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In a previous paper [10] one of the present authors has investigated
the fine Cauchy problem for a system of linear partial differential operators
and obtained the following result: Let P(¢, x, D,) be an N x N matrix of
linear partial differential operators with coefficients € C~(R,.;). The fine
Cauchy problem consists in finding a solution & =(u,, us,---, un), u; € 2'(R;,1)
to the equation

Dii+P(t, x, D)i=f  in R},
with initial condition
lima(t, x)=a,
tlo

when a=(ay, as, -, an), a; € 2'(R,) and f:(fl, Soys IN), fi € 2'(R),) are

arbitrarily given, where lifn ii denotes the distributional boundary value of
tlo

ii. If there exists a solution @ for the problem, then f must have the canoni-
cal extension f. over t=0 and ?=4i. satisfies the equation

D+ B(t, x, D)p=f—id Qa.

Conversely, if 9=(vy, vs, -, vn), v; € D' (R,,1) is a solution of this equa-
tion, then the restriction #=7%|R;,, is a solution for our original Cauchy
problem and #.=3%. If we replace P(t, x, D,) by A(¢), an N x N matrix of
pseudo-differential operators [cf. p. 384 for definition ], we shall have a right
reason to consider the spaces 2'(R})((2%:).) and 2.((2}:).) instead of
2'(R}.,) and 2'(R,.1) respectively. As a result, it will be natural to intro-
duce the boundary value and the canonical extension in a suitable sense.

The present paper is also designed to be the introductory part of our
subsequent paper [ 12] which will appear in this journal.

In Section 1 we discuss the space 2,((2}:),) and the spaces related to it.
These spaces are all reflexive, ultrabornological and Souslin. Section 2 is
devoted to discussions concerning the 2;:-boundary value and the 2/:-canoni-
cal extension. Various alternatives of these notions will also be considered.
In Section 3 we shall introduce the operator A(:) referred to above and in-
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vestigate the properties thereof. In Section 4 some pseudo-commutativity
relation for A(¢) will be discussed. In particular, when applied to a singular
integral operator in the sense of A.P. Caldeldn, our result will refine Theorem
4in [38]. The final section is concerned with the fine Cauchy problem for a
pseudo-differential system.

1. The space 2,((2}2),)

Let R,,1=RX R, be an (n+1)-dimensional Euclidean space with generic

point (z, x), x—(xl, vy, %) and R,,+1—{(t x)€R,.1: t>0}. As usual, we
write |x|=( Z x)Y? and <x, £>= Z x:§;, where §=(§y, .-, §,) € By, the
dual Euchdean space of R,, Ifpisan n-tuple (p1, ---5 pn) of non-negative in-

tegers, the sum Z p; will be denoted by |p| and with D,=(D,, ..., D,), D;=

i=1
—}— ai,- and D,=}f g—t—, we put D2=D#...Di»,

Let L be a locally convex Hausdorff space and L’ be its dual. We shall
denote by L/, L; and L/, respectively, the weak dual, the strong dual and the
dual space L’ with the topology of uniform convergence on absolutely convex,
compact subsets of L. For a locally convex Hausdorff space M, following L.
Schwartz [16, p. 18], the e-product LeM is defined as the linear space of bi-
linear forms on L. x M/ hypocontinuous with respect to the equicontinuous
subsets of L’y M’ and provided with the e-topology, that is, the topology of
uniform convergence on the products of an equicontinuous subset of L’ and
an equicontinuous subset of M. If we let #.(L’;M) be the space of continu-
ous linear maps of L/ into M with the topology of uniform convergence on
the equicontinuous subsets of L', it is shown [16, p. 34] that there exist the
canonical isomorphisms between LeM, #.(L.; M) and £.(M’.; L). Hence
we can identify LeM with £.(L.; M) or with £.(M/; L) in accordance with
these canonical isomorphisms.

As to the tensor product LQM, every Z"] x;@Qy; € LM defines a bilinear

form on L'x M'; (x', y')— Z} <, ;> <y', y;>, which is certainly an ele-

ment of LeM. In view of the fact that the linear map of LQQ M into LeM
thus defined is injective, L& M is regarded as a linear subspace of LeM.
Equipped with the e-topology, the space LM will be denoted by L& .M [16,
p. 477]. The n-topology (resp. the ¢-topology) on LQM is defined as the finest
locally convex topology on this vector space for which the canonical bilinear
map (x, y)>x&y of LxM into L& M is continuous (resp. separately con-
tinuous). L& .M (resp. L&, M) will stand for the space L& M with the
m-topology (resp. the ¢-topology). The notations L& M, L&, M and LR .M
are used to represent the completions of L& M with topologies ¢, 7 and ¢
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respectively. In what follows we often write L(M) instead of LeM.
In our later discussions we need the following

Lemma 1 (¢f. [17, p. 103]). Let L be a nuclear Fréchet space and M a re-
fexive Fréchet space, then LeM is a reflexive Fréchet space and furthermore
we have (LeM);= LieM;.

Now let s# be a locally convex Hausdorff space contained in 2'(R,,;).
Following L. Schwartz [16, p. 7] we shall say that s is a space of distribu-
tions if the identical map of s into 2'(R,.,) is continuous, and that s# is
normal if (i) it is a space of distributions, (ii) s# contains 2(R,.,) as a dense
subset and (iii) the identical map of 2(R,.;) into s is continuous. It is
shown in [16, p. 107] that if s is a normal space of distributions, then so is
H#L.

As is well known, 2} and (2:), are complete normal spaces of distribu-
tions enjoying the approximation properties by truncation and regularization.
It follows from Proposition 3 and Corollary 1[16, p. 9, p. 47] that 2,R:.(212).
=92,((212),. Since 2} is nuclear, we have 2! (2}:),= 2: R .(27:), and
therefore 2,((21:),)=2'& (2D})..

Prorosition 1. 2}((2%2),) 18 a normal space of distributions.

Proor. Since the identical map (2}:),— 2. is a continuous injection, it
follows from Proposition 1 in [16, p. 20] that 2;((2}:).) C 2,(2.). On the
other hand, owing to the kernel theorem [16, p. 93], 2. ,is identified with
21(2.) algebraically and topologically. Consequentely 2,(24:)C2;,,. If we
consider 2, as a subspace of 2/ , it is clear that 2, , is a dense subset of
24(2%:), which completes the proof.

Remark. For any element u € 2,((21:),), there exists a sequence {¢;},
#; € 2(R,.1) such that ¢, converges in 2;((2:),) to u as j—>co. More precise-
ly, if we let {o;} and {a;} Dbe respectively any sequences of reguralizations
and multiplications in 2}, and let {o;} and {«}} be corresponding sequences
in (212),, we can then apply the Banach-Steinhaus theorem to conclude that
the sequence ajaj(ux(0;0})) € 2(R,.1) converges in 2;((272),) to u.

Let us denote by%,((2;:),) the strict inductive limit of the Fréchet spaces
Pk (21 =2k, 8{212),), j=1,2, ..., where we have designated by 2, the
space of infinitely differentiable functions in R, which vanish outside K;=
[—J,j]. We see from Lemma 1 that 2k ((21:),) is a reflexive Fréchet space.
Consequently 2,((2;:),) is reflexive. 2,(2;.),) consists of all infinitely dif-
ferentiable functions f in R,,; such that supp fC[e, b]x R, for some bound-

1
ed interval [a, b] and max(SID’,’Dﬁf(t, x)|2dx)? < oo for any k, p=(p1,---, pa)-

It is to be noted that é,((t@ 10)2)=2:R (212),. In fact, 2,Q(2;:), is clearly
a dense subset of 2,((2;:),). Let G be any locally convex Hausdorff space.
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To any separately continuous bilinear map u of 2,%x(2;:), into G, there is
uniquely associated a linear map v of 2, (2;.), into G such that u=wvo¢, ¢
being a canonical map of 2; x (2:), into 2,Q(2:),. Observing that Dk, and
(2::), are Fréchet spaces, we see that the restriction of v to Dk, Q(D12)x
becomes continuous under the z-topology and admits a unique continuous ex-
tension taking 2 Kj@?,,(@ : =2k (2 1)) into G, the completion of G, which
shows that v admits a unique continuous extension which takes 2,((2;::),)
into 6. Thus 2, .(2;:), is a dense subspace of Z,((2:2).), whereupon
9{(212),)=2:R.,(D12),. Itisshown [17, p. 104] that 2}((2/:),) is the strong
dual of 2,((212),). With these in mind, we can state the following

ProrosiTioN 2. 2,((212),) is a reflexive space with strong dual 2,((21:).)
:91 @L (QLZ)K'

A locally convex Hausdorff space E is said to be ultrabornological or of type
(B) if E is an inductive limit of Banach spaces B,, cc I. It follows from this
definition that an ultrabornological space is barreled and bornological, and
that a quasicomplete bornological Hausdorff space is ultrabornological.

