On the Group of Self-Equivalences of the Product of Spheres

Norichika Sawashita (Received September 9, 1974)

§1. Introduction

The set $\mathscr{E}(X)$ of homotopy classes of self-(homotopy-)equivalences of a based space X forms a group by the composition of maps, and this group is studied by several authors.

The purpose of this note is to study the groups $\mathscr{E}(S^m \times S^n)$ of the products $S^m \times S^n$, where S^k is the k-sphere. These are studied by P. J. Kahn [8] for the case m = n, and by A. J. Sieradski [13] for the case m, n = 1, 3, 7.

In the first, we consider the case $n > m \ge 2$. Then the wedge $S^m \vee S^n$ is simply connected, and we can apply the results of [10, §§ 1-2] to the mapping cone $S^m \times S^n = (S^m \vee S^n) \cup e^{m+n}$ of the Whitehead product. Hence, by using the results of W. D. Barcus and M. G. Barratt [3, §4], we have in Theorem 2.6 the exact sequence

$$0 \longrightarrow H_{m,n} \longrightarrow \mathscr{E}(S^m \times S^n) \longrightarrow G_{m,n} \longrightarrow 1,$$

where $H_{m,n}$ is the factor group of $\pi_{m+n}(S^m) + \pi_{m+n}(S^n)$ and $G_{m,n}$ is the subgroup of $\mathscr{E}(S^m \vee S^n)$. In § 3, we study some cases that this sequence is split, but the extension of this sequence is not known to us in general. Also, by using the quaternion, we compute $\mathscr{E}(S^m \times S^n)$ for m=2, 3 and n>m in Theorems 4.3 and 5.3, and we see that the above sequence is split if m=2 and is not split if m=3 and n=5.

By the same way, we have in Theorem 6.2 the similar exact sequence for the case $n=m\geq 2$, which is split if n is even. Furthermore, we can determine the group $\mathscr{E}(S^n\times S^n)$ for n=3, 7 in Theorem 6.4.

The group $\mathscr{E}(S^1 \times S^n)$ is computed in §§ 7-8 by the different methods. By attaching *i*-cells $(i \ge n+3)$ to S^n , we obtain a CW-complex X_{n+1} which kills the r-th homotopy groups of S^n for $r \ge n+2$, and we see that $\mathscr{E}(S^1 \times S^n)$ is isomorphic to $\mathscr{E}(S^1 \times X_{n+1})$ (Lemma 7.1). Consider the composition

$$f: S^1 \times K(Z, n) \longrightarrow K(Z, n) \xrightarrow{f'} K(\pi_{n+1}(S^n), n+2)$$

of the natural projection and the generator f' of $H^{n+2}(Z, n; \pi_{n+1}(S^n))$. Then, it is well known that $S^1 \times X_{n+1}$ is the mapping track E_f of f. Hence, we can apply the results of J. W. Rutter [11] and [10, § 5] to $\mathscr{E}(S^1 \times X_{n+1})$, and the

group $\mathscr{E}(S^1 \times S^n)$ is determined in Theorem 7.9 for $n \ge 3$ and in Theorem 8.8 for n = 2.

The author wishes to express his gratitude to Professor M. Sugawara and Dr. S. Oka for their encouragement and valuable discussions.

§ 2. The group $\mathscr{E}(S^m \times S^n)$ for $n > m \ge 2$

In this note, all (topological) spaces are arcwise connected spaces with base point * and have homotopy types of CW-complexes, and all (continuous) maps and homotopies preserve the base points. For given spaces X and Y, we denote by [X, Y] the set of (based) homotopy classes of maps from X to Y, and by the same letter f a map $f: X \rightarrow Y$ and its homotopy class $f \in [X, Y]$. Also, we denote usually by

$$g_*: [X, Y] \longrightarrow [X, Z], \qquad g^*: [Z, X] \longrightarrow [Y, X]$$

the induced maps of a given map $g: Y \rightarrow Z$.

The group of homotopy classes of self-homotopy-equivalences of a space X is denoted by

$$\mathscr{E}(X) \ (\subset [X,X]),$$

whose multiplication is given by the composition of maps.

In the first we consider the group $\mathscr{E}(S^m \vee S^n)$ of the wedge $S^m \vee S^n$ for $n > m \ge 2$, where S^k is the k-sphere in the real (k+1)-space. Let

$$(2.1) i_1: S^m \subset S^m \vee S^n, i_2: S^n \subset S^m \vee S^n$$

be the inclusion maps and

$$\lambda \colon \pi_n(S^m) \longrightarrow \mathscr{E}(S^m \vee S^n)$$

be the homomorphism given by

(2.3)
$$\lambda(\xi) \circ i_1 = i_1, \qquad \lambda(\xi) \circ i_2 = i_1 \circ \xi + i_2$$

for $\xi \in \pi_n(S^m)$, where \circ is the composition of maps and + is the sum in $\pi_n(S^m \vee S^n)$. Then we have the next proposition (cf. [10, § 1]).

Proposition 2.4. For $n > m \ge 2$, we have the split exact sequence

$$0 \longrightarrow \pi_n(S^m) \xrightarrow{\lambda} \mathscr{E}(S^m \vee S^n) \longrightarrow Z_2 + Z_2 \longrightarrow 1,$$

and so we have

$$\mathscr{E}(S^m \vee S^n) = \{a_{ij}\lambda(\xi) \mid i, j \in \mathbb{Z}_2 = \{0, 1\}, \xi \in \pi_n(S^m)\},\$$

where $a_{ij} = (-\iota_m)^i \vee (-\iota_n)^j (\iota_k \in \pi_k(S^k))$ is the class of the identity map with relations

$$\lambda(\xi)a_{ij} = a_{ij}\lambda((-\iota_m)^i \circ \xi \circ (-\iota_n)^j).$$

The product $S^m \times S^n$ is the mapping cone

$$S^m \times S^n = (S^m \vee S^n) \cup_{[i,j]} e^{m+n}$$

of the Whitehead product

$$[i_1, i_2]: S^{m+n-1} \longrightarrow S^m \vee S^n$$

of the inclusion maps of (2.1). By the above result and the results of $[10, \S 2]$, we have the following theorem.

THEOREM 2.6. Assume $n > m \ge 2$. Then there is an exact sequence

$$(2.7) 0 \longrightarrow H_{m,n} \xrightarrow{\lambda'} \mathscr{E}(S^m \times S^n) \xrightarrow{\varphi} G_{m,n} \longrightarrow 1.$$

The groups $H_{m,n}$ and $G_{m,n}$ are given by

$$(2.8) H_{m,n} = \pi_{m+n}(S^n)/[\iota_m, \pi_{n+1}(S^m)] + \pi_{m+n}(S^n)/[\iota_n, \pi_{m+1}(S^n)],$$

$$(2.9) G_{m,n} = \{a_{ij}\lambda(\xi) \mid [\iota_m, \xi] = 0, \xi \in \pi_n(S^m), i, j \in \mathbb{Z}_2\} \quad (\subset \mathscr{E}(S^m \vee S^n)),$$

and φ is given by the restriction on $S^m \vee S^n$.

