A Study of \mathscr{D}_{L^2} -Valued Distributions on a Semi-Axis in connection with the Cauchy Problem for a Pseudo-Differential System

Mitsuyuki Itano and Kiyoshi Yoshida (Received September 20, 1972)

In a previous paper [10] one of the present authors has investigated the fine Cauchy problem for a system of linear partial differential operators and obtained the following result: Let $\vec{P}(t, x, D_x)$ be an $N \times N$ matrix of linear partial differential operators with coefficients $\epsilon C^{\infty}(R_{n+1})$. The fine Cauchy problem consists in finding a solution $\vec{u} = (u_1, u_2, \dots, u_N), u_j \epsilon \mathscr{D}'(R_{n+1}^+)$ to the equation

$$D_t \vec{u} + \vec{P}(t, x, D_x) \vec{u} = \vec{f}$$
 in R_{n+1}^+

with initial condition

$$\lim_{t\downarrow 0}\vec{u}(t,\,x)=\vec{\alpha},$$

when $\vec{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_N)$, $\alpha_j \in \mathscr{D}'(R_n)$ and $\vec{f} = (f_1, f_2, \dots, f_N)$, $f_j \in \mathscr{D}'(R_{n+1}^+)$ are arbitrarily given, where $\lim_{t \downarrow 0} \vec{u}$ denotes the distributional boundary value of \vec{u} . If there exists a solution \vec{u} for the problem, then \vec{f} must have the canonical extension \vec{f}_{\sim} over t = 0 and $\vec{v} = \vec{u}_{\sim}$ satisfies the equation

$$D_t \vec{v} + \vec{P}(t, x, D_x) \vec{v} = \vec{f} - i\delta \otimes \vec{\alpha}.$$

Conversely, if $\vec{v} = (v_1, v_2, \cdots, v_N)$, $v_j \in \mathscr{D}'_+(R_{n+1})$ is a solution of this equation, then the restriction $\vec{u} = \vec{v} \mid R_{n+1}^+$ is a solution for our original Cauchy problem and $\vec{u}_- = \vec{v}$. If we replace $\vec{P}(t, x, D_x)$ by $\vec{A}(t)$, an $N \times N$ matrix of pseudo-differential operators [cf. p. 384 for definition], we shall have a right reason to consider the spaces $\mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$ and $\mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$ instead of $\mathscr{D}'(R_{n+1}^+)$ and $\mathscr{D}'(R_{n+1})$ respectively. As a result, it will be natural to introduce the boundary value and the canonical extension in a suitable sense.

The present paper is also designed to be the introductory part of our subsequent paper [12] which will appear in this journal.

In Section 1 we discuss the space $\mathscr{D}'_{t}((\mathscr{D}'_{L^{2}})_{x})$ and the spaces related to it. These spaces are all reflexive, ultrabornological and Souslin. Section 2 is devoted to discussions concerning the $\mathscr{D}'_{L^{2}}$ -boundary value and the $\mathscr{D}'_{L^{2}}$ -canonical extension. Various alternatives of these notions will also be considered. In Section 3 we shall introduce the operator $\vec{A}(t)$ referred to above and in-

vestigate the properties thereof. In Section 4 some pseudo-commutativity relation for $\vec{A}(t)$ will be discussed. In particular, when applied to a singular integral operator in the sense of A.P. Caldelón, our result will refine Theorem 4 in [3]. The final section is concerned with the fine Cauchy problem for a pseudo-differential system.

1. The space $\mathcal{D}'_t((\mathcal{D}'_{L^2})_x)$

Let $R_{n+1} = R \times R_n$ be an (n+1)-dimensional Euclidean space with generic point (t, x), $x = (x_1, \dots, x_n)$ and $R_{n+1}^+ = \{(t, x) \in R_{n+1} : t > 0\}$. As usual, we write $|x| = (\sum_{j=1}^n x_j^2)^{1/2}$ and $\langle x, \xi \rangle = \sum_{j=1}^n x_i \xi_i$, where $\xi = (\xi_1, \dots, \xi_n) \in \Xi_n$, the dual Euclidean space of R_n . If p is an n-tuple (p_1, \dots, p_n) of non-negative integers, the sum $\sum_{j=1}^n p_j$ will be denoted by |p| and with $D_x = (D_1, \dots, D_n)$, $D_j = \frac{1}{i} \frac{\partial}{\partial x_j}$ and $D_t = \frac{1}{i} \frac{\partial}{\partial t}$, we put $D_x^p = D_1^{p_1} \dots D_n^{p_n}$.

Let L be a locally convex Hausdorff space and L' be its dual. We shall denote by L'_{σ} , L'_{b} and L'_{c} , respectively, the weak dual, the strong dual and the dual space L' with the topology of uniform convergence on absolutely convex, compact subsets of L. For a locally convex Hausdorff space M, following L. Schwartz [16, p. 18], the ε -product $L\varepsilon M$ is defined as the linear space of bilinear forms on $L'_{c} \times M'_{c}$ hypocontinuous with respect to the equicontinuous subsets of L', M' and provided with the ε -topology, that is, the topology of uniform convergence on the products of an equicontinuous subset of L' and an equicontinuous subset of M'. If we let $\mathscr{L}_{\varepsilon}(L'_{c};M)$ be the space of continuous linear maps of L'_{c} into M with the topology of uniform convergence on the equicontinuous subsets of L', it is shown [16, p. 34] that there exist the canonical isomorphisms between $L\varepsilon M$, $\mathscr{L}_{\varepsilon}(L'_{c};M)$ and $\mathscr{L}_{\varepsilon}(M'_{c};L)$. Hence we can identify $L\varepsilon M$ with $\mathscr{L}_{\varepsilon}(L'_{c};M)$ or with $\mathscr{L}_{\varepsilon}(M'_{c};L)$ in accordance with these canonical isomorphisms.

As to the tensor product $L \otimes M$, every $\sum_{j=1}^{n} x_j \otimes y_j \in L \otimes M$ defines a bilinear form on $L' \times M'$; $(x', y') \to \sum_{j=1}^{m} \langle x', x_j \rangle \langle y', y_j \rangle$, which is certainly an element of $L \in M$. In view of the fact that the linear map of $L \otimes M$ into $L \in M$ thus defined is injective, $L \otimes M$ is regarded as a linear subspace of $L \in M$. Equipped with the ε -topology, the space $L \otimes M$ will be denoted by $L \otimes_{\varepsilon} M$ [16, p. 47]. The π -topology (resp. the ε -topology) on $L \otimes M$ is defined as the finest locally convex topology on this vector space for which the canonical bilinear map $(x, y) \to x \otimes y$ of $L \times M$ into $L \otimes M$ is continuous (resp. separately continuous). $L \otimes_{\pi} M$ (resp. $L \otimes_{\varepsilon} M$) will stand for the space $L \otimes M$ with the π -topology (resp. the ε -topology). The notations $L \otimes_{\varepsilon} M$, $L \otimes_{\pi} M$ and $L \otimes_{\varepsilon} M$ are used to represent the completions of $L \otimes M$ with topologies ε , π and ε

respectively. In what follows we often write L(M) instead of $L \in M$. In our later discussions we need the following

Lemma 1 (cf. [17, p. 103]). Let L be a nuclear Fréchet space and M a reflexive Fréchet space, then LeM is a reflexive Fréchet space and furthermore we have $(L \in M)'_b = L'_b \in M'_b$.

Now let \mathscr{H} be a locally convex Hausdorff space contained in $\mathscr{D}'(R_{n+1})$. Following L. Schwartz [16, p. 7] we shall say that \mathscr{H} is a space of distributions if the identical map of \mathscr{H} into $\mathscr{D}'(R_{n+1})$ is continuous, and that \mathscr{H} is normal if (i) it is a space of distributions, (ii) \mathscr{H} contains $\mathscr{D}(R_{n+1})$ as a dense subset and (iii) the identical map of $\mathscr{D}(R_{n+1})$ into \mathscr{H} is continuous. It is shown in [16, p. 10] that if \mathscr{H} is a normal space of distributions, then so is \mathscr{H}'_{n} .

As is well known, \mathscr{D}'_t and $(\mathscr{D}'_{L^2})_x$ are complete normal spaces of distributions enjoying the approximation properties by truncation and regularization. It follows from Proposition 3 and Corollary 1 [16, p. 9, p. 47] that $\mathscr{D}'_t \widehat{\otimes}_{\varepsilon} (\mathscr{D}'_{L^2})_x = \mathscr{D}'_t ((\mathscr{D}'_{L^2})_x)$. Since \mathscr{D}'_t is nuclear, we have $\mathscr{D}'_t \widehat{\otimes}_{\varepsilon} (\mathscr{D}'_{L^2})_x = \mathscr{D}'_t \widehat{\otimes}_{\pi} (\mathscr{D}'_{L^2})_x$ and therefore $\mathscr{D}'_t ((\mathscr{D}'_{L^2})_x) = \mathscr{D}'_t \widehat{\otimes}_{\pi} (\mathscr{D}'_{L^2})_x$.

PROPOSITION 1. $\mathscr{D}'_{t}((\mathscr{D}'_{I^{2}})_{x})$ is a normal space of distributions.

PROOF. Since the identical map $(\mathscr{D}'_{L^2})_x \to \mathscr{D}'_x$ is a continuous injection, it follows from Proposition 1 in [16, p. 20] that $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x) \subset \mathscr{D}'_t(\mathscr{D}'_x)$. On the other hand, owing to the kernel theorem [16, p. 93], $\mathscr{D}'_{t,x}$ is identified with $\mathscr{D}'_t(\mathscr{D}'_x)$ algebraically and topologically. Consequentely $\mathscr{D}'_t(\mathscr{D}'_{L^2}) \subset \mathscr{D}'_{t,x}$. If we consider $\mathscr{D}_{t,x}$ as a subspace of $\mathscr{D}'_{t,x}$ it is clear that $\mathscr{D}_{t,x}$ is a dense subset of $\mathscr{D}'_t(\mathscr{D}'_{L^2})$, which completes the proof.

REMARK. For any element $u \in \mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$, there exists a sequence $\{\phi_j\}$, $\phi_j \in \mathscr{D}(R_{n+1})$ such that ϕ_j converges in $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$ to u as $j \to \infty$. More precisely, if we let $\{\rho_j\}$ and $\{\alpha_j\}$ be respectively any sequences of reguralizations and multiplications in \mathscr{D}'_t , and let $\{\rho'_j\}$ and $\{\alpha'_j\}$ be corresponding sequences in $(\mathscr{D}'_{L^2})_x$, we can then apply the Banach-Steinhaus theorem to conclude that the sequence $\alpha_j \alpha'_j (u * (\rho_j \rho'_j)) \in \mathscr{D}(R_{n+1})$ converges in $\mathscr{D}'_t ((\mathscr{D}'_{L^2})_x)$ to u.

Let us denote by $\bar{\mathscr{D}}_t((\mathscr{D}_{L^2})_x)$ the strict inductive limit of the Fréchet spaces $\mathscr{D}_{K_j}((\mathscr{D}_{L^2})_x)(=\mathscr{D}_{K_j} \otimes_{\pi}(\mathscr{D}_{L^2})_x), j=1,2,\cdots$, where we have designated by \mathscr{D}_{K_j} the space of infinitely differentiable functions in R_t which vanish outside $K_j=[-j,j]$. We see from Lemma 1 that $\mathscr{D}_{K_j}((\mathscr{D}_{L^2})_x)$ is a reflexive Fréchet space. Consequently $\bar{\mathscr{D}}_t((\mathscr{D}_{L^2})_x)$ is reflexive. $\bar{\mathscr{D}}_t((\mathscr{D}_{L^2})_x)$ consists of all infinitely differentiable functions f in R_{n+1} such that supp $f\subset [a,b]\times R_n$ for some bounded interval [a,b] and $\max(\int |D_t^k D_x^h f(t,x)|^2 dx)^{\frac{1}{2}} < \infty$ for any $k,p=(p_1,\cdots,p_n)$. It is to be noted that $\bar{\mathscr{D}}_t((\mathscr{D}_{L^2})_x)=\mathscr{D}_t\otimes_{\iota}(\mathscr{D}_{L^2})_x$. In fact, $\mathscr{D}_t\otimes(\mathscr{D}_{L^2})_x$ is clearly a dense subset of $\bar{\mathscr{D}}_t((\mathscr{D}_{L^2})_x)$. Let G be any locally convex Hausdorff space.

To any separately continuous bilinear map u of $\mathscr{D}_t \times (\mathscr{D}_{L^2})_x$ into G, there is uniquely associated a linear map v of $\mathscr{D}_t \otimes (\mathscr{D}_{L^2})_x$ into G such that $u = v \circ \phi$, ϕ being a canonical map of $\mathscr{D}_t \times (\mathscr{D}_{L^2})_x$ into $\mathscr{D}_t \otimes (\mathscr{D}_{L^2})_x$. Observing that \mathscr{D}_{K_j} and $(\mathscr{D}_{L^2})_x$ are Fréchet spaces, we see that the restriction of v to $\mathscr{D}_{K_j} \otimes (\mathscr{D}_{L^2})_x$ becomes continuous under the π -topology and admits a unique continuous extension taking $\mathscr{D}_{K_j} \otimes_{\pi} (\mathscr{D}_{L^2})_x = \mathscr{D}_{K_j} ((\mathscr{D}_{L^2})_x)$ into \widehat{G} , the completion of G, which shows that v admits a unique continuous extension which takes $\widehat{\mathscr{D}}_t ((\mathscr{D}_{L^2})_x)$ into \widehat{G} . Thus $\mathscr{D}_t \otimes_{\tau} (\mathscr{D}_{L^2})_x$ is a dense subspace of $\widehat{\mathscr{D}}_t ((\mathscr{D}_{L^2})_x)$, whereupon $\widehat{\mathscr{D}}_t ((\mathscr{D}_{L^2})_x) = \mathscr{D}_t \otimes_{\tau} (\mathscr{D}_{L^2})_x$. It is shown [17, p. 104] that $\mathscr{D}_t' ((\mathscr{D}_{L^2})_x)$ is the strong dual of $\mathscr{D}_t ((\mathscr{D}_{L^2})_x)$. With these in mind, we can state the following

PROPOSITION 2. $\mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$ is a reflexive space with strong dual $\bar{\mathscr{D}}_t((\mathscr{D}_L{}^2)_x)$ = $\mathscr{D}_t \widehat{\otimes}_\iota (\mathscr{D}_L{}^2)_x$.

A locally convex Hausdorff space E is said to be ultrabornological or of type (β) if E is an inductive limit of Banach spaces B, $\iota \in I$. It follows from this definition that an ultrabornological space is barreled and bornological, and that a quasicomplete bornological Hausdorff space is ultrabornological.