2 .(E; F) is a Souslin space, that is, a continuous image of a Polish space,
if E is a strict inductive limit of a sequence of separable Fréchet spaces and
if F is a countable union of images, under continuous linear maps, of separ-
able Fréchet spaces. The result was stated without proof by L. Schwartz
[19, p. 602]. We shall make use of this fact which can be verified without
much labor and show the following

ProrosiTion 8. 2i((21:),) is an ultrabornological Souslin space.

Proor. The strong dual of an (LF)-space in the strict sense is ultrabor-
nological if the latter is reflexive [6, p.111]. It follows that 2/((22),) is
ultrabornological.

That the space 2/((2%.),) is a Souslin space is a consequence of Schwartz’s

oo

theorem referred to just before, since we can take E=2, and F=(21:),=

m=0

H#(-m. Thus the proof is complete.

As a generalization of the preceding proposition we shall show the fol-
lowing Theorem 1, where F is a closed subset of R, and 2} denotes the
subspace of 2} which consists of all the one-dimensional distributions with
support contained in F. 2% is provided with the induced topology, so it is
nuclear.

THEOREM 1. 24((2]2),) 1s a reflexive, ultrabornological Souslin space.

Proor. 2/((272).) being reflexive, we see that 2,((27),) is semire-
flexive as a closed subspace of 2,((2}:),). Consequently if we can show that
24((42),) is bornological, then we can conclude that it is reflexive and ultra-
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bornological. That 2;((24:),) is a Souslin space follows from the fact that
24((242),) is a closed subspace of 2,((2}:),) which is known by Proposition 3
to be a Souslin space. Thus to complete the proof of our theorem it remains
to show that 24((21:),) is bornological. To this end, we shall first consider a
special case where F is a compact subset K of R,, 9% is the strong dual
of a nuclear Fréchet space #(K) which is obtained by restriction to the set
K of infinitely differentiable functions of ¢. It follows from Lemma 1 that
2%((22),) is the strong dual of a reflexive Fréchet space £(K) & .(2;2)., and
it results that 24((24:),) is bornological. Now we shall turn to the general
case by following the process due to K. Fujikata and K. Miyazaki [4, p. 23].
Let {a;} be a partition of unity subordinate to the covering C;, j=1, 2, ...,

where Cjz{teR,: j—l——}g)—< || <j+—%—}, Putting

oo

{_\/1621‘~1}, FZZFm{.\/lCZj}a
i

Q= Z Qz2j-1, B= Zlazj',
=

ji=1

Q;:{teR,:|t|<2j—1+%}, }’:{teR,:|t|<2j+%},

we obtain
( i ) F:Fl\_/Fz,
(ii) (supp a)NFy, (supp B)NFCF, and a+F=1,

(iii) Q;NFy, Q;’N\F; are compact for each j.

Now we can write down: 27((27:).)= H 2¢,,.,(212),) and 25,((212).)=
H -@cz ((212).). Using the fact that the product space of a countable number

of bornological spaces is bornological, we see that 2, ((21:).) and 2;,((212).)
are bornological. Consider the map 6: 2;,((27:).) X 25,(212).) 3 (11, uz)—>
uitus € 25((2%2),). Then 6 is linear and continuous. For any given
u € 2p((212).), if we put uy=au, u,=_pRu, then u, € 25 ((212):), uz € 2,((D12),)
and u;+us=u, that is, 6 is onto. Furthermore if » converges in 25((272).)
to 0, then uy, u, converges respectively in 25 ((212),), 25,(2}:),) to 0. Then
we see that the map 6 is epimorphic and therefore 24((242),) is isomorphic
to (25,((212),) x 25,((212).))/Kerd. Consequently, 24((2]:),) is bornological,
which was to be proved.

If F=[0, ), we shall use the notation (2}),.((2}:).) instead of 24((2%2),).
Similarly for (2}).((2}:),). As an immediate consequence of Theorem 1, we
have
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CoroLrLARY 1. (2)).((212).) is a reflexive, ultrabornological Souslin space.

We note that the strong dual of (2)).((2%:),) is 2(R})R.(21:).. Here
2(R}) is the set of infinitely differentiable functions in R} which vanish out-
side a compact subset and it is a reflexive (LF)-space with the usual topology.
We omit the proof since the method of proving Proposition 2 will be applied.

We shall denote by 2,((24:).)(R}.,) the space which is obtained by re-
striction to R;,, of all the distributions € 2;((2}:).). The space will be
identified with the quotient space 2/((24:).)/(2})-((2}:).) equipped with the
quotient topology. We shall also denote by 9°(Rj) the closed subspace of 2(R,)
which consists of infinitely differentiable functions with support contained in
[0, o).

Finally we shall show

Prorosition 4. 2;((272).)(R}.1) 18 a reflexive, ultrabornological Souslin
space and 2}((212).)(R; ;) s isomorphic to 2'(R})(242):) =(2(R)D212).)}.

Proor. According to the reasoning just before Proposition 2, 9?(1—{?)@1
(21:), is reflexive and an (LF)-space in the strict sense. Here we can infer

that 2(R})((24:),) is the strong dual of 9?(1_{;’) R®.(212),.. It follows that
9’(Rj)((@i:)x)=(9‘?(ﬁi YR.(21:),) is ultrabornological. Consider the identical
map J: .é(R?)@,(.@Lz)x—»9(R,)®L(9Lz)x which is a monomorphism. The dual

map ‘J: é;((@’y)x) —2'(R}) (2}:),) is continuous and onto. Here 2,((2}:).)
is a Souslin space and 2'(R})((2}:).) is ultrabornological. The open mapping
theorem [19, p. 604] then shows that ‘J is an epimorphism, whereupon
2'(R})((212).)is isomorphic to the quotient space 2,((2}2).)/Ker' J=2;((21:).)/
(2)-((21):)=2,(21):)(R,:1). Thus we can also see that 2;((2:).)(R;.1)
is are reflexive, ultrabornological Souslin space. The proof is complete.

2. 2:-boundary values and 2/:-canonical extensions

Given ¢ € 2(R?), then ¢,, 2>0, will be defined by letting %(t):-}l—(p (‘fz‘)

LemMAa 2. Let E be a locally convex Hausdorff space and v a continuous
linear map of 2(R}) into E. If we assume that v(¢)=v(¢,) for every mon-

negative ¢ € 2(R}) with S:¢(t) dt=1, then there exists a unique e, € E such that
v(¢)=(go¢(t) dt)eo Sfor every ¢ € 2(R}).

Proor. It is clear that v(¢)=v(g,) holds for every ¢ € 2(R}). Now let
e’ be any elemeht of E’, and consider a linear form 2(R}) 3 ¢— <e’, v(g)>.
Since it is continuous, there exists a unique distribution 7, € 2'(R}) such
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that <T., ¢>=<e',v(¢)>. It follows then from our assumption that
<Ty, ¢>=<T,, ¢.>, which implies that T,(t)= T, (it) for every 1>0 and

therefore 7dt—T =0, that is, v( d'f)=0 for any ¢ € 2(R;). Let ¢, be a fixed
non-negative element of 2(R}) such that S:¢o(t)dt=1. If we put eo=v(¢o),
then, since any ¢ € 2(R;) can be written in the form ¢=(S:¢(t) dt) ¢o+%%

z € 2(R}), we obtain U(¢)=(S“¢(t) dt)eo, as desired.

