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§1. Intoduction

In this paper, we study the existence and approximation of holomorphic
solutions of a differential operator with polynomial coefficients. In general, we
cannot expect the existence of holomorphic solutions even if the coefficients of
an operator have no common zero ([7], [9], [10]). For example, in the complex
two dimensional space C2, the equation

0 0 _
[xﬁ +y7y—— lilu(x, y)=x

has no solution even in the space of formal power series.

An outline of this paper is as follows. In Section 2, we give some sufficient
condition on a differential operator L({, D) with polynomial coefficients under
which L({, D)¢ and ¢ have the same exponential type for every entire function
¢ (Theorem 1). This condition is then applied in Section 3 to show the existence
and approximation of holomorphic solutions in some circular domain (Theorem
3).

The author wishes to thank Professor T. Kusano for his kind advice.

§2. Exponential type of entire solutions

Let L({, D) be a differential operator with polynomial coefficients in C=.
Then we can write

(1) LG D= ¥ cMCA(—a‘%)",

where A and p are multi-indices, ¢;,€C, {(*={}* --- {» and <—5aC—>u=(TaC—>M
1

( 6(2 )u... We decompose Las follows:

) L=L+L+ - +Liw  (k20),

where L;= " IZI ) CA,;U(%Y- We note that I may be a negative integer.
—iul=J
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DerINITION 1. In the decomposition (2) of L, we shall call L, the leading
part of L. When the leading part L, is written as

LED)= % el 5 )

v finite

for some multi-index vo=(), ..., v(?), L, is called v,-simple. In this case,
1 is equal to |vo|=v{P + ...+ v, The v,-simple leading part L, is said to be of
degree m, if for any multi-index « such that |«| is sufficiently large the following
inequality holds:

® L=t (5 ) vz Clalmiers)

where C>0 is a constant independent of a and ¢.

ReEMARK. In the one dimensional case (n=1), for every differential operator
with polynomial coefficients L({, D), {*L({, D) has a v,-simple leading part for
some integers 7=0 and v,=0, and in this case, the degree of its leading part is
the highest order of differentiation in the leading part.

E (0 \'m o \", . .

XAMPLE. Let L((, D)—<—5CT> (- +<~m—> {m. Then Lis 0-simple

and its degree is equal to m. In fact,
L[Ca] =<_5_>’”C m+a1Cdz...C¢n+ +<i>mcax...can-:cm+an
acl 1 2 n 5Cn 1 n—1 Sn

={ ,-‘i (m+ o) (m + oy — 1)+ o+ D)L=

Hence

L 2( 5 @)Iee] 2 (o )0,

For an entirely holomorphic function f({), we have the following

ProrosiTioN 1. (Fuks [2], p. 339) Let f({)=),c,(* be entirely holomor-
phic, and o=inf{t>0| |f({)|<C.expt|{| for some C.}, where |{|= max €5l
15j=n
Then

ec= Tim |« |c,|1/1ol.
|| >c0

Remark that o is called the exponential type of f({) (with respect to the norm
|¢]). For the more precise relation between the Taylor coefficients of f({) and
the type with respect to a norm p({) on C», we refer to Fuks [2] and Martineau

[5]-
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Now, we state the main theorem in this section.

THEOREM 1. Let L({, D) be a differential operator with polynomial
coefficients and let its leading part be vy-simple for some multi-index v, and
of degree m (m=0). Further we assume the following condition (A).

A) L= 3 eli(f) (=L,

¢, =0 if |u>m—j—1.

Then, every entire function ¢({) such that L({, D)¢ is of exponential type ,o
is also of exponential type o.

Proor. It is sufficient, by Proposition 1, to examine the growth of the Taylor
coefficients of ¢({). We set ¢({)=2a,(* and L({, D)p=y({)=2bs(f. Then

Lp=Telo(5) Dads

= Yla L[]

= Dla.c(l; 0){=+e,
where c(l; «) is the coefficient of {#*vo in L,[{*]. Since L, is of degree m, we obtain
by (3),
4 le(l; )] = Cla|™ for sufficiently large |«.
Similarly,

8 \»
L,..0= " l(___) (3
l+]¢ ;a (lll-é:l=l+jc}‘uc ac C )
=Z aa )'Z Cj()w ﬂ'a “)C““_"
a s 1

where c¢;(A, pu; «) is the coefficient of {***~» in L,, ;[(*]. By the condition (A),
there exists a constant C’ >0 which is independent of « such that

5) lej(A, 3 )| S C'|o|mi—1 for any a.

