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Introduction

The set &£(X) of homotopy classes of self-(homotopy-)equivalences of a
based space X forms a group by the composition of maps, and this group is studied
by several authors.

The purpose of this note is to study the group &(C,) for a mapping cone
C;=BU ;CA of f: A-»B with certain conditions, by the dual considerations of
J. W. Rutter [11] using the homotopy exact sequences of cofiberings.

In §1, after preparing some results on &(C,), we represent the group
&(BV SA), which is the case that f is the constant map, as the split extension of
a certain group H by &(B) x £(SA) (Theorem 1.13). In the case that A4 is the
(m—1)-sphere S™~1, the above group H is equal to the homotopy group =,(B).

In §2, we have the exact sequence

0— H—&(BU je")—G—1

for A=S""1, where H is the factor group of «,(B) and G is the subgroup of
E(B)x &(S™)=&(B)xZ,. This result is essentially the theorem of W. D.
Barcus and M. G. Barratt [1, Th. 6.1].

Furthermore, we study in §3 some cases that the above sequence is split.
For the case 2f=0, we see in Theorem 3.9 that G is the direct product G, x G,
and the subgroup G,=1xZ, is split. By these results, we obtain in Theorem
3.13 the split extension

00— H—&(S"U je")— G—>1

for a two-cell complex S"U re™ (2=<n=<m—2) whose attaching map f n,,_,(S")
is a suspension Sf’ and the orders of f and f’ are equal. Here

H = 1, (S")/(fmtm(S™ 1)+ (S f)*Mp+ 1(S),
G=2,xZ, if 2f=0, =Z, if 2f=0,
and the action of G on H is given by
(z, p)a=zap for aemn,(S"), (z, p)EZ,XZ,, if 2f=0,

pra=ap for aen,(S"), peZ,, if 2f=0.
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This is a slight improvement of the recent result [8, Th. 3.3].

In § 4, we give some examples of £(X) for cell complexes X with two or three
cells.

In §5, we are concerned with the product space Bx QA of B and a loop
space 24, under the dual considerations of §1, and obtain the dual result of
Theorem 1.13 in Theorem 5.8, whose corollary is a slight improvement of the
result of Y. Nomura [7, Th. 2.10].

§1. &(C;) of a mapping cone C,

Throughout this note, all (topological) spaces are arcwise connected spaces
with base point * and have homotopy types of CW-complexes, and all (continuous)
maps and homotopies preserve the base point. For given spaces X and Y, we
denote by [X, Y] the set of (based) homotopy classes of maps of X to Y, and
by the same letter f a map f: X— Y and its homotopy class f[X, Y]. Also,
we denote usually by

g« [X, Y]—I[X, Z],  g*:[Z, X]—1[Y, X]

the induced maps of a given map g: Y- Z.

For any space X, we denote by 1: X— X the identity map. Then, the set
[X, X] is a semi-group with respect to the composition of maps having unit 1,
and the group

&(X) (c[X, XD

of self-equivalences of X is the group of invertible elements of [X, X].
In §§ 1-4, we consider the group &(C/) of a mapping cone

(1.1) C;=BU;CA of f:A—B,
under the condition (1.9) below. Let
A-LB—>C, 2545558

be the sequence of the induced cofiberings, where i is the inclusion, S is the sus-
pension functor and p is the projection.
The co-multiplication

[:SA—>SAV SA,

collapsing A x {1/2} of SA to *, defines the usual group multiplication + of any
homotopy set [SA4, X] with unit 0, the class of the constant map *. Also, the
co-action
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of SA is defined by collapsing 4 x {1/2} of CA to x, and this defines the map
1.2) A1 [S4, C,1—[C,, C/],
Mo)=F(AVa)l:C;—C;VSA—C,VC,—>C;
for a: SA—C,, where V is the folding map. Then, the second multiplication
(1.3) @: [S4, C;1x[SA4, C;,1—[S4, C/]
is defined by
oa®Pf =a+Max)p for o, Be[SA, C/],

and we have the following lemma, which is the dual of [10, Lemmas 3.7-8].

LemMA 14. (i) The multiplication @ of (1.3) defines a semi-group
structure on [SA, C,] with unit 0, and the map 1 of (1.2) is a homomorphism of
this semi-group to the semi-group [C,, C/]. ‘

(i) a@p=a+p if p belongs to the image of iy: [SA, B]-[SA4, C,].

Proor. (i) The equality A(a®pf)=A(x)A(B) follows immediately from the
following commutative diagram:

C,VSANYLC, v SAV SAYXSC v C, v C,

[ s v

C, —L CpvSs4 My ¢ oy,

o 1v

c,ve, X cp A9
The associativity of @ is proved as follows:
@)Dy = (a+A0)B) + AaDB)y
= a+ (0B +MD)AB)y =« D(BDY)-

(ii) The desired result follows immediately from the definitions. g.e.d.
Consider the map

(1.5) n: [SA4, C;]—[S4, S4],
defined by n(x)=1+pa for ae[SA4, C,], and the diagram

[S4, C,]-2[C,, C,1-55[B, /]

(1.6) 1 1,,, ]

[S4, SA]-Z[C,, S4]  [B, B]
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where p: C,—SA is the projection and i: B—C, is the inclusion.