PROOF. By the results of [10, §2], we have the exact sequence

$$0 \longrightarrow H_{m,n} \xrightarrow{\lambda'} \mathscr{E}(S^m \times S^n) \xrightarrow{\varphi \times \psi} G'_{m,n} \longrightarrow 1,$$

where $H_{m,n} = \pi_{m+n}(S^m \times S^n)/\text{Im } \gamma$ for the homomorphism

$$\gamma = \Gamma(i, f) : \lceil S^{m+1} \lor S^{n+1}, S^m \times S^n \rceil \longrightarrow \pi_{m+n}(S^m \times S^n)$$

 $(i: S^m \vee S^n \rightarrow S^m \times S^n \text{ is the inclusion, } f = [i_1, i_2]), \text{ and}$

$$G'_{m,n} = \{(h,\varepsilon) \mid h \in \mathscr{E}(S^m \vee S^n), \varepsilon = \pm \iota \in \mathscr{E}(S^{m+n-1}), \ h \circ f = f \circ \varepsilon$$
$$\text{in} \quad \pi_{m+n-1}(S^m \vee S^n) \}.$$

We see easily that $\Gamma(i, f)$, defined in [10, (2.5)], coincides by definition with the homomorphism

$$\kappa: \pi_{m+1}(X) + \pi_{m+1}(X) \longrightarrow \pi_{m+n}(X)$$

of [3, § 8, p. 70] for $X = S^m \times S^n$ and $w = i \circ i_1$, $v = i \circ i_2$. Therefore, by [3, (8.1) (i)] we have

$$\gamma(\eta, \xi) = -[i \circ i_1, \xi] + (-1)^{n+1}[\eta, i \circ i_2]$$

for $\eta \in \pi_{m+1}(S^m \times S^n)$, $\xi \in \pi_{n+1}(S^m \times S^n)$, and we see that $H_{m,n}$ is given by (2.8).

On the other hand, by (2.3) and the definition of the Whitehead product, we have

$$a_{ij}\lambda(\xi)\circ f = [(-1)^{i}i_{1}, i_{1}\circ(-\iota_{m})^{i}\xi + (-1)^{j}i_{2}]$$
$$= (-1)^{i}[i_{1}, i_{1}\circ(-\iota_{m})^{i}\xi] + (-1)^{i+j}[i_{1}, i_{2}].$$

By using the direct sum decomposition

$$\pi_{m+n-1}(S^m \vee S^n) \simeq \pi_{m+n-1}(S^m) + \pi_{m+n-1}(S^n) + \pi_{n+m}(S^m \times S^n, S^m \vee S^n),$$

we see easily that

$$a_{ij}\lambda(\xi)\circ f=f\circ \varepsilon \quad \text{if and only if} \quad [\iota_m,\xi]=0 \quad \text{and} \quad \varepsilon=(-\iota)^{i+j}\,.$$

Therefore, $G_{m,n}$ of (2.9) is isomorphic to $G'_{m,n}$ by corresponding $a_{ij}\lambda(\xi) \leftrightarrow (a_{ij}\lambda(\xi), (-\iota)^{i+j})$, and the homomorphism $\varphi \times \psi$ corresponds to the restriction φ . q.e.d.

§ 3. Group extensions in (2.7)

In this section, assume that $n > m \ge 2$. Let $\xi \in \pi_n(S^m)$ satisfy $[\ell_m, \xi] = 0$. Then there is a map $F_{\xi} : S^m \times S^n \to S^m$ of type (ℓ_m, ξ) by the definition of the Whitehead product, and we obtain a map

(3.1)
$$\bar{\lambda}(\xi) = (F_{\varepsilon}, p_2) \colon S^m \times S^n \longrightarrow S^m \times S^n,$$

where p_2 is the projection onto the 2nd factor. Consider the elements

$$(3.2) b_{ij} = (-\ell_m)^i \times (-\ell_n)^j \in \mathscr{E}(S^m \times S^n), i, j \in \mathbb{Z}_2$$

Then we have easily the following lemma by the definition.

LEMMA 3.3.
$$\varphi(b_{ij}\bar{\lambda}(\xi)) = a_{ij}\lambda(\xi),$$

where φ is the homomorphism in (2.7).

THEOREM 3.4. Assume that $\bar{\lambda}$ of (3.1) can be chosen so that

$$\bar{\lambda}(\xi_1)\bar{\lambda}(\xi_2) = \bar{\lambda}(\xi_1 + \xi_2), \qquad \bar{\lambda}(\xi_1)b_{ij} = b_{ij}\bar{\lambda}((-\iota_m)^i \circ \xi_1 \circ (-\iota_n)^j),$$

for any $\xi_i \in \pi_n(S^m)$ with $[\iota_m, \xi_i] = 0$. Then the exact sequence (2.7) is split. Also the action of $G_{m,n}$ on $H_{m,n}$ is given by

$$a_{ij}\lambda(\xi)\cdot(\alpha,\beta)=((-1)^{i+j}(-\iota_m)^i\circ F_{\varepsilon^0}(\alpha,\beta),(-1)^i\beta)$$

for $\alpha \in \pi_{m+n}(S^m)/[\ell_m, \pi_{n+1}(S^m)], \beta \in \pi_{m+n}(S^n)/[\ell_n, \pi_{m+1}(S^n)].$

PROOF. The former is obtained immediately by Theorem 2.6 and Lemma 3.3. By the definition of $\bar{\lambda}(\xi)$ of (3.1), we have the homotopy commutative diagram

$$S^{m} \times S^{n} \xrightarrow{l} (S^{m} \times S^{n}) \vee S^{m+n} \xrightarrow{1 \vee (\alpha, \beta)} (S^{m} \times S^{n}) \vee (S^{m} \times S^{n}) \xrightarrow{\overline{v}} S^{m} \times S^{n}$$

$$\downarrow \overline{\lambda}(\xi) \qquad \qquad \downarrow \overline{\lambda}(\xi) \vee 1 \qquad \qquad \downarrow \overline{\lambda}(\xi) \vee \overline{\lambda}(\xi) \qquad \qquad \downarrow \overline{\lambda}(\xi)$$

$$S^{m} \times S^{n} \xrightarrow{l} (S^{m} \times S^{n}) \vee S^{m+n} \xrightarrow{1 \vee \overline{\lambda}(\xi) \circ (\alpha, \beta)} (S^{m} \times S^{n}) \vee (S^{m} \times S^{n}) \xrightarrow{\overline{v}} S^{m} \times S^{n}.$$

The composition of the maps in the upper sequence is $\lambda'(\alpha, \beta)$ by the definition of λ' in [10, §2], and also the composition of the lower one is $\lambda'(F_{\xi^0}(\alpha, \beta), \beta)$ by (3.1). These show that

$$\bar{\lambda}(\xi)^{-1}\lambda'(\alpha,\beta)\bar{\lambda}(\xi) = \lambda'(F_{\mathfrak{x}^{\circ}}(\alpha,\beta),\beta).$$

By the same way, we have

$$b_{ij}^{-1}\lambda'(\alpha,\beta)b_{ij} = \lambda'((-\iota_m)^i \circ \alpha \circ (-\iota)^{i+j}, (-\iota_n)^j \circ \beta \circ (-\iota)^{i+j})$$
$$= \lambda'((-1)^{i+j}(-\iota_m)^i \circ \alpha, (-1)^i \beta),$$

because $(-\iota_n) \circ \beta \equiv -\beta \mod [\iota_n, \pi_{m+1}(S^n)]$ by [4, Th. 6.7, 6.9]. q.e.d.

