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§ 1. Introduction

The set <f (X) of homotopy classes of self-(homotopy-)equivalences of a based

space X forms a group by the composition of maps, and this group is studied by

several authors.

The purpose of this note is to study the groups if (Sm x Sn) of the products

Sm x Sn, where Sk is the fc-sphere. These are studied by P. J. Kahn [8] for the case

m = n, and by A. J. Sieradski [13] for the case m, n = l, 3, 7.

In the first, we consider the case n > m ^ 2 . Then the wedge Sm\/Sn is

simply connected, and we can apply the results of [10, §§ 1-2] to the mapping

cone Sm x Sn = (Sm V S") U em+n of the Whitehead product. Hence, by using the

results of W. D. Barcus and M. G. Barratt [3, §4], we have in Theorem 2.6

the exact sequence

0 — > Hmtn — > (̂S™ x 5") > Gmtn —+ 1,

where Hmn is the factor group of π m + n (S m ) + πm + n(S/ 1) and Gmn is the subgroup

of &(Sm V S"). In § 3, we study some cases that this sequence is split, but the

extension of this sequence is not known to us in general. Also, by using the qua-

ternion, we compute #(SmxSn) for m = 2, 3 and n>m in Theorems 4.3 and 5.3,

and we see that the above sequence is split if m = 2 and is not split if m = 3 and n = 5.

By the same way, we have in Theorem 6.2 the similar exact sequence for the

case n = m ^ 2 , which is split if n is even. Furthermore, we can determine the

group £{Sn x Sn) for n = 3, 7 in Theorem 6.4.

The group ^ ( S 1 x Sn) is computed in §§7-8 by the different methods. By

attaching i-cells ( i ^ n + 3) to 5", we obtain a CFF-complex Xn+ί which kills the

r-th homotopy groups of Sn for r ^ n + 2, and we see that ^(S1 x Sn) is isomorphic

to ^ ( S 1 x Xn+ί) (Lemma 7.1). Consider the composition

/: S 1 x K(Z9 ή) > K(Z9 ή) -1U K(πn+1(S»)9 n + 2)

of the natural projection and the generator / ' of Hn+2(Z, n;πn+1(Sn)). Then,

it is well known that S1 xXn+ί is the mapping track Ef of/. Hence, we can

apply the results of J. W. Rutter [11] and [10, §5] to ^(S1xXn+1)9 and the
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group ^(S1 x Sn) is determined in Theorem 7.9 for n ^ 3 and in Theorem 8.8 for

n = 2.

The author wishes to express his gratitude to Professor M. Sugawara and

Dr. S. Oka for their encouragement and valuable discussions.

§ 2. The group S (Sm xSn)foτn>m^2

In this note, all (topological) spaces are arcwise connected spaces with base

point * and have homotopy types of CW-complexes, and all (continuous) maps

and homotopies preserve the base points. For given spaces X and Y9 we denote

by [X, Y~\ the set of (based) homotopy classes of maps from X to Y, and by the

same letter/a map/ : X-*7and its homotopy class fe [X, Y~\. Also, we denote

usually by

g*: [X, Y] — [X, Z], g*: [Z, X] — > [7, X~\

the induced maps of a given map g: Y->Z.

The group of homotopy classes of self-homotopy-equivalences of a space X

is denoted by

*{X) (c=[X,X]) ,

whose multiplication is given by the composition of maps.

In the first we consider the group <?(SmVSn) of the wedge SmVSn for n>

m ^ 2 , where Sk is the /c-sphere in the real (fc+l)-space. Let

(2.1) ίΊ: Sm c Sm V Sn, i2: Sn a Sm V Sn

be the inclusion maps and

(2.2) λ: πn(Sm) > * ( S * V S»)

be the homomorphism given by

(2.3) λ(ξ)oίί = il9 λ(ξ)oi2 = iioξ + i2

for ξ e πn(Sm), where o is the composition of maps and + is the sum in πn(Sm V Sn).

Then we have the next proposition (cf. [10, § 1]).

