-A(O)= Σ ak(φ(bkt)A(bkt)-A(O)).

Then there exists for any given ε>0 an integer N>0 such that

Σ l |α*(^(i*0^(δ*0-^(0)) | | ( β + r^ )^2max|μ(ί) | |( ί +r^) Σ

whence it follows that limA(t) = A(0). Similarly, with the aid of (ii) and
/ t o

(iii), we can also show that lim^ ( y )(ί) = ^ ( y )(0), / = 1, 2,....

Let A*(t) be denoted for each t the adjoint with respect to the scalar
product (0, φ)=<φ, φ> between Jf(s)(Rn) and Jf(_5)(i?w). Then A(t) eef f )

implies A*(t) e &{r).
In the rest of this section A(t) will be understood to belong to (££.,. Let

φ€@(Rn+ι). For each t e Rh A(t)φ(t, -)e(@L2)x and A(t)φ(t, •) is a (βi*)%-
valued C°° function of ί, whence A(t)φ(t, •)> when considered as a function of
t and x, is an infinitely differentiable function which, in what follows, will
often be denoted by A(t)φ(t, x). Now we shall define A(t)u for every u e
&(Rΐ)((@r

L2)x). Let {φj}, φj€@(Rn+1)9 be a sequence such that φj converges
in &XR+)((&'L2)X) to u. A(t)φj(t, •) e ^ / ( ^ ) ( ( ^ £ 2 ) Λ r ) for each /. Let B be any
bounded subset of (3>L2)X- Then, for any φx e @(Rt) and 02 6 5, we have

(A(t)φj(t, X\

where the set {0i^4*(ί)(02): 02 € 5} is equicontinuous in
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Thus the sequence A(t)φj(t> •) will converge in 0'(.RJ")((^ίO*) to an element
o f &(JR+)((βr

Li)x). T h e l i m i t i s d e f i n e d a s A(t)u(t, •) e &(RΪ)((®f

L2)x). H u e
^ί((^£2)*X then A(t)u will also be defined in an obvious fashion. In any
way, owing to the Banach-Steinhaus theorem, the map u-+A(t)u will be con-
tinuous.

PROPOSITION 13. Let u e 0'CRJ")((^£O*) If u has a 3>'L2- boundary value
α, then A{t)u also has a 3>^-boundary value, which is equal to A(0)a.

PROOF. Our assumption implies that φεu converges in @t((@ί2)χ) to
ί®α as ε I 0, and therefore φεA{t)u = A(t)φεu converges in ^ί((^z2)*) to
A(t)(δ ®α) = ff(g>-4(0)α, completing the proof.

REMARK. By the same method as above, we can prove the analogues for
the canonical extension, the section for t = 0 and the like.

By Jf(σ,S) we mean the set of all u e @'(Rn+i) with the property that
φu e jί%fί)CRn+i) for any φ e Co(Rt). Here the topology is given as a local
space [7, p. 42]. Then we have

PROPOSITION 14. A(t) is a continuous linear map of «#(σ.)S+r) into Jf(σ,S)
for any real tf, s.

PROOF. Let φ e @(Rt) be given. It suffices to show that there exists a
constant C such that

\\φ(t)A(t)u\\(σ>s)^C\\φ(t)u\\(σ>s+r)

for every u e ^(σ,S), whence if we put A1(t)=φ(t)A(t), we have only to show
that

for any u e @(RH+ι)9 C being a constant.
Let σ=0. Then we have

\\u(t, <)\\l+r)dt.