Now let us consider a distribution z € 2'(R})((2}:),) C2'(R;,,) which is
identified with a continuous linear map of 2(R}) into (2}:),. Suppose u(ez, x)
converges in 2'(R;)((2}:).) to a distribution » as ¢} 0. Then Lemma 2
shows that v is independent of ¢ and can be written in the form Y; & «, where
Y; is the Heaviside function and « € (2}:),. « is called the 27:-boundary
value of u and denoted by 2 iz-lim u. From this definition we also see that

if .@Lz-hm v=a and 7€ &(R)), then .@Lz-hm ru=7(0)a. By making use of
this observatlon we shall show that 2 Lz-hm uv=c is equivalent to saying
that ¢.u converges in 2:((2}:),) to 6,®a for any non-negative ¢ € 2(R7})
with S:qﬂ(t)dt—l. Suppose that 2 Lz-llmu a. Then for any € 2(R;) we
have <g.()u(t, ), v(t)> = <(yu)(et, ), #(t)>, and the product ru has the
2%:-boundary value v(0)a € (2}:),. Thus 16111101 <geu, > =y(0)a= <0:; Ra,

>. Conversely if ¢.u converges in 2,((22),) to 6:Qa and if ¥ € 2(R,) is
such that v+(¢)=1 in a 0-neighborhood, then <¢.u, > converges in (27:), to
<0ORa, v>=y(0)a=a. Since <Peu,v>=<u,pr>=<u,¢:> for suf-
ficiently small ¢ >0, it follows that <u(et, -), 4> converges in (2}:), to a.

LemMa 3. Let s be a real number. If a sequence {u;}, u; € 3#(Rx), 18
bounded in 55\ (R,) and converges in (212), to 0, then u; converges in # s_1y(R,)
to 0.

Proor. By our assumption there exists a constant C such that
Slaj|2(1+ |&|®)*deé <C. Given ¢>0, we can take N so large that

Cc

la;]%(1+ |€]%)° degHNz <e,

2 2ys-1
[ JwiPa+ieaes o

where i; is the Fourier transform of u;. Let x be the characteristic func-
tion of the set {£ € Z,: |£| < N} and we put 9;=x(&)a;(1+ [£|?°. For any
integer I with /+s=0 we have
flopatieiyae={ lara+ieiheae
161SN

§(1+Nz)’“glﬁ,-|2(1+ 1£]2)7de < C(L+ N2+,
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which shows that the sequence {v;} is bounded in (2;:),. Since {u;} con-

verges in (2]:), to 0 as j— oo, it follows that sup |(uj, vs)| =sup| <uj, 7> |
k k

converges to 0 as j— co. Consequently the inequalities

1 . s
sup | (s, 00)| 2 (s )| =) 152U 161)d

1
@n)"

=g Tl 8]
1E1=N

yield that S; la;|2(1+4 | £]2)°*"'dé<2¢ for sufficiently large j, which com-
IEI=N

pletes the proof.

Remark. Let f be a 2/:-valued continuous function of ¢ with support
C[0, a] such that f(t)=0(% in (24:), as t| 0. Then there exists a non-
negative integer m such that f is an s _.,-valued continuous function of s

and || f(O)|lcm=0(*) as ¢ | 0. In fact, the set {T—?}MK is bounded in (27:),

and therefore there exists a non-negative integer m such that f(¢) € #m.1)
and ||f(2)||ms1y=0(@1"). By Lemma 3, f(¢) is an valued #_m-continuous

function of ¢ and lim Mﬁﬂ:o,
tlo tk

LemMma 4. Let E be a Fréchet space and F an inductive limit of Banach
spaces F;, j=1, 2, ..., with norm ||-||;, and assume that every bounded subset of
F belongs to some F; and bounded there. Let {u,},r be a family of continuous
linear maps u, of E into F and assume that {u,(x)},er s bounded in F for
every x € E.  Then there exists an mq such that u.,(x) € F,,, for any x € E and
the seminorm x —»sBp [y ()|l omyy ©8 cONtTnuouUs.

Proor. Let us consider the set
Fo={{ys}ver: yy € F and {|| y,||m)},er is bounded}.

If we put [|[{y,}||=sup||y,llm) for {y,},er € F,, then F, is a Banach space with
norm ||-||. Gm:{(x:{uy(x)}yep) € ExF,} is a Fréchet space and closed in
ExF,. Consider the projection P, of G, into E. As a continuous image of
a Fréchet space, the set E,=P,(G,) is of the 1st or of the 2nd category. On
the other hand we have E=\JE,. In fact, let x € E. Since {u,(x)},er is

bounded, there exists an m such that u,(x) € F, and {||u,(x)||tm)}~er is bound-
ed, that is, (», {u,, (x)}) € G, and therefore x € E,. Since E is a Fréchet
space, it follows that E=E,, for some m,. Then the projection P, has a con-
tinuous inverse E 3 x — («x, {u,(x)}) € G,,. This means that u,(x) € F,, for
any x € E and the norm « —>Sl;.p||u,,(x)H(m) is continuous. Thus the proof is
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complete.
Let u € 2'(R}) and I=(a, b)) C C(0, o). u is said to be of order </ on I
if there exists a constant C such that | <u,¢>| < Csup|Di¢(¢)| for any ¢ €

t
2(R}). Then, 2; being dense in 2%, u will be uniquely extended to a con-
tinuous linear form on 2.

Now we are prepared to apply S. Lojaciewicz’s method [13, p.p. 17-18]
in proving the following

TueoreM 2. Let a be any positive number. Given u € 2'(RY)(212).), then
9 'Lz'l,if{} u=a € (27, ©f and only if there exists a (21:),~valued continuous
Sunction f(t), t € [0, a’], such that for a non-negative integer k,
u=Y,Qa-+D:f i (0, a) X R,
and

f@)=o0(t" ast 0.
More precisely, f can be chosen an #_ny-valued continuous function with
1f Ol -my=0(t*) as t—0, for some non-negative integer m.
Proor. Let u be written in the form as asserted in our theorem. Let
g(@) :%. Now, given ¢ € 2(R7), there can be found a v+ € 2(R}) such that
we=t*D’¢.. Since, then, g(t)—>0 in 2{: as ¢t | 0, we obtain for e | 0

<DAf, o> =(=D*| FODIpede=(=1F|  g(Oy.di—o0.
This means that 2/:-lim D% f=0, so we have
tlo
2p-limu=2%:-lim (Y, Qa+ Dif)
tio tlo
=@’Lz-1i{n(Yt®a)=a.
tio0

Suppose 2 ’Lz-lti{r; v=ca holds. Without loss of generality, we may assume
that a=1 and «=0. Let us consider the intervals I=(0, 1) and I,=(6""2, 6*),
y=0,1, ..., where 0=%, and we put u,(¢, x)=u(6"t, ). Now we can regard
u, as a continuous map of 2; into (27:),. Here 2; is a Fréchet space and
(212),= C/ H(-mye In view of Lemmas 3 and 4, we can take a non-negative
integer "r;:oand a 0-neighborhood 7 of 2; such that |[u,(#)||m=1 and lim
[lu,(@)||(-my=0 for any ¢ € V, where V={¢ € 2;: sup|D}¢| <1}, [ being a ng;:
negative integer. 27 isthe closure of 2; with re;pect to the norm s?p | D],
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so that u, can be uniquely extended to a continuous map of 2} into # .
By the same method as in [9, p. 399] we can find a function G € 2} .;, such
that if we put f,(¢)=u.(g:), where g(s)=G(s, s), then f,(¢) is an #_n)-valued
continuous function with support C I, and

1) w,=D}¥"%*, in L.