PROPOSITION 2.4. For n>m^2, we have the split exact sequence

0 > πn(Sm) -A_» «f(s™ v Sn) > Z2 + Z2 > 1 ,

and so we have

(2.5) *(S» V S-) = {atJKξ) I Uj e Z 2 = {0,1}, ξ e ππ(5-)},
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where aij = ( — cm)i V ( — ίn)
J(εkeπk(Sk) ι s the class of the identity map) with

relations

The product Sm x Sn is the mapping cone

SmxSn = (Sm V Sn) Vίiui2le
m+n

of the Whitehead product

liui2]' Sm+n-ί >Sm V Sn

of the inclusion maps of (2.1). By the above result and the results of [10, §2],

we have the following theorem.

THEOREM 2.6. Assume n > m ^ 2 . Then there is an exact sequence

(2.7) 0 — Hm,n -^ * ( S * x S») -*-> Gn,n —+ 1.

The groups Hmn and Gm>n are given by

(2.8) Hmtn = πm + / ί(S«)/[ f m,π / t + 1(S-)] + π m + r t (S«)/[^π m + 1 (5«)],

(2.9) Gmtn = {auλ(ξ) I lem9 ζ\ = 0, ξ e πB(S*), i,; e Z2} (c: ^(S» V S-)),

and φ is given by the restriction on SmW Sn.

PROOF. By the results of [10, §2], we have the exact sequence

U • ̂ m,n > vyS X o > Umn > 1 ,

where Hmn = πm+n(Sm x Sn)/lmy for the homomorphism

7 = Γ(i,f): [S™+1 V S»+ί, Sm x Sw] > πm+n(Sm x S»)

(ί: 5 m V S^-^S"1 x 5" is the inclusion, / = [il9 i2]), and

G'm,n = {(h,ε)\he£>(Sm V Sn),ε = ±cE^(Sm+n~ί), hof = foS

in π m + n _ 1 (S-VS«)} .

We see easily that Γ(/,/), defined in [10, (2.5)], coincides by definition with the

homomorphism

K: πm+1(X) + πn+ί(X) > πm+n(X)

of [3, §8, p. 70] for X = SmxSn and w = i<>il9 v = hi2. Therefore, by [3,(8.1)

(i)] we have
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for ηeπm+1(SmxSn), ξeπn+ί(SmxSn), and we see that Hmn is given by (2.8).

On the other hand, by (2.3) and the definition of the Whitehead product, we

have

By using the direct sum decomposition

πm+n^(Sm V S") * Jc B I + B . 1 (P ) + π i , + B . 1 (S-) + j[B +Jff xS- ,S- V S"),

we see easily that

°f = f° ε i f and only if [>w, ξ] = 0 and ε = ( - <

Therefore, G m π of (2.9) is isomorphic to G'mtn by corresponding aijλ(ξ)<-*(aijλ(ξ)9

( — c)i+j), and the homomorphism φ x φ corresponds to the restriction φ. q.e.d.

§ 3. Group extensions in (2.7)

In this section, assume that n > m ^ 2 . Let ξeπn(Sm) satisfy [>m, £] = 0.

Then there is a map Fξ: Smx Sw->Sm of type (*m, ξ) by the definition of the White-

head product, and we obtain a map

(3.1) l(ξ) = (Fξ9 p2): S- x 5« >S»xS*9

where p2 is the projection onto the 2nd factor. Consider the elements

(3.2) btJ = (-cmyx(-cnye<?(SmxS»), UJeZ2.

Then we have easily the following lemma by the definition.

LEMMA 3.3. φ(buλ(ξ)) = auλ(ξ),

where φ is the homomorphism in (2.7).

THEOREM 3.4. Assume that 1 0/(3.1) can be chosen so that

for any ξt e nn(Sm) with [rm, ξj = 0 . Tften the exact sequence (2.7) is split. Also

the action of Gmn on Hmn is given by

α, β) = ((-1)^(-O< OM«» /*)> (" !)W
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for α e πm + π(S-)/[.m, πn+ ^S*)], β e πm+n(S»)/[cn9 πm+ ^S")] .