COROLLARY 3.5. Assume that $n > m \ge 2$ and $[c_m, \xi] \ne 0$ for any nonzero element $\xi \in \pi_n(S^m)$. Then we have the split exact sequence:

$$0 \longrightarrow H_{mn} \longrightarrow \mathscr{E}(S^m \times S^n) \longrightarrow Z_2 + Z_2 \longrightarrow 0,$$

and the action of $Z_2 + Z_2$ on $H_{m,n}$ are given by

$$a_{ii} \cdot (\alpha, \beta) = ((-1)^{i+j} (-\iota_m)^i \circ \alpha, (-1)^i \beta).$$

PROOF. It is clear, since $G_{m,n} = \{a_{ij}\} = Z_2 + Z_2$ by the assumption. q.e.d.

Example 3.6. Let $n-1=m \ge 2$. Then, we have the exact sequence

$$0 \longrightarrow H_{m,m+1} \longrightarrow \mathscr{E}(S^m \times S^{m+1}) \longrightarrow G_{m,m+1} \longrightarrow 0,$$

where

$$H_{m,m+1} = \pi_{2m+1}(S^m)/\{[\iota_m, \eta_m \eta_{m+1}]\} + \pi_{2m+1}(S^{m+1})/\{[\iota_{m+1}, \iota_{m+1}]\},$$

$$G_{m,m+1} = \begin{cases} Z_2 + Z_2 + Z_2 & \text{if } m \equiv 3 \mod 4 \text{ or } m = 2, 6 \\ Z_2 + Z_2 & \text{if } m \not\equiv 3 \mod 4 \text{ and } m \neq 2, 6, \end{cases}$$

 $(\eta_k \text{ is the generator of } \pi_{k+1}(S^k))$. Moreover if $m \not\equiv 3 \mod 4$ and $m \not\equiv 2$, 6, then the above exact sequence is split with the action given by $a_{ij} \cdot (\alpha, \beta) = ((-1)^j \alpha, (-1)^i \beta)$.

PROOF. By [5, p. 232] and [6, Lemma 5.1], it is proved that $[\ell_m, \eta_m] \neq 0$ if and only if $m \neq 3 \mod 4$ and $m \neq 2$, 6. Also $(-\ell_m) \circ \alpha \equiv -\alpha \mod [\ell_m, \pi_{m+2}(S^m)]$ by [4, Th. 6.7, 6.9]. These results, Theorem 3.4 and Corollary 3.5 show the desired results.

§4. The group $\mathscr{E}(S^2 \times S^n)$ for $n \ge 3$

In this section, we assume that $n \ge 3$.

LEMMA 4.1. (i) The group $G_{2,n}$ of (2.9) is

$$G_{2,n} = \{a_{ij}\lambda(\xi) \mid \xi \in \pi_n(S^2), i, j \in Z_2\},$$

and the multiplication is given by

$$a_{ij}\lambda(\xi)a_{i'j'}\lambda(\xi') = a_{i+i',j+j'}\lambda((-1)^{j'}\xi + \xi').$$

(ii) The group $H_{2,n}$ of (2.8) is

$$H_{2n} = \pi_{n+2}(S^2) + Z_2$$
.

PROOF. It is well known that $[\ell_2, \xi] = 0$ for $\xi \in \pi_n(S^2)$ $(n \ge 3)$. Therefore, $G_{2,n}$ is given as above by Theorem 2.6. It is known that

$$(4.2) (-\iota_2) \circ \xi = \xi \text{for } \xi \in \pi_n(S^2),$$

(cf. [12, p. 278]), and we have

$$a_{ij}\lambda(\xi)a_{i'j'}\lambda(\xi') = a_{i+i',j+j'}\lambda((-1)^{j'}\xi + \xi')$$

by Theorem 2.6 and Proposition 2.4. Since $\pi_{n+2}(S^n) = \mathbb{Z}_2$, (ii) follows immediately. q.e.d.

Now we have the next theorem by Theorem 3.2.

THEOREM 4.3. Let $n \ge 3$. Then the exact sequence

$$0 \longrightarrow H_{2,n} \longrightarrow \mathscr{E}(S^2 \times S^n) \longrightarrow G_{2,n} \longrightarrow 1$$

is split, where $H_{2,n}$ and $G_{2,n}$ are the groups in Lemma 4.1. The action of $G_{2,n}$ on $H_{2,n}$ is given by

$$a_{i,i}\lambda(\xi)\cdot(\alpha,\beta)=((-1)^{i+j}\alpha+\xi\beta,\beta)$$

for
$$\xi \in \pi_n(S^2)$$
, $\alpha \in \pi_{n+2}(S^2)$, $\beta \in \pi_{n+2}(S^n) = Z_2$.

PROOF. Consider the Hopf map $h: S^3 \to S^2$ and a map $F: S^2 \times S^3 \to S^2$ of type (ι_2, h) , given by

$$h(q) = qiq^{-1}, F(p,q) = qpq^{-1},$$

where $q \in S^3$ is a quaternion of norm 1, $p \in S^2$ is a pure quaternion of norm 1, and i is the imaginary unit. Then, we can construct

$$F_{\xi} = F \circ (\iota_2 \times \xi') \colon S^2 \times S^n \longrightarrow S^2 \,,$$

$$\bar{\lambda}(\xi) = (F_{\xi}, p_2) \colon S^2 \times S^n \longrightarrow S^2 \times S^n \,,$$

for any $\xi \in \pi_n(S^2)$, where $\xi' \in \pi_n(S^3)$ satisfies $h\xi' = \xi$. It is clear that F_{ξ} is of type (ℓ_2, ξ) . By using the equality

$$\bar{\lambda}(\xi)(p,x) = (\xi'(x)p\xi'(x)^{-1}, x)$$
 for $p \in S^2, x \in S^n$,

we can show that $\bar{\lambda}$ satisfies the assumptions of Theorem 3.4 as follows.

Also, it is easy to see that

$$F \circ (h \times \iota_3) = h \circ m \circ T$$

where $m: S^3 \times S^3 \to S^3$ is the multiplication of S^3 and $T: S^3 \times S^3 \to S^3 \times S^3$ is the switching map. Therefore, for any $\alpha = h\alpha' \in \pi_{n+2}(S^2)$ and $\beta \in \pi_{n+2}(S^2)$, we have

$$F_{\xi}(\alpha, \beta) = F \circ (h \times \iota_3) \circ (\alpha', \xi'\beta)$$
$$= h(\xi'\beta + \alpha') = \alpha + \xi\beta.$$

These show the desired results by Theorem 3.4.

q.e.d.