Since {gi}ic;, forms a compact subset of 2, it follows from the Banach-
Steinhaus theorem that the sequence of s#(_.yvalued continuous functions
f,(¢) uniformly converges to 0 as y — oo, hence we can choose 1,>0 so that

) sgpllfu(t)lk_m)gluwas y—>oo,

Since, for any v € 2;, we can write
u(y)=<u(t, ), v()>,=<u(6’t, +), 60"y(6"t) >,
=<u,(2, *), 0"y (0" ) >,
= <DL, 07y (6%1) >y
= <D0 If (0771)), p(8) >,

$0 F,(t)=0"%*2f,(6-"¢) will be an #_n,-valued continuous function with sup-
port C I, such that

@) w=DPFRG)  in,
4) sup||F,(0)||my=2,6"%*D,
t

If we put ¢,(t)=F,.1(t)—F,(¢t), t € I,,;N I,, then, since D%*%¢q,=01in I,,,N1,,
so there is a polynomial §, such that §,(¢)=q,(¢t) for t € I,,,NI,, where g, is
determined by taking ¢,=0""*<t;<---<tz,1=0*"! and by putting §,(t)=
21+1 —

2. ¢.@)x I1 Ll By a simple estimation we obtain

i=0 jFRb;— Ly

(6) D¥**§,=0,
6) 1§ )l-m =< KR,6°(6*F1) 4 42+1) for ¢t € [6*+%, 1],
where K is a constant independent of y. Now let us define continuous func-
tions F,(¢) on [6**2, 1] by putting F,=F, and
F, on I,

P
F‘,_1+q,_1 on [0v+1, 1:'

for y=1, 2,.... Note that the restriction of F, to [6**!, 6*] is equal to F,_,+
§,-1. For any v>v,, v, being any given positive integer, we have for ¢ €
[0v0+2, 1]
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1Fs 2@ = F. (Ol emy= 1§, (&) + -+ §os a1 (Ol (=m)
v+k—1 . .
<K Y 3,00(673HD 4 241 <T4KR,6".
j=v

This shows that {#,} uniformly converges on [6**', 1]. Let f(t)=limF,(¢),

t €(0,1]. fisan s#_m-valued continuos functions on (0, 1] and

@ fO=FO+ La@, celo 1],

whence D?'*2f=y in I since D?*2F,=u in (6°*% 1) and D?*%§;=0. Owing
to the estimates (4), (5), we have for ¢ € I,

(8) “FV(t)“(—m):“Fv(t)“(—m)g'{vav(ZHZ)
Sl 0—4(1+1)t21+2
@) NGOl -m=K2,0"(0***D +2"1)
ézKlvav(Zhd)
SZKA 044(l+1)t21+2
(10) ||qu+l(t)“(—m)§K19+10u+1(0(p+1)(21+1)+t2l+1)
SK,{vav(au(zlJrl)_l_ t21+1)0
§0(2K1,0_4(1+1))t21+2.

From these, together with (7), we obtain that f(¢)=0(t?****)as ¢t | 0. Thus the
proof is complete.

Let ¢ € 2(R}) be such that ¢ =0 and S:qs(t) dt=1. Let po=Yx¢ and put

p(f)(t)=p(%) for any e>0. Consider a u € 2'(R;)((212):). Then p¢yu will

always be understood an element of 2;((272).). If p)u converges in 2,((21:).)
to vy as ¢ | 0, then vy does not depend on the choice of ¢. In fact, this follows
from Lemma 2, together with the equations vy=v4,, A>0, which can be easily
verified. The limit element v will be referred to as the 2/:-canonical exten-
sion of u over :=0 and denoted by u.. It is to be noticed that (u.|R;,,)-=
u.. The same will be the case for u € 2’(R;)((2}:).). Then its canonical
extension over =0 will be denoted by u~.

Prorosition 5. Let u € 2'(R})((212),). If 2i:-limu=«, then u has the
tio
9 j-canonical extension u ..

Proor. Owing to Theorem 2 we have a local representation of u:
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u=Y,Qa+D:f  in (0,a)x Ry,

where f is an 5 _ny-valued continuous function with the properties described
there. Then we have for :<a

0ot =0 Qa+ 0 Dif
=00 ®@art Diowf )+ 5 (=17 ( % Do),

whence, observing that e, f—f and (Dipe)f—0 in 2'(—oo, a)((2}2).) as
e | 0, we can establish the conclusion of our proposition.

We shall say that u € 2,((24:),) is 2]:-canonical if (u|R;,,;)~-=u holds.
In what follows, we shall write u instead of (z|R;,,).. Then we can show
the following

ProrositioN 6. Let u € (2}).,.((242),) and put v=Y*u. uis @:-canonical
if and only if v has the 2 :-boundary value 0 and is 27:-canonical,

Proor. Suppose that v is 2/:-canonical. We shall first show that 27:-
limv=0. Let ¢ be an arbitrary element of 2(R}) such that ¢(:) =0 and

ti0

J¢(t)dt=1 and 7 an element of 2(R,) such that y(¢)=1 in a 0-neighborhood of
R.. Then, observing that <(1—7)u, Y*¢.>=0 for ¢>0 small enough, we
obtain

< Yku, ge>=<ru, Yige>+ <(A—7)u, V>
= <u, y(Lxde) > — <yu, Yxp:>
=<u, r>—<Q0@Eu, 7>,
which implies that 11m< Yxu, ¢.> =0, that is, 2 Lz-hmv—O as desired. That

v is @:-canonical can be seen as follows. Owing to Proposition 5, (Y *u)~

exists. Let ay, ay, -+, a € (2]2), be such that
(Y*u).—Y*xu=0Qao+D:0 Qa,+ -+ D Q.

Differentiating both sides of the equation and noting that D,(lei}r{)l 0 (Y*u))=

—iu, we have
D,6®ao+ "'+D?+16®Cﬁk=0,

whence a,=---=a; =0, that is, Y*u is 2}:-canonical.
The converse is trivial from the equations

0= iO(e)Dt( Y*u)= iDz(O(e)( Y*u))—¢(Yxu),

since, then, limpyu =iD;(Y*u)=u. Thus the proof is complete.
€0
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Remark. In a previous paper [107, it is really shown that, given the
space ., (Ri1) [7, p.51], where o and s are fixed, then (1) the Q/Lz-lilr{)l u
t

exists for every u € #(, (R}.,) if and only if o‘>%, (2) the 2}:-canonical
extension u. exists for every u € s, (R;.,) if and only if o‘>——é—, 3

Un € (0, o(Rosr) fOT every u € #,,o(Ryy) if and only if 5] <5

Let u e 2,(212),). I, for ¢|0, u(et, x) converges in 2,((24:),) to a
limit independent of ¢, we can write lgr; u(et, x)=1,Qa with a € (2;2),.
When this is the case, we shall call « the section of u for t=0 and denote it
by u(0, -) [13, p.15]. We shall also say that z has no mass on the hyper-
plane t=0, if eu(et, x) converges in 2,((2}:),) to 0 as e—>0[13, p.23]. It is
clear that if » has the section for :=0, then v and D,u have no mass on ¢=0.
Now we can show the following Theorem 3 which is an analogue to Theorem
2. However, the proof will be omitted since it can be carried out in a similar
way as shown there.

TueoreMm 3. Let a be any positive number. Given u € 2:((212),), then
u(0, Y=a € (212), if and only if there exists a (22) -valued continuous func-
tion f(t), t €[ —a, a ], such that for a non-negative integer k,

u=1,Qa+ D:f in (—a,a)XR,,
and
F@W=0(t|®"  ast—0.

More precisely, f can be chosen an 5 nyvalued continuous function with
IOl em=0(|t]*) as ¢t | 0, for some non-negative integer m.

Prorosition 7. Let u€(2}),((242),). Then u is 2:-canonical 1f and
only if u has no mass on t=0.

