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Introduction

The set &(X) of homotopy classes of self-(homotopy-)equivalences of a

based space X forms a group by the composition of maps, and this group is studied

by several authors.

The purpose of this note is to study the group &(Cf) for a mapping cone

Cf=B\JfCA of/: A->B with certain conditions, by the dual considerations of

J. W. Rutter [11] using the homotopy exact sequences of cofiberings.

In §1, after preparing some results on #(Cf), we represent the group

${B V SA), which is the case that / is the constant map, as the split extension of

a certain group H by #(B)xtf(SA) (Theorem 1.13). In the case that A is the

(ra —l)-sphere Sm~1

9 the above group H is equal to the homotopy group πm(B).

In § 2, we have the exact sequence

0 >H >£(B\Jfe
m) >G >1

for A=Sm~i

9 where H is the factor group of π w (£) and G is the subgroup of

<f(β)x<f(S'm)=<f(β)xZ 2 . This result is essentially the theorem of W. D.

Barcus and M. G. Barratt [1, Th. 6.1].

Furthermore, we study in §3 some cases that the above sequence is split.

For the case 2/=0, we see in Theorem 3.9 that G is the direct product G± x G2

and the subgroup G 2 = l x Z 2 is split. By these results, we obtain in Theorem

3.13 the split extension

0 >H ><P(SnΌfe
m) >G >l

for a two-cell complex Sn U fe
m (2<^n^m — 2) whose attaching ma

is a suspension Sf' and the orders off a n d / ' are equal. Here

H = ^ (

G=Z2xZ2 if 2/=0, = Z 2 if

and the action of G on H is given by

(τ, ρ)-a =τaρ for aeπw(S"), (τ, P ) G Z 2 X Z 2 , if 2/=0,

p-a=ap for aeπm(S"), p^Z2, if 2/^0.
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This is a slight improvement of the recent result [8, Th. 3.3].

In § 4, we give some examples of «f (X) for cell complexes X with two or three

cells.

In § 5, we are concerned with the product space B x ΩA of B and a loop

space ΩA, under the dual considerations of § 1, and obtain the dual result of

Theorem 1.13 in Theorem 5.8, whose corollary is a slight improvement of the

result of Y. Nomura [7, Th. 2.10].

§1. #(Cf) of a mapping cone Cf

Throughout this note, all (topological) spaces are arcwise connected spaces

with base point * and have homotopy types of CW -complexes, and all (continuous)

maps and homotopies preserve the base point. For given spaces X and 7, we

denote by [X, 7] the set of (based) homotopy classes of maps of X to 7, and

by the same letter / a map / : X-+Y and its homotopy class / e [X, 7] . Also,

we denote usually by

0*: IX, Y] >IX, Z], g*: [Z, X] >[7, X]

the induced maps of a given map g: Y-*Z.

For any space X, we denote by 1: X->X the identity map. Then, the set

[X, X] is a semi-group with respect to the composition of maps having unit 1,

and the group

of self-equivalences of X is the group of invertible elements of [X, X].

In §§ 1-4, we consider the group £{Cj) of a mapping cone

(1.1) Cf=BϋfCA o f f \ A >B,

under the condition (1.9) below. Let

be the sequence of the induced cofiberings, where ί is the inclusion, S is the sus-

pension functor and p is the projection.

The co-multiplication

l:SA >SAVSA,

collapsing A x {1/2} of SA to *, defines the usual group multiplication + of any

homotopy set [_SA, X] with unit 0, the class of the constant map *. Also, the

co-action

l:Cf >CfVSA
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of SA is defined by collapsing Ax {1/2} of CA to *, and this defines the map

(1.2) λ:[SA,Cf]—+[Cf,Cf],

λ(<x) = F(l V oc)l:Cf >Cf V SA >Cf V Cf >Cf

for α: SA->Cf, where V is the folding map. Then, the second multiplication

(1.3) Θ: ISA, Cf] x ISA, Cf] >[SA, Cf]

is defined by

aφβ = oc + λ(oί)β for α, j&e [SA, Cf],

and we have the following lemma, which is the dual of [10, Lemmas 3.7-8].

LEMMA 1.4. (i) The multiplication 0 of (1.3) defines a semi-group
structure on [SA, Cf\ with unit 0, and the map λ of (1.2) is a homomorphism of
this semi-group to the semi-group [Cf, C/\.

(ii) a®β=aί + β if β belongs to the image of ί*: [SA, B]-+[SA, C/\.

PROOF, (i) The equality λ(μ@β)=λ{μ)λ(β) follows immediately from the
following commutative diagram:

L/ f V < 3 ^ —

ί<
cf -

ϊhCfVSAVSA

TlVl

U CfVSA >

| l v "
CfVC. -J

lVαVA(α)/3/^ w /nr x / ^
> l^j V Oy V L/j

F V 1

• C / V C /

I-
The associativity of © is proved as follows:

= α

(ii) The desired result follows immediately from the definitions, q.e.d.
Consider the map

(1.5) π: [SA, C/\ >[SA, SA],

defined by π(α) = 1 + pen for α e [S.4, Cy], and the diagram

(1.6)
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where p: Cf->SA is the projection and i: B-+Cf is the inclusion.