Let σ=m, a positive integer. It is well known that, for every s, the norm
l̂ ll(m,s) is equivalent to the norm

Since D{(Aλ(t)u)= Σ ( { \D)A1{t))D{-ku and
k=o\ ft J
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||(Z>Mi(O)Z)^*a|l?*^

we see that \\Aι(t)u\\(mtS)<,C2\\u\\(m,s+r) with a constant C2. {«#%,*+;-)}ô s™
forms a Hubert scale and Aλ{t) is continuous of ^f(0,5+r) into Jf(0,S) and of
Jf(m,s+r) into ^%, s ). In virtue of the interpolation theorem we can conclude
that Λι(t) is continuous of jf((r>s+r) into Jf(σ,s) for 0<,σ<,m, where m can be
chosen arbitrarily large. Similarly, A^(t) is continuous of «#%>s+r) into «#%,s)

for σ^O, then its adjoint Ai(t) = AΪ*(t) is continuous of ^ (_σ,_5 ) into ̂ f (_,,.,_s_r).
Thus the proof is complete.

4. Pseudo-commutativity for Calderόn's singular integral operators

For any real /?;>0, Bβ(Rn) will stand for the class of bounded functions
/ on Rn such that the distributional derivatives Dafy 0 ^ |#lίϊ[j?II5 coincide
with bounded functions and such that D"f, \ a \ = [JΓ|, satisfy a uniform
Holder condition of order /? —|JΓ]. The norm \\f\\β of a function/ in Bβ(Rn)
will be by definition the least upper bound for the absolute value of its deri-
vatives of order <; [J8[] and the Holder constants of the derivatives of order

Let us consider a function h(x, ?), x e Rn, ξ 6 Ξn, with the following pro-
perties : for any fixed x e Rn, h(x, ξ) is homogeneous of degree 0 in ξ, 6 C°°(Ξn\
{0}) and for each £, \ξ\ =1, h(x, ξ) and its derivatives with respect to co-
ordinates of ξ of orders not exceeding 2n are functions of x belonging to
Bβ(Rn), with bounded norms. The least upper bound of these norms is called
the norm of h and denoted by ||A||̂ , that is,

,= max {sup \(^-)ah(x,S) }.

Let ao(x) be the mean value of h(x, ξ) on \ξ \ =1 and k(x9 z) is the inverse
Fourier transform of h(x, ξ) — ao(x) with respect to ξ. An operator f->Kf
of the form

Kf=ao(x)f(x) + lim[ k(x9 χ-y)f(y)dy

is said to be a Bβ singular integral operator. We will call h the symbol of K
and write h=σ(K). We define the norm \\K\\β by ||ϋ:|U = ||Λ|U where h(x, ξ) =
ao(x) + k(x, ξ),

In the case where n^>2, let {F/OT}, m = 0, 1, , Z = l, 2, , d(m)9 be a com-
plete orthogonal system of spherical harmonics of degree m, where d(m) =
g(m)-g(m-2), g(m) = (m^ϊ1) and we set g(-ϊ) = g(-2) = 0. Then we can
expand the Bβ singular integral operator K in the series
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~ dim)

) = ao(x)f(x)+ Σι Σ aim(x)(Gιmf)(x),
m=l 1 = 1

where Gίm are the Giraud operators

(GlmfXx) = lim^ Jx-y\-*YUχ-y)f(y)dγ,

and we have the estimates \\ao(χ)\\β<C, \\alm\\β^Cm-(3l2)n\\K\\β, | | G / m / | | ( s ) ^

Cm(n-2)l2rm\\f\\ω with rm=-im(2^)-nΓ(m)(r(^^^y1 and d(m)<,Cmn-2

([3], [15]).
For n = 1 we have the expression

[ y,
£10 J\χ-y\>€ X — y

where α0, αi e ̂ ^.
Let A and 5 be operators with symbols \ξ \ and (1+ \ξ | 2 ) 1 / 2 respectively.

Then, for any .Boo singular integral operator K, the product ^ 5 γ is an operator
belonging to the class 0P7. In this section we shall study the order of the
operator SΎK-KSΎ to give a refinement of Calderόn's result [3, p. 72].