LemMA 1.7. (i) The square in (1.6) is commutative.

(ii) = is a homomorphism of the semi-group [SA, C;] with @ to [SA, SA]
with the composition.

(iii) (cf. [9, Cor. 3.2.2]) The upper sequence in (1.6) is exact, i.e., Imi=
i*=1(j).

Proor. (i) is clear, and we have (ii) since
n(a@f) =1+ p(o+A0)f) = n(e) + pA(2)B
= () +n()pf = n(e)n(p).
(iii) is proved easily by definition. q.ed.
LEMMA 1.8. Assume that C, is 1-connected. Then

@) Mrn=1(1) € €(Cy).
(ii) =~ '(1) is the group with the multiplication @ of (1.3).

Proor. (i) If aen~1(1), then (i) and (iii) of the above lemma show that
the diagram

A—B-‘.C,-2,5S4—SB

Pl e )

A—B-,C;-P,SA—SB

of the cofiberings is homotopy commutative. Therefore, we have the induced
commutative diagram of the exact sequences of homology groups, and so we
see that A(«) induces isomorphisms of homology groups by 5-Lemma. Hence,
Ma)e&(Cy) by the theorem of J. H. C. Whitehead.

(ii)) Consider the element

o = —Ma)y o for aesn (1),
where A(x)~! is a homotopy inverse of A(e). Then
a@o’ =a—Ao)A(a) ta =0.

Lemma 1.7 (ii) and this equality show that a®f, «’en~1(1) if a, f=n~1(1).
g.ed.
From now on, we assume that a mapping cone C; of (1.1) satisfies the follow-
ing condition:
(1.9) The two maps iy and p* in (1.6) are bijective.
Then, the two maps
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¢ = l;ll* [Cf9 Cf]—)[B’ B]’
(1.10)
Y =p* ps: [Cp, C,1—[S4, SA]

are defined, and it is clear that ¢(h) and Y(h) are determined uniquely by the
following homotopy commutative diagram:

B—t,C 2,54

llp(h) th lw(h)

B—i.C,—2, 54,

Therefore, ¢ and y preserve the composition and the images of £(C,) by these
maps are contained in &(B) and &(SA4), respectively.
Hence, we have the following proposition by the above lemmas.

ProrosiTiON 1.11. If the mapping cone C, of (1.1) is 1-connected and
satisfies the condition (1.9), then the sequence

(1) 25 8(Cp) L% 6(B) x €(SA)

is exact, where n=1(1) is the group of Lemma 1.8 (ii), the homomorphism 2 is
the restriction of (1.2) and ¢ x is the homomorphism of (1.10).
As a sufficient condition for (1.9), we have

LemmA 1.12. Assume that A is (m—2)-connected and
dimB<m—2 if fx0, dimB<m—1 if f=0.
Then, the condition (1.9) holds.

ProoOF. Since A is (m—2)-connected, C,=BUSA is considered as a space
obtained from B by attaching cells of dimension greater than m—1. Therefore,

i*: [B, B]—)[B’ Cf]

is bijective if dimB<m—2 and surjective if dimB=<m—1, by the cellular ap-
proximation theorem. i, is also injective if f=0, since C,=BV SA.
Consider the homotopy exact sequence

[SB, SA]—[SA4, SA]-2-[C,, SA]—[B, SA]

of cofiberings. Since SA is (m—1)-connected, the first set is 0 if dimB<m—2

and the last set is 0 if dimB<m—1. It is clear that p* is injective if f=0, and

so we have the lemma. q.ed.
Here, we notice the following theorem for the case f=0.

THEOREM 1.13.  Assume that A is (m—2)-connected, B is 1-connected and
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dimB<m—1(mz=3). Then, the exact sequence of Proposition 1.11 for BV SA=
C, is the following split exact sequence:

00— 1(1) 25 &(BV SA) L4 &£(B) x £(S4)— 1.

ProoF. Itis clear that ¢ Xy has a right inverse in this case. By the defini-
tion (1.2), we have easily A(a)i,=i,+a for any a: SA—>BV SA and the inclusion
i,: SA>BV SA. Therefore, we see that a=0 if A(¢)=1, and so we have the
desired results by Proposition 1.11 and Lemma 1.12. g.ed.

ReMARK. In the above theorem, the group n~!(1) has the multiplication
@ of (1.3), and n~1(1)=pz1(0) is also a group with + where py: [SA, BV SA]
—[SA, SA]. For the latter group, we have the exact sequence

0—[S4, F]— p5'(0)—[S4, B]—0,

where F=Q(Bx SA; BV SA, x), the space of paths in Bx SA from BV S4 to *.
For the case that A=S""1, the (m—1)-sphere, we have #(S™)=Z,={1, —1}
and

CorOLLARY 1.14. If B is 1-connected and dimB=<n—1 (n=3), we have
the split extension

0—> 7, (B)—> &(BV S™)—> &(B) X Z,—0,
where &(B) X Z, operates on the homotopy group =,(B) by
(h, ¢)-a = hae, for (h,e)e&(B)xZ, and acmn,(B).