LEMMA 1.7. (i) The square in (1.6) is commutative.
(ii) π is a homomorphism of the semi-group [SA, Cf\ with 0 to \_SA, SA]

with the composition.

(iii) (cf. [9, Cor. 3.2.2]) The upper sequence in (1.6) is exact, i.e., ImA =

i*-i(ΐ)

PROOF, (i) is clear, and we have (ii) since

α + λ(α)j5) = π(a) + pλ(a)β

(iii) is proved easily by definition. q.e.d.

LEMMA 1.8. Assume that Cf is 1-connected. Then

(i) *(π-i(l)) c *(C,).
(ii) π"1(l) is ί/zβ group with the multiplication 0 o/(1.3).

PROOF, (i) If α ε π " 1 ^ ) , then (i) and (iii) of the above lemma show that
the diagram

A >B-i-+Cf-?-*SA >SB

I1 I 1 l«-> I 1 I 1

A >B-UCf-^>SA >SB

of the cofiberings is homotopy commutative. Therefore, we have the induced
commutative diagram of the exact sequences of homology groups, and so we
see that λ(a) induces isomorphisms of homology groups by 5-Lemma. Hence,
λ(μ)^^{Cf) by the theorem of J. H. C. Whitehead.

(ii) Consider the element

α' = - λ(a)~ί α for α e π" x (1),

where l(α)"1 is a homotopy inverse of A(α). Then

α0α' = α - ^ α ^ α ) - ^ = 0.

Lemma 1.7 (ii) and this equality show that oc@β, α 'Gπ" 1 ^) if α, jSεπ" 1 ^).

From now on, we assume that a mapping cone Cf of (1.1) satisfies the follow-
ing condition:

(1.9) The two maps i% and p* in (1.6) are bijective.
Then, the two maps



On the Group of Self-Equivalences of a Mapping Cone 13

φ=ii1i*:tCf9Cf ]—>[B,£],
(1.10)

ψ=P*~ιP*: ίCf, C/\ >\SA9 SΛ]

are defined, and it is clear that φ(h) and ψ(h) are determined uniquely by the

following homotopy commutative diagram:

f

\φ(h) \h L

Therefore, φ and ψ preserve the composition and the images of &(Cf) by these

maps are contained in #(B) and #(SA), respectively.

Hence, we have the following proposition by the above lemmas.

PROPOSITION 1.11. // the mapping cone Cf of (1.1) is 1-connected and

satisfies the condition (1.9), then the sequence

is exact, where π - 1 ( l) is the group of Lemma 1.8 (ii), the homomorphism λ is

the restriction of (1.2) and φxφ is the homomorphism 0/(1.10).

As a sufficient condition for (1.9), we have

LEMMA 1.12. Assume that A is (m — 2)-connected and

dimB^m-2 if / ^ 0 , dim5^m-l if /=0.

Then, the condition (1.9) holds.

PROOF. Since A is (m —2)-connected, Cf=B\jSA is considered as a space

obtained from B by attaching cells of dimension greater than m —1. Therefore,

is bijective if dim B <̂ m — 2 and surjective if dim.B<Ξm — 1, by the cellular ap-

proximation theorem, i* is also injective i f/=0, since C0=BVSA.

Consider the homotopy exact sequence

ISB, SA] >[_SA, SA]-£+[Cf, SA] >{B, SA~]

of cofiberings. Since SA is (m — l)-connected, the first set is 0 if dimB^m — 2

and the last set is 0 if dim£<^m — 1. It is clear that p* is injective if /=0, and

so we have the lemma. q.e.d.

Here, we notice the following theorem for the case/=0.

THEOREM 1.13. Assume that A is (m — 2)-connected, B is 1-connected and
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— 1 ( m ^ 3 ) . Then, the exact sequence of Proposition 1.11 for B V SA =

Co is the following split exact sequence:

0 >π-1(Ό-λ

PROOF. It is clear that φ x φ has a right inverse in this case. By the defini-

tion (1.2), we have easily Λ,(α)/2 = ϊ 2 + α for any α: SA^BV SA and the inclusion

f2: SA-+BV SA. Therefore, we see that α = 0 if Λ(α) = l, and so we have the

desired results by Proposition 1.11 and Lemma 1.12. q.e.d.

REMARK. In the above theorem, the group π - 1 ( l ) has the multiplication

0 of (1.3), and π~ 1 ( l )=/ 7 * 1 ( ° ) is also a group with + where p*: ISA, By SA]

-*[_SA, SA~]. For the latter group, we have the exact sequence

0 >ISA, F ] >p?(0) >ISA, Bl >0,

where F =Ω(B xSA; By SA, *), the space of paths in B x SA from B V SA to *.