PROOF. The former is obtained immediately by Theorem 2.6 and Lemma

3.3. By the definition of l(ξ) of (3.1), we have the homotopy commutative

diagram

Sm x Sn -JU (Sm x Sn) V Sm+n — 1 V ( g > / n > (Sm x Sn) V (S m x Sn) -L*SmxSn

h(ξ) U«)vi |Λ(«)VΛ(«) U«)

^m χ ^ n _J_^ (^m χ ^ « ) y ^ m + M 1VΛ(C)«(«,^) > ^ m χ ^ ^ γ ^ m χ ^ _p_^ ^ m χ 5 r M t

The composition of the maps in the upper sequence is λ'(<x, β) by the definition of

λf in [10, §2], and also the composition of the lower one is λ'(Fξo(oc, β), β) by (3.1).

These show that

By the same way, we have

because (-cn)oβ= -β mod [>„, π m + 1 (S Π )] by [4, Th. 6.7, 6.9]. q.e.d.

COROLLARY 3.5. Assume that n > m § ; 2 and [ ; m ,^]#0 for any nonzero

element ξ eπn(Sm). Then we have the split exact sequence:

0 —>Hm t n —> *(S»xS") — > Z2 + Z2 —+ 0,

and the action of Z2-\-Z2 on Hmn are given by

atJ • («, β) = ( ( - l)i+'X - cmγ o a, (-1)'/0

PROOF. It is clear, since Gw>Π = {αι7} = Z 2 + Z 2 by the assumption. q.e.d.

EXAMPLE 3.6. Let n — l = m ^ 2 . T/ien, we have the exact sequence

0 — Hmtm+ι —> A S - x S - + 1 ) — > G m > m + 1 — > 0,

vv/iβre

{ 2 2 2 z/ m = 3 mod4 or m = 2, 6

Z 2 + Z 2 // m # 3 m o d 4 and m ^ 2, 6,
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(ηk is the generator of πk+ι(Sk)). Moreover if mψ3 mod4 and m ^ 2 , 6, then

the above exact sequence is split with the action given by flί<7 (α, β) = (( — l)J'α,

PROOF. By [5, p. 232] and [6, Lemma 5.1], it is proved that [>m,

if and only if mφ3 mod4 and mΦ2, 6. Also (— cm)oa = — α mod \_cm, πm+2(Smy]

by [4, Th. 6.7, 6.9]. These results, Theorem 3.4 and Corollary 3.5 show the

desired results. q. e. d.

§4. The group <?(S2 x Sn) for n^3

In this section, we assume that n ^ 3 .

LEMMA 4.1. (i) The group G2jΠ of (2.9) is

G2>n = {aijλ(ξ)\ξeπn(S2),UjeZ2}9

and the multiplication is given by

(ii) The group H2n of (2.8) is

PROOF. It is well known that [>2, £] = Ofor ξeπn(S2) 0 ^ 3 ) . Therefore,

G2n is given as above by Theorem 2.6. It is known that

(4.2) (-<2)°ξ = ξ for ξeπn(S2),

(cf. [12, p. 278]), and we have

a^)aVjd(n = aί+VJ+j,λ((-iyξ + ξ')

by Theorem 2.6 and Proposition 2.4. Since πn+2(Sn) = Z2, (ii) follows im-

mediately, q.e.d.

Now we have the next theorem by Theorem 3.2.

THEOREM 4.3. Let n ^ 3 . Then the exact sequence

0 — > H2tn — * £(S2 x S-) — > G2>π > 1

is s^/iί, w/zβrβ .fί2>n and G2n are the groups in Lemma 4.1. 77ie action of G2n

on H2n is given by
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for ξ e πn(S2), α e πn+2(S2), β e πn+2(S») = Z 2 .

PROOF. Consider the Hopf map h:S3-^S2 and a map F:S2xS3->S2

of type 02, h), given by

h(q) = qiq-i, F(p, q) = qpq~x,

where qeS3 is a quaternion of norm 1, peS2 is a pure quaternion of norm 1,
and i is the imaginary unit. Then, we can construct

Fξ = Fo(c2 x ξ'): S2xS« > S2,

for any ξeπn(S2), where ξ 'eπ^S 3 ) satisfies hξ' = ξ. It is clear that Fξ is of
type (/2, ξ) ^y using the equality

X(ξ)(p, x) = (ζ'(x)pξ'(xrK x) for p e S2, x e S»,

we can show that I satisfies the assumptions of Theorem 3.4 as follows.