Proor. By the cellular approximation theorem, j,: #,(BV S™)—> (B x S™)
is isomorphic, where j is the inclusion. Therefore, we see that p3z!(0) is iso-
morphic to =#,(B) by i,: n,(B)-=r,(BVS™ and the multiplication @ of (1.3)
is equal to + by Lemma 1.4 (ii). g.ed.

§2. The case A=S™""! and the theorem of Barcus-Barratt

In this section, we study a mapping cone
(2.1) Cf=BUfe"' of f:Sm—'l___,B

for the case A=S""1, the (m—1)-sphere, under the condition (1.9).
It is clear that &(S™)=&(S""1)=Z,={1, —1}.

LeMMA 2.2. The image G of the homomorphism

e XY: E(BU pem)— E(B) x £(S™)
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in Proposition 1.11 for A=S™"1 is given by
G ={(h, ¢)| he&(B), e=+1, hf =fe¢ in =, _(B)}.

Proor. Asis noticed ahead of Proposition 1.11, Im (¢ x ¥) is the set of (h, €)
€ ¢(B) x £(S™) such that the middle square is commutative and the right one
is homotopy commutative for some h; €& (BUe™) in the following diagram:

Sm-1_ S, B I ,Byem_L,Sm
(*) le lh 1’1 1 le
Sm-1_L,B_t,Byem—L,Sm
Consider the commutative diagram of homotopy groups
7Tm(B U em, B) 'i) nm— 1 (B)
lpu Ift
7Tm(Sm) ‘—:_ Tm—1 (Sm— ! )°

Let f: (CS™1, S"~1)>(B U e™, B) be the characteristic map of the cell e. Then
the element hf em,_,(B) is equal to d(h,f) by definition, and so

hf = (fxS7' pR)(hif) = (f£S™'Nepf) = fe.

Therefore the left square in () is homotopy commutative, and we have the lemma.

q.ed.
Now, consider the homomorphism

Ainmi(1)—&(Cyp) = E(BU je™)
in Proposition 1.11, which is the restriction of (1.2).

LeEmMMA 2.3. If A=S""! and B is 1-connected, then the multiplication
@ of (1.3) ecoincides with the usual multiplication + on n~1(1)=p31(0), where
P T(Cp)—=m,(S™) is the induced homomorphism of the projection p.

Proor. It is clear that 7~ 1(1) = p5z!(0) by (1.5).

Consider the product space C,x S™ and the inclusions j: C,V S"—C,x S™,
Ji: C;=Cpv 8™, j,: S">C,V S™, and the projections p,: C;xS"—Cy, p,:
C,xSm—S™. By the cellular approximation theorem, we see easily that

Jx: [S™ Cp v S™]— [S™, Cpx S™]
is isomorphic since C; is 1-connected. Therefore we have

9 =J1p1jg+j2p2jg  forany  ge[S™ C,vS™].
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This and the definition of @ of (1.3) imply
a®@p =a+ AP =a+P(1Va)p
=a+V(Va)jipjlB+F(1Va)jp,jlp,

for a, B [S™, C;]. It is easy to see that the last is equal to a+f+app. There-
fore we have a@f=0a+p if fen 1(1)=pz'(0). g.ed.
To study the image of A of the above, we consider the map A of (1.2) and the
map I' of Barcus-Barratt [1, §§2-4], defined as follows. Assume that
(2.4) A and B are homotopy associative co-H-spaces with homotopy inverses.
Then, the mapping spaces X4 and X are naturally homotopy associative H-spaces
with homotopy inverses. Furthermore, for any given maps f: A—»Band u: B— X,
the homomorphism

2.5) I'(u, f): [SB, X]—[SA4, X]
is defined to be the composition of
[SB, X]=mn,(X®, )27, (X5, u)
P (XA, uf) <57, (XA, %) =[S4, X1,

where a: XB— XB and ¢: X4— X4 are the left translations by ue X® and (uf)"' e
X4, respectively, and b: XB— X4 is the map defined by the composition of f.

Now, for a mapping cone C,=BU re™ of (2.1) with the assumption (2.4)
for B, we consider the following diagram:

(2.6) [SB, B1-*,[SB, C,] ,(S™)

ll'(l,f) J’f(i..f)‘,/V Ip-
Tmi1(Cp, B) 25 [S™, B]-2,[S™ C,]1 - =,(C,, B)
b e
Tms1 (S™) = a(S™Y)  [Cy, Cf]
where A is the map of (1.2), and the middle horizontal sequence is the homotopy
exact sequence of (Cy, B). The left square and the triangle are commutative,

and so is the middle square by the definition of (2.5).
The following lemma is proved by several authors.