 $\mathcal{L}_c(E;F)$ is a Souslin space, that is, a continuous image of a Polish space, if E is a strict inductive limit of a sequence of separable Fréchet spaces and if F is a countable union of images, under continuous linear maps, of separable Fréchet spaces. The result was stated without proof by L. Schwartz [19, p. 602]. We shall make use of this fact which can be verified without much labor and show the following

Proposition 3. $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$ is an ultrabornological Souslin space.

PROOF. The strong dual of an (LF)-space in the strict sense is ultrabornological if the latter is reflexive [6, p. 111]. It follows that $\mathscr{D}'_{t}((\mathscr{D}'_{L^{2}})_{x})$ is ultrabornological.

That the space $\mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$ is a Souslin space is a consequence of Schwartz's theorem referred to just before, since we can take $E=\mathscr{D}_t$ and $F=(\mathscr{D}'_L{}^2)_x=\bigvee_{m=0}^{\infty}\mathscr{H}_{(-m)}$. Thus the proof is complete.

As a generalization of the preceding proposition we shall show the following Theorem 1, where F is a closed subset of R_t and \mathscr{D}'_F denotes the subspace of \mathscr{D}'_t which consists of all the one-dimensional distributions with support contained in F. \mathscr{D}'_F is provided with the induced topology, so it is nuclear.

Theorem 1. $\mathscr{D}'_F((\mathscr{D}'_{L^2})_x)$ is a reflexive, ultrabornological Souslin space.

PROOF. $\mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$ being reflexive, we see that $\mathscr{D}'_F((\mathscr{D}'_L{}^2)_x)$ is semire-flexive as a closed subspace of $\mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$. Consequently if we can show that $\mathscr{D}'_F(({}'_L{}^2)_x)$ is bornological, then we can conclude that it is reflexive and ultra-

bornological. That $\mathscr{D}'_F((\mathscr{D}'_{L^2})_x)$ is a Souslin space follows from the fact that $\mathscr{D}'_F((\mathscr{D}'_{L^2})_x)$ is a closed subspace of $\mathscr{D}'_f((\mathscr{D}'_{L^2})_x)$ which is known by Proposition 3 to be a Souslin space. Thus to complete the proof of our theorem it remains to show that $\mathscr{D}'_F((\mathscr{D}'_{L^2})_x)$ is bornological. To this end, we shall first consider a special case where F is a compact subset K of R_t . \mathscr{D}'_K is the strong dual of a nuclear Fréchet space $\mathscr{E}(K)$ which is obtained by restriction to the set K of infinitely differentiable functions of t. It follows from Lemma 1 that $\mathscr{D}'_K((\mathscr{D}'_{L^2})_x)$ is the strong dual of a reflexive Fréchet space $\mathscr{E}(K) \otimes_\pi (\mathscr{D}_{L^2})_x$, and it results that $\mathscr{D}'_F((\mathscr{D}'_{L^2})_x)$ is bornological. Now we shall turn to the general case by following the process due to K. Fujikata and K. Miyazaki [4, p. 23]. Let $\{\alpha_j\}$ be a partition of unity subordinate to the covering C_j , j=1, 2, ..., where $C_j = \Big\{ t \in R_t \colon j-1-\frac{1}{3} < |t| < j+\frac{1}{3} \Big\}$, Putting

$$egin{aligned} F_1 \! = \! F \! \cap \{ igcup_{j=1}^\infty ar{C}_{2j-1} \}, & F_2 \! = \! F \! \cap \{ igcup_{j=1}^\infty ar{C}_{2j} \}, \ & lpha = \sum\limits_{j=1}^\infty lpha_{2j-1}, & eta = \sum\limits_{j=1}^\infty lpha_{2j}, \ & Q_j' \! = \! \left\{ t \in R_t \! : \! \mid \! t \! \mid \! <\! 2j \! + \! rac{1}{2}
ight\}, & Q_j'' \! = \! \left\{ t \in R_t \! : \! \mid \! t \! \mid \! <\! 2j \! + \! rac{1}{2}
ight\}, \end{aligned}$$

we obtain

- (i) $F=F_1\cup F_2$
- (ii) (supp α) $\cap F_1$, (supp β) $\cap F \subset F_2$ and $\alpha + \beta = 1$,
- (iii) $Q'_i \cap F_1$, $Q''_i \cap F_2$ are compact for each j.

Now we can write down: $\mathscr{D}_{F_1}'((\mathscr{D}'_{L^2})_x) = \prod_{j=1}^{\infty} \mathscr{D}'_{\overline{C}_{2j-1}}((\mathscr{D}'_{L^2})_x)$ and $\mathscr{D}'_{F_2}((\mathscr{D}'_{L^2})_x) = \prod_{j=1}^{\infty} \mathscr{D}'_{\overline{C}_{2j}}((\mathscr{D}'_{L^2})_x)$. Using the fact that the product space of a countable number of bornological spaces is bornological, we see that $\mathscr{D}'_{F_1}((\mathscr{D}'_{L^2})_x)$ and $\mathscr{D}'_{F_2}((\mathscr{D}'_{L^2})_x)$ are bornological. Consider the map $\theta \colon \mathscr{D}'_{F_1}((\mathscr{D}'_{L^2})_x) \times \mathscr{D}'_{F_2}((\mathscr{D}'_{L^2})_x) \ni (u_1, u_2) \to u_1 + u_2 \in \mathscr{D}'_{F}((\mathscr{D}'_{L^2})_x)$. Then θ is linear and continuous. For any given $u \in \mathscr{D}'_{F}((\mathscr{D}'_{L^2})_x)$, if we put $u_1 = \alpha u$, $u_2 = \beta u$, then $u_1 \in \mathscr{D}'_{F_1}((\mathscr{D}'_{L^2})_x)$, $u_2 \in \mathscr{D}'_{F_2}((\mathscr{D}'_{L^2})_x)$ and $u_1 + u_2 = u$, that is, θ is onto. Furthermore if u converges in $\mathscr{D}'_{F}((\mathscr{D}'_{L^2})_x)$ to 0, then u_1 , u_2 converges respectively in $\mathscr{D}'_{F_1}((\mathscr{D}'_{L^2})_x)$, $\mathscr{D}'_{F_2}((\mathscr{D}'_{L^2})_x)$ to 0. Then we see that the map θ is epimorphic and therefore $\mathscr{D}'_{F}((\mathscr{D}'_{L^2})_x)$ is isomorphic to $(\mathscr{D}'_{F_1}((\mathscr{D}'_{L^2})_x) \times \mathscr{D}'_{F_2}((\mathscr{D}'_{L^2})_x))/\mathrm{Ker}\,\theta$. Consequently, $\mathscr{D}'_{F}((\mathscr{D}'_{L^2})_x)$ is bornological, which was to be proved.

If $F = [0, \infty)$, we shall use the notation $(\mathscr{D}'_t)_+((\mathscr{D}'_{L^2})_x)$ instead of $\mathscr{D}'_F((\mathscr{D}'_{L^2})_x)$. Similarly for $(\mathscr{D}'_t)_-((\mathscr{D}'_{L^2})_x)$. As an immediate consequence of Theorem 1, we have

COROLLARY 1. $(\mathscr{D}'_t)_+((\mathscr{D}'_L)_x)$ is a reflexive, ultrabornological Souslin space.

We note that the strong dual of $(\mathscr{D}_{t}')_{+}((\mathscr{D}_{L^{2}}')_{x})$ is $\mathscr{D}(\bar{R}_{t}^{+}) \otimes_{\iota}(\mathscr{D}_{L^{2}})_{x}$. Here $\mathscr{D}(\bar{R}_{t}^{+})$ is the set of infinitely differentiable functions in \bar{R}_{t}^{+} which vanish outside a compact subset and it is a reflexive (LF)-space with the usual topology. We omit the proof since the method of proving Proposition 2 will be applied.

We shall denote by $\mathscr{D}'_{t}((\mathscr{D}'_{L^{2}})_{x})(\overline{R}^{+}_{n+1})$ the space which is obtained by restriction to R^{+}_{n+1} of all the distributions $\epsilon \, \mathscr{D}'_{t}((\mathscr{D}'_{L^{2}})_{x})$. The space will be identified with the quotient space $\mathscr{D}'_{t}((\mathscr{D}'_{L^{2}})_{x})/(\mathscr{D}'_{t})_{-}((\mathscr{D}'_{L^{2}})_{x})$ equipped with the quotient topology. We shall also denote by $\mathscr{D}(\overline{R}^{+}_{t})$ the closed subspace of $\mathscr{D}(R_{t})$ which consists of infinitely differentiable functions with support contained in $[0, \infty)$.

Finally we shall show

Proposition 4. $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)(\bar{R}^+_{n+1})$ is a reflexive, ultrabornological Souslin space and $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)(\bar{R}^+_{n+1})$ is isomorphic to $\mathscr{D}'(\bar{R}^+_t)((\mathscr{D}'_{L^2})_x) = (\mathring{\mathscr{D}}(R^+_t) \bigotimes_{\iota} (\mathscr{D}_{L^2})_x)'_b$.

PROOF. According to the reasoning just before Proposition 2, $\mathring{\mathscr{D}}(\bar{R}_t^+) \otimes_{\iota} (\mathscr{D}_{L^2})_x$ is reflexive and an (LF)-space in the strict sense. Here we can infer that $\mathscr{D}'(\bar{R}_t^+)((\mathscr{D}'_{L^2})_x)$ is the strong dual of $\mathring{\mathscr{D}}(\bar{R}_t^+) \otimes_{\iota} (\mathscr{D}_{L^2})_x$. It follows that $\mathscr{D}'(\bar{R}_t^+)((\mathscr{D}'_{L^2})_x) = (\mathring{\mathscr{D}}(\bar{R}_t^+) \otimes_{\iota} (\mathscr{D}_{L^2})_x)'$ is ultrabornological. Consider the identical map $J: \mathring{\mathscr{D}}(\bar{R}_t^+) \otimes_{\iota} (\mathscr{D}_{L^2})_x \to \mathscr{D}(R_t) \otimes_{\iota} (\mathscr{D}_{L^2})_x$ which is a monomorphism. The dual map ${}^tJ: \mathring{\mathscr{D}}'_t((\mathscr{D}'_{L^2})_x) \to \mathscr{D}'(\bar{R}_t^+)((\mathscr{D}'_{L^2})_x)$ is continuous and onto. Here $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$ is a Souslin space and $\mathscr{D}'(\bar{R}_t^+)((\mathscr{D}'_{L^2})_x)$ is ultrabornological. The open mapping theorem [19, p. 604] then shows that tJ is an epimorphism, whereupon $\mathscr{D}'(\bar{R}_t^+)((\mathscr{D}'_{L^2})_x)$ is isomorphic to the quotient space $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)/\mathrm{Ker}^tJ=\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)/(\mathscr{D}'_t)_-((\mathscr{D}'_{L^2})_x)=\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)(\bar{R}_{n+1}^+)$. Thus we can also see that $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)(R_{n+1}^+)$ is are reflexive, ultrabornological Souslin space. The proof is complete.

2. \mathscr{D}'_{L^2} -boundary values and \mathscr{D}'_{L^2} -canonical extensions

Given $\varphi \in \mathcal{D}(R_t^+)$, then φ_{λ} , $\lambda > 0$, will be defined by letting $\varphi_{\lambda}(t) = \frac{1}{\lambda} \varphi\left(\frac{t}{\lambda}\right)$.

Lemma 2. Let E be a locally convex Hausdorff space and v a continuous linear map of $\mathscr{D}(R_t^+)$ into E. If we assume that $v(\phi) = v(\phi_{\lambda})$ for every nonnegative $\phi \in \mathscr{D}(R_t^+)$ with $\int_0^{\infty} \phi(t) dt = 1$, then there exists a unique $e_0 \in E$ such that $v(\phi) = \left(\int_0^{\infty} \phi(t) dt\right) e_0$ for every $\phi \in \mathscr{D}(R_t^+)$.

PROOF. It is clear that $v(\phi) = v(\phi_{\lambda})$ holds for every $\phi \in \mathcal{D}(R_{t}^{+})$. Now let e' be any element of E', and consider a linear form $\mathcal{D}(R_{t}^{+}) \ni \phi \to \langle e', v(\phi) \rangle$. Since it is continuous, there exists a unique distribution $T_{e'} \in \mathcal{D}'(R_{t}^{+})$ such

that $< T_{e'}, \phi> = < e', v(\phi)>$. It follows then from our assumption that $< T_{e'}, \phi> = < T_{e'}, \phi_{\lambda}>$, which implies that $T_{e'}(t) = T_{e'}(\lambda t)$ for every $\lambda>0$ and therefore $\frac{d}{dt}T_{e'}=0$, that is, $v\left(\frac{d\phi}{dt}\right)=0$ for any $\phi\in\mathscr{D}(R_t^+)$. Let ϕ_0 be a fixed non-negative element of $\mathscr{D}(R_t^+)$ such that $\int_0^{\infty}\phi_0(t)dt=1$. If we put $e_0=v(\phi_0)$, then, since any $\phi\in\mathscr{D}(R_t^+)$ can be written in the form $\phi=\left(\int_0^{\infty}\phi(t)\,dt\right)\phi_0+\frac{d}{dt}x$, $x\in\mathscr{D}(R_t^+)$, we obtain $v(\phi)=\left(\int_0^{\infty}\phi(t)\,dt\right)e_0$, as desired.

Now let us consider a distribution $u \in \mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x) \subset \mathscr{D}'(R_{n+1}^+)$ which is identified with a continuous linear map of $\mathscr{D}(R_t^+)$ into $(\mathscr{D}'_L{}^2)_x$. Suppose $u(\varepsilon t, x)$ converges in $\mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$ to a distribution v as $\varepsilon \downarrow 0$. Then Lemma 2 shows that v is independent of t and can be written in the form $Y_t \otimes \alpha$, where Y_t is the Heaviside function and $\alpha \in (\mathscr{D}'_L{}^2)_x$. α is called the $\mathscr{D}'_L{}^2$ -boundary value of u and denoted by $\mathscr{D}'_L{}^2$ - $\lim_{t\downarrow 0} u$. From this definition we also see that if $\mathscr{D}_L{}^2$ - $\lim_{t\downarrow 0} u = \alpha$ and $\gamma \in \mathscr{E}(R_t)$, then $\mathscr{D}'_L{}^2$ - $\lim_{t\downarrow 0} \gamma u = \gamma(0)\alpha$. By making use of this observation, we shall show that $\mathscr{D}'_L{}^2$ - $\lim_{t\downarrow 0} u = \alpha$ is equivalent to saying that $\phi_\varepsilon u$ converges in $\mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$ to $\delta_t \otimes \alpha$ for any non-negative $\phi \in \mathscr{D}(R_t^+)$ with $\int_0^\infty \phi(t) dt = 1$. Suppose that $\mathscr{D}'_L{}^2$ - $\lim_{t\downarrow 0} u = \alpha$. Then for any $\psi \in \mathscr{D}(R_t)$ we have $\langle \phi_\varepsilon(t)u(t,\cdot), \psi(t) \rangle = \langle (\psi u)(\varepsilon t,\cdot), \phi(t) \rangle$, and the product ψu has the $\mathscr{D}'_L{}^2$ -boundary value $\psi(0)\alpha \in (\mathscr{D}'_L{}^2)_x$. Thus $\lim_{\varepsilon\downarrow 0} \langle \phi_\varepsilon u, \psi \rangle = \psi(0)\alpha = \langle \delta_t \otimes \alpha, \psi \rangle$. Conversely if $\phi_\varepsilon u$ converges in $\mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$ to $\delta_t \otimes \alpha$ and if $\Psi \in \mathscr{D}(R_t)$ is such that $\psi(t)=1$ in a 0-neighborhood, then $\langle \phi_\varepsilon u, \psi \rangle$ converges in $(\mathscr{D}'_L{}^2)_x$ to $\langle \delta_t \otimes \alpha, \psi \rangle = \psi(0)\alpha = \alpha$. Since $\langle \phi_\varepsilon u, \psi \rangle = \langle u, \phi_\varepsilon \psi \rangle = \langle u, \phi_\varepsilon \rangle$ for sufficiently small $\varepsilon > 0$, it follows that $\langle u(\varepsilon t, \cdot), \phi \rangle$ converges in $(\mathscr{D}'_L{}^2)_x$ to α .