= M « - ^ ) ί o δ o ( - O'XP. x) by (4,2).

Also, it is easy to see that

Fo(hxc3) = fomoT,

where m: S3 x S3^S3 is the multiplication of S3 and T: S3 x S3-+S3 x S3 is the
switching map. Therefore, for any α = /ια' eπn+2(S2) and βeπn+2(S2), we have

These show the desired results by Theorem 3.4. q.e.d.

§ 5. The group £(S3 x Sn) for n ^ 4

In this section, we study the case m = 3.
For any ξ e πn(S3), we have [ί3, £] = 0 and we can define maps
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Eξ:S
3xSn > S3, λ(ξ): S3xSn > S3 x Sn

by Eξ(x,y) = xξ{y\ l(ξ)(x,y) = (xξ(y)9 y). By Theorem 2.6, we have the exact

sequence

(5.1) 0 — πn+3(S>)+πn+3(S») JU / ( S ' x S-) - ^ G 3 , B —» 1,

where

G3>n = {aijλ(ξ)\ξeππ(S3),i,jeZ2}.

Since !(£) is of type (ι3, ξ), we have

(5.2) ΦtAQ) = atAZ) f o r ί e π « ( s 3 ) >

where btj are the elements of (3.2).

THEOREM 5.3. Let n^4. Then we have

77ie group structure of S{S3 x S") is griven as follows.

( i ) A'(alf /J!M'(a2, ft) = A'(«! + a 2 ) ft + ft),

(ii) I ( ξ 1 ) ^ 2 ) = I(ξ1 + ξ 2),

(iii) 6yί> ί T = bi+VJ+Jί, b00 = 1;

(iv)

(v)

(vi) λ'(μ,β)boι = bolλ'(-«, ~(-cn)oβ),

(vii) λ'(*,β)blo = bίOλ'(μ,-β),

(viii) A'(a, )9)I(ί) = I{ξ)λ'(μ - ξβ, β).

Here, S3: πn(S3)-+πn+3(S6) is the suspension homomorphism. Also ω3 is a

generator ofπ6(S3) = Z12 given by

(5.4) π*(ω3) = φ9

where φ: S3 xS3^S3 is the commutator map: Φ(p9q) = pqp~1q~1, and π: S3 x

S3-+(S3 x S3)I(S3 V S3) = S6 is the collapsing map, (cf. e.g. [2, p. 173]).

To prove the theorem, we use the next two lemmas.
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LEMMA 5.5. Let p1:S
3xSn->S3 and p2: S3 xSn->Sn be the projections.

Then we have

Pi ξPi = π*(ω3S
3ξ).ξp2.pί = ξp2 pvπ*(ω3S

3ξ),

where π: S3 x S"->(S3 x Sn)/(S3 V Sn) = Sn+3 is the collapsing map.

PROOF. It is easy to see that

= ω3oπo(c3 xξ) = ω3oS3ξoπ,

by (5.4), and we have the first equality. Therefore we have the desired results,
since φ is homotopic to the map S3 x S3-+S3 given by (p, q)-*p~ίq~1pq-

q.e.d.

LEMMA 5.6. For the monomorphism λ' in (5.1), we have

λ'(«90)f=((PJ) (xπf)9p2f)

for any α e π n + 3(S 3) and f: S3 x Sn-+S3 x Sn.

PROOF. The desired equality follows from

p^'(oc, 0) = Pi απ, p2λ'(cL, 0) = p2,

which are seen by the definition: A'(α, 0) = F°(l V(α, 0))°Z. q.e.d.

REMARK. // n ̂  5, we see easily by definition that

where + is the sum in the cohomotopy group [S3 x Sn, S"].
Now we are ready to prove Theorem 5.3.

PROOF OF THEOREM 5.3. By (5.1) and (5.2), it is sufficient to prove the re-
lations (i)-(viii). (i)-(iϋ) are seen easily.