§5. The group $\mathscr{E}(S^3 \times S^n)$ for $n \ge 4$

In this section, we study the case m=3.

For any $\xi \in \pi_n(S^3)$, we have $[\ell_3, \xi] = 0$ and we can define maps

$$E_{\varepsilon}: S^3 \times S^n \longrightarrow S^3, \qquad \bar{\lambda}(\xi): S^3 \times S^n \longrightarrow S^3 \times S^n$$

by $E_{\xi}(x, y) = x\xi(y)$, $\bar{\lambda}(\xi)(x, y) = (x\xi(y), y)$. By Theorem 2.6, we have the exact sequence

$$(5.1) 0 \longrightarrow \pi_{n+3}(S^3) + \pi_{n+3}(S^n) \xrightarrow{\lambda'} \mathscr{E}(S^3 \times S^n) \xrightarrow{\varphi} G_{3,n} \longrightarrow 1,$$

where

$$G_{3,n} = \{a_{i,j}\lambda(\xi) \mid \xi \in \pi_n(S^3), i, j \in \mathbb{Z}_2\}.$$

Since $\bar{\lambda}(\xi)$ is of type (ι_3, ξ) , we have

(5.2)
$$\varphi(b_{ij}\bar{\lambda}(\xi)) = a_{ij}\lambda(\xi) \quad \text{for} \quad \xi \in \pi_n(S^3),$$

where b_{ij} are the elements of (3.2).

THEOREM 5.3. Let $n \ge 4$. Then we have

$$\mathcal{E}(S^3 \times S^n) = \{b_{ij}\bar{\lambda}(\xi)\lambda'(\alpha,\beta) \mid \alpha \in \pi_{n+3}(S^3), \beta \in \pi_{n+3}(S^n), \xi \in \pi_n(S^3), i, j \in \mathbb{Z}_2\}.$$

The group structure of $\mathscr{E}(S^3 \times S^n)$ is given as follows.

(i)
$$\lambda'(\alpha_1, \beta_1)\lambda'(\alpha_2, \beta_2) = \lambda'(\alpha_1 + \alpha_2, \beta_1 + \beta_2)$$
,

(ii)
$$\bar{\lambda}(\xi_1)\bar{\lambda}(\xi_2) = \bar{\lambda}(\xi_1 + \xi_2)$$
,

(iii)
$$b_{ii}b_{i'i'} = b_{i+i',i+i}$$
, $b_{00} = 1$;

(iv)
$$\bar{\lambda}(\xi)b_{01} = b_{01}\bar{\lambda}(-\xi)$$
,

(v)
$$\bar{\lambda}(\xi)b_{10} = b_{10}\bar{\lambda}(-\xi)\lambda'(\omega_3 S^3 \xi, 0)$$
;

(vi)
$$\lambda'(\alpha, \beta)b_{01} = b_{01}\lambda'(-\alpha, -(-\iota_n)\circ\beta),$$

(vii)
$$\lambda'(\alpha, \beta)b_{10} = b_{10}\lambda'(\alpha, -\beta)$$
,

(viii)
$$\lambda'(\alpha, \beta)\bar{\lambda}(\xi) = \bar{\lambda}(\xi)\lambda'(\alpha - \xi\beta, \beta)$$
.

Here, $S^3: \pi_n(S^3) \to \pi_{n+3}(S^6)$ is the suspension homomorphism. Also ω_3 is a generator of $\pi_6(S^3) = Z_{12}$ given by

$$\pi^*(\omega_3) = \phi,$$

where $\phi: S^3 \times S^3 \to S^3$ is the commutator map: $\phi(p,q) = pqp^{-1}q^{-1}$, and $\pi: S^3 \times S^3 \to (S^3 \times S^3)/(S^3 \vee S^3) = S^6$ is the collapsing map, (cf. e.g. [2, p. 173]).

To prove the theorem, we use the next two lemmas.

LEMMA 5.5. Let $p_1: S^3 \times S^n \to S^3$ and $p_2: S^3 \times S^n \to S^n$ be the projections. Then we have

$$p_1 \cdot \xi p_2 = \pi^*(\omega_3 S^3 \xi) \cdot \xi p_2 \cdot p_1 = \xi p_2 \cdot p_1 \cdot \pi^*(\omega_3 S^3 \xi),$$

where $\pi: S^3 \times S^n \to (S^3 \times S^n)/(S^3 \vee S^n) = S^{n+3}$ is the collapsing map.

PROOF. It is easy to see that

$$\begin{aligned} p_1 \cdot \xi p_2 \cdot p_1^{-1} \cdot \xi p_2^{-1} &= \phi \circ (\iota_3 \times \xi) \\ &= \omega_3 \circ \pi \circ (\iota_3 \times \xi) = \omega_3 \circ S^3 \xi \circ \pi, \end{aligned}$$

by (5.4), and we have the first equality. Therefore we have the desired results, since ϕ is homotopic to the map $S^3 \times S^3 \to S^3$ given by $(p, q) \to p^{-1}q^{-1}pq$.

q.e.d.

LEMMA 5.6. For the monomorphism λ' in (5.1), we have

$$\lambda'(\alpha, 0)f = ((p_1 f) \cdot (\alpha \pi f), p_2 f)$$

for any $\alpha \in \pi_{n+3}(S^3)$ and $f: S^3 \times S^n \to S^3 \times S^n$.

PROOF. The desired equality follows from

$$p_1\lambda'(\alpha,0)=p_1\cdot\alpha\pi, \qquad p_2\lambda'(\alpha,0)=p_2,$$

which are seen by the definition: $\lambda'(\alpha, 0) = \mathcal{F} \circ (1 \vee (\alpha, 0)) \circ l$. q.e.d.

REMARK. If $n \ge 5$, we see easily by definition that

$$\lambda'(\alpha, \beta) = (p_1 \cdot \alpha \pi, p_2 + \beta \pi)$$

where + is the sum in the cohomotopy group $[S^3 \times S^n, S^n]$. Now we are ready to prove Theorem 5.3.

PROOF OF THEOREM 5.3. By (5.1) and (5.2), it is sufficient to prove the relations (i)-(viii). (i)-(iii) are seen easily.

(iv)
$$\bar{\lambda}(\xi)b_{01} = (p_1 \cdot \xi p_2, p_2)(\iota_3 \times (-\iota_n))$$

= $(p_1 \cdot (-\xi p_2), (-\iota_n) \circ p_2) = b_{01}\bar{\lambda}(-\xi)$.