LEMMA 3. Let s be a real number. If a sequence $\{u_j\}$, $u_j \in \mathcal{H}_{(s)}(R_n)$, is bounded in $\mathcal{H}_{(s)}(R_n)$ and converges in $(\mathcal{D}'_{L^2})_x$ to 0, then u_j converges in $\mathcal{H}_{(s-1)}(R_n)$ to 0.

PROOF. By our assumption there exists a constant C such that $\int |\hat{u}_j|^2 (1+|\xi|^2)^s d\xi \leq C$. Given $\varepsilon > 0$, we can take N so large that

$$\int_{|\xi|>N} |\hat{u}_j|^2 (1+|\xi|^2)^{s-1} d\xi \leq \frac{1}{1+N^2} \int |\hat{u}_j|^2 (1+|\xi|^2)^s d\xi \leq \frac{C}{1+N^2} < \varepsilon,$$

where \hat{u}_j is the Fourier transform of u_j . Let α be the characteristic function of the set $\{\xi \in \mathcal{Z}_n : |\xi| \leq N\}$ and we put $\hat{v}_j = \alpha(\xi)\hat{u}_j(1+|\xi|^2)^s$. For any integer l with $l+s \geq 0$ we have

$$\begin{split} & \int |\,\hat{v}_j\,|^{\,2} (1 + |\,\xi\,|^{\,2})^l \, d\xi = \int_{\,|\,\xi\,|\,\leq\,N} |\,\hat{u}_j\,|^{\,2} (1 + |\,\xi\,|^{\,2})^{l + 2\,s} \, d\xi \\ & \leq (1 + N^2)^{l + s} \int |\,\hat{u}_j\,|^{\,2} (1 + |\,\xi\,|^{\,2})^s \, d\xi \leq C (1 + N^2)^{l + s}, \end{split}$$

which shows that the sequence $\{v_i\}$ is bounded in $(\mathcal{D}_{L^2})_x$. Since $\{u_j\}$ converges in $(\mathcal{D}'_{L^2})_x$ to 0 as $j \to \infty$, it follows that $\sup_k |(u_j, v_k)| = \sup_k |\langle u_j, \bar{v}_k \rangle|$ converges to 0 as $j \to \infty$. Consequently the inequalities

$$\begin{split} \sup_{k} |(u_{j}, v_{k})| & \geq |(u_{j}, v_{j})| = \frac{1}{(2\pi)^{n}} \int_{|\xi| \leq N} |\hat{u}_{j}|^{2} (1 + |\hat{\xi}|^{2})^{s} d\hat{\xi} \\ & \geq \frac{1}{(2\pi)^{n}} \int_{|\xi| \leq N} |u_{j}|^{2} (1 + |\hat{\xi}|^{2})^{s-1} d\hat{\xi} \end{split}$$

yield that $\int_{|\xi| \leq N} |\hat{u}_j|^2 (1+|\xi|^2)^{s-1} d\xi < 2\varepsilon$ for sufficiently large j, which completes the proof.

REMARK. Let f be a \mathscr{D}'_{L^2} -valued continuous function of t with support $\subset [0,a]$ such that $f(t)=o(t^k)$ in $(\mathscr{D}'_{L^2})_x$ as $t\downarrow 0$. Then there exists a nonnegative integer m such that f is an $\mathscr{H}_{(-m)}$ -valued continuous function of t and $||f(t)||_{(-m)}=o(t^k)$ as $t\downarrow 0$. In fact, the set $\left\{\frac{f(t)}{t^k}\right\}_{0< t< a}$ is bounded in $(\mathscr{D}'_{L^2})_x$ and therefore there exists a non-negative integer m such that $f(t)\in \mathscr{H}_{(-m+1)}$ and $||f(t)||_{(-m+1)}=O(t^k)$. By Lemma 3, f(t) is an valued $\mathscr{H}_{(-m)}$ -continuous function of t and $\lim_{t\downarrow 0}\frac{||f(t)||_{(-m)}}{t^k}=0$.

LEMMA 4. Let E be a Fréchet space and F an inductive limit of Banach spaces F_j , j=1, 2, ..., with norm $\|\cdot\|_{(j)}$ and assume that every bounded subset of F belongs to some F_j and bounded there. Let $\{u_\gamma\}_{\gamma\in\Gamma}$ be a family of continuous linear maps u_γ of E into F and assume that $\{u_\gamma(x)\}_{\gamma\in\Gamma}$ is bounded in F for every $x\in E$. Then there exists an m_0 such that $u_\gamma(x)\in F_{m_0}$ for any $x\in E$ and the seminorm $x\to\sup_{\gamma}\|u_\gamma(x)\|_{(m_0)}$ is continuous.

Proof. Let us consider the set

$$\mathbf{F}_m = \{\{\gamma_\gamma\}_{\gamma \in \Gamma} : \gamma_\gamma \in F_m \text{ and } \{||\gamma_\gamma||_{(m)}\}_{\gamma \in \Gamma} \text{ is bounded}\}.$$

If we put $\|\{y_\gamma\}\| = \sup_{\gamma} \|y_\gamma\|_{(m)}$ for $\{y_\gamma\}_{\gamma \in \Gamma} \in \mathbf{F}_m$, then \mathbf{F}_m is a Banach space with norm $\|\cdot\|$. $G_m = \{(x, \{u_\gamma(x)\}_{\gamma \in \Gamma}) \in E \times \mathbf{F}_m\}$ is a Fréchet space and closed in $E \times \mathbf{F}_m$. Consider the projection P_m of G_m into E. As a continuous image of a Fréchet space, the set $E_m = P_m(G_m)$ is of the 1st or of the 2nd category. On the other hand we have $E = \bigcup_m E_m$. In fact, let $x \in E$. Since $\{u_\gamma(x)\}_{\gamma \in \Gamma}$ is bounded, there exists an m such that $u_\gamma(x) \in F_m$ and $\{\|u_\gamma(x)\|_{(m)}\}_{\gamma \in \Gamma}$ is bounded, that is, $(x, \{u_\gamma, (x)\}) \in G_m$ and therefore $x \in E_m$. Since E is a Fréchet space, it follows that $E = E_{m_0}$ for some m_0 . Then the projection P_{m_0} has a continuous inverse $E \ni x \to (x, \{u_\gamma(x)\}) \in G_{m_0}$. This means that $u_\gamma(x) \in F_{m_0}$ for any $x \in E$ and the norm $x \to \sup \|u_\gamma(x)\|_{(m)}$ is continuous. Thus the proof is

complete.

Let $u \in \mathscr{D}'(R_t^+)$ and $I=(a,b)\subset\subset(0,\infty)$. u is said to be of order $\leq l$ on \overline{I} if there exists a constant C such that $|< u, \phi>| \leq C \sup_t |D_t^l \phi(t)|$ for any $\phi \in \mathscr{D}(R_t^+)$. Then, $\mathscr{D}_{\overline{I}}$ being dense in $\mathscr{D}_{\overline{I}}^l$, u will be uniquely extended to a continuous linear form on $\mathscr{D}_{\overline{I}}^l$.

Now we are prepared to apply S. Łojaciewicz's method [13, p.p. 17-18] in proving the following

THEOREM 2. Let a be any positive number. Given $u \in \mathscr{D}'(R_t^+)((\mathscr{D}'_{L^2})_x)$, then \mathscr{D}'_{L^2} - $\lim_{t\downarrow 0} u = \alpha \in (\mathscr{D}'_{L^2})_x$ if and only if there exists a $(\mathscr{D}'_{L^2})_x$ -valued continuous function f(t), $t\in [0, \alpha]$, such that for a non-negative integer k,

$$u = Y_t \otimes \alpha + D_t^k f$$
 in $(0, a) \times R_n$

and

$$f(t) = o(t^k)$$
 as $t \downarrow 0$.

More precisely, f can be chosen an $\mathcal{H}_{(-m)}$ -valued continuous function with $||f(t)||_{(-m)} = o(t^k)$ as $t \to 0$, for some non-negative integer m.

PROOF. Let u be written in the form as asserted in our theorem. Let $g(t) = \frac{f(t)}{t^k}$. Now, given $\phi \in \mathcal{D}(R_t^+)$, there can be found a $\psi \in \mathcal{D}(R_t^+)$ such that $\psi_{\varepsilon} = t^k D_t^k \phi_{\varepsilon}$. Since, then, $g(t) \to 0$ in \mathcal{D}'_{L^2} as $t \downarrow 0$, we obtain for $\varepsilon \downarrow 0$

$$<\!D_t^kf,\,\phi_{arepsilon}\!>=\!(-1)^k\!\!\int_0^\infty\!\!f(t)D_t^k\!\phi_{arepsilon}\,dt\!=\!(-1)^k\!\!\int_0^\infty\!g(t)\psi_{arepsilon}dt\!
ightarrow\!0.$$

This means that \mathscr{D}'_{L^2} - $\lim_{t\downarrow 0} D^k_t f = 0$, so we have

$$egin{aligned} \mathscr{D}'_{L^2} ext{-}\!\lim_{t\downarrow 0}u = &\mathscr{D}'_{L^2} ext{-}\!\lim_{t\downarrow 0}(Y_t\!\otimes\! lpha\!+\!D_t^k\!f) \ = &\mathscr{D}'_{L^2} ext{-}\!\lim_{t\downarrow 0}(Y_t\!\otimes\! lpha)\!=\!lpha. \end{aligned}$$

Suppose \mathscr{D}'_{L^2} - $\lim_{t\downarrow 0} u = \alpha$ holds. Without loss of generality, we may assume that a=1 and $\alpha=0$. Let us consider the intervals I=(0,1) and $I_{\nu}=(\theta^{\nu+2},\theta^{\nu})$, $\nu=0,1,\cdots$, where $\theta=\frac{1}{2}$, and we put $u_{\nu}(t,x)=u(\theta^{\nu}t,x)$. Now we can regard u_{ν} as a continuous map of $\mathscr{D}_{\bar{I}_0}$ into $(\mathscr{D}'_{L^2})_x$. Here $\mathscr{D}_{\bar{I}_0}$ is a Fréchet space and $(\mathscr{D}'_{L^2})_x=\bigcup_{m=0}^{\infty}\mathscr{H}_{(-m)}$. In view of Lemmas 3 and 4, we can take a non-negative integer m and a 0-neighborhood V of $\mathscr{D}_{\bar{I}_0}$ such that $||u_{\nu}(\phi)||_{(-m)}\leq 1$ and $\lim_{\nu\to\infty}||u_{\nu}(\phi)||_{(-m)}=0$ for any $\phi\in V$, where $V=\{\phi\in\mathscr{D}_{\bar{I}_0}:\sup_t|D_t^l\phi|\leq 1\}$, l being a nonnegative integer. $\mathscr{D}_{\bar{I}_0}^l$ is the closure of $\mathscr{D}_{\bar{I}_0}$ with respect to the norm $\sup_t|D_t^l\phi|$,

so that u_{ν} can be uniquely extended to a continuous map of $\mathcal{D}_{\bar{I}_0}^l$ into $\mathcal{H}_{(-m)}$. By the same method as in [9, p. 399] we can find a function $G \in \mathcal{D}_{\bar{I}_0 \times \bar{I}_0}^l$ such that if we put $f_{\nu}(t) = u_{\nu}(g_t)$, where $g_t(s) = G(t, s)$, then $f_{\nu}(t)$ is an $\mathcal{H}_{(-m)}$ -valued continuous function with support $\subseteq \bar{I}_0$ and

(1)
$$u_{\nu} = D_t^{2l+2} f_{\nu}$$
 in I_0 .