LemMmA 2.7. (cf. [9, Cor. 3.2.2]) The right vertical sequence in (2.6) is
exact, i.e., ImI'(i, f)=21"1(1).

LeEmMA 2.8. Ifdim B<m—2, then the upper iy in (2.6) is surjective.
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ProorF. This is clear by the cellular approximation theorem. qg.ed.

LemMA 2.9. If B is 1-connected, then the right p, is isomorphic and the
left p, is surjective, in (2.6).

Proor. The desired results follow immediately from the theorem of Blakers-

Massey [2, Th. II], since (Cy, B) is (m—1)-connected and B is 1-connected.

q.ed.

By the commutative diagram (2.6) and Lemmas 2.3, 2.7-9, we see that the
image of the homomorphism

A1 (1) =px'(0)—&(Cy)
in Proposition 1.11 is isomorphic to the group
(2.10) H =z,B)/(Imf,+ImI(1, f)).

Therefore, we have the following result, which is essentially the theorem of Barcus-
Barratt [1, Th. 6.1], by Proposition 1.11 and Lemmas 1.12, 2.2.

THEOREM 2.11. Let B be a simply-connected CW-complex, f: S™ '—B
(m=3) be a given map and C,=BU ;e™ be its mapping cone. Assume that
f%0,dimB<m—2 and B is a homotopy associative co-H-space with a homotopy
inverse. Then, the following sequence is exact:

0— H-2i%, £(C,) 224 G— 1,

where G is the group in Lemma 2.2 and H is the group of (2.10).

The homomorphism T'(u, f) of (2.5) is also defined if X is a homotopy as-
sociative H-space with a homotopy inverse, and it is easy to see that I'(u, f)=
(Sf)* (cf. [9, Th. 3.3.3]). Therefore, we have the following theorem by the
diagram (2.6) in which I'(1, f) is replaced by (Sf)*.

THEOREM 2.12. Theorem 2.11 in which I'(1, f) is replaced by (Sf)* also
holds, under the assumption that C, is a homotopy associative H-space with
a homotopy inverse, instead of the assumption that B is a co-H-space. Also,
H is isomorphic to

Im (iy: mu(B)=7n(Cy)) [ Im ((S)*: [SB, C,]—>m,(C))).

§3. Group extension in Theorem 2.11 and complexes with two cells

In Corollary 1.14, the group &£(BV S™) is determined as the split extension.
In this section, we study some cases that the group extension in Theorem 2.11
is split.
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Let h: C,—»C; (C;=BU je™) be a map such that
h|B=i (the inclusion),
3.1
h(S™1 x[0,3/4)cB, h(x, t)=(x, 4t—3) for 3/4=<t<1,

where (x, )&C,=BU CS™! is the image of (x, )eS™ ! xI. Then, h defines
the element «(h) € r,(B) by the composition

(3.2) . a(h)=Pg: Sm—2,85m~1 xS |xx St L, B,

where g is the map identifying *=.S™ and its antipodal point, and f(x, e?"*) =
h(x, 3t/4) (0=st<1).
We have the following lemma, for the composition

Ai*: nm(B)_ﬁ—’[Sma Cf]'i’ [Cf9 Cf]a
which induces the homomorphism Ai,: H—&(C,) of Theorem 2.11.
LemmA 3.3. liga(h)=h for any he[C,, C,] satisfying (3.1).

PrOOF. Let h’': S"=SS""!—-C, be the map defined by h'(x, ) =(x, 1-21)
for 0<t<1/2, =h(x, 2t—1) for 1/2<t<1. Then, we see easily A(h’)=h by the
definition (1.2) of A, since h|B=i. Also, let

g SIS axSt— S xS /(xxSTUS" I x*)=8m
be the quotient map. Then, h’q’ is homotopic to if}, since
hq'(x, e2mi1-t/4))  for 0=<t=<1/2,
h/q/(x’ e21|:it)=
B(x, e2i®1=4)/3)  for 1/2<t<7/8,

where f is the map of (3.2). Therefore ia(h) =ifq is homotopic to h’q’q, and so
to A’ because q’q: S™—S™ is a map of degree 1. These show the lemma. g.e.d.
Now, we consider the case that

(3.4) fen,-(B) satisfies 2f=0.

In this case, it is easy to see by the definition in Lemma 2.2 that the group G in
Theorem 2.11 is the direct product:

(35) G=G1 X G2, Gl ={(h’ 1) |hE£(B), hf=f}’ G2={(17 1)9 (1, p)}’

where p=—1, since f=—f=fp.
Take p=—1:S" 158" 1 to be the reflexion. For a homotopy

(3.6) fe: 8" '—B, fo=f, fi=/p,
the map o: C,—C, is defined by
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fal(%) for 05t<1/2,
3.7 o|B=i, o(x,1t)=
(p(x), 2t—1) for 12511,
and it is easy to see by (1.10) that
(¢x¥)o=(1, p)eG, and ce&(C)).