(viii)
$$\bar{\lambda}(\xi)\lambda'(\alpha,\beta)\bar{\lambda}(-\xi) = \lambda'(\bar{\lambda}(\xi)\circ(\alpha,\beta))$$

$$= \lambda'((p_1\cdot\xi p_2,p_2)\circ(\alpha,\beta)) = \lambda'(\alpha+\xi\beta,\beta).$$

$$(\mathbf{v}) \quad \bar{\lambda}(\xi)b_{10} = (p_1 \cdot \xi p_2, p_2)(-\iota_3 \times \iota_n)$$

$$= ((-p_1) \cdot \xi p_2, p_2) = b_{10}((-\xi p_2) \cdot p_1, p_2)$$

$$= b_{10}(p_1 \cdot (-\xi p_2) \cdot \pi^*(\omega_3 S^3 \xi), p_2) \text{ by Lemma 5.5}$$

$$= b_{10} \lambda'(\omega_3 S^3 \xi, 0) \bar{\lambda}(-\xi) \text{ by Lemma 5.6 and } \pi \bar{\lambda}(-\xi) = \pi$$

$$= b_{10} \bar{\lambda}(-\xi) \lambda'(\omega_3 S^3 \xi, 0) \text{ by (viii)}.$$

(vi)
$$b_{01}\lambda'(\alpha,\beta)b_{01} = \lambda'(b_{01}(\alpha,\beta)(-\iota)) = \lambda'(-\alpha,-(-\iota_n)\beta).$$

COROLLARY 5.8. If $\omega_{3*}S^3$: $\pi_n(S^3) \to \pi_{n+3}(S^3)$ is 0-map, then the exact sequence (5.1) is split, where the multiplication of $G_{3,n}$ is given in Theorem 3.4.

COROLLARY 5.9. Assume that there is an element $\xi \in \pi_n(S^3)$ such that

$$2\alpha + \xi \beta + \omega_3 S^3 \xi \neq 0$$
 for any $\alpha \in \pi_{n+3}(S^3)$, $\beta \in \pi_{n+3}(S^n)$.

Then the sequence (5.1) is not split.

PROOF. It follows from Proposition 2.4 that $(a_{10}\lambda(\xi))^2=1$. On the other hand, using the relations in Theorem 5.3, we have

$$(b_{10}\bar{\lambda}(\xi)\lambda'(\alpha,\beta))^{2} = b_{10}\bar{\lambda}(\xi)b_{10}\lambda'(\alpha,-\beta)\bar{\lambda}(\xi)\lambda'(\alpha,\beta) \qquad \text{by (vii)}$$

$$= \bar{\lambda}(-\xi)\lambda'(\omega_{3}S^{3}\xi,0)\lambda'(\alpha,-\beta)\lambda'(\alpha+\xi\beta,\beta)\bar{\lambda}(\xi) \quad \text{by (v), (viii)}$$

$$= \lambda'(2\alpha+\xi\beta+\omega_{3}S^{3}\xi,0) \qquad \text{by (i), (viii), (ii).}$$

The last element is not zero by the assumption, and we have the corollary. q.e.d.

Example 5.10. The next exact sequence is not split.

$$0 \longrightarrow Z_{24} + Z_2 \longrightarrow \mathscr{E}(S^3 \times S^5) \longrightarrow Z_2 + Z_2 + Z_2 \longrightarrow 0$$
.

PROOF. For the element $\eta_3^2 \in \pi_5(S^3)$, we have

$$2\alpha + \eta_3^2 \beta + \omega_3 S^3 \eta_3^2 \neq 0$$
 for any $\alpha \in \pi_8(S^3)$, $\beta \in \pi_8(S^5)$,

by [14, Prop. 5.3, 5.6, 5.9], and so the desired results by the above corollary. q.e.d.

§ 6. The group $\mathscr{E}(S^n \times S^n)$

Let $GL(2, \mathbb{Z})$ be the group of integral 2×2 matrices having integral inverse matrices, with the usual multiplication. Then, it is easy to see that there is an isomorphism

$$\chi \colon GL(2,Z) \longrightarrow \mathscr{E}(S^n_n \vee S^n)$$

given by

$$\chi\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \mathcal{V}((i_1a + i_2b) \vee (i_1c + i_2d)),$$

where $i_j: S^n \to S^n \vee S^n$ is the inclusion to the j-th factor, Γ is the folding map, and $k \in \mathbb{Z}$ means the map of degree k.

The following theorem is proved essentially by P. J. Kahn [8, §2.3].1)

THEOREM 6.2. The following sequence is exact:

$$0 \longrightarrow H_{n,n} \xrightarrow{\lambda'} (S^n \times S^n) \longrightarrow G_{n,n} \longrightarrow 1,$$

where

$$H_{n,n} = \pi_{2n}(S^n)/\{[\epsilon_n, \epsilon_n]\} + \pi_{2n}(S^n)/\{[\epsilon_n, \epsilon_n]\};$$

$$GL(2, Z) \qquad if \quad n = 1, 3, 7,$$

$$\{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, Z), \ ab \equiv cd \equiv 0 \bmod 2 \} \quad if \ n \ is \ odd \ and \ \neq 1, 3, 7,$$

$$\{\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \pm \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \ \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \} \quad if \ n \ is \ even.$$

PROOF. By the same way as Theorem 2.6, it is sufficient to show that the group $G'_{n,n}$ in the proof of Theorem 2.6 is isomorphic to the group $G_{n,n}$ in the theorem.

It follows immediately that

$$\chi \begin{pmatrix} a & b \\ c & d \end{pmatrix} [i_1, i_2] = [i_1 a + i_2 b, i_1 c + i_2 d]$$

$$= ac[i_1, i_1] + (ad + (-1)^n bc)[i_1, i_2] + bd[i_2, i_2].$$

On the other hand, it is well-known that $[\iota_n, \iota_n] = 0$ if n = 1, 3, 7, and the order of $[\iota_n, \iota_n]$ is 2 if n is odd and $n \neq 1, 3, 7$, and is infinite if n is even (cf. e.g. [7, p. 336]). Therefore, we have the desired results by studying the conditions that the last element is equal to $[i_1, i_2] \circ \varepsilon$.

COROLLARY 6.3. (P. J. Kahn [8, Th. 4]) If n is even, then the sequence in Theorem 6.2 is split. Also the action of $G_{n,n}$ on $H_{n,n}$ is given by

¹⁾ It seems to the author that the consideration for the case n=3,7 is neglected and that $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ of [8, p. 34] should be $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

$$\begin{pmatrix}0&1\\1&0\end{pmatrix}\cdot(\xi_1,\xi_2)=(\xi_2,\xi_1),\quad\begin{pmatrix}0&-1\\1&0\end{pmatrix}\cdot(\xi_1,\xi_2)=(-\xi_2,\xi_1)\,.$$

In the rest of this section, assume that n=3, 7.

For any $N = (n_{ij}) \in GL(2, \mathbb{Z})$, we define the element $\bar{\lambda}(N) \in \mathscr{E}(S^n \times S^n)$ by

$$\bar{\lambda}(N)(p,q) = (p^{n_{11}}q^{n_{12}}, p^{n_{21}}q^{n_{22}})$$
 for $p, q \in S^n$,

where the multiplication is the one of quaternions or Cayley numbers. Then we have the following theorem.