For the case that A = 5m~1, the (m - l)-sphere, we have £(Sm) = Z 2 = {1, - 1 }

and

COROLLARY 1.14. If B is 1-connected and d i m β ^ n —1 ( n ^ 3 ) , we have

the split extension

0 >πm(B) >tf(B V Sm) >£{B) x Z 2 >0,

where #(B)xZ2 operates on the homotopy group πm(B) by

(h, ε)-a = haε, for (h, ε) e £(B) x Z2 and a G πm(B).

PROOF. By the cellular approximation theorem, j * : πm(B V Sm)->πm(B x Sm)

is isomorphic, where j is the inclusion. Therefore, we see that p^QS) is iso-

morphic to πm(B) by ι*: πm(B)-+πm(B y Sm) and the multiplication 0 of (1.3)

is equal to + by Lemma 1.4 (ii). q.e.d.

§2. The case A = Sm~1 and the theorem of Barcus-Barratt

In this section, we study a mapping cone

(2.1) Cf = BUfe
m of f:Sm~ι >B

for the case A = Sm~1, the (m — l)-sphere, under the condition (1.9).

It is clear that <?(Sm)=<f (S"1"1) = Z 2 = {1, - 1 } .

LEMMA 2.2. The image G of the homomorphism

φxψ: #(B\Jfe
m)
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in Proposition 1.11 for Λ=Sm~1 is given by

G = {(Λ, e)| ftc=*(fl), ε= ± 1, hf=fε in πm

PROOF. AS is noticed ahead of Proposition 1.11, Im(^ x ψ) is the set of (h, έ)
G £(B) x #(Sm) such that the middle square is commutative and the right one
is homotopy commutative for some hi^<^(B\Jem) in the following diagram:

Sm-i_f_+B-i-*B U em-^Sm

(*) |ε [* [*i Jε

Consider the commutative diagram of homptopy groups

Let/: (OS"1'1, S1""1)-^^ U em, B) be the characteristic map of the cell em. Then
the element )ιf &.πm-.x(β) is equal to d(hj) by definition, and so

¥ = (/*S-1P*)(Λ1J) =(/*S-i)(εp/) =/ε.

Therefore the left square in (*) is homotopy commutative, and we have the lemma.
q.e.d.

Now, consider the homomorphism

λ: π-^l) >*(Cf) = £{B U fe
m)

in Proposition 1.11, which is the restriction of (1.2).

LEMMA 2.3. If Λ=Sm~ί and B is 1-connected, then the multiplication
0 of (1.3) coincides with the usual multiplication + on π"1(l)=/?^1(0), w/zere
p*: τcm(C/)->πm(Sw) is the induced homomorphism of the projection p.

PROOF. It is clear that π - 1 ( l) =p*1(0) by (1.5).
Consider the product space CfxSm and the inclusions j : C /VSm->C /xSm,

j \ : Cf^>CfVSm, j2:S
m-+CfVSm, and the projections p t : CfxSm^Cf9 p2:

CfxSm-+Sm. By the cellular approximation theorem, we see easily that

C r V S"1] • [S"», Cf x S1-]

is isomorphic since Cf is 1-connected. Therefore we have

9 =JiPiJd +J2P2J9 for any g e [tS
m, C χ V ^ m
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This and the definition of 0 of (1.3) imply

= α + λ(β)oc = α + Γ( l V <x)lβ

for α, jSe [Sm, Cf]. It is easy to see that the last is equal to oc + β + ocpβ. There-

fore we have ocζBβ=oc + β if ] 5 6 r 1 ( l ) = ^ 1 ( 0 ) . ^-d-

To study the image of λ of the above, we consider the map λ of (1.2) and the

map Γ of Barcus-Barratt [1, §§2-4], defined as follows. Assume that

(2.4) A and B are homotopy associative co-H-spaces with homotopy inverses.

Then, the mapping spaces XA and XB are naturally homotopy associative ϋ-spaces

with homotopy inverses. Furthermore, for any given maps/: A-+B and u: B-+X,

the homomorphism

(2.5) Γ(u, / ) : [SB, X] > [SΛ, X]

is defined to be the composition of

[SB, χ-] = π,(χB, *)-^π i(X*, u)

where a: XB->XB and c: XA-+XA are the left translations by u^XB and (w/)"1 e

XA, respectively, and b\XB^-XA is the map defined by the composition of/.

Now, for a mapping cone Cf=B\Jfe
m of (2.1) with the assumption (2.4)

for B, we consider the following diagram:

(2.6) [SB, B] -ίi-> [SB, Cf] πm(Sm)

K(l,/) \Γ(i>f) */^ jp*

πm+1(Cf, B)-^[S>», B2-±->[S>», Cf] - i i* πm(Cf,B)

where /L is the map of (1.2), and the middle horizontal sequence is the homotopy

exact sequence of {Cf, B). The left square and the triangle are commutative,

and so is the middle square by the definition of (2.5).

The following lemma is proved by several authors.

LEMMA 2.7. (cf. [9, Cor. 3.2.2]) The right vertical sequence in (2.6) is

exact, i.e.,ImΓ(i9f)=λ-1(l).

LEMMA 2.8. 7/dimB^m —2, then the upper i% in (2.6) is surjective.
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PROOF. This is clear by the cellular approximation theorem. q.e.d.