(iv) λ(ξ)b01=(p1 ξp2,

= (Pi-i-ζPiiΛ-'JoPi)

(viii) l(ξ)λ'(*9 β)λ( - ξ) = λ\l{ξ)o(μ, β))

•= λ'((Pl ξp29p2)

( v ) %ξ)b10 = (pvξp2, P2X-C3 x O
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= ((-Pi)-ξP2>P2) = bl0(ί-ξp2).pup2)

= blo(p1.(-ξp2)'π*(ω3S
3ξ),p2) by Lemma 5.5

= bίOλ'(ω3S
3ξ,0)λ(-ξ) by Lemma 5.6 and πl(-ξ) = π

= b10X(-ξ)λ'(ω3S
3ξ90) by(viii).

(vi) bolλ'(*9β)bol = λ'(bol(*,βK-c)) = λ'(-α, ~{-cn)β).

(vii) is similar. q. e. d.

COROLLARY 5.8. // ω3*S3: πM(53)->π r t + 3(S3) is 0-map, then the exact se-

quence (5.1) is split, where the multiplication of G3n is given in Theorem 3.4.

COROLLARY 5.9. Assume that there is an element ξ e πn(S3) such that

2oc + ξβ + ω3S
3ξΦθ for any aeπn+3(S3), βeπn+3(Sn).

Then the sequence (5.1) is not split.

PROOF. It follows from Proposition 2.4 that (aloλ(ξ))2 = ί. On the other

hand, using the relations in Theorem 5.3, we have

(blo%ξ)λ'(a9 βψ = bίOλ(ξ)bloλ'(a, -β)X(ξ)λ'(a, β) by (vii)

= X(-ξ)λ'(ω3S
3ξ, 0)A'(a, -β)λ'(oc + ξβ, β)λ(ξ) by (v), (viii)

= λ'(2x + ξβ + ω3S
3ξ9 0) by (i), (viii), (ii).

The last element is not zero by the assumption, and we have the corollary, q.e.d.

EXAMPLE 5.10. The next exact sequence is not split.

0 > Z24 + Z2 > <?(S3xS5) > Z2 + Z2 + Z2 > 0.

PROOF. For the element n\ e π 5 (5 3 ), we have

φ 0 for any α e π 8 ( S 3 ) , βeπ8(S5),

by [14, Prop. 5.3, 5.6, 5.9], and so the desired results by the above corollary.

q.e.d.

§6. The group £(Sn x Sn)

Let GL(2, Z) be the group of integral 2 x 2 matrices having integral inverse

matrices, with the usual multiplication. Then, it is easy to see that there is an

isomorphism
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(6.1)

given by

where iy. Sn^Sn\/ Sn is the inclusion to the j-th factor, V is the folding map, and

keZ means the map of degree k.

The following theorem is proved essentially by P. J. Kahn [8, §2.3]. 1 )

THEOREM 6.2. The following sequence is exact:

0 — > Hn>n - ^ (S»xS«) — > Gn,n _ > 1,

where

Hn,n = n2n{S")l{lcn,cn-\} + n2n{S«)l{lcmcn-\y,

GL(2,Z) if n = 1,3,7,

2 ' Z ) ' α f e Ξ c d = 0 m o d 2 } if n is odd and =£1,3,7,

PROOF. By the same way as Theorem 2.6, it is sufficient to show that the

group G'n>n in the proof of Theorem 2.6 is isomorphic to the group Gnn in

the theorem.

It follows immediately that

On the other hand, it is well-known that \_cn, <:J=0 if n = l, 3, 7, and the order

of IΛ,, cn~] is 2 if n is odd and nφ\, 3, 7, and is infinite if n is even (cf. e.g. [7,

p. 336]). Therefore, we have the desired results by studying the conditions that

the last element is equal to [iu ΐ2]°ε. q.e.d.

COROLLARY 6.3. (P. J. Kahn [8, Th. 4]) // n is even, then the sequence

in Theorem 6.2 is split. Also the action of Gnn on Hnn is given by

1) It seems to the author that the consideration for the case n=3,7 is neglected and that

(1 J) of [8, p. 34] should be (> ]).
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In the rest of this section, assume that n = 3, 7.

For any N=(nu) e GL(2, Z), we define the element λ(N) e £(Sn x S") by

Z(N)(p,q) = (pniίqnι\pn2ίqn22) for p,qeSn

9

where the multiplication is the one of quaternions or Cay ley numbers. Then

we have the following theorem.