Proor. Suppose u is 27:-canonical. Then by Proposition 6, (Y*u)(ez, x)
converges in 2;((27:),) to 0, whence D,{(Y*u)(et, x)} = —ieu(et, x)—>0 in
21((2%2),). Thus u has no mass on ¢=0.

Conversely, suppose z has no mass on t=0. Let ¢, € 2(R}), ¢: € 2(R7)
be such that ¢,(¢) =0, ¢2(t) =0, [¢,(t)dt=[p:(t)dt=1. If we put o,= Y *¢,
02= Y *¢3, then x=0;—p; € 2(R;). Now x()u converges in 2,((272),) to 0 as
€l 0, and (1—p;¢)u=0. Since we can write 01yu=u~+%eu— 1 =02 u, it
follows that p,¢)u converges in 2;((212).) to u, which completes the proof.

In an entirely similar way we can show the following

ProrosiTioN 8. Let u € 2;((2]:),) have no mass on t=0. If ui=u|R;,,
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has the 27:-canonical extension u,-, then us=u|R;,, has the 2}:-canonical ex-
tension uy, and we can write u=u;_+uj.

When u has no mass on =0, we shall obtain

ProrosiTioN 9. Let u € 2,((2}:),). If u has no mass on t=0 and 2]:-

limu,=92}:-limu,=a, where uy=u|R;,, and u,=u|R;,,, then u has the sec-
tlo t10
tion a for t=0.

Proor. For any a>0 there exist integers &k, m =0 and #_n.-valued
continuous functions fi(z) and f.(z) defined, respectively, on [0,a] and on
[—a, 0], for which

U= Y®Q+D§f1, u2=(1— Y)®a+D’,'f2 in (—a, a)XR,,,

where || fillc-my ||f2llmy=0(|2|*) as ¢ | 0 and we define f,(¢)=0 for ¢t<0 and
f2(t)=0 for :t>0. Whence we have

ui~+u;=1,Qa+ D f1+f2),

which means that u,.+u; has the section « for t=0. Since u—u;.—uj3 has
no mass on :=0 and, in addition, its support lies on :=0, we must have that
u=u;~-tu;z.

Let u € 2'(R})((2%2),). We shall say that u has a weak 2/:-boundary
value @ and we write w-2,:-limu=« if <u, ¢.> converges weakly in (2]2),

tlo

to aas ¢ 0, where ¢ is chosen an arbitrary non-negative function € 2(R})
with Soqﬁ(t)dt:l.

Prorosition 10. Let u € 2'(R}))((242).). Then w-2:-limu exists if and
tlo
only if lifn u exists and the set {u(et, x)}oces1 18 bounded in 2'(R)(2%2)x)-
tio

Proor. The “only if” part is trivial. The “if” part can be verified as
follows: u.=u(et, x) is considered as a continuous map of 2(R}) into (2%2),.
We can apply the Banach-Steinhaus theorem to conclude that < u., ¢ >
weakly converges in (21:),.

Along the same line as in the proof of Theorem 2 we can prove the
following

THEOREM 2. Let a be any positive number. Given u € 2'(R¥)((212)x),
then w-@’Lz-lilm u=a € 25z if and only 1f for some non-negative integer m there
tio
exists an #_my-valued continuous function f(¢), ¢t € [0, a], such that for a non-
negative integer k

u=YQa+Dif  in (0, a)x R,
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and
<f(@), o> =0(t") ast 0

for any ¢ € (D12),.

Let ¢ € 2(R}) be taken in such a way that ¢ >0 and S:qﬂ(t)dt:l; and let

0O be defined as before. Let u € 2'(R})((2}:).). We shall say that « has a
weak 27:-canonical extension if, for any ¢ € 2(R;), <peu, ¢ > converges
weakly in (2}2),. When this is the case, there exists a unique v € (2}),.((2}2).)
such that 18111%1 <pwu, ¢ >=<v,¢>. Here v is called the weak 27:-canonical

extension and denoted by «..

ProposiTion 11.  Let u € 2/(R})((242),). Then u has the weak 2:-canoni-
cal extension u. tf and only if peyu converges in 2'(R,,.) and the set
{0 u}o<est s bounded in 2;((212).) for any ¢.

If the limit in defining the notions such that the 2/:-canonical, the sec-
tion and the like is understood in the weak sense, then we can show the cor-
responding analogues to Theorem 3 and Propositions 5, 6, 7, 8 and 9.

A sequence {¢;}, ¢ € 2(R;), will be referred to as a d-sequence if ¢,=0,
f¢rdt=1 and supp ¢, converges to {0} as k—> . Let u € 2" (R})(2}:),). If
<u, ¢,> converges in (2]:), for every J-sequence {¢,}, where ¢, € 2(R7}),
then the limit is called the strict 2/.-boundary value of . The strict 2/:-
canonical extension of u over :t=0 will be defined in an obvious way. Simi-
larly for the section of u for :=0 in the strict sense if u € 2,((2}:),). With
the aid of these concepts, we shall be able to give some refinement of the re-
sults already obtained in this section. For instance, the following proposi-
tion is a refinement of Theorem 2.

ProrosiTion 12. Let u € 2(R})(2%2).). u has a strict 27:-boundary
value a € (212), if and only if for some non-negative integer m and a>0, there
exists an # _my-valued bounded measurable function w(t) in ¢t € [0, a]] such that

u=w i 2'((0, a) X R,)
and

lim fJa(t) — tll(-m=0.
tlo

This can be shown by making use of Lemma 3. But the proof is omit-
ted.
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8. Operator of order r which maps (27:), into itself

Let r be an arbitrary real number and let OP, be the set of linear maps
of (212), into itself which are at the same time continuous operators of 5.,
(R,) into #((R,) for any real s. OP, is a locally convex Hausdorff space,
where the topology is defined by the operator norms |:||;s;,-sy of the spaces
L(H(siry #(s). Let | be a non-negative integer or 0. We denote by €},
the set of OP,-valued C' functions of :t€ R,, We shall note that any OP,-
valued C' function A(:) defined on [0, ) can be extended to a function
€Cl,. Itistrivial if /<co. Letl=oco. In [20] R.T. Seeley considered the

sequences {a:}, {b:} of real numbers such that (i) 5,<0, (ii) f} laz| |b:]"<
k=0
oo for n=0,1,..., (iii) 2] a;0%=1for n=0,1,... and (iv) b, —>—c0 as k—co.
k=0
Let ¢ be a €~ function on R; with ¢(¢)=1 for 0t <1, ¢(¢)=0 for t>2. We
define A(t)= 2 a,p(bst)A(byt) for 1<0. It is easy to verify that 4(¢) is a C~
k=0
function on (—oo, 0). We can write

T, ad(bi) At~ AO) = T, an(@(bit) ABit) — A©)).

k=0

Then there exists for any given ¢ >0 an integer N>0 such that

2. ”ak(¢(bkt)-’4(bkt)—A(O))l|(s+r—,s)§2max | A@|(s1rmsy 20 arl| <e,
=N 0st=2 E=N

whence it follows that lim 4(t)=4(0). Similarly, with the aid of (ii) and
110
(iii), we can also show that lim A(t)=4(0), j=1, 2,....
t10

Let 4*(t) be denoted for each ¢ the adjoint with respect to the scalar
product (¢, ¢)=<¢, ¢ > between #,(R,) and #_(R,). Then AQ) €€,
implies 4*(¢) € €/,,.

In the rest of this section A4(¢) will be understood to belong to €7,,. Let
¢ € 2(Ry1). For each te Ry A(t)d(2, *) € (212), and A()¢(s, +) is a (D12),-
valued C~ function of ¢, whence A(t)¢(z, -), when considered as a function of
t and x, is an infinitely differentiable function which, in what follows, will
often be denoted by A()¢(t, x). Now we shall define A(t)u for every u €
2" (R)((272).). Let {¢;}, ¢; € 2(R,.1), be a sequence such that ¢, converges
in 2'(R}))((212):) to u. AQ@)gi(t, +) € 2'(R;})(272),) for each j. Let B be any
bounded subset of (2;:),. Then, for any ¢, € 2(R;) and ¢, € B, we have

(A(@)gi(t, x), P1¢2)=(B;(t, x), Pp14*()(¢2)),
where the set {¢:4*(t)(¢2): ¢ € B} is equicontinuous in 2 (R})X.(212)..