LEMMA 2.9. // B is 1-connected, then the right p* is isomorphic and the

left p# is surjective, in (2.6).

PROOF. The desired results follow immediately from the theorem of Blakers-

Massey [2, Th. II], since (Cf, B) is (m — l)-connected and B is 1-connected.

q.e.d.

By the commutative diagram (2.6) and Lemmas 2.3, 2.7-9, we see that the

image of the homomorphism

in Proposition 1.11 is isomorphic to the group

(2.10) H = π

Therefore, we have the following result, which is essentially the theorem of Barcus-

Barratt [1, Th. 6.1], by Proposition 1.11 and Lemmas 1.12, 2.2.

THEOREM 2.11. Let B be a simply-connected CW-complex, / : S m " 1 ^ B

^3) be a given map and Cf=B\J fe
m be its mapping cone. Assume that

0, dim B^m —2 and B is a homotopy associative co-H-space with a homotopy

inverse. Then, the following sequence is exact:

0 >H-^^^(Cf)^%G >1,

where G is the group in Lemma 2.2 and H is the group of (2.10).

The homomorphism T(u,f) of (2.5) is also defined if X is a homotopy as-

sociative //-space with a homotopy inverse, and it is easy to see that Γ(u,f) =

(Sf)* (cf. [9, Th. 3.3.3]). Therefore, we have the following theorem by the

diagram (2.6) in which Γ(l,/) is replaced by (S/)*.

THEOREM 2.12. Theorem 2.11 in which Γ(l,/) is replaced by (Sf)* also

holds, under the assumption that Cf is a homotopy associative H-space with

a homotopy inverse, instead of the assumption that B is a co-H-space. Also,

H is isomorphic to

Im(ίφ : πm(B)-*πm(Cf))IIm((Sf)*:

§3. Group extension in Theorem 2.11 and complexes with two cells

In Corollary 1.14, the group β(B\lSm) is determined as the split extension.

In this section, we study some cases that the group extension in Theorem 2.11

is split.
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Let h: Cf^>Cf (Cf=B\J fe
m) be a map such that

h\B = i (the inclusion),
(3.1)

Λ C S 1 x [0,3/4])c5, h(x, t)=(x9 4t-3) for 3/4^*^1,

where (x, t)^Cf=B[j fCSm~ι is the image of (x, 0 ^ ^ m - 1 x J Then, h defines

the element α(ft) e πw(B) by the composition

(3.2) . a(h) = βq: Sm-USm~1 x S1/* x S1-*-+B,

where q is the map identifying * e S m and its antipodal point, and β(x, e2πit) —

We have the following lemma, for the composition

λi+: πm(B)-^lS>», Cf-]-^[Cf9 C/\9

which induces the homomorphism λί%: H-*<!>(Cf) of Theorem 2.11.

LEMMA 3.3. λi*(x(h) = h for any /?e[C / ? Cf~] satisfying (3.1).

PROOF. Let ft': Sm=SSm-1->Cf be the map defined by h'(x, t)=(x, l-2t)

for 0 ^ ί ^ l / 2 , =h(x, 2t-l) for 1/2^ί^l . Then, we see easily λ(h') = h by the

definition (1.2) of A, since ft|JB = ι. Also, let

q': Sm~1xS1l*xSί >Sm~1 x S1 l(*x S1 US'"" 1 x*) = Sm

be the quotient map. Then, h'q' is homotopic to iβ, since

for

f o r

where β is the map of (3.2). Therefore icc(h) = iβq is homotopic to ft'g'g, and so

to h! because q'q: Sm-^Sm is a map of degree 1. These show the lemma, q.e.d.

Now, we consider the case that

(3.4) f^nm.x{B) satisfies 2/=0.

In this case, it is easy to see by the definition in Lemma 2.2 that the group G in

Theorem 2.11 is the direct product:

(3.5) G = GxxG2, Gί={(h9l)\htΞ<?(B)9hf=f}9 G2 = {(1, 1), (1, p

where p = — 1, since / = — f—fp.

Take ρ = — l: Sm~1->Sm~1 to be the reflexion. For a homotopy

(3.6) ft: S--1 — > B , /o =/, Λ =/p,

the map σ: Cf-+Cf is defined by
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\f2t(x) fo
(3.7) σ\B = i, σ(x,t) = \

[(p(x),2t-l) f

and it is easy to see by (1.10) that

(φxφ)σ =(1, p)^G2 and

Also, h—σσ satisfies (3.1) and we have

LEMMA 3.8. The element α(σσ)eπm(B) of (3.2) satisfies

If this is valid, we have σσ = l by Lemma 3.3 because α(σσ)=0 in H of (2.10).