THEOREM 6.4. Let n = 3,7. Then

*(S» x S") = U'(α, /OX(JV) I α, /? e πln(S% N e GL(2, Z)},

ί/ze multiplication is given as follows:

( i ) Γ(a,)8μ/(a',i5/) = A'(

(ii)

(iii) X(N)X(M) = A'(βlωΛ,

^ where N =

(nij), M = (mij), and \N\ means the determinant of N, and ωn is a generator of

Before we prove this theorem, we show the next two lemmas.

LEMMA 6.5. OLπ p—Pi'Ccπ for αeπ 6 (S 3 ) , ι = l, 2.

PROOF. By the commutative diagram

£ 3 χ £ 3 (n,Pi) ) ^ 6 χ £ 3 « χ l ) ^ 3 χ £ 3 _±_^ ^ 3

1 - 1 " II
S 9 5 3 « ) ^»6 β>3 ^ ^ 3

we have απ pΓαπ~1 -p{~1 = (απ, Pι)*φ = 0. q. e. d.

LEMMA 6.6. r{mpx. np2) = rmpί. rnp2 ("~ ( 7 ) m n ω 3 π )
PROOF. This lemma follows from P2 Pi = Pi P2 ( ~ ω 3 π ) (Lemma 5.5) and

Lemma 6.5. q.e.d.

PROOF OF THEOREM 6.4. We prove the theorem for n = 3, and the theorem

for n = 7 is proved by the same way.
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By Theorem 6.2, we have the exact sequence

0 > π 6 (S 3 ) + π 6 (S 3 ) -*1> <?(S3 x S3) -*-> GL(2, Z) > 1.

We notice that λ'(α, β) = (pί'ccπ, p2'βπ) for α, jβeπ6(S3), and we have the desired
results by Lemmas 6.5, 6.6. q.e.d.

§ 7. The group <?(Sι x Sn) for n ̂  3

In the rest of this paper, we consider the groups ^(S1 xSn) (n^2). For
these groups, we cannot use the methods in §2 since Sι V Sn is not simply con-
nected.

By attaching i-cells ( ϊ^n + 2) to a given CPF-complex X, we obtain a CW-
complex Xn which kills r-th homotopy groups of X for r> n:

πr(Xn) = 0 (r>ή)9 in*:πr(X)~πr(Xn) (r^n),

(ίn: X->Xn is the inclusion).

LEMMA 7.1. // X is an n-dimensional CW-complex. Then we have iso
morphisms

PROOF. It is easy to see that the induced maps

i : iXH9 XJ — [Z, XJ, v : [^, X] — [X, X J

are bijective by the elementary homotopy theory. Therefore

is bijective, and we have the first isomorphism.
It is obvious that S1xXn+ί is obtained from SxxX by attaching i-cells

(i"^ n + 3) and kills the r-th homotopy groups of S* x X for r > n + 1 . Therefore,
we have the second isomorphism from the above result. q.e.d.

REMARK. The first isomorphism in the above lemma is shown in [1, Lemma
5.1] under the additional assumption that X is 1-connected.

Now, consider the case X = Sn for n ^ 3 . Then, it is well known that Xn

and Xn+1 are embeddable in the sequence of the induced fiberings

ΩA —^—> Ef ^—• K(Z9 ή) ft > A

(7.2) I I I I
K(Z29n+l) Xn+1 Xn K(Z2,n + 2)



82 Norichika SAWASHITA

of the generator / ' of Hn+2(Z9 n;Z2)=Z2 (cf. e.g. [9, p. 140]). Therefore, we

have the sequence of the induced fiberings

(7.3) Ω i _ L > S /

off=fΌp2 such that p = cx xp'9 i = (*, i')

LEMMA 7.4. The two induced maps

i*: IΩA, ΩA\ > \ΩAX E/\9 p*: [S 1 x Xn9 S1 x Xn~] > [£ , , S1 x Xn~\

are both bijectiυe.

PROOF. Since V = p2

o i, we have

it = p24*: [ΩA, ΩA ] -J±+ \QA9 E/\ -£2i> [QA9 Xn+ J .