THEOREM 6.4. Let n=3, 7. Then

$$\mathscr{E}(S^n \times S^n) = \{ \lambda'(\alpha, \beta) \bar{\lambda}(N) \mid \alpha, \beta \in \pi_{2n}(S^n), N \in GL(2, \mathbb{Z}) \},$$

and the multiplication is given as follows:

- (i) $\lambda'(\alpha, \beta)\lambda'(\alpha', \beta') = \lambda'(\alpha + \alpha', \beta + \beta')$,
- (ii) $\bar{\lambda}(N)\lambda'(\alpha,\beta) = \lambda'(|N|(n_{11}\alpha + n_{12}\beta), |N|(n_{21}\alpha + n_{22}\beta))\bar{\lambda}(N)$
- (iii) $\bar{\lambda}(N)\bar{\lambda}(M) = \lambda'(a_1\omega_n, a_2\omega_n)\bar{\lambda}(NM)$,

 $a_i = -|NM|(n_{i1}n_{i2}m_{12}m_{21} + {n_{i1} \choose 2}m_{11}m_{12} + {n_{i2} \choose 2}m_{21}m_{22})(i=1,2),$ where $N = (n_{ij}), M = (m_{ij}),$ and |N| means the determinant of N, and ω_n is a generator of $\pi_{2n}(S^n) = Z_{12}$ or Z_{120} .

Before we prove this theorem, we show the next two lemmas.

LEMMA 6.5.
$$\alpha \pi \cdot p_i = p_i \cdot \alpha \pi$$
 for $\alpha \in \pi_6(S^3)$, $i = 1, 2$.

PROOF. By the commutative diagram

$$S^{3} \times S^{3} \xrightarrow{(\pi, p_{i})} S^{6} \times S^{3} \xrightarrow{\alpha \times 1} S^{3} \times S^{3} \xrightarrow{\phi} S^{3}$$

$$\downarrow^{\pi'} \qquad \qquad \downarrow^{\pi} \qquad \parallel$$

$$S^{9} \xrightarrow{S^{3}\alpha} S^{6} \xrightarrow{\omega_{3}} S^{3}$$

we have $\alpha \pi \cdot p_i \cdot \alpha \pi^{-1} \cdot p_i^{-1} = (\alpha \pi, p_i)^* \phi = 0.$

q.e.d.

LEMMA 6.6.
$$r(mp_1 \cdot np_2) = rmp_1 \cdot rnp_2 \cdot \left(-\binom{r}{2}mn\omega_3\pi\right)$$
.

PROOF. This lemma follows from $p_2 \cdot p_1 = p_1 \cdot p_2 \cdot (-\omega_3 \pi)$ (Lemma 5.5) and Lemma 6.5.

PROOF OF THEOREM 6.4. We prove the theorem for n=3, and the theorem for n=7 is proved by the same way.

By Theorem 6.2, we have the exact sequence

$$0 \longrightarrow \pi_6(S^3) + \pi_6(S^3) \xrightarrow{\lambda'} \mathscr{E}(S^3 \times S^3) \xrightarrow{\varphi} GL(2, \mathbb{Z}) \longrightarrow 1.$$

We notice that $\lambda'(\alpha, \beta) = (p_1 \cdot \alpha \pi, p_2 \cdot \beta \pi)$ for $\alpha, \beta \in \pi_6(S^3)$, and we have the desired results by Lemmas 6.5, 6.6. q.e.d.

§7. The group $\mathscr{E}(S^1 \times S^n)$ for $n \ge 3$

In the rest of this paper, we consider the groups $\mathscr{E}(S^1 \times S^n)$ $(n \ge 2)$. For these groups, we cannot use the methods in §2 since $S^1 \vee S^n$ is not simply connected.

By attaching *i*-cells $(i \ge n+2)$ to a given CW-complex X, we obtain a CW-complex X_n which kills r-th homotopy groups of X for r > n:

$$\pi_r(X_n) = 0 \quad (r > n), \qquad i_{n*} : \pi_r(X) \simeq \pi_r(X_n) \quad (r \le n),$$

 $(i_n: X \rightarrow X_n \text{ is the inclusion}).$

Lemma 7.1. If X is an n-dimensional CW-complex. Then we have iso m or n-dimensional CW-complex.

$$\mathscr{E}(X) \simeq \mathscr{E}(X_n), \qquad \mathscr{E}(S^1 \times X) \simeq \mathscr{E}(S^1 \times X_{n+1}).$$

PROOF. It is easy to see that the induced maps

$$i_n^*: [X_n, X_n] \longrightarrow [X, X_n], \qquad i_n^*: [X, X] \longrightarrow [X, X_n]$$

are bijective by the elementary homotopy theory. Therefore

$$i_{n*}^{-1}i_{n}^{*}: [X_{n}, X_{n}] \longrightarrow [X, X]$$

is bijective, and we have the first isomorphism.

It is obvious that $S^1 \times X_{n+1}$ is obtained from $S^1 \times X$ by attaching *i*-cells $(i \ge n+3)$ and kills the r-th homotopy groups of $S^1 \times X$ for r > n+1. Therefore, we have the second isomorphism from the above result. q.e.d.

REMARK. The first isomorphism in the above lemma is shown in [1, Lemma 5.1] under the additional assumption that X is 1-connected.

Now, consider the case $X = S^n$ for $n \ge 3$. Then, it is well known that X_n and X_{n+1} are embeddable in the sequence of the induced fiberings

(7.2)
$$\Omega A \xrightarrow{i'} E_{f'} \xrightarrow{p'} K(Z, n) \xrightarrow{f'} A \\
\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel \\
K(Z_2, n+1) \quad X_{n+1} \qquad X_n \quad K(Z_2, n+2)$$

of the generator f' of $H^{n+2}(Z, n; Z_2) = Z_2$ (cf. e.g. [9, p. 140]). Therefore, we have the sequence of the induced fiberings

(7.3)
$$\Omega A \xrightarrow{i} S^1 \times X_{n+1} (= E_f) \xrightarrow{p} S^1 \times X_n \xrightarrow{f} A$$

of $f = f' \circ p_2$ such that $p = \iota_1 \times p'$, i = (*, i').

LEMMA 7.4. The two induced maps

$$i_*: [\Omega A, \Omega A] \longrightarrow [\Omega A, E_f], p^*: [S^1 \times X_n, S^1 \times X_n] \longrightarrow [E_f, S^1 \times X_n]$$

are both bijective.

PROOF. Since $i' = p_2 \circ i$, we have

$$i'_* = p_{2*}i_* : [\Omega A, \Omega A] \xrightarrow{i_*} [\Omega A, E_f] \xrightarrow{p_{2*}} [\Omega A, X_{n+1}].$$

Using the homotopy exact sequence of the fibering (X_{n+1}, p', X_n) in (7.2), we see easily that i_*' is bijective. Also p_{2*} is bijective since $E_f = S^1 \times X_{n+1}$. Therefore i_* is bijective.