Also, h=o00 satisfies (3.1) and we have

LemMMA 3.8. The element o(co)En,(B) of (3.2) satisfies
woo)Elm(fy: m,(S™"1)—>m,(B)).

If this is valid, we have 6o =1 by Lemma 3.3 because a(c0) =0 in H of (2.10).
Therefore, we have a homomorphism o¢: G,—~&(C,) such that (¢ xy)o=1,
and we obtain the following

THEOREM 3.9. Assume that f en, _(B) satisfies 2f=0. Then, in Theorem
2.11, the group G is the direct product G, x G, of (3.5), and the subgroup G,=2Z,
is split. Therefore, we have the following exact sequence:

1—D(H)—6(Cp)— G, — 1,
where H is the group of Theorem 2.11 and D(H) is the split extension
(3.10) 0— H—DH)—Z,—1

acting Z,={1, —1} on H by (—1)ya=—a for acH.
Now, we prove Lemma 3.8. By (3.7) and (3.2), the element a(o0) is repre-
sented by the composition

o f)=B(f)q: S"—>S™ 1 x S'[xx S'—> B,
where q is the map identifying * and its antipodal point, and
) f2dx) for 0<t<1/2,
(3.11) B(f)(x, e*™i*) =
Jae-1(px) for 1)2<t<1.
Then Lemma 3.8 is proved by the following

LemMA 3.12. For any homotopy f, of (3.6), the element a( f,) € w,(B) defined
above belongs to fu(m,(S™1)).

ProoF. Let K be the complex obtained from S™~! x I by identifying (x, 0) ~
(px, 1) and shrinking *x I to *, and p: S™! x - K be the identification map.
Then, a given homotopy f, of (3.6) defines the map
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F:K—B by Fp(x,t)=f(x).

Also, because p is a homotopy of the inclusion i: S" 1 =S""! x0cK to ip, the
map P(p): S™ 1 x S1/x x S1—>K is defined in the same way as (3.11), and we have

a(fe) = B(f)q = FB(p)q.

On the other hand, K is the mapping cone S”" !y ,e™ of the map S" !—
S™=1 of degree 2, and so we have the exact sequence

(8™ 1) 2 1, (S™71) 25 1, (K) —— T, (S™) 225 7 1 (S™71),

which is obtained from the homotopy exact sequence of (K, S~ !) using Lemma
2.9. Therefore, we see that i, is an isomorphism, and so the element f(p)q<s
7 (K) of above is contained in the image of i,. Since Fi=f, these show that
() =FB(p)q € F4is(7,(S™ 1)) =fo(7.(S™ 1)), as desired. g.ed.

As an application of Theorems 2.11 and 3.9, we have the following theorem
for suspended two-cell complexes, which is an improvement of [8, Th. 3.3].

THEOREM 3.13. Let S"U je™ be a two-cell complex with an attaching map
fen,-1(S") which is a suspension Sf’', where 2<n<m-2.
() If 2f=0, then the group £(S"U se™) is the split extension

0—H—&(S"U je™)—Z,—1,
where H =1, (S") | (fxmn(S"™ 1) + (Sf)*mys1(S™)

and the action of Z, on H is given by (—1)a=—(—1)a for aen,(S").
(i) If 2f=0, then we have the exact sequence

11— D(H)—&(S"U je™)—Z,— 1

where D(H) is the split extension (3.10) of the above group H by Z,.
Furthermore, if 2f" =0, then the above sequence is split and the action of
Z, on D(H) is given by (—1)(ag)=—(—1)ae for ac= D(H).

Proor. Since f=Sf’, we have (—1)f=—f=f(—1), and so the group G
in Theorem 2.11 for this case is given by

G=8(S")xE(S™ =2Z,%xZ, if 2f=0, ={(1, 1), (—1, —1)} if 2f %0.

Also, we see easily by the definition of (2.5) that the homomorphism I'(1, f):
T, +1(S") -1, (S™) is equal to (Sf)* since f=Sf’, and so we have the desired exact
sequence by Theorems 2.11 and 3.9.

We consider p=—1 as the reflexion on S” (or S™1) fixing S*~! (or S™2).
Then pf is equal to fp since f=Sf’, and so the homeomorphism R: S"Ue™—
S" U e™ is defined by R|S"=p and R(x, t)=(px, t). The element Re&(S"Ue™)
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satisfies
(¢ x¥)R=(p, p)€G and RR=1.

Hence, we have a splitting homomorphism R: G- &(S» U e™) if 2f 0.

If 2f" =0, we can choose such a homotopy f, of (3.6) for B=S" that pf, is equal
to f,p, using a homotopy of f* to —f'. Therefore, we see that R =Ro for the
element 0= &(S" U e™) of (3.7), and so we have a right inverse of ¢ x{ in Theo-
rem 2.11 by sending (1, —1)and (—1, —1) of G=Z, x Z, to o and R, respectively.

g.ed.