Now, the operator Sa can be written in the form

where

( CaF.t.t\x\^-nv2K(n_a)l2(\x\)J for aφO, -2 , -4,...,
c«GO =

1 ( l - J ) * forα=-2A,A = 0, 1,2,...,

where Cα=|2 ( w + α-2 ) / 27Γw / 2r('-y')| X and the modified Bessel function of the

kind Kn=a_(\x\\ which is analytic except for the origin [1, p. 415; 18, p. 47].
22

third Ga belongs to the space 3>f

L2 and a->Ga is analytic Q18, p. 47]. If α < 0
then I x I βGa(x) 6 Lλ(Rn) for any β with \a\<β.

We shall first show the following proposition, where we have used the
notation \ΊΓ\ to denote the multiplication x -• bx.

PROPOSITION 15. Let b e Bβ(Rn)9 β>l. Then, for any γ such that —β + 1
<γ<β, we have with a constant C(/3, γ) such that

PROOF, (a) We first assume that γ^l. Put ^ γ = 5 γ [ό]-[ό]5 Ύ . If
= 2k, k a positive integer, then we have for any x e C%(Rn)

AΎx = A2kx = (l-J)k(bx)-b(l-J)kx
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Σ CPqDξbDq

xx, Cpq being constants,Σ
\Λ-\Q\

q<2k

whence we obtain with a constant CΊ

which, by continuity, remains valid for any x e (βv)% From this it follows
that

If γ is not an even positive integer, then we can write

AΎ(x) = fc-7(x-γ)(b(γ) - b(x))dy,

where

y \P\

^ (x, y) + B2(x, y),

Bχ=

B2=

7 ι«ι - x))-(D«b)(x))dt,

In view of the inequalities

we obtain

(Π) x) J( y- χ)pG-Ύ(x - y)x(y)dy
( 0 ) '

In a similar way we have with a constant C3

(12)
( 0 ) "

By assumption l<^γ<β. Hence \x\βG.y(x) eL\Rn).
with constants C4, C5

Then we have

(13) \[^Ύ(x-y)B1(x,y)x(y)dy
(0)

1(0)
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l(7-i)

From these estimates (11), (12) and (13) we have with a constant C=
C(β,r)

ll(0)

(b) Next, let r<ίθ. Then l < ; i - r < / ? . From (a) we see that S
— \Ύ]S is a continuous map of L2 into itself. Thus its dual operator
S^όHS1""7 — S[bΊ is also continuous with the same norm. With the aid of
the inequality | |(5M-[ό]5)%|| ( 0 )^C(/95 l)||ό|μ|%||«», we obtain

l(0)

(c) Finally, consider the case where 0 < r < l . Let A; be a positive inte-
2τ T

ger such that l + —r-<β and put ε = -τ~. From (a) and (b) it follows that
S1 +Tδ]S-θ-S1 + 2 £[ό]S-2*and S~e[_bJS1+€-[4]S are the continuous maps of
L2 into itself, whence it follows that the latter is a continuous map of Jίf(1+20
into itself. In virtue of the interpolation theorem it is immediate that
5- 7[ό]S 1 + 7-[δ]S is continuous of Jf(δ) into itself for δ with 0<:<ϊ<:i + 2ε.
Thus, if we let ί = /ε,/ = l, 2, . , A, it results that S0 '"1^^!]^1-0 '-1^ —S^OTS1"^
is a continuous map of L2 into itself with norm <>Cj(β, r)\\b\\β, which, com-

k

bined with the equation: *S
), yields that

This ends the proof.

COROLLARY 2. Lei ό 6 Bβ(Rn), / J > 1 . TΛβ^, /or any γ, s such that — β +

sKβ and —β + Ks<β, we have with a constant C(β, γ, s)

PROOF. P u t t i n g Z i ^ S 7 4 " 5 " 1 ^ , we have ||%i||(0) = ||%||(7 + 5-i) and

where C(/9, r, ^) =C(β, r + *) + C(β, s), which completes the proof.