A Study of g7,-Valued Distributions on a Semi-Axis 385

Thus the sequence A(¢)¢;(t, -) will converge in 2'(R})((2}:).) to an element
of 2'(R})((21:),). The limit is defined as A(¢)u(t, ) € 2 (R)((22).). If ue
2,((2412)z), then A(t)u will also be defined in an obvious fashion. In any
way, owing to the Banach-Steinhaus theorem, the map u— 4(¢)u will be con-
tinuous.

ProrosiTion 13. Let u € 2'(R})((242).). If u has a 2%:- boundary value
o, then A(t)u also has a 2 7:-boundary value, which is equal to A(0)cx.

Proor. Our assumption implies that ¢.u converges in 2;,(2}:).) to
0R@c as ¢ | 0, and therefore ¢.A4(t)u=A(t)p.u converges in 2;((22).) to
A()(0 Qa)=0R A(0)cx, completing the proof.

Remark. By the same method as above, we can prove the analogues for
the canonical extension, the section for : =0 and the like.

By #(, we mean the set of all u € 2'(R,,;) with the property that
du € #(,s(Ray1) for any ¢ € C5(R,). Here the topology is given as a local
space [7, p. 42]. Then we have

ProrosiTiON 14. A(t) is a continuous linear map of # (. sir iMto H, s
for any real o, s.

Proor. Let ¢ € 2(R;) be given. It suffices to show that there exists a
constant C such that

”¢(t)A<t)uH(c,s)§ C”¢(5)u|‘(¢r,s+7)

for every u € #, , whence if we put 4,(¢:)=¢(t)4(¢), we have only to show
that

|l 41(Oull@, 0= Cllulle,s+n

for any u € 2(R,,1), C being a constant.
Let 6=0. Then we have

142l = 1 42 @uCe, lIzde
<UD A | 10, e
Let 0=m, a positive integer. It is well known that, for every s, the norm
||||(m,s) is equivalent to the norm

(filce, Dlitmdst -+ {Dpuce, - 2,de)"™

Since Di(4:()u)= éo( 7 )Dt4)Di*u and
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”(DkA (t))DJ ku”(m+s - <sup”DkA1(t)“(m+s+r jom+s— ]))”D;_kun(m+s+r—f)>

we see that ||A1(t)u||(m,s)§ CzlluH(m,H_,) with a constant Cz. {f(,,s+f)}o§¢§m
forms a Hilbert scale and 4,(¢) is continuous of #( ., into #, and of
H(m,s+ry INEO #(m 5. In virtue of the interpolation theorem we can conclude
that 4,(¢) is continuous of s#, ;.,, into #(, s for 0 <0 <m, where m can be
chosen arbitrarily large. Similarly, 4¥(¢) is continuous of #, ., into £,
for 62>0, then its adjoint 4,(z) = AF*(¢) is continuous of #(_,, _s into H# (., .
Thus the proof is complete.

4. Pseudo-commutativity for Calderén’s singular integral operators

For any real 8 =0, Bz(R,) will stand for the class of bounded functions
f on R, such that the distributional derivatives Df, 0 || <[], coincide
with bounded functions and such that D*f, |a| =[B], satisfy a uniform
Hoélder condition of order #—[#]. The norm ||f||s of a function f in Bg(R,)
will be by definition the least upper bound for the absolute value of its deri-
vatives of order <[ 8] and the Holder constants of the derivatives of order
(8]

Let us consider a function h(x, &), x € R,, £ € B,, with the following pro-
perties: for any fixed x € R,, h(x, &) is homogeneous of degree 0 in &, € C~(E,\
{0}) and for each &, || =1, h(x, &) and its derivatives with respect to co-
ordinates of & of orders not exceeding 2n are functions of x belonging to
Bg(R,), with bounded norms. The least upper bound of these norms is called
the norm of 4 and denoted by ||A||, that is,

(&) 19| }.

Let ao(x) be the mean value of A(x, &) on |&é|=1 and k(x, z) is the inverse
Fourier transform of h(x, £€)—a.(x) with respect to &. An operator f—Kf

of the form

I4lls= max {sup
os|lals2n |€l=1

Kf=a@)fG)+lim{ kG, 5= )f(pdy
€0 Jlx—yl>€

is said to be a B, singular integral operator. We will call 4 the symbol of K
and write A=0(K). We define the norm ||K]||z by [|K||s=||k||s Where A(x, §)=
ao(x)+l§(x, E)s

In the case where n =2, let {Y;,}, m=0, 1,..., [=1,2,..., d(m), be a com-
plete orthogonal system of spherical harmonics of degree m, where d(m)=
g(m)—g(m—2), g(m)=(";71) and we set g(—1)=g(—2)=0. Then we can
expand the B, singular integral operator K in the series
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K@ =a@ @D+ T8 an)Cnf N,

where G,, are the Giraud operators

G =Um| 2= y| " Vinlx=)f (dy,

and we have the estimates [lay(x)lls < C, llasmlls = CmCHI|K 5, 6in Il <
-1

Cn D17, \f |y With 7= =" @) (m)(I(5™)) and d(m) < Cm?

2
(3], [150).

For n=1 we have the expression

(Kf)(x):aO(x)f(x)+al(x)leilmg 5 (y) dy,

0)iz-yi>e x—y

where ay, a; € Bg.

Let 4 and S be operators with symbols |&| and (1+ |&|%)"? respectively.
Then, for any B.. singular integral operator K, the product KS” is an operator
belonging to the class OP,. In this section we shall study the order of the
operator S"K—KS” to give a refinement of Calderén’s result [3, p. 72].

Now, the operator S* can be written in the form

Sa(x) :G—a*xs x€ (@22)1,
where

Ca P. f-l:,xI(a*n)/zK(n—-a)/Z(lx)):] for af#o’ _2, —4,""
Go(x)=

(1—4)*  for a=—2k k=0,1,2,..,
a\) ! . .
where C,= {2(”"“"2)’ g2 (—2—>} and the modified Bessel function of the
kind K-« (| x|), which is analytic except for the origin [1, p.415; 18, p. 47].
2

third G, belongs to the space 27: and o — G, is analytic [18, p.47]. If a<0
then |x|#G.(x) € L*(R,) for any B with |a| <B.

We shall first show the following proposition, where we have used the
notation 5] to denote the multiplication x — bx.

Proposition 15. Let b € Bg(R,), B>1. Then, for any 7 such that — 5 +1
<7< B, we have with a constant C(8, v) such that

1(S7Co]S " —L0]8)x lloy = C(B, NIIbllgllxll 0y % € CT(Rn).