The extension is not known to us, for the case 2f=0 and 2f’ %0 in the above
theorem. Also for the case that f is not a suspension, we have only the following
partial results. Let

(3.14) Y(S): s 1 (8" — 7,(S™)

be the homomorphism defined by

Y(In =nSf+ e, n1SA(f)  fornemn,, (S"),

where [¢,, n]E7,,(S") is the Whitehead product of (,=1m,(S") and », and
h(f)er,-(S?"1) is the generalized Hopf invariant of f due to P.J. Hilton
[3]. Also, set

H = 7,,(S)/(fs7m(S" 1) +9(f )54 1(S™)).

THEOREM 3.15. For a two-cell complex S"U e (2=n=m-—2), we have
the exact sequence

l—H,—&(S"U je™)— G, —0,
H,=H if 2fx0, =D(H) if 2f=0,
Z, if 2f=a(f), or 2f %0 and a(f)=0,
' 1 otherwise,
where D(H) is the split extension of (3.10) and
(3.16) a(f) =f+(=Df = Lo, ea]A(f).

Proor. The last equality is proved in [3, Th. 6.7, Th. 6.9].

By Theorems 2.11 and 3.9, it is sufficient to show that the homomorphism
ra, f): n,. (SM-mn,(S") in (2.6) for B=S" is equal to y(f) of (3.14). We notice
that the map ¢, vy! in [1, Th. (4.6)] coincides by definition with I'(v, ¢) of (2.5).
Hence, by applying [1, Th. (4.6)] to I'(1, f), we have

I'(1, f)(n) = nSf+ Len MISA() + 4,
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where A is the sum of compositions of some elements and the iterated Whitehead
products [¢,, [¢n [---» #]1]- Since 3[¢,, [¢4, ¢,11=0 (cf. e.g. [3, Th. 6.10]), these
Whitehead products are zero, and so we have the desired results. q.ed.

§4. Some examples

In this section, we give some examples of &(X) for complexes X with two or
three cells. For the calculations, we use several results on the homotopy groups
of spheres which are referred mainly to Toda’s book [12].

For a two-cell complex, we denote by &(f)=&(S"U sem) for femn,_(S").
Also, we denote by S: &(f)—&(Sf) the homomorphism induced by the suspension.

ExAMPLE 4.1. For the Hopf maps n,, v,4, 0g and their suspensions
MEM,41(S") (122), Vv,EM,5(S") (n24), 0,Em,.4(S") (n28),
we have
8(1) =25, E0)=2,0Z,  for nz3,
E(vy)=2,, e(vy)=2, for n=5,
&(0g)=2Z,PZ,, &(0,)=Z,DZ, forn=9.

S:6M,) 8,4 ,) is injective if n=2 and bijective if n=3, S: £(v,))>EW,+1)
is trivial if n=4 and bijective if n=5, and S: &(0,)>&(,+,) maps onto Z, if
n=238 and is bijective if n=9.

Proor. Theorem 3.15 shows the desired results for &(n,), since a(n,)=
[c2, ¢21=2n, and =, ,(S") is generated by 7,1, .

We have G, =1 for &(v,), since a(v,) =[¢y4, t4]=2v,—Sw (w is the generator
of ng(S3)=Z,,). Also, ny(S*)=Z,PZ, is generated by v,n, and (Sw)y,, and
YVaIa=n4s+ [cas cals =(Sw)n; +2v4n; — (Sw)n, =0, and so we have &(v,)=Z,
by Theorem 3.15. Also €(v,)=Z, (n=5), since mo(S3)=v5,74(S?) and =, 4(S™)
=0 for n=6. (Cf.[12, pp. 43-44]).

By the same way, G, =1 for &(gg). Also, 7,,(S®)=Z,PZ,DZ,DZ, is
generated by ag5, (So")nys, Vg and &g, and y(0g)1s =150+ 8, cg 115 =((S6"In 5
+Dg+eg)+20gn,5—(Sa")n,s=vg+e3. Hence we have &(ag)=Z,DZ, by Theo-
rem 3.15. Theorem 3.13 (i) shows that &(6,)=Z,®Z, for n=9 by the following
results: n,,(S?)=Z,DZ,PZ, is generated by ao1,¢, Vg and &q; 7, , (SN =Z,PZ,
is generated b, and ¢, for n=10; 0¥ n,=n,0,+1=b,+¢, for n=9. (Cf.[12,
pp. 61, 64]).

EXAMPLE 4.2. For the generator w;€ng(S3)=Z,, and its suspension
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W, €7, 3(S") (n=3), we have
E(w3)=Z,, E(wy)=6(ws5)=Z,DZ,, &(w,)=Z,(n=6).

The suspension S: &(w,)—&(w,+,) is injective if n=3, surjective if n=5, and
bijective if n=4 or n=6.