Now, we compare the coefficients of {#o*vo in the both sides of the equation
Li¢p=y—(L—-L)¢p. Then we have

k
© c(l; 20)as,=bsg4vo— 2. _
=1 (AT,

aacj(l’ u; a)'

We set a,=max{|a,|;|e|=p} and b,=max{|by|;|f|=p}. Then, by (5), for some
constants C’,
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e 20)] @30l Sbpsgvor+ 3 % lae(h pi o)
i,

k .

Sbhia+vel t j§1 Ci(lAol = )71 a 1~ j

If || =p, we have by (4),
k .

Cpmapébp_',l-l- j§1 C}P"‘—"lap-j'

Consequently we have the following inequality for sufficiently large p
k .

@) a,= Cop_mbp+l+j§:l Cipita,;

where Cy, C,, ..., C, are independent of p. Now, if Y({) is of exponential type
o, by Proposition 1 we have for every t<ao,

b, g(%’)p for sufficiently large p.
Then we can choose a constant M,>0 such that

b,=M 0(_%),, for every p=0.

If we suppose that a, <M/, %;-)q for 0<g<p-—1, then

et p+l

a,= COP—mM0<P—+l

k p—J
+ 3 C,p-i-t M'_.(_QL)
J§1 iP PPA\p—J

N %)p{CoM oP?™(p+ 1)@ (en)' +
k ) .
2 CMyo i1 (p= )N er) ).
Let M, be the max{M,_,, M,_,, ..., M,_,}. Then

et \ Ly-m+D 4§ ¥ C(er)-] P)”__l_
a,,é( 7 ) {CoMo(er)'p +MPJ§ICJ(eT) p—k p—k}'

For sufficiently large p, we have

k . p 1
(eT)- p L
2 Ciler) J(p—k) k=1

because < P ),, converges to e* as p—oo.  Therefore, if we set MP=M,,
p—k

+CoM,(er) p~t*D, then
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al,éMp<%>P.

By induction, for some integer N and a constant My,

a,=< {My+ CoM(er)! f q—(m+z)}<_‘;l>p for any p=N.
q=N

p -_—
Then if m=2, ), ¢g~(™*) is bounded, so that, lim pay’?<et. For the case m=1
q=N

p—©

or 0, the condition (A) shows that L;, ;=0 for 1<j<k. Hence apg% b4,

CoMy/ et \PH! T . . .
=—— , o we also have lim pal/P<etr. Since 7 is an arbitrary
p \ptl! pooo

number larger than o, the exponential type of ¢(() is, in any case, less than or
equal to o. Since the exponential type of Y({) is g, it follows that ¢({) must be of
exponential type . This completes the proof.

We give an example which shows that the conclusion of Theorem 1 fails to
hold if the condition (A) is not satisfied.

ExAmPLE. Let L<C , %’C):di{c —¢, teC!. Then L has a O-simple leading
part of degree 1, but the condition (A) is not satisfied. We set, as before, ¢({)=
$al W)= 3 bt and L(C, dic>¢(0=lll(C). Then comparing the coeffi-
n=0 n=0

cients of the both sides, we have

b +%=1 for n=0, (a_,=0).

S nritarl

If b,=n""(n=1) and by=1, by induction

S N T VAP TS 1Y
= mr )] {n”+ O R A ER

From Stirling’s formula n!=n"e""/2nn e’»/127(0<35,< 1),

1 1 1 {I_G’—)m}

1 1
> i _ e
In = (n+1).'{e"+e"-1+ +t e +1}—(n+1)!

1
==

Then,

1 1 \n*1
Tm nat/n> 1 n" )1/'1{ —<_e—> }I/n _
Hm e} lim( oy _ L “
(4
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On the other hand, hm nbl/»=1. That is, ¥ is of exponential type e~ !, while
=00
the exponential type of ¢ is larger than or equal to 1.

REMARK. When we regard L({, D) in Theorem 1 as an operator from the
space of the entire functions of exponential type into itself, the codimension of
the image of Lis, in general, infinite. Since only the terms {b,.,,} determine
a,, if Y is contained in the image of L, then the coefficients {b,} where y cannot
be represented by the form o+ v, for some a, must satisfy some conditions. In
particular, if vo=(0, ..., 0), that is, L has a 0-simple leading part, for every ¥ of
exponential type with b, =0 for |u| <N (N is chosen so that (4) holds for |«| = N),
we can construct a solution ¢ of exponential type. Therefore the codimension of
the image of L is finite and the basis of the complementary space consists of poly-
nomials. Moreover if ¢(I; a)=c(0; a)5=0 for every o, L becomes a (topological)
isomorphism.

Next we consider the case where y is holomorphic in a polydisc. The follow-
ing proposition, a generalization of Cauchy-Hadamard’s formula, is well known.