It is easy to see that p^* is equal to

$$H^1(S^1) + H^n(K(Z, n)) \xrightarrow{\iota_1^{*+p'^{*}}} H^1(S^1) + H^n(X_{n+1}),$$

which is isomorphic.

q.e.d.

By applying [10, Prop. 5.6] for f in (7.3),

LEMMA 7.5. We have the exact sequence

$$i^{*-1}(0) \xrightarrow{\kappa} \mathscr{E}(S^1 \times X_{n+1}) \xrightarrow{\varphi \times \psi} \mathscr{E}(S^1 \times X_n) \times \mathscr{E}(\Omega A)$$

of homomorphisms, where i^* : $[S^1 \times X_{n+1}, \Omega A] \rightarrow [\Omega A, \Omega A]$ and $i^{*-1}(0)$ is a group with an unusual multiplication \oplus .

On this sequence, we have the following three lemmas.

LEMMA 7.6.
$$\operatorname{Im}(\varphi \times \psi) = \mathscr{E}(S^1 \times X_n) = Z_2 + Z_2.$$

PROOF. It is clear that $\mathscr{E}(A) = \mathscr{E}(\Omega A) = 1$, since $A = K(Z_2, n+2)$. Therefore $f \circ \xi \simeq f$ for any $\xi \in \mathscr{E}(S^1 \times X_n)$, and there is $h \in \mathscr{E}(S^1 \times X_{n+1})$ such that $p \circ h \simeq \xi \circ p$, i.e., $(\varphi \times \psi)(h) = (\xi, 1)$. This shows the first equality. Since $X_n = K(Z, n)$ we see that $\mathscr{E}(X_n) = Z_2$ and $[S^1 \wedge X_n, X_n] = 0$, and so the second equality by [10, Example 5.10].

Lemma 7.7.
$$i^{*-1}(0) = Z_2$$
.

PROOF. By using the Serre cohomology sequence, we have

$$H^n(X_{n+1}; Z_2) = Z_2, \qquad H^{n+1}(X_{n+1}; Z_2) = 0.$$

Therefore, we see that $[S^1 \times X_{n+1}, \Omega A] = H^n(X_{n+1}; Z_2) + H^{n+1}(X_{n+1}; Z_2) = Z_2$, and $i^* = (*, i')^*$ is equal to 0. q.e.d.

LEMMA 7.8. κ is monomorphic.

PROOF. By the results of J. W. Rutter [11, Cor. 1.3.2], Ker κ is equal to the image of the homomorphism $\Delta: [S^1 \times X_{n+1}, \Omega(S^1 \times X_n)] \to [S^1 \times X_{n+1}, \Omega A]$. The left hand side is equal to $H^1(S^1 \wedge (S^1 \times X_{n+1})) + H^n(S^1 \wedge (S^1 \times X_{n+1})) = 0$, and so we have the lemma.

By the above results, we obtain the following

THEOREM 7.9.
$$\mathscr{E}(S^1 \times S^n) = Z_2 + Z_2 + Z_2$$
 for $n \ge 3$.

PROOF. By Lemmas 7.1, 7.5-7.8, we have the exact sequence

$$0 \longrightarrow Z_2 \longrightarrow \mathscr{E}(S^1 \times S^n) \longrightarrow Z_2 + Z_2 \longrightarrow 0.$$

Consider the elements $b_{ij} = (-\iota_1)^i \times (-\iota_n)^j \in \mathscr{E}(S^1 \times S^n)$. Then, by the definition of the isomorphism $\mathscr{E}(S^1 \times S^n) \simeq \mathscr{E}(S^1 \times X_{n+1})$ in Lemma 7.1 and the epimorphism $\varphi \colon \mathscr{E}(S^1 \times X_{n+1}) \to \mathscr{E}(S^1 \times X_n) = Z_2 + Z_2$, it is easy to see that the subgroup $\{b_{ij}|i,j\in Z_2\} \subset \mathscr{E}(S^1 \times S^n)$ is mapped isomorphically onto $Z_2 + Z_2$. q.e.d.

§8. The groups $\mathscr{E}(S^1 \times S^2)$ and $\mathscr{E}(S^1 \times CP^n)$

By the similar way in §7, we consider the groups $\mathscr{E}(S^1 \times S^2)$ and $\mathscr{E}(S^1 \times CP^n)$ $(n \ge 1)$ more generally, where CP^n is the complex *n*-dimensional projective space.

Let Y_{2n+1} be the *CW*-complex obtained from CP^n by attaching *i*-cells ($i \ge 2n+3$) so that Y_{2n+1} kills the *r*-th homotopy group of CP^n for r > 2n+1. Then we have the following lemma by Lemma 7.1.

LEMMA 8.1.
$$\mathscr{E}(S^1 \times CP^n) \simeq \mathscr{E}(S^1 \times Y_{2n+1})$$
.

It is well known that Y_{2n+1} is embeddable in the sequence of the induced fiberings

(8.2)
$$\begin{array}{ccc}
\Omega B \xrightarrow{i'} Y_{2n+1} \xrightarrow{p'} K(Z, 2) \xrightarrow{f'} K(Z, 2n+2) \\
\parallel & \parallel & \parallel \\
Y & K & B
\end{array}$$

of the generator f' of $H^{2n+2}(K)$. Therefore, we have the sequence of the induced

fiberings

(8.3)
$$\Omega B \xrightarrow{i} S^1 \times Y \xrightarrow{p} S^1 \times K \xrightarrow{f} B$$

of $f=f'\circ p_2$ such that $p=\iota_1\times p'$, i=(*,i'). Then, Lemma 7.4 holds similarly for (8.3) and we have the following lemma by the similar way as Lemma 7.5.

LEMMA 8.4. We have the exact sequence

$$i^{*-1}(0) \xrightarrow{\kappa} \mathscr{E}(S^1 \times Y) \xrightarrow{\varphi \times \psi} \mathscr{E}(S^1 \times K) \times \mathscr{E}(\Omega B)$$

of homomorphisms, where $i^*: [S^1 \times Y, \Omega B] \rightarrow [\Omega B, \Omega B]$ and $i^{*-1}(0)$ is a group with a multiplication \oplus .

In this lemma, we have the following three lemmas.