Therefore, we have a homomorphism σ: G2->£(Cf) such that (φx\j/)σ = l,

and we obtain the following

THEOREM 3.9. Assume thatf&Un-^B) satisfies 2/=0. Then, in Theorem

2.11, the group G is the direct product Gί x G2 of (3.5), and the subgroup G2=Z2

is split. Therefore, we have the following exact sequence:

1 >D(H) f

where H is the group of Theorem 2.11 and D(H) is the split extension

(3.10) 0 >H >D(H) >Z2 >1

acting Z2 = {1, - 1 } on H by {—\)-a = -a for

Now, we prove Lemma 3.8. By (3.7) and (3.2), the element α(σσ) is repre-

sented by the composition

where q is the map identifying * and its antipodal point, and

f/2f(x) for
(3.11) /*(/,)(*, e 2 π ί ί ) =

i) for

Then Lemma 3.8 is proved by the following

LEMMA 3.12. For any homotopy ft of (3.6), the element α(/ f )eπ w (β) defined

above belongs to /*(πw(Sm- 1)).

PROOF. Let K be the complex obtained from Sm~~x x I by identifying (x, 0) ~

(px, 1) and shrinking *x J to *, and p: S"1"1 xI-*K be the identification map.

Then, a given homotopy/, of (3.6) defines the map
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F:K >B by Fp(x, t) =ft(x).

Also, because p is a homotopy of the inclusion i: S™'1 =Sm~ι x O c X t o ip, the

map β(p): S"1'1 xS1 /* x Sι-+K is defined in the same way as (3.11), and we have

«(f,)=β(f,)q=Fβ(p)q.

On the other hand, K is the mapping cone S m - 1 U 2e
m of the map Sm~x-+

Sm~1 of degree 2, and so we have the exact sequence

which is obtained from the homotopy exact sequence of (K, 5 m - 1 ) using Lemma

2.9. Therefore, we see that ι# is an isomorphism, and so the element β(p)q&

πm(K) of above is contained in the image of i*. Since Fi=f these show that

*(ft)=Fβ(p)qςΞF*i*(πm(S>»- 1))=Uπm(S^'1))9 as desired. q.e.d.

As an application of Theorems 2.11 and 3.9, we have the following theorem

for suspended two-cell complexes, which is an improvement of [8, Th. 3.3].

THEOREM 3.13. Let Sn\Jfe
m be a two-cell complex with an attaching map

/eπ O T _ 1 (5 Π ) which is a suspension Sf'9 where 2^n^m — 2.

(i) 7/2/^0, then the group #(Sn\J fe
m) is the split extension

0 >H >£(Sn\Jfe
m) >Z2 >1,

where H= πm(

and the action of Z2 on H is given by (— l)-a = — (— \)a for αGπm(S").

(ii) If 2/=0, then we have the exact sequence

1 >D(H) >#(Sn\Jfe
m) >Z2 >1

where D(H) is the split extension (3.10) of the above group H by Z2.

Furthermore, if 2/ '=0, then the above sequence is split and the action of

Z2 on D(H) is given by ( - l ) (αε) = - ( - l ) α ε for αεeD(H).

PROOF. Since f=Sf, we have (—1)/=—/=/(—1), and so the group G

in Theorem 2.11 for this case is given by

G = <?(Sn) x £(Sm) = Z 2 x Z 2 if 2/=0, ={(1, 1), ( - 1 , -1)} if 2/^0.

Also, we see easily by the definition of (2.5) that the homomorphism Γ ( l , / ) :
nn+i(βn)^πJ<βn) i s equal to (S/)* since f=Sf', and so we have the desired exact

sequence by Theorems 2.11 and 3.9.

We consider p = — 1 as the reflexion on Sn (or 5 m - 1 ) fixing S""1 (or Sm~2).

Then pf is equal to fp since f=Sf'9 and so the homeomorphism R: SnUem-+

Sn\Jem is defined by R\Sn=ρ and R(x, t) = (ρx, t). The element R(=tf(SnUem)
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satisfies

(φ x φ)R = O, /?)GG and fl# = 1.

Hence, we have a splitting homomorphism R: G-*£(Sn Uem) if 2/^0.

If 2/'=0, we can choose such ahomotopy/, of (3.6) for B = Sn that pft is equal

to ftp, using a homotopy of/' to — / ' . Therefore, we see that σR=Rσ for the

element σ e «f (Sn U em) of (3.7), and so we have a right inverse of φ x ̂  in Theo-

rem 2.11 by sending (1, - l ) a n d ( - l , -1) of G = Z 2 x Z 2 to σ and JR, respectively.

q.e.d.

The extension is not known to us, for the case 2/=0 and 2/' ^ 0 in the above

theorem. Also for the case that / is not a suspension, we have only the following

partial results. Let

(3.14) y(f):πn+ί(S") >πm(S")

be the homomorphism defined by

y(f)η = ηSf+ [>„, ηlSh(f) for ηeπn+ ^S"),

where [̂ n, ?/] e π2π(Sw) is the Whitehead product of ^ = 1 G ππ(Sw) and η9 and

Jι(f)^πm^ί(S2n~1) is the generalized Hopf invariant of/ due to P.J.Hilton

[3]. Also, set

H = πm(S")l(fmπm(S»-i) + γ(f)πn+ t(S")).