Proor. We have a(w;)=0 since S® is an H-space, and so &(w;)=Z, by
Theorem 3.15 since n,(S3)=Z, is generated by w;ns. Theorem 3.13 (i) shows
the desired results for &(w,) and &(ws), since ng(S*)=Z,PDZ, is generated by
v, and wuh, To(S3)=Z, is gnerated by vsng, and n,ws=nsws=wsns=0.
é(w,)=Z, (n=6) follows immediately since m,,,(S")=0. (Cf.[12, p.43]).

ExaMmPLE 4.3. (i) &(wm)=2Z,DZ,DZ,.
(ii) &(wanng) is the split extension
0—Z,,DZ;— E(wahNg) — Zy x Z,— 1,
where the action of Z,xZ, on Z,,®Z; is given by
(1, =)(a+b)y=—a—-b, (-1, —=1)(a+b)=—a+b for acZ,, beZ,.
Proor. These are the consequences of Theorem 3.13 (ii).
() By [12, p. 44], no(S*)=Z,DZ, is generated by vym;ns and w,nqns,
and n,wsng =0, and so we have H=Z, for f=w,n, in Theorem 3.13 (ii).
(i) By [12, pp. 46, 186], n,o(S*)=Z,,PZ; is generated by v,v, and So

(xeny(S3)=2Z5). Since (m4n,15)Me=12w,v,=0 and n(wsnsn,)=0, we have
H=m,,(S*) for f=w,nms. The action of the split extension is determined by

(= Dvavy = (=vatleq, ca)v7 = (Va—@4)v7 = vy qg.ed.

ExXAMPLE 4.4. Let (S"), be the reduced product of S* due to I. M. James.
Then

D(m,,(S")|Y) x Z, for odd n,
éo((sn)Z) =é’([‘na ln]) =
D(n,,(SM]Y) for even n.
Here, D is the split extension of (3.10), and the subgroup Y of m,,(S") is generated
by [ty talt2n—1 and is given by

Y=0 ifn=-1@) orn=2,6, =Z, otherwise.
PrOOF. (S"), is obtained from S” x S* by identifying (x, *) ~(*, x) for x& S",

and so it is the mapping cone of [¢,, ¢,] €7,,_(S") by definition.
The group &([¢,, ¢,]) is determined without using Theorem 3.13. The
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exact sequence
0—H—&([¢n, ta]) 56— 1
of Theorem 2.11 for f=[¢,, ¢,] is given as follows:
G=6(S")x&(S?")=Z,x2Z,if nisodd, =2Z,x1if niseven,
since (—¢,)[tns ¢n] =Ltn» ¢,] for any n and 2[c,, ¢,]=0 iff nis odd;
H=m5,_1(SMY, Y=[tn, tn]sm2a(S?""1),

which is given as above by [4, p. 232] and [S, Lemma 5.1].

Let o, T: (S"),—(S™), be the homeomorphism induced by (—¢,) X (—¢,), T:
S”x S*—S" x S", respectively, where —., means the reflexion and T is the switch-
ing map. Then we have (¢ x)o=(—1, 1), and (¢ x¥)T=(1, —1) if n is odd
and T=1if nis even. Since 66 =TT=1 and ¢T=To, we see that the above sequ-
ence is split. Since (—1)a=—a+[¢, ¢,Jh(a)=—a in H for acmn,,(S"), the
action of G on H is given by (—1, 1))a=(l, —1)-a=—a for ac H, and we have
the desired results. q.cd.

Finally, we give examples for complexes with three cells.

ExAMPLE 4.5. For the special unitary group SU(3) and the symplectic
group Sp(2), we have

ESUQR)=D(Z3)xZ;,  E(SP(2)=D(Z,30)-

Proor. It is well known that SU(3)=BU ;e®, B=S*U,,e’. By the homo-
topy exact sequence of the fibering S3— SU(3)—2-S%, we see that

T (SUB)=0,  m,(SUB)=0, 7g(SUQB)=Z,,

and p,: ng(SU(3))—»ng(S3)=Z,, is injective. By the exact sequence of (SU(3),
B), n,(B) is isomorphic to ng(SU(3), B)=Z, and so n,(B)=Z is generated by f.
Therefore, the group G in Theorem 2.11 is isomorphic to &(B), which is Z,®Z,
by Example 4.1.

Since iy : ng(B)—>ng(SU(3)) is surjective, the group H in Theorem 2.11 (or
2.12) is isomorphic to ng(SU(3))/Im (Sf)*, where (Sf)*: [SB, SU(3)]—>rg(SU(3)).
On the other hand, Sf € j,mg(S*) by [6, (3.1)], where j: S*—SB is the inclusion.
Hence (Sf)* =0 since n,(SU(3))=0, and we have the exact sequence

00— le—l—bg(SU(3))—’—)Zz®Zz—’—’0.