Since $\{g_i\}_{i\in \bar{I}_0}$ forms a compact subset of $\mathscr{D}_{\bar{I}_0}^l$, it follows from the Banach-Steinhaus theorem that the sequence of $\mathscr{H}_{(-m)}$ -valued continuous functions $f_{\nu}(t)$ uniformly converges to 0 as $\nu \to \infty$, hence we can choose $\lambda_{\nu} > 0$ so that

(2)
$$\sup_{t} ||f_{\nu}(t)||_{(-m)} \leq \lambda_{\nu} \downarrow 0 \text{ as } \nu \rightarrow \infty.$$

Since, for any $\psi \in \mathcal{D}_{I_{\nu}}$, we can write

$$\begin{split} u(\psi) &= \langle u(t,\, \boldsymbol{\cdot}),\, \psi(t) \rangle_t = \langle u(\theta^{\,\nu}t,\, \boldsymbol{\cdot}),\, \theta^{\,\nu}\psi(\theta^{\,\nu}t) \rangle_t \\ &= \langle u_{\,\nu}(t,\, \boldsymbol{\cdot}),\, \theta^{\,\nu}\psi(\theta^{\,\nu}t) \rangle_t \\ &= \langle D_t^{2\,l\,+2}f_{\,\nu}(t),\, \theta^{\,\nu}\psi(\theta^{\,\nu}t) \rangle_t \\ &= \langle D_t^{2\,l\,+2}(\theta^{\,\nu(2\,l\,+2)}f_{\,\nu}(\theta^{\,-\nu}t)),\, \psi(t) \rangle_t, \end{split}$$

so $F_{\nu}(t) = \theta^{\nu(2l+2)} f_{\nu}(\theta^{-\nu}t)$ will be an $\mathscr{H}_{(-m)}$ -valued continuous function with support $\subset \bar{I}_{\nu}$ such that

(3)
$$u = D_t^{2l+2} F_{\nu}(t)$$
 in I_{ν} ,

$$(4) \quad \sup_{t} ||F_{\nu}(t)||_{(-m)} \leq \lambda_{\nu} \theta^{\nu(2l+2)}.$$

If we put $q_{\nu}(t) = F_{\nu+1}(t) - F_{\nu}(t)$, $t \in \bar{I}_{\nu+1} \cap \bar{I}_{\nu}$, then, since $D_t^{2l+2}q_{\nu} = 0$ in $I_{\nu+1} \cap I_{\nu}$, so there is a polynomial \tilde{q}_{ν} such that $\tilde{q}_{\nu}(t) = q_{\nu}(t)$ for $t \in \bar{I}_{\nu+1} \cap \bar{I}_{\nu}$, where q_{ν} is determined by taking $t_0 = \theta^{\nu+2} < t_1 < \dots < t_{2l+1} = \theta^{\nu+1}$ and by putting $\tilde{q}_{\nu}(t) = \sum_{j=0}^{2l+1} q_{\nu}(t_j) \times \prod_{j \neq k} \frac{t-t_k}{t_j-t_k}$. By a simple estimation we obtain

(5)
$$D_t^{2l+2}\tilde{q}_{\nu}=0$$
,

(6)
$$\|\tilde{q}_{\nu}(t)\|_{(-m)} \leq K \lambda_{\nu} \theta^{\nu} (\theta^{\nu(2l+1)} + t^{2l+1})$$
 for $t \in [\theta^{\nu+2}, 1]$,

where K is a constant independent of ν . Now let us define continuous functions $\tilde{F}_{\nu}(t)$ on $[\theta^{\nu+2}, 1]$ by putting $\tilde{F}_0 = F_0$ and

$$ilde{F}_{
u} = \left\{ egin{array}{ll} F_{
u} & ext{on } ar{I}_{
u} \ & & & & \\ ilde{F}_{
u-1} + ar{q}_{
u-1} & ext{on } ar{eta}^{
u+1}, \, 1 \end{array}
ight.$$

for $\nu=1, 2, \cdots$. Note that the restriction of F_{ν} to $[\theta^{\nu+1}, \theta^{\nu}]$ is equal to $\tilde{F}_{\nu-1}+\tilde{q}_{\nu-1}$. For any $\nu \geq \nu_0, \nu_0$ being any given positive integer, we have for $t \in [\theta^{\nu_0+2}, 1]$

$$\begin{split} \|\tilde{F}_{\nu+k}(t) - \tilde{F}_{\nu}(t)\|_{(-m)} &= \|\tilde{q}_{\nu}(t) + \dots + \tilde{q}_{\nu+k-1}(t)\|_{(-m)} \\ &\leq K \sum_{l=\nu}^{\nu+k-1} \lambda_{j} \theta^{j}(\theta^{j(2l+1)} + t^{2l+1}) \leq 4K \lambda_{\nu} \theta^{\nu}. \end{split}$$

This shows that $\{\tilde{F}_{\nu}\}$ uniformly converges on $[\theta^{\nu_0+1}, 1]$. Let $f(t) = \lim_{\nu \to \infty} \tilde{F}_{\nu}(t)$, $t \in (0, 1]$. f is an $\mathcal{H}_{(-m)}$ -valued continuos functions on (0, 1] and

(7)
$$f(t) = \tilde{F}_{\nu}(t) + \sum_{j=\nu}^{\infty} \tilde{q}_{j}(t), \quad t \in [\theta^{\nu+2}, 1],$$

whence $D_t^{2l+2}f = u$ in I since $D_t^{2l+2}\tilde{F}_{\nu} = u$ in $(\theta^{\nu+2}, 1)$ and $D_t^{2l+2}\tilde{q}_j = 0$. Owing to the estimates (4), (5), we have for $t \in I_{\nu}$

(8)
$$\|\tilde{F}_{\nu}(t)\|_{(-m)} = \|F_{\nu}(t)\|_{(-m)} \leq \lambda_{\nu} \theta^{\nu(2l+2)}$$

$$\leq \lambda_{\nu} \theta^{-4(l+1)} t^{2l+2},$$

(9)
$$\|\tilde{q}_{\nu}(t)\|_{(-m)} \leq K \lambda_{\nu} \theta^{\nu} (\theta^{\nu(2l+1)} + t^{2l+1})$$

 $\leq 2K \lambda_{\nu} \theta^{\nu(2l+2)}$
 $\leq 2K \lambda_{\nu} \theta^{-4(l+1)} t^{2l+2},$

(10)
$$\|\tilde{q}_{\nu+1}(t)\|_{(-m)} \leq K \lambda_{\nu+1} \theta^{\nu+1} (\theta^{(\nu+1)(2l+1)} + t^{2l+1})$$

 $\leq K \lambda_{\nu} \theta^{\nu} (\theta^{\nu(2l+1)} + t^{2l+1}) \theta$
 $\leq \theta (2K \lambda_{\nu} \theta^{-4(l+1)}) t^{2l+2}.$

From these, together with (7), we obtain that $f(t) = o(t^{2l+2})$ as $t \downarrow 0$. Thus the proof is complete.

Let $\phi \in \mathscr{D}(R_t^+)$ be such that $\phi \geq 0$ and $\int_0^\infty \phi(t) \, dt = 1$. Let $\rho = Y*\phi$ and put $\rho_{(\varepsilon)}(t) = \rho\left(\frac{t}{\varepsilon}\right)$ for any $\varepsilon > 0$. Consider a $u \in \mathscr{D}'(R_t^+)((\mathscr{D}'_{L^2})_x)$. Then $\rho_{(\varepsilon)}u$ will always be understood an element of $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$. If $\rho_{(\varepsilon)}u$ converges in $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$ to v_ϕ as $\varepsilon \downarrow 0$, then v_ϕ does not depend on the choice of ϕ . In fact, this follows from Lemma 2, together with the equations $v_\phi = v_{\phi_t}$, $\lambda > 0$, which can be easily verified. The limit element v will be referred to as the \mathscr{D}'_{L^2} -canonical extension of u over t=0 and denoted by u_\sim . It is to be noticed that $(u_\sim |R_{n+1}^+)_\sim = u_\sim$. The same will be the case for $u \in \mathscr{D}'(R_t^-)((\mathscr{D}'_{L^2})_x)$. Then its canonical extension over t=0 will be denoted by u^\sim .

PROPOSITION 5. Let $u \in \mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$. If $\mathscr{D}'_L{}^2$ - $\lim_{t\downarrow 0} u = \alpha$, then u has the $\mathscr{D}'_L{}^2$ -canonical extension u.

Proof. Owing to Theorem 2 we have a local representation of u:

$$u = Y_t \otimes \alpha + D_t^k f$$
 in $(0, a) \times R_n$,

where f is an $\mathcal{H}_{(-m)}$ -valued continuous function with the properties described there. Then we have for t < a

$$\begin{split} & \rho_{(\varepsilon)} u = \rho_{(\varepsilon)} \otimes \alpha + \rho_{(\varepsilon)} D_t^k f \\ & = \rho_{(\varepsilon)} \otimes \alpha + D_t^k (\rho_{(\varepsilon)} f(t)) + \sum_{i=1}^k (-1)^j \binom{k}{i} D_t^{k-j} ((D_t^j \rho_{(\varepsilon)}) f)), \end{split}$$

whence, observing that $\rho_{(\varepsilon)}f \to f$ and $(D_i^j\rho_{(\varepsilon)})f \to 0$ in $\mathscr{D}'(-\infty, a)((\mathscr{D}'_L{}^2)_x)$ as $\varepsilon \downarrow 0$, we can establish the conclusion of our proposition.

We shall say that $u \in \mathcal{D}'_t((\mathcal{D}'_{L^2})_x)$ is \mathcal{D}'_{L^2} -canonical if $(u \mid R_{n+1}^+)_{\sim} = u$ holds. In what follows, we shall write u instead of $(u \mid R_{n+1}^+)_{\sim}$. Then we can show the following

PROPOSITION 6. Let $u \in (\mathscr{D}'_t)_+((\mathscr{D}'_L{}^2)_x)$ and put v = Y*u. u is $\mathscr{D}'_L{}^2$ -canonical if and only if v has the $\mathscr{D}'_L{}^2$ -boundary value 0 and is $\mathscr{D}'_L{}^2$ -canonical,

PROOF. Suppose that u is \mathscr{D}'_{L^2} -canonical. We shall first show that \mathscr{D}'_{L^2} - $\lim_{t\downarrow 0}v=0$. Let ϕ be an arbitrary element of $\mathscr{D}(R_t^+)$ such that $\phi(t)\geq 0$ and $\int \phi(t)dt=1$ and γ an element of $\mathscr{D}(R_t)$ such that $\gamma(t)=1$ in a 0-neighborhood of R_t . Then, observing that $\langle (1-\gamma)u,\ \check{Y}*\phi_{\varepsilon}\rangle =0$ for $\varepsilon>0$ small enough, we obtain

$$\begin{split} <\!Y\!*\!u,\,\phi_{\varepsilon}\!> &= <\!\gamma u,\,\, \check{Y}\!*\!\phi_{\varepsilon}\!> + <\!(1\!-\!\gamma)u,\,\, \check{Y}\!*\!\phi_{\varepsilon}\!> \\ &= <\!u,\,\gamma(1\!*\!\phi_{\varepsilon})\!> - <\!\gamma u,\,\, Y\!*\!\phi_{\varepsilon}\!> \\ &= <\!u,\,\gamma\!> - <\!\varrho_{(\varepsilon)}u,\,\gamma\!>, \end{split}$$

which implies that $\lim_{\varepsilon \downarrow 0} \langle Y * u, \phi_{\varepsilon} \rangle = 0$, that is, \mathscr{D}'_{L^2} - $\lim_{t \downarrow 0} v = 0$ as desired. That v is \mathscr{D}'_{L^2} -canonical can be seen as follows. Owing to Proposition 5, $(Y * u)_{\sim}$ exists. Let $\alpha_0, \alpha_1, \dots, \alpha_k \in (\mathscr{D}'_{L^2})_x$ be such that

$$(Y*u)_{\sim} - Y*u = \delta \otimes \alpha_0 + D_t \delta \otimes \alpha_1 + \cdots + D_t^k \delta \otimes \alpha_k.$$

Differentiating both sides of the equation and noting that $D_t(\lim_{\varepsilon\downarrow 0}\rho_{(\varepsilon)}(Y*u))=-iu$, we have

$$D_t \delta \otimes \alpha_0 + \cdots + D_t^{k+1} \delta \otimes \alpha_k = 0$$
,

whence $\alpha_0 = \cdots = \alpha_k = 0$, that is, Y * u is \mathcal{D}'_{L^2} -canonical.

The converse is trivial from the equations

$$\rho_{(\varepsilon)}u = i\rho_{(\varepsilon)}D_t(Y*u) = iD_t(\rho_{(\varepsilon)}(Y*u)) - \phi_{\varepsilon}(Y*u),$$

since, then, $\lim_{\epsilon \downarrow 0} \rho_{(\epsilon)} u = i D_i(Y * u) = u$. Thus the proof is complete.

REMARK. In a previous paper [10], it is really shown that, given the space $\mathscr{H}_{(\sigma,s)}(R_{n+1}^+)$ [7, p. 51], where σ and s are fixed, then (1) the \mathscr{D}'_{L^2} -lim u exists for every $u \in \mathscr{H}_{(\sigma,s)}(\bar{R}_{n+1}^+)$ if and only if $\sigma > \frac{1}{2}$, (2) the \mathscr{D}'_{L^2} -canonical extension u_{\sim} exists for every $u \in \mathscr{H}_{(\sigma,s)}(\bar{R}_{n+1}^+)$ if and only if $\sigma > -\frac{1}{2}$, (3) $u_{\sim} \in \mathscr{H}_{(\sigma,s)}(R_{n+1})$ for every $u \in \mathscr{H}_{(\sigma,s)}(\bar{R}_{n+1}^+)$ if and only if $|\sigma| < \frac{1}{2}$.

Let $u \in \mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$. If, for $\varepsilon \downarrow 0$, $u(\varepsilon t, x)$ converges in $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$ to a limit independent of t, we can write $\lim_{\varepsilon \downarrow 0} u(\varepsilon t, x) = 1_t \otimes \alpha$ with $\alpha \in (\mathscr{D}_{L^2})_x$. When this is the case, we shall call α the section of u for t=0 and denote it by $u(0,\cdot)$ [13, p. 15]. We shall also say that u has no mass on the hyperplane t=0, if $\varepsilon u(\varepsilon t, x)$ converges in $\mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$ to 0 as $\varepsilon \to 0$ [13, p. 23]. It is clear that if u has the section for t=0, then u and $D_t u$ have no mass on t=0. Now we can show the following Theorem 3 which is an analogue to Theorem 2. However, the proof will be omitted since it can be carried out in a similar way as shown there.

THEOREM 3. Let a be any positive number. Given $u \in \mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$, then $u(0,\cdot)=\alpha \in (\mathscr{D}'_{L^2})_x$ if and only if there exists a $(\mathscr{D}'_{L^2})_x$ -valued continuous function f(t), $t \in [-a, a]$, such that for a non-negative integer k,

$$u = 1_t \otimes \alpha + D_t^k f$$
 in $(-a, a) \times R_n$,

and

$$f(t) = o(|t|^k)$$
 as $t \to 0$.

More precisely, f can be chosen an $\mathscr{H}_{(-m)}$ -valued continuous function with $||f(t)||_{(-m)} = o(|t|^k)$ as $t \downarrow 0$, for some non-negative integer m.

PROPOSITION 7. Let $u \in (\mathscr{D}'_t)_+((\mathscr{D}'_L{}^2)_x)$. Then u is $\mathscr{D}'_L{}^2$ -canonical if and only if u has no mass on t=0.

PROOF. Suppose u is \mathscr{D}'_{L^2} -canonical. Then by Proposition 6, $(Y*u)(\varepsilon t, x)$ converges in $\mathscr{D}'_{t}((\mathscr{D}'_{L^2})_x)$ to 0, whence $D_{t}\{(Y*u)(\varepsilon t, x)\} = -i\varepsilon u(\varepsilon t, x) \to 0$ in $\mathscr{D}'_{t}((\mathscr{D}'_{L^2})_x)$. Thus u has no mass on t=0.

Conversely, suppose u has no mass on t=0. Let $\phi_1 \in \mathcal{D}(R_t^+)$, $\phi_2 \in \mathcal{D}(R_t^-)$ be such that $\phi_1(t) \geq 0$, $\phi_2(t) \geq 0$, $\phi_1(t) dt = \phi_2(t) dt = 1$. If we put $\rho_1 = Y * \phi_1$, $\rho_2 = Y * \phi_2$, then $\alpha = \rho_1 - \rho_2 \in \mathcal{D}(R_t)$. Now $\alpha_{(\varepsilon)}u$ converges in $\mathcal{D}'_t((\mathcal{D}'_L{}^2)_x)$ to 0 as $\varepsilon \downarrow 0$, and $(1-\rho_{2(\varepsilon)})u=0$. Since we can write $\rho_{1(\varepsilon)}u=u+\alpha_{(\varepsilon)}u-(1-\rho_{2(\varepsilon)})u$, it follows that $\rho_{1(\varepsilon)}u$ converges in $\mathcal{D}'_t((\mathcal{D}'_L{}^2)_x)$ to u, which completes the proof.