THEOREM 3.15. For a two-cell complex Sn \J fe
m(2<^n<^m — 2), we have

the exact sequence

1 >Hί >*(S"\Jfe
m) >G, >09

H^H if 2/^0, =D(H) if 2/=0,

(Z2 if2f=a(f)9or2f*0anda(f)=0,

(1 otherwise,

where D(H) is the split extension of (3.10)

(3.16) «(/)

PROOF. The last equality is proved in [3, Th. 6.7, Th. 6.9].

By Theorems 2.11 and 3.9, it is sufficient to show that the homomorphism

Γ(l,/): πn+ί(Sn)-+πm(Sn) in (2.6) for B = Sn is equal to y(/)of(3.14). Wenotice

that the map φ^1 in [1, Th. (4.6)] coincides by definition with Γ(v9 φ) of (2.5).

Hence, by applying [1, Th. (4.6)] to Γ(l,/), we have
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where A is the sum of compositions of some elements and the iterated Whitehead

products [,„, [>„, [..., //]]]. Since 3[>M, [,„, , J ] = 0 (cf. e.g. [3, Th. 6.10]), these

Whitehead products are zero, and so we have the desired results. q.e.d.

§4. Some examples

In this section, we give some examples of &(X) for complexes X with two or

three cells. For the calculations, we use several results on the homotopy groups

of spheres which are referred mainly to Toda's book [12].

For a two-cell complex, we denote by &{f) = &(Sn U fe
m) for f^πm^1{Sn).

Also, we denote by S: <f(/)-κf(S/) the homomorphism induced by the suspension.

EXAMPLE 4.1. For the Hopf maps η2, v4, σ8 and their suspensions

we have

for

(σ 8 )=Z 2 0Z 2 , <f(σrt)=Z20Z2 for n^9.

i) is ίnjective if n—2 and bijective if n ^ 3 , S: /(vM)-^^(vM+ί)

is. trivial if n = 4 and bijective if n ^ 5 , and S: tf(σn)-+tf(n+ 0 maps onto Z2 if

n = 8 and is bijective if n^9.

PROOF. Theorem 3.15 shows the desired results for #(ηn)9 since a(η2) =

[c29 t2~\=2η2 and πn+2(Sn) is generated by ηnηn+ί.

We have Gι=l for <^(v4), since ^(v4) = [ί4, ^4] =2v 4 — Sω (ω is the generator

of π 6 ( S 3 ) = Z 1 2 ) . Also, π 8 ( S 4 ) = Z 2 φ Z 2 is generated by v4̂ /7 and (Sω)ηη, and

y(v4)/74=ί74v5 + [>4, ^4]>77=(Sω)^7 + 2v 4 f/ 7 -(5ω)^ 7 =0, and so we have (f(v 4 )=Z 2

by Theorem 3.15. Also «f(vn)=Z2 (n^5) , since π 9(S 5) = v5Hcπ9(S8) and πn+4(Sn)

= 0 for n^6. (Cf. [12, pp. 43-44]).

By the same way, G1=l for «ί(σ8). Also, π 1 6 ( 5 8 ) = Z 2 0 Z 2 0 Z 2 0 Z 2 is

generated by σ 8^ 1 5, (Sσ')ηί5, y8 and ε8, and7(σ8)f/8=fy8σ9 + [̂ 8, csΉi5=((Sσf)ηί5

4-y8 + ε8) + 2σ 8 ^ 1 5 -(Sσ ' )^ i5=^8 + ε8 Hence we have <f(<τ8)=Z2®Z2 by Theo-

rem 3.15. Theorem 3.13 (i) shows that ^ ( σ Π ) = Z 2 φ Z 2 for n^9 by the following

results: π 1 7 ( S 9 ) = Z 2 0 Z 2 φ Z 2 is generated by σ9η16, v9 andε 9 ; π n + 8 ( S n ) = Z 2 0 Z 2

is generated vn and εn for n ^ l O ; σί+1ηn = ηnσn+ί=ΰn + εn for n ^ 9 . (Cf. [12,

pp. 61, 64]).

EXAMPLE 4.2. For f/ie generator ω 3 e π 6 ( 5 3 ) = Z 1 2 αnrf iίs suspension



On the Group of Self-Equivalences of a Mapping Cone 23

ωneiπn+3(Sn) (n^3) , we have

*f(ω 3 )=Z 2 , <f(α)4)

suspension S: S>{ωn)-^^{ωn+ι) is injective if n = 3, surjective if n = 5, and

bijective if n~4 or n^β.

PROOF. We have α(ω 3 )=0 since S3 is an H-space, and so *f(ω 3 )=Z 2 by

Theorem 3.15 since πΊ(S3)=Z2 is generated by ω3η6. Theorem 3.13 (i) shows

the desired results for &(ω4) and <f(ω5), since π 8 ( S 4 ) = Z 2 0 Z 2 is generated by

v4ηΊ and ω4ηl9 π9(S5)=Z2 is gnerated by v5η8, and η4ω5 = η5ω6=ω5η8=0.

£(ωn)=Z2 ( n ^ 6 ) follows immediately since πn + 4(Sn)=0. (Cf. [12, p. 43]).