ProrosITION 2. (Biermann-Lemaire) The formal power series f({)=
Zc,L* is holomorphic in a polydisc A(r)={{| |{;|<r, j=1, ..., n} if and only if

fim e /19l g—i—.

|| =
We shall prove the following

THEOREM 2. Suppose that the operator L({, D) has a vy-simple leading
part of degree m(=0). Further we assume that

%) in Lyy,= ( o K,

) Iul I+j
=0 if |u/>m—j.

Then every formal power series ¢({) such that L({, D)¢ is holomorphic in a
polydisc A(r) (0<r= + ), is also holomorphic in A(r).

Proor. We use the same method as in the proof of Theorem 1. Then we
have, instead of (7),

k :
apécop_mbp+l+j§ ij_Jap—]

(notations are the same as those of Theorem 1). If b,<M,p, for p=0 and
a,<=M,p?for 1<q=<p-—1, then

k ) .
a,=<p*{CoMop™p! + z.Cir M p-iP~7}

<{M,+CoMopp'}p?
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k
for sufficiently large p such that Z

<1, where M =max{M,_{, ...... ,

()’

—x}. Therefore if m=1, we have
LA
a,< {M+C0Mop" ¥ —,,.—} P
=19

<{M+CoMp'(1+logp)}p®

for some constant M>0. Thenlimal/?<p. For the case m=0, L,, ;=0 because
p—>©

of the condition (A’). Hence a,<C,M?*!, so we also have ma},/ng. This

. - p—©

means that ¢ is holomorphic in A(#).
In the following example, Lhas a 0-simple leading part of oreder 1, but does

not satisfy the condition (A’). Then we can construct a function ¢ not entire for

which L(C, 71‘%) ¢ is entire.

dr_dpr =1
EXAMPLE. (C, dC> d—CC dCC , and ¢()= ="
We consider the topological structure of the space of entire functions of

N
exponential type. Let B be any nonnegative number. We denote by Exp(B)
the space of all entire functions f which satisfy

® |f(OI=C expB|(|
for some constant C and every {€C", where [{|= max |{;/. For fe fi;f)(B),
1Sjsn

we define ||f ||z as the infimum of the constant C in (8). Then &E(B) becomes

N~
a Banach space. The space of inductive limit of these Exp(B) as B—r and
B<r is denoted by Exp(r). It is the space of all entire functions of exponential
type less than r (0<r =< + ).

ProrosITION 3. Let L({, D) be the same operator as in Theorem 1. Suppose
that Ly{, D)(*=~0 for any (*5~0. Then the map L({, D): Exp(r)—Exp(¥) is
injective and has a closed range.

Proor. Let the filter {y,} converge to ¥, in Exp(r), and y,=L(, D)¢,
for some ¢,Exp(r) (keA, some ordered set). Since {y,} converge to V¥,
uniformly on every compact set in C”, the Taylor coefficients b of ¥, =Xb
¢# converge to those bi® of Y, =Ib{(*. By the assumption, each of the Taylor
coefficients a{® of ¢,=Ia®{%, is expressed as a finite linear combination of
{b{¥}, so that Lis injective and {a{¥} (Vv A fixed) becomes a converging filter, that
is, there exists a formal power series @o({)=2al?’(* which satisfies L({, D),
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O =yo({). Since Yyo=Exp(r), by Theorem 1, ¢, must be of exponential type
less than r. This completes the proof.

§3. Existence and Approximation

Let Q be a domain in C*. We denote by H(Q) the space of all holomorphic
functions in Q with compact convergence topology. An elements S of the dual
space H'(Q) is called an anlytic functional in Q, for which we define the Fourier
transform S as follows:

SO =5, (e<=>),
where <z, (> = Z‘: z;{;. A compact set K in Q is called a carrier of S if there
j=1

exists a constant C,, for every neighborhood w of K such that
SIS Casuplf@,  fEHE@).

The next proposition is well known.

ProposITION 4. (Ehrenpreis-Martineau [5]-Hormander [4]) If SeH'(Q)
is carried by a compact set K in Q, then S() is an entire function and for every
0>0, there is a constant C; such that

IS = Coexp(Hk(D+0IC),  LeC,
where Hy({)=supRe<z, {>. Conversely, if K is a compact convex set and
zeK
M(0) an entire function satisfying the above inequality for every 6>0, there

exists an analytic functional S carried by K such that S({)=M(0).