In an entirely similar way we can show the following

Proposition 8. Let $u \in \mathcal{D}'_t((\mathcal{D}'_{L^2})_x)$ have no mass on t=0. If $u_1=u \mid R_{n+1}^+$

has the \mathcal{D}'_{L^2} -canonical extension $u_{1\sim}$, then $u_2=u\mid R_{n+1}^-$ has the \mathcal{D}'_{L^2} -canonical extension u_2^{\sim} , and we can write $u=u_{1\sim}+u_2^{\sim}$.

When u has no mass on t=0, we shall obtain

PROPOSITION 9. Let $u \in \mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$. If u has no mass on t=0 and $\mathscr{D}'_L{}^2-\lim_{t\downarrow 0} u_1=\mathscr{D}'_L{}^2-\lim_{t\downarrow 0} u_2=\alpha$, where $u_1=u\mid R^+_{n+1}$ and $u_2=u\mid R^-_{n+1}$, then u has the section α for t=0.

PROOF. For any $\alpha > 0$ there exist integers $k, m \ge 0$ and $\mathcal{H}_{(-m)}$ -valued continuous functions $f_1(t)$ and $f_2(t)$ defined, respectively, on [0, a] and on [-a, 0], for which

$$u_1 = Y \otimes \alpha + D_t^k f_1$$
, $u_2 = (1 - Y) \otimes \alpha + D_t^k f_2$ in $(-a, a) \times R_n$,

where $||f_1||_{(-m)}$, $||f_2||_{(-m)} = o(|t|^k)$ as $t \downarrow 0$ and we define $f_1(t) = 0$ for t < 0 and $f_2(t) = 0$ for t > 0. Whence we have

$$u_{1} + u_{2} = 1_{t} \otimes \alpha + D_{t}^{k}(f_{1} + f_{2}),$$

which means that $u_{1\sim}+u_{2}^{\sim}$ has the section α for t=0. Since $u-u_{1\sim}-u_{2}^{\sim}$ has no mass on t=0 and, in addition, its support lies on t=0, we must have that $u=u_{1\sim}+u_{2}^{\sim}$.

Let $u \in \mathscr{D}'(R_t^+)((\mathscr{D}_L'^2)_x)$. We shall say that u has a weak $\mathscr{D}_L'^2$ -boundary value α and we write $w - \mathscr{D}_L'^2 - \lim_{t \downarrow 0} u = \alpha$ if $u \in \mathcal{D}_L = 0$ if $u \in \mathcal{D}_L = 0$ to $u \in \mathcal{D}_L = 0$ where $u \in \mathcal{D}_L = 0$ is chosen an arbitrary non-negative function $u \in \mathcal{D}(R_t^+)$ with $\int_0^\infty \phi(t) dt = 1$.

PROPOSITION 10. Let $u \in \mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$. Then $w - \mathscr{D}'_L{}^2 - \lim_{t \downarrow 0} u$ exists if and only if $\lim_{t \downarrow 0} u$ exists and the set $\{u(\varepsilon t, x)\}_{0 < \varepsilon \leq 1}$ is bounded in $\mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$.

PROOF. The "only if" part is trivial. The "if" part can be verified as follows: $u_{\varepsilon} = u(\varepsilon t, x)$ is considered as a continuous map of $\mathscr{D}(R_t^+)$ into $(\mathscr{D}'_L{}^2)_x$. We can apply the Banach-Steinhaus theorem to conclude that $\langle u_{\varepsilon}, \phi \rangle$ weakly converges in $(\mathscr{D}'_L{}^2)_x$.

Along the same line as in the proof of Theorem 2 we can prove the following

Theorem 2'. Let a be any positive number. Given $u \in \mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$, then $w - \mathscr{D}'_L{}^2$ - $\lim_{t \to 0} u = \alpha \in \mathscr{D}'_L{}^2$ if and only if for some non-negative integer m there exists an $\mathscr{H}_{(-m)}$ -valued continuous function f(t), $t \in [0, a]$, such that for a non-negative integer k

$$u = Y \otimes \alpha + D_t^h f$$
 in $(0, a) \times R_n$

and

$$\langle f(t), \psi \rangle = o(t^k)$$
 as $t \downarrow 0$

for any $\psi \in (\mathcal{D}_{L^2})_x$.

Let $\phi \in \mathscr{D}(R_t^+)$ be taken in such a way that $\phi \geq 0$ and $\int_0^\infty \phi(t) dt = 1$, and let $\rho_{(\varepsilon)}$ be defined as before. Let $u \in \mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$. We shall say that u has a weak $\mathscr{D}'_L{}^2$ -canonical extension if, for any $\psi \in \mathscr{D}(R_t)$, $<\rho_{(\varepsilon)}u$, $\psi>$ converges weakly in $(\mathscr{D}'_L{}^2)_x$. When this is the case, there exists a unique $v \in (\mathscr{D}'_t)_+((\mathscr{D}'_L{}^2)_x)$ such that $\lim_{\varepsilon \downarrow 0} <\rho_{(\varepsilon)}u$, $\psi>=< v$, $\psi>$. Here v is called the weak $\mathscr{D}'_L{}^2$ -canonical extension and denoted by u.

PROPOSITION 11. Let $u \in \mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$. Then u has the weak $\mathscr{D}'_L{}^2$ -canonical extension u_- if and only if $\rho_{(\varepsilon)}u$ converges in $\mathscr{D}'(R_{n+1})$ and the set $\{\rho_{(\varepsilon)}u\}_{0<\varepsilon\leq 1}$ is bounded in $\mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$ for any ϕ .

If the limit in defining the notions such that the \mathcal{D}'_{L^2} -canonical, the section and the like is understood in the weak sense, then we can show the corresponding analogues to Theorem 3 and Propositions 5, 6, 7, 8 and 9.

A sequence $\{\phi_k\}$, $\phi_k \in \mathcal{D}(R_t)$, will be referred to as a δ -sequence if $\phi_k \geq 0$, $\{\phi_k dt = 1 \text{ and supp } \phi_k \text{ converges to } \{0\} \text{ as } k \to \infty$. Let $u \in \mathcal{D}'(R_t^+)((\mathcal{D}'_L{}^2)_x)$. If $\langle u, \phi_k \rangle$ converges in $(\mathcal{D}'_L{}^2)_x$ for every δ -sequence $\{\phi_k\}$, where $\phi_k \in \mathcal{D}(R_t^+)$, then the limit is called the strict $\mathcal{D}'_L{}^2$ -boundary value of u. The strict $\mathcal{D}'_L{}^2$ -canonical extension of u over t=0 will be defined in an obvious way. Similarly for the section of u for t=0 in the strict sense if $u \in \mathcal{D}'_t((\mathcal{D}'_L{}^2)_x)$. With the aid of these concepts, we shall be able to give some refinement of the results already obtained in this section. For instance, the following proposition is a refinement of Theorem 2.

PROPOSITION 12. Let $u \in \mathcal{D}(R_t^+)((\mathcal{D}'_L{}^2)_x)$. u has a strict $\mathcal{D}'_L{}^2$ -boundary value $\alpha \in (\mathcal{D}'_L{}^2)_x$ if and only if for some non-negative integer m and a > 0, there exists an $\mathcal{H}_{(-m)}$ -valued bounded measurable function w(t) in $t \in [0, a]$ such that

$$u=w$$
 in $\mathscr{D}'((0, a) \times R_n)$

and

$$\lim_{t \downarrow 0} ||w(t) - \alpha||_{(-m)} = 0.$$

This can be shown by making use of Lemma 3. But the proof is omitted.

3. Operator of order r which maps $(\mathcal{D}'_{L^2})_x$ into itself

Let r be an arbitrary real number and let OP_r be the set of linear maps of $(\mathscr{D}'_{L^2})_x$ into itself which are at the same time continuous operators of $\mathscr{H}_{(s+r)}(R_n)$ into $\mathscr{H}_{(s)}(R_n)$ for any real s. OP_r is a locally convex Hausdorff space, where the topology is defined by the operator norms $\|\cdot\|_{(s+r-s)}$ of the spaces $\mathscr{L}(\mathscr{H}_{(s+r)},\mathscr{H}_{(s)})$. Let l be a non-negative integer or ∞ . We denote by $\mathfrak{C}'_{(r)}$ the set of OP_r -valued C^l functions of $t \in R_l$. We shall note that any OP_r -valued C^l function A(t) defined on $[0,\infty)$ can be extended to a function $\mathfrak{C}'_{(r)}$. It is trivial if $l < \infty$. Let $l = \infty$. In [20] R. T. Seeley considered the sequences $\{a_k\}$, $\{b_k\}$ of real numbers such that (i) $b_k < 0$, (ii) $\sum\limits_{k=0}^{\infty} |a_k| |b_k|^n < \infty$ for $n = 0, 1, \cdots$, (iii) $\sum\limits_{k=0}^{\infty} a_k b_k^n = 1$ for $n = 0, 1, \cdots$ and (iv) $b_k \to -\infty$ as $k \to \infty$. Let ϕ be a C^∞ function on R_l with $\phi(t) = 1$ for $0 \le t \le 1$, $\phi(t) = 0$ for t > 2. We define $A(t) = \sum\limits_{k=0}^{\infty} a_k \phi(b_k t) A(b_k t)$ for t < 0. It is easy to verify that A(t) is a C^∞ function on $(-\infty, 0)$. We can write

$$\sum_{k=0}^{\infty} a_k \phi(b_k t) A(b_k t) - A(0) = \sum_{k=0}^{\infty} a_k (\phi(b_k t) A(b_k t) - A(0)).$$

Then there exists for any given $\varepsilon > 0$ an integer N > 0 such that

$$\sum_{k=N}^{\infty} ||a_k(\phi(b_k t) A(b_k t) - A(0))||_{(s+r \to s)} \leq 2 \max_{0 \leq t \leq 2} ||A(t)||_{(s+r \to s)} \sum_{k=N}^{\infty} |a_k| < \varepsilon,$$

whence it follows that $\lim_{t \uparrow 0} A(t) = A(0)$. Similarly, with the aid of (ii) and (iii), we can also show that $\lim_{t \uparrow 0} A^{(j)}(t) = A^{(j)}(0)$, $j = 1, 2, \dots$

Let $A^*(t)$ be denoted for each t the adjoint with respect to the scalar product $(\phi, \psi) = \langle \phi, \bar{\psi} \rangle$ between $\mathscr{H}_{(s)}(R_n)$ and $\mathscr{H}_{(-s)}(R_n)$. Then $A(t) \in \mathbb{G}^l_{(r)}$ implies $A^*(t) \in \mathbb{G}^l_{(r)}$.

In the rest of this section A(t) will be understood to belong to $\mathfrak{C}^{\infty}_{(r)}$. Let $\phi \in \mathscr{D}(R_{n+1})$. For each $t \in R_t$, $A(t)\phi(t, \cdot) \in (\mathscr{D}_{L^2})_x$ and $A(t)\phi(t, \cdot)$ is a $(\mathscr{D}_{L^2})_x$ -valued C^{∞} function of t, whence $A(t)\phi(t, \cdot)$, when considered as a function of t and x, is an infinitely differentiable function which, in what follows, will often be denoted by $A(t)\phi(t, x)$. Now we shall define A(t)u for every $u \in \mathscr{D}'(R_t^+)((\mathscr{D}'_{L^2})_x)$. Let $\{\phi_j\}$, $\phi_j \in \mathscr{D}(R_{n+1})$, be a sequence such that ϕ_j converges in $\mathscr{D}'(R_t^+)((\mathscr{D}'_{L^2})_x)$ to u. $A(t)\phi_j(t, \cdot) \in \mathscr{D}'(R_n^+)((\mathscr{D}'_{L^2})_x)$ for each j. Let g be any bounded subset of $(\mathscr{D}_{L^2})_x$. Then, for any $\psi_1 \in \mathscr{D}(R_t)$ and $\psi_2 \in g$, we have

$$(A(t)\phi_j(t, x), \psi_1 \otimes \psi_2) = (\phi_j(t, x), \psi_1 A^*(t)(\psi_2)),$$

where the set $\{\psi_1 A^*(t)(\psi_2) : \psi_2 \in B\}$ is equicontinuous in $\mathscr{D}(R_t^+) \bigotimes_{\iota} (\mathscr{D}_{L^2})_x$.

Thus the sequence $A(t)\phi_j(t,\cdot)$ will converge in $\mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$ to an element of $\mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$. The limit is defined as $A(t)u(t,\cdot)\in\mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$. If $u\in\mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$, then A(t)u will also be defined in an obvious fashion. In any way, owing to the Banach-Steinhaus theorem, the map $u\to A(t)u$ will be continuous.

PROPOSITION 13. Let $u \in \mathscr{D}'(R_t^+)((\mathscr{D}'_{L^2})_x)$. If u has a \mathscr{D}'_{L^2} -boundary value α , then A(t)u also has a \mathscr{D}'_{L^2} -boundary value, which is equal to $A(0)\alpha$.

PROOF. Our assumption implies that $\phi_{\varepsilon}u$ converges in $\mathscr{D}'_{t}((\mathscr{D}'_{L^{2}})_{x})$ to $\delta\otimes\alpha$ as $\varepsilon\downarrow0$, and therefore $\phi_{\varepsilon}A(t)u=A(t)\phi_{\varepsilon}u$ converges in $\mathscr{D}'_{t}((\mathscr{D}'_{L^{2}})_{x})$ to $A(t)(\delta\otimes\alpha)=\delta\otimes A(0)\alpha$, completing the proof.

Remark. By the same method as above, we can prove the analogues for the canonical extension, the section for t=0 and the like.

By $\widetilde{\mathscr{H}}_{(\sigma,s)}$ we mean the set of all $u \in \mathscr{D}'(R_{n+1})$ with the property that $\phi u \in \mathscr{H}_{(\sigma,s)}(R_{n+1})$ for any $\phi \in C_0^{\infty}(R_t)$. Here the topology is given as a local space [7, p. 42]. Then we have

Proposition 14. A(t) is a continuous linear map of $\widetilde{\mathscr{H}}_{(\sigma,s+r)}$ into $\widetilde{\mathscr{H}}_{(\sigma,s)}$ for any real σ , s.

PROOF. Let $\phi \in \mathcal{D}(R_t)$ be given. It suffices to show that there exists a constant C such that

$$\|\phi(t)A(t)u\|_{(\sigma,s)} \leq C\|\phi(t)u\|_{(\sigma,s+r)}$$

for every $u \in \widetilde{\mathscr{H}}_{(\sigma,s)}$, whence if we put $A_1(t) = \phi(t)A(t)$, we have only to show that

$$||A_1(t)u||_{(\sigma,s)} \leq C||u||_{(\sigma,s+r)}$$

for any $u \in \mathcal{D}(R_{n+1})$, C being a constant.