EXAMPLE 4.3. (i) < f ( α v / 7 ) = Z 2 φ Z 2 0 Z 2 .

(ii) ^(ω4^7^8) is the split extension

0 >Z24®Z3 >^(ω4ηΊη8) >Z2xZ2 >

where the action of Z2xZ2 on Z24.ξ&Z3 is given by

(1, - l ) (α + ft) = - α - 6 , ( - 1 , - 1 ) (Λ + 6 ) = - α + 6 /or

PROOF. These are the consequences of Theorem 3.13 (ii).

(i) By [12, p. 44], π 9 ( S 4 ) = Z 2 © Z 2 is generated by v4η7η8 and ω4η7η8,

and η4ω5η8=0, and so we have H—Z2 for f=ω4η7 in Theorem 3.13 (ii).

(ii) By [12, pp. 46, 186], π l o ( S 4 ) = Z 2 4 © Z 3 is generated by v4v7 and Sα

( α E π 9 ( S 3 ) = Z 3 ) . Since (oj4^7;y8)f/9 = 12ω 4 v 7 =0 and ^4(ω5f/8f/9)=0, we have

H = πlo(S4) for f=ω4ηΊη8. The action of the split extension is determined by

(~l)v 4v 7 = ( - v 4 + [ί4, ^4])v7 = ( v 4 - ω 4 ) v 7 =v 4 v 7 . q.e.d.

EXAMPLE 4.4. Let (Sn)2 be the reduced product of Sn due to I. M. James.

Then

(D(π2n(Sn)IY) x Z 2 for odd n,

[D(π2n(S»)/Y) for even n.

Here, D is the split extension o/(3.10), and the subgroup Yofπ2n(Sn) is generated

by bn, cn~\η2n-1 and is given by

7 = 0 if n= - 1 ( 4 ) orn=2, 6, =Z2 otherwise.

PROOF. (Sn)2 is obtained from Sn x Sn by identifying (x, * ) ^ ( * , x) for x e Sn,

and so it is the mapping cone of [tn, J ε π 2 n - i ( ^ ) by definition.

The group <^([^, cn~]) is determined without using Theorem 3.13. The
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exact sequence

0 >H

of Theorem 2.11 for f=[_cm ;„] is given as follows:

G = #(Sn) x tf(S2n) = Z 2 x Z 2 if n is odd, = Z 2 x 1 if n is even,

since ( — cn)\_eni cn~\ = \_eni cn~\ for any n and 2\_cn9 v l = 0 iff n is odd;

H=π2n^(S")IY9 Y= bn, J*π 2 l l(S 2»-i),

which is given as above by [4, p. 232] and [5, Lemma 5.1].

Let σ, Γ: (SΠ)2->(SΠ)2 be the homeomorphism induced by ( — ιn) x ( — εn), T:

SnxSn^Snx Sn

9 respectively, where — ιn means the reflexion and Tis the switch-

ing map. Then we have (φxψ)σ=( — 1, 1), and (<pxψ)T=(l, —1) if n is odd

and T= 1 if n is even. Since σσ = TT= 1 and σT= Tσ, we see that the above sequ-

ence is split. Since (— l)α = — α + [;„, c^\h{a)= — a in H for αeπ 2 w (S Π ) , the

action of G on H is given by (—1, l) α = ( l , — \)-a = —a for a&H, and we have

the desired results. q.r.d.

Finally, we give examples for complexes with three cells.

EXAMPLE 4.5. For the special unitary group SU(3) and the symplectic

group Sp(2), we have

*(Sl/(3)) =D(Z 1 2 ) x Z 2 , *{Sp(2))=D(Zi20).

PROOF. It is well known that Sl/(3)=£ U fe
8, B=S3 U η3e

5. By the homo-

topy exact sequence of the fibering S 3 >SU(3)—^->S5, we see that

π4(Sl7(3))=0, π7(SL/(3))=0, π 8 (SI7(3))=Z 1 2 ,

and p*\ π 8(St/(3))->π 8(S' 5)=Z 2 4 is injective. By the exact sequence of (SU(3),

B)9 πΊ(B) is isomorphic to π8(Sί7(3), B)=Z, and so πΊ(B)=Z is generated by/.

Therefore, the group G in Theorem 2.11 is isomorphic to £(B), which is Z 2 φ Z 2

by Example 4.1.

Since /*: π8(B)->π8(SL/(3)) is surjective, the group H in Theorem 2.11 (or

2.12) is isomorphic to π8(St7(3))/Im(S/)*, where (5/)*: [55, 5ί/(3)]-^π8(St/(3)).

On the other hand, Sf<=j*π8(S*) by [6, (3.1)], where;: S*-+SB is the inclusion.

Hence (S/)*=0 since π4(Sί7(3))=0, and we have the exact sequence

0 >Z12-±>*(SU(3)) >Z2φZ2 >0.