We then study the topological structure of the space of analytic functionals.
Let Q be a convex domain in C", and let {K;} be a sequence of compact convex
sets in Q such that

K,cK,,;, and U K,=Q.
j=1

J
The space of all entire function f({) in C" such that | f({)| = C exp(H,({)), {eC"
N ~e N
is denoted by Exp(K;). As before, Exp(K;) becomes a Banach space, and Exp

(K j)clg;ﬁ(K j+1)- Exp(Q) is defined as the inductive limit of these spaces.
Since Fourier transformation is injective on the space of analytic functionals in
a Runge domain, it follows by Proposition 4 that H'(Q) is algebraically isomorphic
to Exp(Q).
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LemMA. Fourier transformation from H'(Q) to Exp(Q) is continuous.

Proor. Since H'(Q) is a (DFS) space, it is sufficient to show that Fourier
transformation is sequentially continuous. Let S;=H’(Q) be any sequence
converging to 0 in H'(Q). H(LQ) is an (FS) space, so that it becomes quasi-nor-
mable (Grothendieck [3] p. 325, Prop. 1). Then, there exists a neighborhood
V of 0 in H(Q) such that S; converges to 0 uniformly on ¥V. We may take V as
the set {f e H(Q)| sg{p |f(z)| <M} for some constant M and a compact convex

zeKn

~—
set Ky in Q. In this case, S /() converges to 0 in Exp(Ky), hence in Exp(€).
From this lemma and the open mapping theorem (due to Ptak), we have

PrOPOSITION 5. If Q is a convex domain in C", then H'(Q) is topologically
isomorphic to Exp(Q). (See also Ehrenpreis [1], Martineau [6].)

A
Let P(z, D,)=23c;,z* (_667) be a differential operator with polynomial coef-
ficients. Then, the Fourier transform of the adjoint operator P’ of P(z, D,) is

L, D)=2c ,1,,{’1(%)“. In fact, for any S H'(Q),

P
(P'(z, D)S))=<P'S, e<=t> >

=<8, P(z, D)e<%%> >
=3¢, <S C‘(—Q—)"e<"5>>
An s ac

= 2e (-5 JS0.

In order to prove the existence and approximation of the holomorphic solution,
we use the next proposition due to F. Treves.

ProrosiTiON 6. (Treves [8]) Let E,, F,, E, F be locally convex topological
.linear spaces and E, F be Fréchet spaces. In the following commutative dia-
gram (all maps are continuous and linear), we assume that the ranges of u,,

Ey —— E

Fo—5> F

u and i are dense in the corresponding spaces and that in E}, the dual space of
E,, the range of ujy, the adjoint operator of u, is equal to the polar of the null
space of ug. Then the following two properties are equivalent.
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1) u is surjective and i (N(uy)) is dense in N(u),
2) yoEFjo such that up(yo) ER(@)=>yo €R(J'),

For every r (0<r=< + =), we define the domain Q(r) in C” as

Qr)={z| |zl <r},

where |z||=]|z,|+...+]z,]. Then, by Proposition 5, H'(Q(r)) is isomorphic to
Exp(r)={f(0)eH(C")| | f({)| < C expr|{| for some 7<r} where ]C(=11;1gsx [, for
if K={z| |lz|| <7}, then Hx(Q)="|Cl. =

2
THEOREM 3. Let P(z, Dz)=2cluz“(7%—) be a differential operator with

polynomial coefficients. We assume that L({, D;)= Z'CMC;‘<§C— ”satisﬁes all the
conditions in Proposition 3, that is, L has a vy-simple leading part L, (for some
multi-index vy) of degree m(=0), and L({*)=~0 for any (*=~0, and the condi-
tion (A) in Theorem 1 is fulfilled. Then for every r (0<r=+ ), we have
1) P(z, D,): H(Q(r))— H(Q(r)) is surj ective
and
2) for ue H(Q(r)) such that P(z, D,)u=0, there exists a sequence {u;} in
H(C") such that P(z, D,)u;=0 and {u;} convergers to u in H(Q(r)).

Proor. We first prove the case r=+oo. In this case, 2) is trivial. To
show 1), it is sufficient to prove that the adjoint operator P’ of P is injective and
has a weakly closed range. Since H(C") is reflexive, a subspace in H’ is weakly
closed if and only if it is strongly closed. By Proposition 5, P’ is injective and
has a closed range if and only if L: Exp(r)—Exp(r) is injective and has a closed
range, which follows from Proposition 3. In the general case, we apply Proposi-
tion 6 with Eq=F,=H(C"), E=F=H(Q(r)), i and j being natural injections, and
uo=u=~P(z, D,). Since Q(r) is convex, the ranges of i and j are dense. By the
first step of this proof, u, is surjective, so that all the assumptions of Proposition
6 are fulfilled. Therefore it is surfficient to show that every S < H’(C") such that
P'(z, D,)S=H'(Q(r)) is also an analytic functional in Q(r). But this follows
from Theorem 1. The proof is complete.
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