Let $\sigma = 0$. Then we have

$$\begin{split} \|A_1(t)u\|_{(\sigma,s)}^2 &= \int \|A_1(t)u(t,\,ullet)\|_{(s)}^2 dt \ &\leq \sup_t \|A_1(t)\|_{(s+r
ightarrow s)}^2 \int_{-\infty}^\infty \|u(t,\,ullet)\|_{(s+r)}^2 dt. \end{split}$$

Let $\sigma = m$, a positive integer. It is well known that, for every s, the norm $||u||_{(m,s)}$ is equivalent to the norm

$$\left(\int ||u(t, \cdot)||_{(s+m)}^2 dt + \dots + \int ||D_t^m u(t, \cdot)||_{(s)}^2 dt\right)^{1/2}.$$

Since
$$D_t^j(A_1(t)u) = \sum_{k=0}^j \binom{j}{k} (D_t^k A_1(t)) D_t^{j-k} u$$
 and

$$||(D_t^k A_1(t)) D_t^{j-k} u||_{(m+s-j)}^2 \leq \sup_t ||D_t^k A_1(t)||_{(m+s+r-j\to m+s-j)}^2 ||D_t^{j-k} u||_{(m+s+r-j)},$$

we see that $\|A_1(t)u\|_{(m,s)} \leq C_2 \|u\|_{(m,s+r)}$ with a constant C_2 . $\{\mathscr{H}_{(\sigma,s+r)}\}_{0 \leq \sigma \leq m}$ forms a Hilbert scale and $A_1(t)$ is continuous of $\mathscr{H}_{(0,s+r)}$ into $\mathscr{H}_{(0,s)}$ and of $\mathscr{H}_{(m,s+r)}$ into $\mathscr{H}_{(m,s)}$. In virtue of the interpolation theorem we can conclude that $A_1(t)$ is continuous of $\mathscr{H}_{(\sigma,s+r)}$ into $\mathscr{H}_{(\sigma,s)}$ for $0 \leq \sigma \leq m$, where m can be chosen arbitrarily large. Similarly, $A_1^*(t)$ is continuous of $\mathscr{H}_{(\sigma,s+r)}$ into $\mathscr{H}_{(\sigma,s)}$ for $\sigma \geq 0$, then its adjoint $A_1(t) = A_1^{**}(t)$ is continuous of $\mathscr{H}_{(-\sigma,-s)}$ into $\mathscr{H}_{(-\sigma,-s-r)}$. Thus the proof is complete.

4. Pseudo-commutativity for Calderón's singular integral operators

For any real $\beta \geq 0$, $B_{\beta}(R_n)$ will stand for the class of bounded functions f on R_n such that the distributional derivatives $D^{\alpha}f$, $0 \leq |\alpha| \leq \lceil \beta \rceil$, coincide with bounded functions and such that $D^{\alpha}f$, $|\alpha| = \lceil \beta \rceil$, satisfy a uniform Hölder condition of order $\beta - \lceil \beta \rceil$. The norm $||f||_{\beta}$ of a function f in $B_{\beta}(R_n)$ will be by definition the least upper bound for the absolute value of its derivatives of order $\leq \lceil \beta \rceil$ and the Hölder constants of the derivatives of order $\lceil \beta \rceil$.

Let us consider a function $h(x, \xi)$, $x \in R_n$, $\xi \in \Xi_n$, with the following properties: for any fixed $x \in R_n$, $h(x, \xi)$ is homogeneous of degree 0 in ξ , ϵ $C^{\infty}(\Xi_n \setminus \{0\})$ and for each ξ , $|\xi| = 1$, $h(x, \xi)$ and its derivatives with respect to coordinates of ξ of orders not exceeding 2n are functions of x belonging to $B_{\beta}(R_n)$, with bounded norms. The least upper bound of these norms is called the norm of h and denoted by $||h||_{\beta}$, that is,

$$||h||_{\beta} = \max_{0 \le |\alpha| \le 2n} \left\{ \sup_{|\xi|=1} \left\| \left(\frac{\partial}{\partial \xi} \right)^{\alpha} h(x, \xi) \right\|_{\beta} \right\}.$$

Let $a_0(x)$ be the mean value of $h(x, \xi)$ on $|\xi| = 1$ and k(x, z) is the inverse Fourier transform of $h(x, \xi) - a_0(x)$ with respect to ξ . An operator $f \to Kf$ of the form

$$Kf = a_0(x)f(x) + \lim_{\epsilon \to 0} \int_{|x-y| > \epsilon} k(x, x-y)f(y)dy$$

is said to be a B_{β} singular integral operator. We will call h the symbol of K and write $h = \sigma(K)$. We define the norm $||K||_{\beta}$ by $||K||_{\beta} = ||h||_{\beta}$ where $h(x, \xi) = a_0(x) + \hat{k}(x, \xi)$,

In the case where $n \ge 2$, let $\{Y_{lm}\}$, $m=0, 1, \dots, l=1, 2, \dots, d(m)$, be a complete orthogonal system of spherical harmonics of degree m, where d(m)=g(m)-g(m-2), $g(m)=\binom{m+n-1}{n-1}$ and we set g(-1)=g(-2)=0. Then we can expand the B_{β} singular integral operator K in the series

$$(Kf)(x) = a_0(x)f(x) + \sum_{m=1}^{\infty} \sum_{l=1}^{d(m)} a_{lm}(x)(G_{lm}f)(x),$$

where G_{lm} are the Giraud operators

$$(G_{lm}f)(x) = \lim_{\varepsilon \downarrow 0} \int_{|x-y| > \varepsilon} |x-y|^{-n} Y_{lm}(x-y) f(y) dy,$$

and we have the estimates $||a_0(x)||_{\beta} \leq C$, $||a_{lm}||_{\beta} \leq Cm^{-(3/2)n}||K||_{\beta}$, $||G_{lm}f||_{(s)} \leq Cm^{(n-2)/2}\gamma_m||f||_{(s)}$ with $\gamma_m = -i^m(2\sqrt{\pi})^{-n}\Gamma(m)\left(\Gamma\left(\frac{m+n}{2}\right)\right)^{-1}$ and $d(m) \leq Cm^{n-2}$ ([3], [15]).

For n=1 we have the expression

$$(Kf)(x) = a_0(x)f(x) + a_1(x)\lim_{\varepsilon \downarrow 0} \int_{|x-y| > \varepsilon} \frac{f(y)}{x-y} dy,$$

where a_0 , $a_1 \in B_{\beta}$.

Let Λ and S be operators with symbols $|\xi|$ and $(1+|\xi|^2)^{1/2}$ respectively. Then, for any B_{∞} singular integral operator K, the product KS^{γ} is an operator belonging to the class OP_{γ} . In this section we shall study the order of the operator $S^{\gamma}K - KS^{\gamma}$ to give a refinement of Calderón's result [3, p. 72].

Now, the operator S^{α} can be written in the form

$$S^{\alpha}(x) = G_{-\alpha} * x, \qquad x \in (\mathscr{D}'_{L^2})_x,$$

where

$$G_{\alpha}(x) = \begin{cases} C_{\alpha} \text{ P. f.} [|x|^{(\alpha-n)/2} K_{(n-\alpha)/2}(|x|)] & \text{for } \alpha \neq 0, -2, -4, \dots, \\ (1-\Delta)^{k} & \text{for } \alpha = -2k, k = 0, 1, 2, \dots, \end{cases}$$

where $C_{\alpha} = \left\{ 2^{(n+\alpha-2)/2} \pi^{n/2} \Gamma\left(\frac{\alpha}{2}\right) \right\}^{-1}$ and the modified Bessel function of the kind $K_{\frac{n-\alpha}{2}}(|x|)$, which is analytic except for the origin [1, p. 415; 18, p. 47]. third G_{α} belongs to the space \mathscr{D}'_{L^2} and $\alpha \to G_{\alpha}$ is analytic [18, p. 47]. If $\alpha < 0$ then $|x|^{\beta} G_{\alpha}(x) \in L^1(R_n)$ for any β with $|\alpha| < \beta$.

We shall first show the following proposition, where we have used the notation [b] to denote the multiplication $x \to bx$.

PROPOSITION 15. Let $b \in B_{\beta}(R_n)$, $\beta > 1$. Then, for any γ such that $-\beta + 1 < \gamma < \beta$, we have with a constant $C(\beta, \gamma)$ such that

$$\|(S^{\gamma} \lfloor b \rfloor S^{1-\gamma} - \lfloor b \rfloor S) \chi\|_{(0)} \leq C(\beta, \gamma) \|b\|_{\beta} \|\chi\|_{(0)}, \qquad \chi \in C_0^{\infty}(R_n).$$

PROOF. (a) We first assume that $\gamma \ge 1$. Put $A_{\gamma} = S^{\gamma} [b] - [b] S^{\gamma}$. If $\gamma = 2k$, k a positive integer, then we have for any $\alpha \in C_0^{\infty}(R_n)$

$$A_{\gamma} x = A_{2k} x = (1 - \Delta)^k (bx) - b(1 - \Delta)^k x$$

$$=\sum\limits_{\substack{|p|+|q|\leq 2k\q<2k}}C_{pq}D_x^pbD_x^qx,~C_{pq}~ ext{being constants},$$

whence we obtain with a constant C_1

$$||A_{2k}x||_{(0)} \leq C_1 ||b||_{\beta} ||x||_{(2k-1)} = C_1 ||b||_{\beta} ||x||_{(\gamma-1)}$$

which, by continuity, remains valid for any $\alpha \in (\mathcal{D}_{L^2})_x$. From this it follows that

$$||A_{\gamma}S^{1-\gamma}x||_{(0)} \leq C_1||b||_{\beta}||S^{1-\gamma}x||_{(\gamma-1)} = C_1||b||_{\beta}||x||_{(0)}.$$

If γ is not an even positive integer, then we can write

$$A_{\gamma}(x) = \int G_{-\gamma}(x-y)(b(y)-b(x))dy,$$

where

$$b(y)-b(x) = \sum_{1 \leq |p| \leq \lfloor \beta \rfloor - 1} \frac{i^{|p|}}{p!} (D^p b)(x) (y-x)^p + B_1(x, y) + B_2(x, y),$$

$$B_1 = \sum_{|q| = \lfloor \beta \rfloor} \frac{i^{|q|} \lfloor \beta \rfloor}{p!} (y-x)^q \int_0^1 (1-t)^{\lfloor \beta \rfloor - 1} ((D^q b)(x+t(y-x)) - (D^q b)(x)) dt,$$

$$B_2 = \sum_{|q| = \lfloor \beta \rfloor} \frac{i^{|q|} \lfloor \beta \rfloor}{q!} (y-x)^q (D^q b)(x) \int_0^1 (1-t)^{\lfloor \beta \rfloor - 1} dt.$$

In view of the inequalities

$$\begin{aligned} |((-ix)^{b}G_{-\gamma}(x))^{\hat{}}| &= |(iD_{\xi})^{b}(1+|\xi|^{2})^{\gamma/2}|\\ &\leq C_{2}(1+|\xi|^{2})^{(\gamma-|b|)/2} \leq C_{2}(1+|\xi|^{2})^{(\gamma-1)/2}.\end{aligned}$$

we obtain

$$(11) \qquad \left\| (D^{p}b)(x) \int (y-x)^{p} G_{-\gamma}(x-y) \varkappa(y) dy \right\|_{(0)} \leq C_{2} \|b\|_{\beta} \|\varkappa\|_{(\gamma-1)}.$$

In a similar way we have with a constant C_3

(12)
$$\left\| \int G_{-\gamma}(x-y)B_2(x,y)x(y)dy \right\|_{(0)} \leq C_3 \|b\|_{\beta} \|x\|_{(\gamma-1)}.$$

By assumption $1 \le \gamma < \beta$. Hence $|x|^{\beta} G_{-\gamma}(x) \in L^{1}(R_{n})$. Then we have with constants C_{4} , C_{5}

(13)
$$\left\| \int G_{-\gamma}(x-y)B_{1}(x,y)\varkappa(y)dy \right\|_{(0)}$$

$$\leq C_{4}||b||_{\beta} \left\| \int |y-x|^{\beta} |G_{-\gamma}(x-y)| |\varkappa(y)| dy \right\|_{(0)}$$

$$\leq C_5 ||b||_{\beta} ||\mathbf{x}||_{(0)} \leq C_5 ||b||_{\beta} ||\mathbf{x}||_{(\gamma-1)}.$$

From these estimates (11), (12) and (13) we have with a constant $C = C(\beta, \gamma)$

$$||A_{\gamma}S^{1-\gamma}\chi||_{(0)} \leq C||b||_{\beta}||S^{1-\gamma}\chi||_{(\gamma-1)} = C||b||_{\beta}||\chi||_{(0)}.$$

(b) Next, let $\gamma \leq 0$. Then $1 \leq 1 - \gamma < \beta$. From (a) we see that $S^{1-\gamma} \lceil b \rceil S^{\gamma} - \lceil b \rceil S$ is a continuous map of L^2 into itself. Thus its dual operator $S^{\gamma} \lceil \bar{b} \rceil S^{1-\gamma} - S \lceil \bar{b} \rceil$ is also continuous with the same norm. With the aid of the inequality $\|(S \lceil b \rceil - \lceil b \rceil S)\chi\|_{(0)} \leq C(\beta, 1) \|b\|_{\beta} \|\chi\|_{(0)}$, we obtain

$$||(S^{\gamma} [b] S^{1-\gamma} - [b] S) \mathbf{x}||_{(0)} \leq (C(\beta, 1-\gamma) + C(\beta, 1)) ||b||_{\beta} ||\mathbf{x}||_{(0)}.$$

(c) Finally, consider the case where $0<\gamma<1$. Let k be a positive integer such that $1+\frac{2\gamma}{k}<\beta$ and put $\varepsilon=\frac{\gamma}{k}$. From (a) and (b) it follows that $S^{1+\varepsilon}\lfloor b\rfloor S^{-\varepsilon}-S^{1+2\varepsilon}\lfloor b\rfloor S^{-2\varepsilon}$ and $S^{-\varepsilon}\lfloor b\rfloor S^{1+\varepsilon}-\lfloor b\rfloor S$ are the continuous maps of L^2 into itself, whence it follows that the latter is a continuous map of $\mathscr{H}_{(1+2\varepsilon)}$ into itself. In virtue of the interpolation theorem it is immediate that $S^{-\gamma}\lfloor b\rfloor S^{1+\gamma}-\lfloor b\rfloor S$ is continuous of $\mathscr{H}_{(\delta)}$ into itself for δ with $0\leq\delta\leq 1+2\varepsilon$. Thus, if we let $\delta=j\varepsilon,j=1,2,\cdots,k$, it results that $S^{(j-1)\varepsilon}\lfloor b\rfloor S^{1-(j-1)\varepsilon}-S^{j\varepsilon}\lfloor b\rfloor S^{1-j\varepsilon}$ is a continuous map of L^2 into itself with norm $\leq C_j(\beta,\gamma)||b||_\beta$, which, combined with the equation: $S^{\gamma}\lfloor b\rfloor S^{1-\gamma}-\lfloor b\rfloor S=-\sum\limits_{j=1}^k (S^{(j-1)\varepsilon}\lfloor b\rfloor S^{1-(j-1)\varepsilon}-S^{j\varepsilon}\lfloor b\rfloor S^{1-j\varepsilon})$, yields that

$$||(S^{\gamma} \lfloor b \rfloor S^{1-\gamma} - \lfloor b \rfloor S) \mathbf{x}||_{(0)} \leq C(\beta, \gamma) ||b||_{\beta} ||\mathbf{x}||_{(0)}.$$

This ends the proof.