Proor. (a) We first assume that y=>1. Put 4,=S"[b6]—[b]S”. If
r=2Fk, k a positive integer, then we have for any x € C5(R,)

Ax= Azx=1—2)*(bx)— b(1— 4)*x
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= > C,D%bDix, C,, being constants,
ID|+£42Ik§2k .
q

whence we obtain with a constant C;
| A2l 0y = CrllB]] g1l %]l 22-1) = C11B][ ]| % |l (v -1y,

which, by continuity, remains valid for any x € (2:),. From this it follows
that

[14,8™ "Iy = Cullll ol S*~"%l| -1y = C1llBll all 2l co)-

If 7 is not an even positive integer, then we can write

4,(0)= (6 (5= 1))~ by,

where

ilpl

bly)—blx)= X

1=1pI1SLR1-1 p! (pr)(x)(y—x)i’_{_Bl(x, y)+Bz(x, y),

Bi= & ‘im}[!ﬂ (y =0 A= (D) + 1y — ) — (DB,

B= 3 TLE G punmy| a-or-ta
1=ter  gq! 0

In view of the inequalities
[((=ix)?G_ (%)™ | = | (iDe)*(1+ | §]%)""? |
g C2(1_|_ |{: | 2)(7—|p|)/2§ Cz(l+ |5 | 2)(7—1)/2,
we obtain

A @)@ (=76 (x—y)xdy| | Callblallele-o

In a similar way we have with a constant C;

a2 |fe-s— ) Batr, 1)y | | < Callblalizlo

By assumption 1<y<p. Hence |x|?G_,(x)€ L'(R,). Then we have
with constants Cy, C;s

(18) ”SG—"/(’C—D’)BI(’C’ y)x(y)dy“w)

<cilblls|{1y==1716-, G=l1xplay|
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=Csld]| gl|x][c0y = Cs|[b]] sl|% ¢y -1y

From these estimates (11), (12) and (13) we have with a constant C=
CB, 1)

145 S" "]l 0y = C |81l 6| S* "] (1= Cl|]| 6] %l o)-

(b) Next, let y<<0. Then 1<1—7<p3. From (a) we see that S'~"[5]S”
—[b]S is a continuous map of L? into itself. Thus its dual operator
S"[5]S8*~"—S[b] is also continuous with the same norm. With the aid of
the inequality [|(S[6]—[6]S)xll0) = C(B, 1)||8]llxllc0), We obtain

ICS7E61S " —[618)xllc0y = (C(B, 1—7)+ C(B, 1)||b| sl %] 0)-
(¢) Finally, consider the case where 0<y<1. Let k be a positive inte-
2

ger such that 1_|_7c7;<3 and put e=-};—. From (a) and (b) it follows that

ST b ]S — S 2[p]S7%¢ and S™°[b6]S'**—[b]S are the continuous maps of
L? into itself, whence it follows that the latter is a continuous map of # 1. 2¢
into itself. In virtue of the interpolation theorem it is immediate that
S7'[6]S"*"—[b]S is continuous of s, into itself for ¢ with 00 <"1+ 2e.
Thus, if we let 6=je, j=1,2,..., k, it results that SU-D¢[p]S'-0-De— Sie[p] S ~7¢
is a continuous map of L? into itself with norm < C;(B, 7)||b||s, Which, com-

bined with the equation: S"[6]S'"—[b]S=— }i (SU-befp]S-U-De—
i=1
S[5]S1¢), yields that ’
(1(S7LE]S " —[618)%ll 0y = € (B, Dbl sllxllcoy-
This ends the proof.

CoroLLAaRY 2. Let b € Bg(R,), 8>1. Then, for any 7, s such that — B+
1<r+s<Band —pR+1<s<pB, we have with a constant C(B3, 7, s)

ICS"C]—[6SMxl|(y=C(B, 7, HIbllsllxlly+s-1)y % € CF(Ra).
Proor. Putting x,=S"*""'x, we have ||x1]/0y=]%]|¢y+s-1) and
ICS"Co]— oS ™)xll(s)
=(S*[6]S' " — [6]8)%: —(S°[6]S** —[6]1S)x1ll (o)
=C(B, v+ 91bll sllx1ll0y+ C(B, )] pl1%1l 0y
=C(B, 1, )bl allxlley+5-13
where C(3, 1, x) =C(B, r+s)+ C(B, s), which completes the proof.

Tueorem 4. Let f>1 and K be a Bg singular integral operator in the
sense of Calderon. Then, for any 7,s such that —B+1<r+s<Band —B+1
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<s<f, we have with a constant C(3, 7, s)
I(S"K—KSM)x|lsy < C(B, 1, )IIK][pllxll(y+5-13 % € CF(Rn),

Proor. Let n=2. For any xe¢e C;(R,) we have the expansion Kx=

% d(m)
aocx+ X 20 @imGim % In H#(.y(R,). Since S” is a continuous map of # ., (Rx)
m=11=1

into s#,)(R,), the series
° d(m)
S"Kx=S8"aox+ > 23 S"ainGim %
m=1 =1

is convergent in s#(R,). On the other hand, the series

(m)

= d
KS"%=a¢S"2+ 2 23 aimGimS"%

m=1]=1

is convergent in 2 ()(R,).
With the aid of Corollary 2 we have

[1S7@1mGim— a1mGimS " %||(sy=|(S " @im —@imS V)G 1mX||(s)
=CB, 15 llamll sllGinxll(s -1
< Ci(B, 1, $)m™CMK || gm® 2t 51y
= Ci(B, 1, )m™" K| gll%ll 5 +5-1)-

Since d(m)< Cm""2, C being a constant, we have
|IKS”"x— S"Kxl|(y= C2(B, 1, 8)[|K||ﬂ||x|l(s+~/—1)(1+m§lm—3)

=C3(B, 7, DKl sl|%ll¢s+9-1)

where C;, C, and C; are constants independent of x and K.
In the case where n=1, we have the expression Kx=a0(x)x(x)+a1(x)leilm
0

S x(_y)d y. Since the Hilbert transform is a continuous map of (., (R,)
lx—y1>€ x “_’y
into itself for any s, we obtain the estimate

I(S"K—KS")z||s)=C(B, 7, K| glllly+5-1y % € CT(RA).

Thus the proof is complete.

5. Fine Cauchy problem for a system of pseudo-differential operators

This final section will be devoted to some general investigations about
the fine Cauchy problem for a system of pseudo-differential operators. As
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for differential operators, by one of the present authors [97], the problem was
formulated and investigated from a distribution-theoretic view-point, where
the notions such as distributional boundary value and canonical extension
over :=0 were proved to be fundamental. Our present aim is to generalize
the results obtained there to a system of pseudo-differential operators.

For given f=(f1,.-, fi) With f; € 2/((2}2).) and a=(ao, -, @m-1), &=
(@1,--+ ;) with a;;, € (272), we shall consider the Cauchy problem for a
system of pseudo-differential operators in the unknown vector distribution
li:‘(llq,-n, u;) with u; € @;((922),).

{,(t)Dy ii=f  in R,y

Mz

Pi=Dri+
(14) ji=1

(ﬁ(()’ ')9 (Dtll)(oa ')3"': (D;n—lﬂ')(oa ')):a)
where A;(¢) are [ x [ matrices of operators A; () € €%y and @(0, -)=(u1(0, -),
ey 1400, +)), u;(0, +) being the section of u; for :=0.
Substituting u;,=D%1'u;, i=1, 2,-.., 1, k=1,2,..., m—1, we obtain the
system:

I

Diujy—uj2=0,

Dtuj,m—'l_ Ujm= 0;
m l
Dtuj,m‘+’ ;1 kglAi’jk(t)uk'm_Hl =f}, ]=1, 2,--~, L,
with the initial conditions

(uj,l(oa ')a"'; uf,M(O’ ')):(aj,09"" a]',m~1)a ]':1; 23”', la

which is a special case of the Cauchy problem for a pseudo-differential system
written in matrix notation

D+ A®)i=f  in R,.,
(15)

where i :(ul, Tty uN)a j :(fh ) fN), d:(a1,~-~, CKN), N=lm, and Uj, .f] €
2,((212),) and «a; €(272),. We shall write i € 2,((272).) and we shall say
that # has the section for =0 if this is a case for each component u;. The

terms 2/:-canonical, 2}:-canonical extension, 2/.-lim « and the like shoud be
tlo

understood in a similar way.
Put Yz=(lT11)Tti‘1, [ being a non-negative integer, where we set Y, =0:.

Note that Y; is the Heaviside function Y. Let i € (2}),((272).). Then so
does Yx*ii and we have
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ol kK N -
(16)  Yex(4(0)it)= P <J->(— 0) Ypr(Dy A(@)(Yyxid)).