Lemma 8.5. By the natural projection $\mathscr{E}(S^1 \times K) \times \mathscr{E}(\Omega B) \to \mathscr{E}(S^1 \times K)$, Im $(\varphi \times \psi)$ is isomorphic to

$$\operatorname{Im} \varphi = \mathscr{E}(S^1 \times K) = Z_2 + Z_2.$$

PROOF. By the definition of $\varphi \times \psi$ in [10, p. 26], $\operatorname{Im}(\varphi \times \psi)$ is the set of $(h, \varepsilon) \in \mathscr{E}(S^1 \times K) \times \mathscr{E}(\Omega B)$ such that the following diagram is homotopy commutative for some $h_1 \in \mathscr{E}(S^1 \times Y)$:

$$\begin{array}{ccc}
\Omega B & \xrightarrow{i} & S^1 \times Y & \xrightarrow{p} & S^1 \times K \\
\downarrow^{\varepsilon} & & \downarrow^{h_1} & \downarrow^{h} \\
\Omega B & \xrightarrow{i} & S^1 \times Y & \xrightarrow{p} & S^1 \times K
\end{array}$$

Then, we have the right commutative square in the following diagram:

$$(**) \qquad H^{2n+2}(B) \xleftarrow{\tau_1}{\simeq} H^{2n+1}(\Omega B) \xrightarrow{\tau} H^{2n+2}(S^1 \times K)$$

$$\downarrow^{\varepsilon^*} \qquad \downarrow^{\varepsilon^*} \qquad \downarrow^{h^*}$$

$$H^{2n+2}(B) \xleftarrow{\tau_1}{\simeq} H^{2n+1}(\Omega B) \xrightarrow{\tau} H^{2n+2}(S^1 \times K)$$

where τ and τ_1 are the transgressions. Since the left square in (**) is clearly commutative and $f^* = \tau \circ \tau_1^{-1}$, we see that $h^*f^* = f^*\varepsilon^*$. These show that

$$\operatorname{Im}(\varphi \times \psi) = \{(h,\varepsilon) \in \mathscr{E}(S^1 \times K) \times \mathscr{E}(B) \,|\, f \circ h = \varepsilon \circ f\}\,.$$

Furthermore, for any $h \in \mathscr{E}(S^1 \times K)$, there is a unique element $\varepsilon \in \mathscr{E}(B)$ such that $h^*f^* = f^*\varepsilon^*$. Therefore we have $\operatorname{Im}(\varphi \times \psi)$ is isomorphic to $\operatorname{Im} \varphi = \mathscr{E}(S^1 \times K)$, which is $Z_2 + Z_2$ by the second equality of Lemma 7.6. q.e.d.

LEMMA 8.6.
$$i^{*-1}(0) = \lceil S^1 \times Y, \Omega B \rceil = Z$$
.

Proof. In the cohomology exact sequence

$$[S^1 \times K, \Omega B] \xrightarrow{p^*} [S^1 \times Y, \Omega B] \xrightarrow{i^*} [\Omega B, \Omega B]$$

of the fibering (8.3), we see that $i^*=0$ by the same way as Lemma 7.7. Also, the multiplication \oplus of $i^{*-1}(0)=\operatorname{Im} p^*$ in Lemma 8.4 coincides with the usual multiplication +, by [10, Lemma 5.4 (ii)].

LEMMA 8.7. κ in Lemma 8.4 is monomorphic.

PROOF. By the results of J. W. Rutter [11, Cor. 1.3.2, Th. 1.4.3], Ker κ is equal to the image of

$$(\Omega f)_*: [S^1 \times Y, \Omega(S^1 \times K)] \longrightarrow [S^1 \times Y, \Omega B].$$

Since B = K(Z, 2n+2), Ωf is homotopic to the constant map, and we have the lemma. q.e.d.

Theorem 8.8. Let $n \ge 1$. Then we have the split exact sequence

$$0 \longrightarrow Z \xrightarrow{\kappa} \mathscr{E}(S^1 \times CP^n) \longrightarrow Z_2 + Z_2 \longrightarrow 0,$$

where the action of $Z_2 + Z_2$ on Z is given by

$$((-1)^i, (-1)^j) \cdot m = (-1)^{i+j} m, \quad \text{for} \quad m \in \mathbb{Z}, \ i, \ j \in \mathbb{Z}_2.$$

PROOF. By Lemmas 8.1-8.7, we have the above exact sequence. Consider the elements $b_{ij} = (-\iota_1)^i \times (-\iota)^j \in \mathscr{E}(S^1 \times CP^n) = \mathscr{E}(S^1 \times Y)$, where $-\iota$ is the generator of $\mathscr{E}(CP^n) = Z_2$. It is easy to see that the subgroup $Z_2 + Z_2 = \{b_{ij} | i, j \in Z_2\} \subset \mathscr{E}(S^1 \times CP^n)$ is mapped isomorphically onto $Z_2 + Z_2$ of the right hand side. Therefore the above sequence is split.

To study the action, we consider the diagram

$$S^{1} \times Y \xrightarrow{A} S^{1} \times Y \times S^{1} \times Y \xrightarrow{1 \times m} S^{1} \times Y \times K(Z, 2n+1) \xrightarrow{k} S^{1} \times Y$$

$$\downarrow b_{ij} \qquad \qquad \downarrow b_{ij} \times b_{ij} \qquad \qquad \downarrow b_{ij} \times \varepsilon \qquad \qquad \downarrow b_{ij}$$

$$S^{1} \times Y \xrightarrow{A} S^{1} \times Y \times S^{1} \times Y \xrightarrow{1 \times m'} S^{1} \times Y \times K(Z, 2n+1) \xrightarrow{k} S^{1} \times Y$$

where Δ is the diagonal map, k is the multiplication, and the compositions of the maps in the horizontal sequences are equal to $\kappa(m)$ and $\kappa(m')$ respectively by the definition of κ (cf. [10, (5.2)]). It is easy to see that the above diagram is commutative for $\varepsilon = (-1)^{j(n-1)}$ and $m' = (-1)^{i+j}m$ and we have the desired results.

References

[1] M. Arkowitz and C. R. Curjel, *Groups of homotopy classes*, Lecture Notes in Math. 4 (1966), Springer-Verlag.

- [2] _____, Some properties of the exotic multiplications on the three-sphere, Quart. J. Math. Oxford (2), 20 (1969), 171-176.
- [3] W. D. Barcus and M. G. Barratt, On the homotopy classification of a fixed map, Trans. Amer. Math. Soc. 88 (1958), 57-74.
- [4] P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154-172.
- [5] ———, A note on the P-homomorphism in homotopy groups of spheres, Proc. Cambridge Philos. Soc. 51 (1955), 230-233.
- [6] W. C. Hsiang, J. Levine and R. H. Szczarba, On the normal bundle of a homotopy sphere embedded in Euclidean space, Topology 3 (1965), 173-181.
- [7] S. T. Hu, Homotopy theory, Pure and Applied Mathematics VIII, Academic Press, New York, 1959.
- [8] P. J. Kahn, Self-equivalences of (n-1)-connected 2n-manifolds, Math. Ann. 180 (1969), 26-47.
- [9] R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper's Series in Modern Math., Harper & Row, New York, 1968.
- [10] S. Oka, N. Sawashita and M. Sugawara, On the group of self-equivalences of a mapping cone, Hiroshima Math. J. 4 (1974), 9-28.
- [11] J. W. Rutter, A homotopy classification of maps into an induced fibre space, Topology 6 (1967), 379-403.
- [12] J.-P. Serre, Groupes d'homotopies et classes de groupes abélians, Ann. of Math. 58 (1953), 258-294.
- [13] A. J. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math. 34 (1970), 789-802.
- [14] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, 49 (1962), Princeton Univ. Press.

Department of Mathematics, Faculty of Engineering, Tokushima University