COROLLARY 2. Let $b \in B_{\beta}(R_n)$, $\beta > 1$. Then, for any γ , s such that $-\beta + 1 < \gamma + s < \beta$ and $-\beta + 1 < s < \beta$, we have with a constant $C(\beta, \gamma, s)$

$$\|(S^{\gamma} \llbracket b \rrbracket - \llbracket b \rrbracket S^{\gamma}) \mathbf{x}\|_{(s)} \leq C(\beta, \gamma, s) \|b\|_{\beta} \|\mathbf{x}\|_{(\gamma+s-1)}, \qquad \mathbf{x} \in C_0^{\infty}(R_n).$$

Proof. Putting $x_1 = S^{\gamma + s - 1}x$, we have $||x_1||_{(0)} = ||x||_{(\gamma + s - 1)}$ and

$$\begin{split} &\|(S^{\gamma} \llbracket b \rrbracket - \llbracket b \rrbracket S^{\gamma}) \chi \|_{(s)} \\ &= (S^{s+\gamma} \llbracket b \rrbracket S^{1-\gamma-s} - \llbracket b \rrbracket S) \chi_1 - (S^s \llbracket b \rrbracket S^{1-s} - \llbracket b \rrbracket S) \chi_1 \|_{(0)} \\ &\leq C(\beta, \gamma + s) \|b\|_{\beta} \|\chi_1\|_{(0)} + C(\beta, s) \|b\|_{\beta} \|\chi_1\|_{(0)} \\ &= C(\beta, \gamma, s) \|b\|_{\beta} \|\chi\|_{(\gamma + s - 1)}, \end{split}$$

where $C(\beta, \gamma, x) = C(\beta, \gamma + s) + C(\beta, s)$, which completes the proof.

Theorem 4. Let $\beta > 1$ and K be a B_{β} singular integral operator in the sense of Calderón. Then, for any γ , s such that $-\beta + 1 < \gamma + s < \beta$ and $-\beta + 1$

 $\langle s \langle \beta, we have with a constant C(\beta, \gamma, s) \rangle$

$$||(S^{\gamma}K - KS^{\gamma})\mathbf{x}||_{(s)} \leq C(\beta, \gamma, s)||K||_{\beta}||\mathbf{x}||_{(\gamma+s-1)}, \qquad \mathbf{x} \in C_0^{\infty}(R_n),$$

PROOF. Let $n \ge 2$. For any $\alpha \in C_0^{\infty}(R_n)$ we have the expansion $K\alpha = a_0\alpha + \sum_{m=1}^{\infty} \sum_{l=1}^{d(m)} a_{lm}G_{lm} \alpha$ in $\mathcal{H}_{(s+\gamma)}(R_n)$. Since S^{γ} is a continuous map of $\mathcal{H}_{(s+\gamma)}(R_n)$ into $\mathcal{H}_{(s)}(R_n)$, the series

$$S^{\gamma}Kx = S^{\gamma}a_0x + \sum_{m=1}^{\infty} \sum_{l=1}^{d(m)} S^{\gamma}a_{lm}G_{lm} x$$

is convergent in $\mathcal{H}_{(s)}(R_n)$. On the other hand, the series

$$KS^{\gamma} \chi = a_0 S^{\gamma} \chi + \sum_{m=1}^{\infty} \sum_{l=1}^{d(m)} a_{lm} G_{lm} S^{\gamma} \chi$$

is convergent in $\mathcal{H}_{(s)}(R_n)$.

With the aid of Corollary 2 we have

$$\begin{split} \|S^{\gamma}a_{lm}G_{lm}-a_{lm}S^{\gamma}\chi\|_{(s)} &= \|(S^{\gamma}a_{lm}-a_{lm}S^{\gamma})G_{lm}\chi\|_{(s)} \\ &\leq C(\beta,\,\gamma,\,s)\|a_{lm}\|_{\beta}\|G_{lm}\chi\|_{(s+\gamma-1)} \\ &\leq C_{1}(\beta,\,\gamma,\,s)m^{-(3/2)n}\|K\|_{\beta}m^{(n-2)/2}\|\chi\|_{(s+\gamma-1)} \\ &= C_{1}(\beta,\,\gamma,\,s)m^{-n-1}\|K\|_{\beta}\|\chi\|_{(s+\gamma-1)}. \end{split}$$

Since $d(m) \leq Cm^{n-2}$, C being a constant, we have

$$||KS^{\gamma} \mathbf{z} - S^{\gamma} K \mathbf{z}||_{(s)} \leq C_{2}(\beta, \gamma, s) ||K||_{\beta} ||\mathbf{z}||_{(s+\gamma-1)} (1 + \sum_{m=1}^{\infty} m^{-3})$$

$$= C_{3}(\beta, \gamma, s) ||K||_{\beta} ||\mathbf{z}||_{(s+\gamma-1)},$$

where C_1 , C_2 and C_3 are constants independent of x and K.

In the case where n=1, we have the expression $Kx = a_0(x)x(x) + a_1(x)\lim_{\varepsilon \downarrow 0} \int_{|x-y| > \varepsilon} \frac{x(y)}{x-y} dy$. Since the Hilbert transform is a continuous map of $\mathcal{H}_{(s)}(R_n)$ into itself for any s, we obtain the estimate

$$||(S^{\gamma}K - KS^{\gamma})\chi||_{(s)} = C(\beta, \gamma, s)||K||_{\beta}||\chi||_{(\gamma+s-1)}, \qquad \chi \in C_0^{\infty}(R_n).$$

Thus the proof is complete.

5. Fine Cauchy problem for a system of pseudo-differential operators

This final section will be devoted to some general investigations about the fine Cauchy problem for a system of pseudo-differential operators. As for differential operators, by one of the present authors [9], the problem was formulated and investigated from a distribution-theoretic view-point, where the notions such as distributional boundary value and canonical extension over t=0 were proved to be fundamental. Our present aim is to generalize the results obtained there to a system of pseudo-differential operators.

For given $\vec{f} = (f_1, \dots, f_l)$ with $f_j \in \mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$ and $\vec{\alpha} = (\vec{\alpha}_0, \dots, \vec{\alpha}_{m-1}), \vec{\alpha}_j = (\alpha_{j_1}, \dots, \alpha_{j_l})$ with $\alpha_{j_k} \in (\mathscr{D}'_L{}^2)_x$ we shall consider the Cauchy problem for a system of pseudo-differential operators in the unknown vector distribution $\vec{u} = (u_1, \dots, u_l)$ with $u_j \in \mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$:

(14)
$$\begin{cases} P\vec{u} = D_t^m \vec{u} + \sum_{j=1}^m \vec{A}_j(t) D_t^{m-j} \vec{u} = \vec{f} & \text{in } R_{n+1}, \\ (\vec{u}(0, \cdot), (D_t \vec{u})(0, \cdot), \dots, (D_t^{m-1} \vec{u})(0, \cdot)) = \vec{\alpha}, \end{cases}$$

where $\vec{A}_i(t)$ are $l \times l$ matrices of operators $A_{i,jk}(t) \in \mathbb{G}_{(r)}^{\infty}$ and $\vec{u}(0, \cdot) = (u_1(0, \cdot), \dots, u_l(0, \cdot)), u_j(0, \cdot)$ being the section of u_j for t = 0.

Substituting $u_{i,k}=D_i^{k-1}u_i$, $i=1, 2, \dots, l, k=1, 2, \dots, m-1$, we obtain the system:

$$\begin{cases} D_t u_{j,1} - u_{j,2} = 0, & \vdots \\ D_t u_{j,m-1} - u_{j,m} = 0, & \vdots \\ D_t u_{j,m} + \sum_{i=1}^m \sum_{k=1}^l A_{i,jk}(t) u_{k,m-i+1} = f_j, & j = 1, 2, \dots, l, \end{cases}$$

with the initial conditions

$$(u_{j,1}(0,\cdot),\dots,u_{j,m}(0,\cdot))=(\alpha_{j,0},\dots,\alpha_{j,m-1}), \quad j=1,2,\dots,l,$$

which is a special case of the Cauchy problem for a pseudo-differential system written in matrix notation

(15)
$$\begin{cases} D_t \vec{u} + \vec{A}(t) \vec{u} = \vec{f} & \text{in } R_{n+1}, \\ \vec{u}(0, \cdot) = \vec{\alpha}, \end{cases}$$

where $\vec{u} = (u_1, \dots, u_N)$, $\vec{f} = (f_1, \dots, f_N)$, $\vec{\alpha} = (\alpha_1, \dots, \alpha_N)$, N = lm, and u_j , $f_j \in \mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$ and $\alpha_j \in (\mathscr{D}'_L{}^2)_x$. We shall write $\vec{u} \in \mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$ and we shall say that \vec{u} has the section for t = 0 if this is a case for each component u_j . The terms $\mathscr{D}'_L{}^2$ -canonical, $\mathscr{D}'_L{}^2$ -canonical extension, $\mathscr{D}'_L{}^2$ -lim u and the like shoud be understood in a similar way.

Put $Y_l = \frac{1}{(l-1)!} t_+^{l-1}$, l being a non-negative integer, where we set $Y_0 = \delta_t$. Note that Y_1 is the Heaviside function Y. Let $\vec{u} \in (\mathscr{D}'_t)_+((\mathscr{D}'_L{}^2)_x)$. Then so does $Y*\vec{u}$ and we have

(16)
$$Y_k * (\vec{A}(t)\vec{u}) = \sum_{j=0}^k \binom{k}{j} (-i)^j Y_j * (D_t^j \vec{A}(t)(Y_k * \vec{u})).$$

Theorem 5. For given $\vec{f} = (f_1, \dots, f_N) \in \mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$ and $\vec{\alpha} = (\vec{\alpha}_1, \dots, \alpha_N) \in (\mathscr{D}'_{L^2})_x$, suppose that there exists a solution $\vec{u} = (u_1, \dots, u_N) \in \mathscr{D}'_t((\mathscr{D}'_{L^2})_x)$ for the Cauchy problem (15), then \vec{f} has no mass on t = 0 and the restrictions $\vec{f}_1 = \vec{f} \mid R_{n+1}^+, \vec{f}_2 = \vec{f} \mid R_{n+1}^-$ have the \mathscr{D}'_{L^2} -canonical extensions \vec{f}_1 -, \vec{f}_2 and $\vec{f} = \vec{f}_1 - \vec{f}_2$. The \mathscr{D}'_{L^2} -canonical extensions \vec{u}_1 -, \vec{u}_2 of $\vec{u}_1 = \vec{u} \mid R_{n+1}^+, \vec{u}_2 = \vec{u} \mid R_{n+1}^-$ are solutions of equations:

(17)
$$D_t(\vec{u}_{1_{\alpha}}) + \vec{A}(t)\vec{u}_{1_{\alpha}} = \vec{f}_{1_{\alpha}} - i\delta \otimes \vec{\alpha},$$

(18)
$$D_t(\vec{u}_2) + \vec{A}(t)\vec{u}_2 = \vec{f}_2 + i\delta \otimes \vec{\alpha}$$
.

Conversely, if $\vec{v}_1 \in (\mathscr{D}'_t)_+((\mathscr{D}'_L{}^2)_x)$ and $\vec{v}_2 \in (\mathscr{D}'_t)_-((\mathscr{D}'_L{}^2)_x)$ are solutions of (17), (18) respectively, then $\vec{u} = \vec{v}_1 + \vec{v}_2 \in \mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$ is a solution for the Cauchy problem (15).

PROOF. Let $\vec{u} \in \mathscr{D}'_t((\mathscr{D}'_L{}^z)_x)$ be a solution for the Cauchy problem (15). Since $\mathscr{D}'_L{}^z$ - $\lim_{t \downarrow 0} \vec{u}_1 = \mathscr{D}'_L{}^z$ - $\lim_{t \uparrow 0} \vec{u}_2 = \vec{\alpha}$, for any $\phi \in \mathscr{D}(R_t^+)$ such that $\phi(t) \geq 0$, $\int \phi(t) dt = 1$, $\lim_{\epsilon \downarrow 0} \phi_\epsilon \vec{u} = \delta \otimes \vec{\alpha}$, $\lim_{\epsilon \downarrow 0} \phi_\epsilon \vec{u} = -\delta \otimes \vec{\alpha}$ and, owing to Proposition 5, $\lim_{\epsilon \downarrow 0} \rho_{(\epsilon)} \vec{u}_1 = \vec{u}_1$ and $\lim_{\epsilon \downarrow 0} \delta_{(\epsilon)} \vec{u}_2 = \vec{u}_2$ exist. From the equations:

$$\begin{split} & \rho_{(\varepsilon)} \vec{f} = D_t(\rho_{(\varepsilon)} \vec{u}) + i \phi_{\varepsilon} \vec{u} + \vec{A}(t) \rho_{(\varepsilon)} \vec{u}, \\ & \check{\rho}_{(\varepsilon)} f = D_t(\check{\rho}_{(\varepsilon)} \vec{u}) - i \phi_{\varepsilon} \vec{u} + \vec{A}(t) \check{\rho}_{(\varepsilon)} \vec{u}, \end{split}$$

we obtain

$$\vec{f}_{1\sim} = D_t(\vec{u}_{1\sim}) + i\delta \otimes \vec{\alpha} + \vec{A}(t)(\vec{u}_{1\sim}),$$

$$\vec{f}_{2\sim} = D_t(\vec{u}_{2\sim}) - i\delta \otimes \vec{\alpha} + \vec{A}(t)(\vec{u}_{2\sim})$$

and therefore $\vec{f}_{1\sim} + \vec{f}_{2} = D_{t}(\vec{u}_{1\sim} + \vec{u}_{2}) + A(t)(\vec{u}_{1\sim} + \vec{u}_{2})$. Since \vec{u} has the section for t=0, \vec{u} has no mass on t=0 and $\vec{u}=\vec{u}_{1\sim}+\vec{u}_{2}$ and therefore $\vec{f}=\vec{f}_{1\sim}+\vec{f}_{2}$ and \vec{f} has no mass on t=0.