THEOREM 4. Let β>l and K be a Bβ singular integral operator in the
sense of Calderδn. Then, for any γ, s such that —β + Kγ + s<β and — β +1
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<s</9, we have with a constant C(/?, γ, s)

\\(S^K-KS^x\\(s)^C(β, r, s)\\K\\β\\x\\iΎ+s_lh x e Co(Rn\

PROOF. Let n^>2. For any x e C%(Rn) we have the expansion Kx =
<*> dim)

aox+ Σ Σ airrPim x in je(s+7)(Rn). Since SΎ is a continuous map of jf(s+Ύ)(Rn)
l 1 1

Σ dΣ SΎalmGlm x
m=\ 1=1

Σ
=l 1

into Jί?(s)(Rn), the series

is convergent in j^(s)(Rn). On the other hand, the series

=l 1 = 1

is convergent in ^ ( 5 ) ( i? w ) .
With the aid of Corollary 2 we have

\\SΎaιmGlm — almGlmSΎx\\(s)=\\(SΎaιm — almSJ)Glmx\
is)

Since d(m)<;Cmn~2, C being a constant, we have

Σ
m=l

where Cu C2 and C3 are constants independent of x and K.
In the case where n = l, we have the expression J£% = αo(#)%(#) i ( )

θ JO

Γ i^22_c?y. Since the Hubert transform is a continuous map of Jf (S)(Rn)
J\χ-y\>€ x—y
into itself for any s, we obtain the estimate

Thus the proof is complete.

5. Fine Cauchy problem for a system of pseudo-differential operators

This final section will be devoted to some general investigations about
the fine Cauchy problem for a system of pseudo-differential operators. As
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for differential operators, by one of the present authors [5Γ|, the problem was
formulated and investigated from a distribution-theoretic view-point, where
the notions such as distributional boundary value and canonical extension
over ί = 0 were proved to be fundamental. Our present aim is to generalize
the results obtained there to a system of pseudo-differential operators.

For given / = ( / i , . .,//) with /y e^ίCC^),) and a = (ao, , άm-d, &j =
(α;i, , ctji) with ctjk ξ (@L2)χ we shall consider the Cauchy problem for a
system of pseudo-differential operators in the unknown vector distribution
u = (uu-. , ui) with uj€

f+ΣAj(t)DΓJ'u=f in RH+1,

(s(o, 0,

where li(t) a re Ixl matrices of operators AiJk(t) e@£, a n d #(0, ) = Oi(Ό 5 •)>

. . , u/(0, ))5 wy(0, •) being the section of uj for ί = 0.

Subst i tut ing uitk=Dk

t~
1uh i = l , 2,. , Z, i = l , 2, . . , 771 — 1, we obtain t h e

system:

m I

DtuJ>m+ Σ ΣιAijk(i)uktm-i+i=fh y = l , 2,.-., Z,

with the initial conditions

(H/\I(0, X 5 MyfΛ(0, )) = (α/,o, , αy,»-i), 7 = 1, 2,..., Z,
which is a special case of the Cauchy problem for a pseudo-differential system
written in matrix notation

( =f inRn+u

(15)
I δ(0, 0 = 3,

where ύ =(uu . , uN)9 f =(fu...,fN), & = (au 9 aN\ N = lm, and uh fj€
&t((@L2)χ) and ctj e (^£2),. We shall write ύ e ̂ f

t((^f

L2)x) and we shall say
that ύ has the section for t = 0 if this is a case for each component Uj. The
terms ^2-canonical, ^^-canonical extension, ^2-lim ^ and the like shoud be

understood in a similar way.

Put Yι = (j_^\\ *+"Λ Z being a non-negative integer, where we set Y0 = dt.