Using the homotopy exact sequence of the fibering (Xn+ί,p',Xn) in (7.2), we

see easily that i£ is bijective. Also p2* is bijective since Ef = S1 xXn+1. There-

fore z* is bijective.

It is easy to see that p* is equal to

9 n)) ^ ± £ ^

which is isomorphic. q. e. d.

By applying [10, Prop. 5.6] for/in (7.3),

LEMMA 7.5. We have the exact sequence

1 xXn+1) - ^

of homomorphisms, where i*: [ S 1 x Xn+ί9 ΩA~\-+[ΩA, ΩA~\ and i*'1(0) is a group

with an unusual multiplication φ .

On this sequence, we have the following three lemmas.

LEMMA 7.6. Im (φ x ψ) = £{Sι x Xn) = Z 2 + Z 2 .

PROOF. It is clear that £(A) = £(ΩA) = l, since A=K(Z29 n + 2). There-

fore foξ~fΐor any ξ e ^ ( S 1 xXn), and there is / i e ^ ( S 1 x I B + 1 ) such that poh~

ξop, i.e., (φxφ)(h) = (ξ91). This shows the first equality. Since Xn = K(Z9ή)

we see that S(XΪ)=-Z2 and [ S 1 Λ l n , X J = 0, and so the second equality by

[10, Example 5.10]. q. e. d.

LEMMA 7.7. Ϊ * ~ 1 ( 0 ) = Z 2 .

PROOF. By using the Serre cohomology sequence, we have
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H\Xn+1 Z 2) = Z 2 , H*+*(XU+1 Z 2) = 0.

Therefore, we see that [S1 xXn+l9ΩA] = Hn(Xn+1;Z2) + Hn+1(Xn+1;Z2) = Z29

and /* = (*, i')* is equal to 0. q.e.d.

LEMMA 7.8. K is monomorphic.

PROOF. By the results of J. W. Rutter [11, Cor. 1.3.2], Ker?c is equal to

the image of the homomorphism A: [S 1 x I B + 1 , Ω(Sι xXjJl^ίS1 x I B + 1 , ΩA],

The left hand side is equal to H^S1 MS1 xXu+1)) + H*(S1 Λ(S* x ! B + 1 ) ) = 0 ,

and so we have the lemma. q. e. d.

By the above results, we obtain the following

THEOREM 7.9. £(Sι x Sn) = Z2+Z2 + Z2 for n ̂  3.

PROOF. By Lemmas 7.1, 7.5-7.8, we have the exact sequence

0 > Z 2 — > ^(S 1 xSn) >Z2+Z2 >0.

Consider the elements bu=(-1±y x ( - eny e ̂ (S1 x Sπ). Then, by the definition

of the isomorphism ^(S1 x S " ) ^ ^ 1 xXn+ι) in Lemma 7.1 and the epimor-

phism φ: ^(S 1 x Zπ + 1)-> <f (S1 x ZΠ) = Z 2 + Z 2, it is easy to see that the subgroup

{bij\iJeZ2}czS>(Sί xSn) is mapped isomorphically onto Z2 + Z2. q.e.d.

§8. The groups &(SX x S2) and £(Sι x CPn)

By the similar way in §7, we consider the groups ^(S 1 xS 2 ) and ^(S 1 x

C^w) (w ̂  1) more generally, where CPn is the complex n-dimensional projective

space.

Let Y2n+ί be the C ̂ -complex obtained from CPn by attaching i-cells ( i ^

2n + 3) so that Y2n+1 kills the r-th homotopy group of CPn for r>2n + l. Then

we have the following lemma by Lemma 7.1.

LEMMA 8.1. ^(S1 x CPn) - ^(S 1 x 7 2 π + 1 ) .

It is well known that Y2n+ί is embeddable in the sequence of the induced

fiberings

H+ Y2n+ι -I-+ K(Z, 2) -£U tf(Z, 2/2 + 2)
(8.2) || || ||

Y K B

of the generator/' of H2n+2(K). Therefore, we have the sequence of the induced
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fiberings

(8.3) ΩB-i-+S1xY-J^S1xK-l->B

°f f—ff°P2 s u c n that p = cί xp', i = (*,*')• Then, Lemma 7.4 holds similarly
for (8.3) and we have the following lemma by the similar way as Lemma 7.5.