Conversely, let \vec{v}_1 , \vec{v}_2 be solutions of (17), (18). Then for the interval (0, 1) there exist non-negative integers k, m and a \mathscr{D}'_{L^2} -valued continuous function $\vec{g}(t)$ of t with support $\subset [0, 1]$ such that $\vec{v}_1 = D^k_t \vec{g}(t)$ in $(0, 1) \times R_n$. Then, by the equation (16), we have

$$\frac{1}{i} Y_{k-1} * \vec{v}_1 = -\sum_{j=1}^k \binom{k}{j} (-i)^j Y_j * (D_t^j \vec{A}(t)(Y_k \vec{v}_1)) + Y_k * \vec{f}_{1} + i Y_k \otimes \vec{\alpha}.$$

By Proposition 6, $Y_k * \vec{f}_{1\sim}$ is \mathscr{D}'_{L^2} -canonical and \mathscr{D}'_{L^2} - $\lim_{t\downarrow 0} (Y_k * \vec{f}_{1\sim}) = 0$ for $k \ge 1$. Evidently $Y_k \otimes \alpha$ is \mathscr{D}'_{L^2} -canonical for $k \ge 1$ and $\lim_{t\downarrow 0} (Y_k \otimes \vec{\alpha}) = 0$ for $k \ge 2$ and $\lim_{t\downarrow 0} (Y \otimes \vec{\alpha}) = \vec{\alpha}$. From the above equation we see that $Y_{k-1} * \vec{v}_1$ is also \mathscr{D}'_{L^2} - $t\downarrow 0$

canonical. Repeating this procedure we conclude that $\mathcal{D}'_{L^2}-\lim_{t\downarrow 0}(\vec{v}_1\,|\,R^+_{n+1})=\vec{\alpha}$. Since \vec{f} has no mass on t=0, so does $\vec{u}=\vec{v}_1+\vec{v}_2$ and therefore \vec{u} has the section $\vec{\alpha}$ for t=0 and $D_t\vec{u}+\vec{A}(t)\vec{u}=\vec{f}$.

As an immediate consequence of the preceding theorem we have an analogue to Theorem 1 in [9, p. 18]:

CORORARY 3. For any given $\vec{f} \in \mathcal{D}'(R_t^+)((\mathcal{D}'_L{}^2)_x)$ and $\vec{\alpha} \in (\mathcal{D}'_L{}^2)_x$, if there exists a solution $\vec{u} \in \mathcal{D}'(R_t^+)((\mathcal{D}'_L{}^2)_x)$ of the Cauchy problem:

(19)
$$\begin{cases} D_t \vec{u} + \vec{A}(t) \vec{u} = \vec{f} & \text{in } R_{n+1}^+, \\ \mathscr{D}'_L^2 - \lim_{t \to 0} \vec{u} = \vec{\alpha}, \end{cases}$$

then \vec{f} has the \mathscr{D}'_{L^2} -canonical extension \vec{f}_{\sim} and \vec{u}_{\sim} is a solution of the equation:

(20)
$$D_t(\vec{u}_{\sim}) + \vec{A}(t)\vec{u}_{\sim} = \vec{f}_{\sim} - i\delta \otimes \vec{\alpha}.$$

Conversely, if $\vec{v} \in (\mathscr{D}'_t)_+((\mathscr{D}'_L{}^2)_x)$ is a solution of (20), then $\vec{u} = \vec{v} \mid R_{n+1}^+ \in \mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$ is a solution for the Cauchy problem (19) and $\vec{u}_- = \vec{v}$.

REMARK. For given $\vec{f} = (f_1, \dots, f_l) \in \mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$ and $\vec{a} = (\vec{\alpha}_0, \dots, \vec{\alpha}_{m-1}) \in (\mathscr{D}'_L{}^2)_x$, if there exists a solution $\vec{u} = (u_1, \dots, u_l) \in \mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$ of the Cauchy problem:

(21)
$$\begin{cases} P\vec{u} = \vec{f} & \text{in } R_{n+1}^+, \\ \mathscr{D}_{L^2}' - \lim_{t \to 0} \vec{u} = \vec{\alpha}, \end{cases}$$

then f has the \mathscr{D}'_{L^2} -canonical extension \vec{f}_{\sim} and \vec{u}_{\sim} is a solution of the equation:

(22)
$$P(\vec{u}_{\sim}) = \vec{f}_{\sim} + \sum_{k=0}^{m-1} D_t^k \delta \otimes \vec{r}_k(0),$$

where $\vec{r}_k(t) = -i \sum_{j=k+1}^m \sum_{l=1}^{j-k} (-1)^{j-l-k} {j-l \choose k} D_t^{j-l-k} \vec{A}_{m-j}(t) \vec{\alpha}_{l-1}$ and \vec{A}_0 is the unit matrix [11, p. 82]. We note that $\vec{r}_{m-k-1}(t)$ may be rewritten in the form

$$\vec{r}_{m-k-1}(t) = -i\vec{\alpha}_k + \sum_{j=0}^{k-1} \vec{B}_j(t)\vec{\alpha}_j,$$

where $\vec{B}_j(t)$ is a linear combination of derivative of \vec{A}_j of order up to k-1. Conversely, suppose $\vec{v} \in (\mathscr{D}_t')_+((\mathscr{D}_L'^2)_x)$ is a solution of the equation (22): $P\vec{v} = \vec{f}_- + \sum_{k=0}^{m-1} D_t^k \delta \otimes \vec{r}_k(0)$. Then, by substitutions: $\vec{v}_1 = \vec{v}$, $\vec{v}_2 = D_t \vec{v}_1 + i\delta \otimes \vec{\alpha}_0, \cdots$, $\vec{v}_m = D_t \vec{v}_{m-1} + i\delta \otimes \vec{\alpha}_{m-2}$, we get the equation written in the form:

$$egin{aligned} D_tec{v}_1 = ec{v}_2 - i\delta \otimes ec{lpha}_0, \ &dots \ D_tec{v}_{m-1} = ec{v}_m - i\delta \otimes ec{lpha}_{m-2}, \ D_tec{v}_m = -\sum\limits_{j=1}^m ec{A_j}(t)D_t^{m-j}ec{v} - i\delta \otimes ec{lpha}_{m-1} + ec{f}. \end{aligned}$$

Applying Corollary 3, we see that the restriction $\vec{u} = (u_1, \dots, u_m) = (v_1, \dots, v_m) | R_{m+1}^+$ is a solution for the Cauchy problem (21).

In the same way as in the proof of Theorem 5, we shall show the following

PROPOSITION 16. Let $\vec{f} \in \mathscr{D}'(R_t^+)((\mathscr{D}'_L{}^2)_x)$ have the $\mathscr{D}'_L{}^2$ -canonical extension \vec{f}_{\sim} . If $\vec{u} \in \mathscr{D}'_t((\mathscr{D}'_L{}^2)_x)$ is a solution of

$$D_t \vec{u} + \vec{A}(t)\vec{u} = \vec{f}$$
 in R_{n+1}^+ ,

then $\vec{u} \mid R_{n+1}^+$ has the \mathcal{D}'_{L^2} -boundary value.

PROOF. We can write $\vec{u} = D_t^k \vec{g}(t)$ in $(0,1) \times R_n$ with an \mathscr{D}'_{L^2} -valued continuous function $\vec{g}(t)$ of t with support $\subset [0,1]$. If we put $\vec{v} = D_t^k \vec{g}(t) \in (\mathscr{D}'_t)_+((\mathscr{D}'_{L^2})_x)$, then there exist $\vec{r}_0, \dots, \vec{r}_l \in (\mathscr{D}'_{L^2})_x$ such that

$$D_t \vec{v} + \vec{A}(t) \vec{v} = \vec{f}_{\sim} + \delta_t \otimes \vec{r}_0 + \dots + D_t^l \delta_t \otimes \vec{r}_l$$
 in $(-1, 1) \times R_n$.

Let k' be the smallest positive integer such that $\mathscr{D}'_{L^2}-\lim_{t\downarrow 0} (Y_{k'}*\vec{v})$ exists. Then, applying the equation (16) with k replaced by k', we have

$$\begin{split} \frac{1}{i} Y_{k'-1} * \vec{v} &= -\sum_{j=0}^{k'} \binom{k'}{j} (-i)^j Y_j * (D_t^j \vec{A}(t) (Y_{k'} * \vec{v})) + \\ &+ Y_{k'} * \vec{f}_{\sim} + \frac{1}{i} Y_{k'} \otimes \vec{r}_0 + \dots + \frac{1}{i} Y_{k'-1} \otimes \vec{r}_I. \end{split}$$

Since the right hand of the equation has the \mathscr{D}'_{L^2} -boundary value, so \mathscr{D}'_{L^2} - $\lim_{t\downarrow 0}(Y_{k'-1}*\vec{v})$ must exist. Thus k'=1, which means the existence of \mathscr{D}'_{L^2} - $\lim_{t\downarrow 0}(\vec{u}\mid R_{n+1}^+)$.

Proposition 17. Let $\vec{u} \in \mathcal{D}'(R_t^+)((\mathcal{D}'_{L^2})_x)$ be a solution of the equation:

$$D_t\vec{u} + \vec{A}(t)\vec{u} = \vec{f}$$
 in R_{n+1}^+ .

Then the following conditions are equivalent.

- (a) \vec{u} is a \mathscr{D}'_{L^2} -valued continuous function of $t \in (t_1, t_2), 0 < t_1 < t_2 \leq \infty$.
- (b) For any \vec{g} such that $\vec{f} = D_t \vec{g}$, \vec{g} is a \mathscr{D}'_{L^2} -valued continuous function of $t \in (t_1, t_2)$.

PROOF. (a) \Rightarrow (b). Since $\vec{A}(t)\vec{u}$ is a \mathscr{D}'_{L^2} -valued continuous function of t, if we put $\vec{v}(t,\cdot) = \int_{t_1}^t \vec{A}(t')\vec{u}(t',\cdot)dt$, then \vec{v} is a \mathscr{D}'_{L^2} -valued continuous function

and $D_t(\vec{u}+\vec{v}) = \vec{f}$ and therefore $\vec{g} = \vec{u} + \vec{v}$ is a \mathcal{D}'_{L^2} -valued continuous function of t.

(b) \Rightarrow (a). Let t_0 be any point such that $t_0 \in (t_1, t_2)$. Then the restriction $\vec{f} \mid (t_0, t_1) \times R_n$ has the \mathscr{D}'_{L^2} -canonical extension $\vec{f}_{\sim t_0}$ over $t = t_0$ and, owing to Proposition 16, \mathscr{D}'_{L^2} - $\lim_{t \to t_0} \vec{u} = \vec{\alpha}_{t_0}$ exists. Thus we have

$$D_t(\vec{u}_{\sim t_0}) + \vec{A}(t)(\vec{u}_{\sim t_0}) = \vec{f}_{\sim t_0} + \delta_{t_0} \otimes \vec{\alpha}_{t_0}.$$

Let k' be the smallest positive integer such that $Y_{k'}*\vec{u}_{\sim t_0}$ is a \mathcal{D}'_{L^2} -valued continuous function of t in a right neighborhood of t_0 . Applying the equation (16) with k replaced by k', we can show k'=1 in the same way as in the proof of Proposition 16. Since t_0 is arbitrary, we can conclude that \vec{u} is a \mathcal{D}'_{L^2} -valued continuous function of t in (t_1, t_2) . The proof is concluded.

As an immediate consequence we have the following

COROLLARY 4. Let $\vec{u} \in \mathcal{D}'(R_t^+)((\mathcal{D}'_{L^2})_x)$ be a solution of the equation:

$$D_t \vec{u} + \vec{A}(t)\vec{u} = \vec{f}$$
 in R_{n+1}^+ .

Then the following conditions are equivalent:

- (a) \vec{u} is a \mathcal{D}'_{L^2} -valued continuously differentiable function of $t \in (t_1, t_2)$, $0 < t_1 < t_2 \le \infty$.
 - (b) $\overline{\vec{f}}$ is a \mathscr{D}'_{L^2} -valued continuous function of $t \in (t_1, t_2)$.

References

- N. Aronszajn and K. T. Smith, Theory of Bessel potentials I, Ann. Inst. Fourier 11 (1961), 285–475.
- [2] N. Bourbaki, Espaces vectoriels topologiques, Chap. III, IV, V, Paris, Hermann, 1955.
- [3] A.P. Calderón, Integrales singulares y sus aplicaciones a ecuaciones diferenciales hiperbolicas, Universidad de Buenos Aires, 1960.
- [4] K. Fujikata and K. Miyazaki, On a space of distributions with support in a closed subset, J. Sci. Hiroshima Univ. Ser. A-I, 26 (1962), 21-25.
- [5] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16 (1955).
- [6] Y. Hirata, On a theorem in an (LF) space, J. Sci. Hiroshima Univ. Ser. A. 20 (1957), 111-113.
- [7] L. Hörmander, Linear partial differential operators, Springer, 1969.
- [8] M. Itano, On the distributional boundary values of vector-valued holomorphic functions, J. Sci. Hiroshima Univ. Ser. A-I, 32 (1968), 397-440.
- [9] ——, On the fine Cauchy problem for the system of linear partial differential equations, J. Sci. Hiroshima Univ. Ser. A-I, 33 (1969), 11-27.
- [10] ———, Note on the canonical extensions and the boundary values for distributions in the space H", Hiroshima Math. J., 1 (1971), 405-425.

- [11] M. Itano and K. Yoshida, Energy inequalities and Cauchy problem for a system of linear partial differential equations, Hiroshima Math. J., 1 (1971), 75-108.
- [12] ——, Energy inequalities and the Cauchy problem for a pseudo-differential system, Hiroshima Math. J., 2 (1972).
- [13] S. Lojasiewicz, Sur la fixation des variables dans une distribution, Studia Math., 17 (1958), 1-64.
- [14] U. Neri, Singular integrals, Lecture notes in Mathematics, Springer, 1967.
- [15] L. Schwartz, Produits tensoriels topologiques et espaces nucléaires, Séminaire, Inst. Henri-Poincaré, 1953-1954.
- [16] ———, Théorie des distributions à valueurs vectorielles, Chap. I, Ann. Inst. Fourier, 7 (1957), 1-141.
- [17] ————, Theórie des distributions à valeurs vectorielles, Chap. II, Ann. Inst. Fourier, 8 (1958), 1–209.
- [18] —, Théorie des distributions, Hermann, 1966.
- [19] ——, Sur le théorème du graphe fermé, C. R. Acad. Sci., 263 (1966), 602-605.
- [20] R. T. Seeley, Extension of C[∞] functions defined in a half space, Proc. Amer. Math. Soc., 15 (1964), 625–626.

Department of Mathematics,
Faculty of General Education,
Hiroshima University
and
Department of Mathematics,
Faculty of Science,
Hiroshima University