Let ¢, ve &(SU(3)) be the elements given by c¢(x) =X, v(x) =x"! for xe SU(3),
where X is the conjugate of x. Then, it is easy to see that the splitting homomor-
phism
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0:Z,DZ,=8(S*)DE(S°)—> £(SU(3))

in the above exact sequence is given by o(—1, —1)=v, o(1, —1)=c. Also,
it is easy to see that cA(a)=A(a)c and vi(a)=A(—a) in &£(SUQ3)) for ac
ng(SU(3)). Therefore, we have the desired result for SU(3).

Since Sp(2)=(S3U,,e”) Ue'®, we can prove similarly the result for Sp(2) by
using Theorem 2.12 and Example 4.2. q.ed.

§5. The group £(B x 2A4)

In this section, we consider the dual situations of § 1, and study the product
space Bx QA of B and a loop space QA of A.
For a given map f: B—A, let

(5.1 E;={(b, DbeB, I:[0,1]1-4, f(b)=I0), I(1)=x}
be the mapping track of f, and let
QB2 04 ' \E, "B T, 4

be the sequence of the induced fiberings, where p is the projection, Q is the loop
functor and i is the inclusion.
As the dual of 1 of (1.2), we define the map

(5.2) x: [E;, Q41— [E,, E[]
by
k(@)=k(Ixo)d: E,;— E xE,— E;x QA—E;

for ae[E,, QA], where 4 is the diagonal map and k is the usual action of Q4.
The usual multiplication on [E,, Q4] is denoted by +, and the second multi-
plication @ is defined, dually to (1.3), by

(5.3) oa@f = a+ fr(x) for o, BE[E;, Q4].

Then, the dual of Lemma 1.4 is the following

LEmMMA 5.4. (i) [10, Lemmas 3.7-8] @ defines a semi-group structure on
[E;, QA] with unit O, and x of (5.2) is a homomorphism of this semi-group to
the semi-group [E;, E;], i.e., x(a@®p)=x(B)r(x).

(i) ad®p=a+pBif B belongs to the image of p*:[B, QA]-[E,, QA].

Now, we assume that

(5.5) the two induced maps

iv: [Q4, Q41=[QA4, E;],  p*:[B, BI=[E,, B],
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of the inclusion i and the projection p, are bijective.
Then, ¢(h) and y(h) are determined uniquely for he[E, E,] by the following
homotopy commutative diagram:

AE, ",B

lll/(h) lh l(ﬂ(h)

A—,E,- "B,
and we have the following proposition, as the dual of Proposition 1.11.

PROPOSITION 5.6. If the mapping track E, of f: B— A satisfies (5.5), then
the sequence

*71(0) X, £ (E,) 2% £(B) x £(QA)

is exact, ie, Imix=(pxy)"1(1, 1), where i*:[E; QA]-[QA, QA], and
i*=1(0) is the group with the multiplication @ of (5.3).

Proor. We notice only that the assumption dual to the l-connectedness of
C, in Lemma 1.8 is not necessary in this proposition, because we can prove
x(i*~1(0))c &(E;) by the dual proof of Lemma 1.8(i), using homotopy groups
instead of homology groups. q.ed.

Now, we consider the special case f=0: B— A, i.e., the product space E,=
Bx QA.

LEMMA 5.7. Assume that B is simple, and
n(B)=0  forrzn, n(A)=0  fors<n,

for some n=2. Then, the condition (5.5) for f=0 is satisfied.

Proor. We have [Q2A4, B]=0, by the assumptions and the obstruction the-
ory. Therefore, iy in (5.5) is bijective, since [QA4, Bx QA]=[QA, B] x [QA4, QA].

Also, j*: [Bx QA, B]-[BV QA4, B] is bijective by the assumptions and the
obstruction theory, where j is the inclusion. Therefore, p* in (5.5) is bijective
since [BV QA, B]1=[B, B] x[QA4, B]=[B, B]. q.e.d.

The following results are proved dually to Theorem 1.13 and Corollary 1.14,
by Proposition 5.6 and Lemma 5.7.

THEOREM 5.8. Assume that A is n-connected, and B is simple and n,(B)=0
for r=n (n=2). Then &(Bx QA) is the split extension

0—i*"1(0)— E(BX QA)—> E(B) x £(QA)— 1,
where i*:[Bx QA, QA]-[QA, QA] and i*~1(0) is the group with the multi-
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plication @ of (5.3).

CoroLLARY 5.9. (cf. [7, Th. 2.10]) If B is simple and n(B)=0 for r<m
orrzn,n(A)=0fors=nors>n+m,(n=m=1),then we have the split extension

0——[B, QA]— E(Bx QA)— &(B) x &(QA)— 1,

where [B, QA] is the group with usual multiplication +.

REMARK. i*71(0) in Theorem 5.8 is also the group by +, and the latter
group is an extension

0——[B A SA4, Q41— i*~1(0)— [B, QA]—0.

ExAMPLE 5.10. If A is 2-connected, then &(S' x QA) is the split extension
0—>[STAQA4, QA]— E(S' X QA)—> Z, X E(RA)— 1,

where the multiplication of the first group is induced by @ of (5.3).
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