Let c, vt=£(SU(?>)) be the elements given by c(x) = x, v(x)=x~i for xeSL/(3),

where 3c is the conjugate of x. Then, it is easy to see that the splitting homomor-

phism
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in the above exact sequence is given by σ(— 1, —l)=v,σ(l, — l )=c. Also,

it is easy to see that cλ(ά)=λ(a)c and vλ(a)=λ( — a)v in #(SU(3)) for α e

π8(Sί/(3)). Therefore, we have the desired result for SU(3).

Since Sp(2) = (S3 U ωie
η) U e10, we can prove similarly the result for Sp(2) by

using Theorem 2.12 and Example 4.2. q.e.d.

§5. The group # (B x

In this section, we consider the dual situations of § 1, and study the product

space B x ΩA of B and a loop space ΩA of A.

For a given map / : B-+A, let

(5.1) £/ = {(&

be the mapping track of/, and let

be the sequence of the induced fiberings, where p is the projection, Ω is the loop

functor and i is the inclusion.

As the dual of λ of (1.2), we define the map

(5.2) κ:{E

by

κ(μ) = k(l x α)zl: £ r >Ef x E r >Ef x ίL4 >£ r

for α e [ £ / 5 ΩA], where id is the diagonal map and k is the usual action of ΩA.

The usual multiplication on [Ef, ΩA] is denoted by +, and the second multi-

plication 0 is defined, dually to (1.3), by

(5.3) oi®β = ac + βκ(oc) for α, 0 e [ £ / 9 ΩA].

Then, the dual of Lemma 1.4 is the following

LEMMA 5.4. (i) [10, Lemmas 3.7-8] ® defines a semi-group structure on

[Ef, ΩA] with unit 0, and K of (5.2) is a homomorphism of this semi-group to

the semi-group \Ef,Ef], i.e., κ(aφβ)=κ(β)κ(a).

(ii) oί®β=oι + β if β belongs to the image of p*: [£, ΩA]->[Ef, ΩA].

Now, we assume that

(5.5) the two induced maps

i*: IΩA, ΩA] s [ΩA, Ef]9 p*: [5, B] ^ \Ef9 B],
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of the inclusion i and the projection p, are bijective.

Then, φ(h) and \j/(h) are determined uniquely for h e [Ef, Ef~] by the following

homotopy commutative diagram:

I I I
U(Λ) \h \φ(h)

A >Ef >B,

and we have the following proposition, as the dual of Proposition 1.11.

PROPOSITION 5.6. // the mapping track Ef of f: B^A satisfies (5.5), then

the sequence

is exact, i.e., lmκ=(φxψ)~ί(l, 1), where i*: [Ef, ίλ4]-*[£L4, ΩA~], and

i*~ι(0) is the group with the multiplication 0 of (5.3).

PROOF. We notice only that the assumption dual to the 1-connectedness of

Cf in Lemma 1.8 is not necessary in this proposition, because we can prove

κ(i*~ί(O))cz^(Ef) by the dual proof of Lemma 1.8(i), using homotopy groups

instead of homology groups. q.e.d.

Now, we consider the special case/=0: B-+A, i.e., the product space Eo =

Bx ΩA.

LEMMA 5.7. Assume that B is simple, and

nr(B) = 0 for r^n, πs(A) = 0 for s^n,

for some n ^ 2 . Then, the condition (5.5) for / = 0 is satisfied.

PROOF. We have [ΩA, B~\ =0, by the assumptions and the obstruction the-

ory. Therefore, ί* in (5.5) is bijective, since [ΩA, B x ΩA~\ = [ΩA, J5] x [ΩA, ΩA~\.

Also, j*: [BxΩA, B~\-+[B V ΩA, B~\ is bijective by the assumptions and the

obstruction theory, where j is the inclusion. Therefore, p* in (5.5) is bijective

since [B V ΩA, E] = [B, 5] x [ΩA, B] = [B, B~\. q.e.d.

The following results are proved dually to Theorem 1.13 and Corollary 1.14,

by Proposition 5.6 and Lemma 5.7.

THEOREM 5.8. Assume that A is n-connected, and B is simple and πr(J3)=0

for r^n (n^2). Then £{BxΩA) is the split extension

0 •/*-1(0) >£(BxΩA)

where i*: [BxΩA, ΩA]^[ΩA, ΩA~] and i*" 1 ^) is the group with the multi-
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plication 0 of (5.3).

COROLLARY 5.9. (cf. [7, Th. 2.10]) If B is simple and πr(B)=0 for r<m

or r^n, πs(A)=0forsfίn ors>n + m, (n^m^ 1), then we have the split extension

0 > [J5, ΩA] > £(B x ΩA) > S(B) x $(ΩA) > 1,

where [B, ΩA] is the group with usual multiplication + .

REMARK. i*~ι(0) in Theorem 5.8 is also the group by +, and the latter

group is an extension

0 >[BASA, ΩA] >i*~1(0) >IB9 ΩA] >0.

EXAMPLE 5.10. // A is 2-connected, then &{SY x ΩA) is the split extension

0 >IS1 AΩA, ΩA] > £(SιxΩA) >Z2x<?(ΩA) >1,

where the multiplication of the first group is induced by 0 o/(5.3).
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