Note that YΊ is the Heaviside function Y. Let ύ e (^{)+((^£2)Λ). Then so
does Y*ύ and we have
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(16) Yh*(j(t)ύ)= Σ (

THEOREM 5. For given / = ( / i , , fπ) e @t((@z,2)χ) and ct = (ctw , aN) e
(@L2)χ> suppose that there exists a solution ύ = (ui, -, uN) e @r

t((@r

L2)x) for the
Cauchy problem (15), then f has no mass on t = 0 and the restrictions / i =
f\R£+1,f2=f\R~+1 have the @^-canonical extensions fi~,f2 and f—/i~ + /:Γ
The ^ ^-canonical extensions ύι~, ύ2 of ύ1 = ύ\R++1, ύ2 = ύ\R~+1 are solutions
of equations:

(17) Dt(U

(18) Dt(

Conversely, if ί i e (^ί)+((^i 2 )J and v2 e (^ί)-((^£2)*) are solutions of
(17), (18) respectively, then ύ = v1 + v2 6 ^ ί((^ί 2 )*) is a solution for the Cauchy
problem (15).

PROOF. Let ύ e 0{((^£O*) be a solution for the Cauchy problem (15).

Since ^£2-limui=^£2-limϋ2 = α, for any φ e@(R^) such that 0(ί)i£θ, \φ(t)dt
110 ί J 0 J

= 1, Iim0£z2 = <ϊ&<2, lim0ew = — ί ® α and, owing to Proposition 5, liτ

and limp(€)ύ2 = ύ2 exist. From the equations:

p(€)f=Dt(p(€)ύ) + ίφεύ

p(£)f=Dt(p(€)ύ) — i$fi i2 + A(t)p(€)ύ,

we obtain

-i

and therefore / i ^ + / j ' = A ( ^ ~ + # 2 ) + ^(0(^i-+^2') Since w has the section
for t = 0, ύ has no mass on ί = 0 and ύ = ύι^ + ύ2 and therefore f=fi~+f2 a n d
/ has no mass on t = 0.

Conversely, let vu v2 be solutions of (17), (18). Then for the interval
(0, 1) there exist non-negative integers k, m and a @ ̂ -valued continuous
function g(t) of t with support CEO, 1] such that v1 = D)g{t) in (0, X)xRn.
Then, by the equation (16), we have

By Proposition 6, Yk*fι~ is ^£2-canonical and @/

L2-\im(Yk*fιS) = 0 for k^>l.
tio

Evidently Γ*£g)α: is ^^-canonical for k^>l and lim(F^(g)α) = 0 for k ^ 2 and
ί 1 0

lim(Γ(g)α) = α. From the above equation we see that Fβ_i*#i is also ^£2-
tio



A Study of j^2-Valued Distributions on a Semi-Axis 393

canonical. Repeating this procedure we conclude that ^£2-lim(^i \R%+1) = ά.

Since/ has no mass on t = 0, so does ύ = vι + v2 and therefore ύ has the section ά
for ί=0 and Dtύ + l(i)ύ=f.

As an immediate consequence of the preceding theorem we have an
analogue to Theorem 1 in [β, p. 18]:

CORORARY 3. For any given f e @'(Rt)((j@L%)x) an^ & € (̂ £2)*> if there
exists a solution ύ e @'(Rt)((@ί*)x) of the Cauchy problem:

{
(19)

[ ^ ^ 2 - ,
tio

then f has the Si'^-canonical extension jL and ύ^ is a solution of the equation:

(20) Dt( I

Conversely, if v e (@i)+((@L2)χ) ̂ s a solution of (20), then ύ = v\
^is a solution for the Cauchy problem (19) and ύ^ = v.