TurorEM 5. For given f=(f1, -, fx) € 2/((2}42).) and a=(ai, -, an) €
(272)., suppose that there exists a solution @ =(u,---, un) € 2;((212)x) f or the
Cauchy problem (15), then f has no mass on t=0 and the frestrwtwns f 1=
fll’E,,J,l,fz—fIR,,+1 have the 2:-canonical extensions f1 ,f2 and f f1 +fz
The 27:-camonical extensions ii,~, iy of ii,=1u|R}., iz=1i|R;,, are solutions
of equations:

A7) Dy )+ A@)is-= fr-—id Qa,

(18) D(a3)+AW)a;=fr-+idQa.

Conversely, if 9, €(2}).(2}2),) and ¥, € (25)_((2}2),) are solutions of
(A7), (18) respectively, then ii=7v,+ v, € 2;((24:),) 1s a solution for the Cauchy
problem (15).

Proor. Let i € 2;((2}:).) be a solution for the Cauchy problem (15).
Since @Lz-llm i1 =92}-limi,=a, for any ¢ € 2(R}) such that ¢(z) =0, ngs(t)dt

t tO
=1, lim ¢5u —6®a, lélfn deit = —0Ra and, owing to Proposition 5, lenlrn Oeyl1=11~

€l0 0 0
and lilm Oyt =iy exist. From the equations:

€10

O(e)f:Dz(D(e)ﬁ) +igeil + i(t)me)ﬁ,

b f =Di(beyil) — ipeil + A(t)6(e) s
we obtain

fr-=Dy(@,)+i0 @a+ A()(1-),

fi=D(az)—id @a+ A(t)(ii3)

and therefore f1~+j5=D;(ﬁ1~+ i;)+ A)(i;~+@3). Since # has the section
for +=0, & has nomass on t=0 and a=a,-+i; and therefore f=7,.+f5 and
f has no mass on ¢=0.

Conversely, let #;, 7; be solutions of (17), (18). Then for the interval
(0, 1) there exist non-negative integers k, m and a 27:-valued continuous
function g(¢) of ¢ with support C[0, 1] such that #;=D%g(¢) in (0, 1) X R,.
Then, by the equation (16), we have

k . s - —
—:.‘— Y 1x0=— 21 <;c->(—i)JYj*(DiA(t)(kaf*l))'*‘ Yixf1.+iY, K a.
i=

By Proposition 6, Y,,>|<f1~ is 27:-canonical and Qiz-lilm(Yk *f*h):o for k=>1.
tl0
Evidently Y, ®«a is 2:-canonical for k=1 and li}n(Yk®a)=O for k=2 and
tio

lifn(Y® a@)=a. From the above equation we see that Y,_;x#; is also 2]:-
tlo
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canonical. Repeating this procedure we conclude that 2/:-lim(%,|R},,)=a.
tlo

Since f has no mass on 1=0, so does i =, + ¥, and therefore i has the section &
for t=0 and Di+ A(t)i=F.

As an immediate consequence of the preceding theorem we have an
analogue to Theorem 1 in [9, p. 187:

CORORARY 3. For any given f € 2"(R)((212),) and a € (212)., tf there
exists a solution i € 2'(R})((212),) of the Cauchy problem :

D,il+/?(t)ft=f ?:n R;+1)
19)

252-lim ii=a,
t10
then f has the 2:-canonical extension ]7- and .. 18 a solution of the equation:

(20) D(i )+ A®)i-=f.—idRa.

Conversely, if € (2}).((242).) 1s a solution of (20), then =7 |R;}., €
2'(RN)((242).)18 a solution for the Cauchy problem (19) and i.=7.

Remark. For given f=(f, -, f1) € 2 (R})(@}2),) and G=(ao,---, @m_1) €
(21]2)., if there exists a solution @&=(u,, -, u;) € 2’(R})((24%:),) of the Cauchy
problem:

Pi=f in R}y,
@ { +1

25:-lim i =a,
tio

then f has the 2/:-canonical extension 7. and i. is a solution of the equation:
- m—1
(22) P@)=f-+ X Dio®74(0),

m  j—k X ;— X - > . .
where 7,()=—i 3. 3 (—1)1-'—k(1 kl)D{_’_kAm_j(t)d,_l and 4, is the unit
j=k+1 I=1

2
i=k+

matrix [11, p. 82]. We note that 7,,_,_.1(¢) may be rewritten in the form
) k=1,
Pm-r-1(t) = —id,+ ZE) Bi(t)a;,
o=

where B;(¢) is a linear combination of derivative of 4; of order up to k—1.
Conversely, suppose 7 € (2}).((242),) is a solution of the equation (22):

- m—1
Pi=f_+ g}o D ®7:(0). Then, by substitutions: 7,=7, 9,=D;p;+i0Q&0,- -,

Im=DiOm_1 +i0Qan,_s, Wwe get the equation written in the form:
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D;fil == 172— 16®C_§0,

Dtam-—lzf)m_i6®&m—2a
Dipp=— 3 A()DF75—i0®Rain-1+].
i=1

Applying Corollary 3, we see that the restriction i=(u, -, um)=(v1, -,
vm) | R}.; is a solution for the Cauchy problem (21).
In the same way as in the proof of Theorem 5, we shall show the follow-

ing
R ProrosiTion 16.  Let fe 2'(R)((212),) have the 2}:-canonical extension
f~ If i € 2;((21).) 15 a solution of
Dii+A@)i=f  in R}y,
then i | R} ., has the 27:-boundary value.

Proor. We can write #=D%g(¢) in (0,1)x R, with an 2]:-valued con-
tinuous function g(¢) of ¢ with support C[0,1]. If we put 3=D%g(t)e€
(2}),((212).), then there exist 7y,.--, 7, € (2}:), such that

D+ A@W)o=F-+0,QF 0+ +Dio:Q7;,  in (—1,1)x R,.
Let %' be the smallest positive integer such that 2/:-lim (Y, *?) exists.
tlo

Then, applying the equation (16) with & replaced by %', we have
k, 4 . . -
2 Vewi=— 3 ()i V@10 (V) +
1 i=o\J

+ Yk’*f~ +%Yk’®?o+ e +—3—Yk’_1®71.

Since the right hand of the equation has the 2/:-boundary value, so 27:-
lilm(Y,,/_l*f;) must exist. Thus £'=1, which means the existence of 27:-
tlo
lim (@ [ Ry, ,)-
tlo

ProposiTion 17.  Let i € 2/ (R})((212):) be a solution of the equation :

D+ A()i=f  in R,

Then the following conditions are equivalent.

(@) i ts a D valued continuous function of t € (t1, tz), 0<t; <ty oco.
(b) For any g such that f=D,g, g is a 2:-valued continuous function
of t € (1, t2).
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Proor. (a)=(b). Since A(¢)i is a 2}:-valued continuous function of ¢,

t - . . 3
if we put (¢, ')=S: A()i(t', -)dt, then 7 is a 2:-valued continuous function
1

and D,(ii + ) =f and therefore g=i+7% is a 27:-valued continuous function
of ¢.

(b)=>(a) Let t, be any point such that ¢, € (tl, t;). Then the restric-
tion f | (to, t1) X R, has the 9/:-canonical extension f ~1, over t=t¢, and, owing
to Proposition 16, 2}:-limi =a,, exists. Thus we have

tlto

Dy i)+ AW (i nt)) = f 1, + 01, D,

Let ¥ be the smallest positive integer such that Y,xi_., is a 27:valued
continuous function of ¢ in a right neighborhood of ¢,. Applying the equation
(16) with k replaced by %', we can show £'=1 in the same way as in the proof
of Proposition 16. Since ¢, is arbitrary, we can conclude that i is a 2}:-valued
continuous functtion of ¢ in (¢, ;). The proof is concluded.

As an immediate consequence we have the following
CoroLLARY 4. Let it € 2'(R})((242).) be a solution of the equation :
D+ A@W)i=f  in R},

Then the following conditions are equivalent:

(@) @ 18 a 2i-valued continuously differentiable function of t € (t1, t2),
0<t 1<tz é oo,

(b) f 18 a 2:-valued continuous function of t € (¢, t2).
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