LEMMA 8.4. We have the exact sequence

xY) <?** > £>(Si xK) x£{ΩB)

of homomorphisms, where i*: [S 1 x Y, ΩB~\ ->[ΩB, ΩB~\ and i*~1(0) is a group
with a multiplication ©.

In this lemma, we have the following three lemmas.

LEMMA 8.5. By the natural projection «f (S 1 x K) x tf(ΩB)^> <f ( S f x K),
Im(φ x ψ) is isomorphic to

Im φ = <f (S 1 x K) = Z2 + Z2.

PROOF. By the definition of φxψ in [10, p. 26], lm(φxφ) is the set of
(h,έ)e#(SίxK)x£'(ΩB) such that the following diagram is homotopy com-
mutative for some hx e <f (S1 x Y):

ΩB -JU S1 x Y -?-> S1xK

Then, we have the right commutative square in the following diagram:

#2«+2(j 5 ) <_!_L H2n+ί(ΩB) -^ H2n+2(Sί x K)

(**) J ^
H2n+2(B) A - H2n+1(ΩB) -1.+ H2n+2(Sι x K)

where τ and τt are the transgressions. Since the left square in (**) is clearly
commutative and/* = τoτγ1, we see that ft*/*=/*ε*. These show that

Im((px ι/0 = {(Λ, ε)e^(S 1 xX)x ^(5) |/oΛ = εof} .

Furthermore, for any h e «f (S1 x X), there is a unique element ε e <f (β) such that
h*f*=f*ε*. Therefore we have Im(φx^) is isomorphic to lmφ = &(S1 xK)9

which is Z2 + Z2 by the second equality of Lemma 7.6. q.e.d.

LEMMA 8.6. i*"1^) = [S1 x 7, ΩB] = Z.

PROOF. In the cohomology exact sequence
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[S 1 x K, ΩE] -£U [S 1 x 7, ΩB~] -ϋ-> [ΩB, ΩB~\

of the fibering (8.3), we see that i* = 0 by the same way as Lemma 7.7. Also, the

multiplication © of i*"1(0) = Imp* in Lemma 8.4 coincides with the usual

multiplication + , by [10, Lemma 5.4 (ii)]. q.e.d.

LEMMA 8.7. K in Lemma 8.4 is monomorphίc.

PROOF. By the results of J. W. Rutter [11, Cor. 1.3.2, Th. 1.4.3], Ker/c

is equal to the image of

(Ω/)*: [S 1 x Y9 ΩiS1 x X)] > [ S 1 x Y9 ΩB'] .

Since B = K(Z, 2n + 2), Ωf is homotopic to the constant map, and we have the

lemma. q.e.d.

THEOREM 8.8. Let n ^ l . Then we have the split exact sequence

0 > Z -*-> <?(Sι x CPn) >Z2 + Z2 > 0,

where the action of Z2 + Z2 on Z is given by

for meZ,i,jeZ2.

PROOF. By Lemmas 8.1-8.7, we have the above exact sequence. Consider

the elements bij = (-εί)
i x(-cye<?(Sι x CPn) = £(S1 x y), where -c is the

generator of tf(CPn) = Z2. It is easy to see that the subgroup Z2 + Z2 = {bij\

i,j eZ2}c=<f(S1 x CPn) is mapped isomorphically onto Z2 + Z2 of the right hand

side. Therefore the above sequence is split.

To study the action, we consider the diagram

^ x r ^ ^ x F x ^ x y
 lxm

 > S
ι
 x Y x K(Z, 2n+ 1) - ^ S

1
 x y

5Ί x y -A_> 5
1
 x yx s

ι
 x y

 lxm/
 > s

1
 x yx ̂ (z, 2«+1) -*_. 5

1
 x Y,

where 1̂ is the diagonal map, k is the multiplication, and the compositions of the

maps in the horizontal sequences are equal to κ(m) and κ(m') respectively by

the definition of K (cf. [10, (5.2)]). It is easy to see that the above diagram is

commutative for ε = (— l)-^""1) and m' = (—l)i+Jm and we have the desired

results. q. e. d.
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