REMARK. For given / = ( / i , •-,//) 6 ®'(Rϊ)(Xβ'L2)x) and α = (ao, , ctm-i) e
(^£0*> if there exists a solution ύ = (uu , ui) e @f(Rϊ)((@'L2)x) of the Cauchy
problem:

f Pύ=f in Λ++1,
(21)

t ^ ^ l i ϋ —α.

then / has the ^£2-canonical extension /^ and ύ^ is a solution of the equation:

_> m-l

(22) P ( U O = A + Σ i?ίff<8»f*(0),
k = 0

where fk(t)=-ί Σ 'Z (-ly-^^T^Γ^^^-XOα/-! and iΌ is the unit
j = k + l 1 = 1 \ K /

matrix [11, p. 82]. We note that fm_Λ_i(ί) may be rewritten in the form

fm-k-l(t)=-ίάk+ Σ Bj(t)άh

where Bj(t) is a linear combination of derivative of lj of order up to & — 1.
Conversely, suppose v e (@f

t)+((3>r

L2)x) is a solution of the equation (22):

Pv = f^+ ΣDk

tδ<g)fk(0). Then, by substitutions: vλ = υ, v2=Dtv1 +
k = 0

vm = Dtvm-i + ίδ(g)άm-2, we get the equation written in the form:
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-ι = vm —

Σ 2

Applying Corollary 3, we see that the restriction z2 = (&i, , Mm) = (i;i, ,
vm) \Rn+ι is a solution for the Cauchy problem (21).

In the same way as in the proof of Theorem 5, we shall show the follow-
ing

PROPOSITION 16. Let f e @'(Rt)((@'L2)x) have the Qi^-canonical extension

f^. Ifύe &t((@L2)χ) is a solution of

Dtύ + A(t)u=f in ΛJ+1,

then ύ I Rn+1 has the @^boundary value.

PROOF. We can write ύ = Dk

tg(t) in (0, 1)XJR Λ with an ^^-valued con-
tinuous function g(t) of t with support C[0,1] . If we put v = D%g(t) e
(^ί)+((^i2)^)j then there exist fo, , fι £ (^ίύx such that

Dtv + l(t)υ=f~ + δt<g)fo+-~ + Dι

tδt<8)Tι in ( - 1 , l )x i? w .

Let kr be the smallest positive integer such that 3>f

L2-\\m (Yk'*v) exists.
tϊQ

Then, applying the equation (16) with h replaced by k\ we have

l Σ

Since the right hand of the equation has the ^^-boundary value, so
lim(Yk'-ι*v) must exist. Thus A/ = l, which means the existence of
tio

no

PROPOSITION 17. Let ύ e @r(R^)((@r

L2)x) be a solution of the equation:

Dtύ + l(t)ύ=f in R£+1.

Then the following conditions are equivalent.

(a) ύ is a @'L2-valued continuous function of t e (tu ί2),
(b) For any g such that f=Dtg, g is a 3>f

L2-valued continuous function
of t e (tu ί2).
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PROOF. (a)=Kb). Since A(t)ύ is a ^£2-valued continuous function of ί,

if we put v(t, •)= \ JΪ(t')ύ(t\ )dt, then υ is a ^^-valued continuous function
Jt1

and Dt(ϊί + v)=f and therefore g=u + v is a ^2-valued continuous function
of t.

(b)=Ka). Let t0 be any point such that t0 e (tu t2). Then the restric-
tion /lOo, ί i)xi? w has the ^^2-canonical extension f^to over t = t0 and, owing
to Proposition 16, @f

L2-\\mύ = άu exists. Thus we have
tito

Let k! be the smallest positive integer such that Yk'*ύ^tQ is a ^
continuous function of t in a right neighborhood of t0. Applying the equation
(16) with k replaced by k\ we can show kr = 1 in the same way as in the proof
of Proposition 16. Since t0 is arbitrary, we can conclude that ύ is a ^2-valued
continuous functtion of t in (ί l 5 ί2). The proof is concluded.

As an immediate consequence we have the following

COROLLARY 4. Let ύ e Q>'{RW{βr

L^)^) be a solution of the equation:

Dtύ + A(t)ύ=f in Rϊ+1.

Then the following conditions are equivalent:
(a) ύ is a @f

L2-valued continuously differentiable function of t e (ίi, t2),

(b) f is a 3)'L2-valued continuous function of t e (tu ί2).
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