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§1. Introduction

The set £(X) of homotopy classes of self-(homotopy-)equivalences of a based
space X forms a group by the composition of maps, and this group is studied by
several authors.

The purpose of this note is to study the groups &(S™ x S*) of the products
Smx S, where S is the k-sphere. These are studied by P. J. Kahn [8] for the case
m=n, and by A. J. Sieradski [13] for the case m, n=1, 3, 7.

In the first, we consider the case n>m=2. Then the wedge S™V S" is
simply connected, and we can apply the results of [10, §§ 1-2] to the mapping
cone S™x S*=(S™V S") U emt" of the Whitehead product. Hence, by using the
results of W. D. Barcus and M. G. Barratt [3, §4], we have in Theorem 2.6
the exact sequence

00— H,,— &E8"xS")— G,,— 1,

where H,,, is the factor group of =, ,(S™) +n,.,(S") and G, , is the subgroup
of &(S™v S"). In §3, we study some cases that this sequence is split, but the
extension of this sequence is not known to us in general. Also, by using the qua-
ternion, we compute &(S™x S*) for m=2, 3 and n>m in Theorems 4.3 and 5.3,
and we see that the above sequence is split if m=2 and is not splitif m=3 and n=S5.

By the same way, we have in Theorem 6.2 the similar exact sequence for the
case n=m22, which is split if n is even. Furthermore, we can determine the
group &(S”x S™) for n=3, 7 in Theorem 6.4.

The group &(S! x S”) is computed in §§7-8 by the different methods. By
attaching i-cells (i=n+3) to S», we obtain a CW-complex X, which kills the
r-th homotopy groups of S* for r = n+ 2, and we see that £(S* x S*) is isomorphic
to &(S*'x X,,,) (Lemma 7.1). Consider the composition

f:StxK(Z,n) —> K(Z,n) -L K(n,,(S"), n+2)

of the natural projection and the generator f’ of H"*2(Z, n;r,,(S™). Then,
it is well known that S'x X, is the mapping track E; of f. Hence, we can
apply the results of J. W. Rutter [11] and [10,§5] to &(S'x X,,,), and the
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group &(S! x S™) is determined in Theorem 7.9 for n>3 and in Theorem 8.8 for
n=2.

The author wishes to express his gratitude to Professor M. Sugawara and
Dr. S. Oka for their encouragement and valuable discussions.

§2. The group £(S™x S") for n>m=2

In this note, all (topological) spaces are arcwise connected spaces with base
point * and have homotopy types of CW-complexes, and all (continuous) maps
and homotopies preserve the base points. For given spaces X and Y, we denote
by [X, Y] the set of (based) homotopy classes of maps from X to Y, and by the
same letter f a map f: X— Y and its homotopy class fe[X, Y]. Also, we denote
usually by

the induced maps of a given map g: Y—Z.
The group of homotopy classes of self-homotopy-equivalences of a space X
is denoted by

&(X) (<=[X, XD,

whose multiplication is given by the composition of maps.
In the first we consider the group &(S™V S") of the wedge S™V S” for n>
m =2, where S* is the k-sphere in the real (k+ 1)-space. Let

2.1 ij:Smc Smy S, i:S"c Smv S»
be the inclusion maps and

2.2) A, (S™) — &S™ V S

be the homomorphism given by

@3) Moiy =iy, MEeiy = iyol+i,

for & e n,(S™), where o is the composition of maps and + is the sum in 7,(S™V S").
Then we have the next proposition (cf. [10, §17]).

PrROPOSITION 2.4. For n>m=2, we have the split exact sequence
00— 7,(S™) 2 &(S™V S — Z,+Z, — 1,
and so we have

(2:5) &(S™ v 8" = {ayAQ|i,jeZ, = {0,1}, { e m, (S},



On the Group of Self-Equivalences of the Product of Spheres 71

where a;;=(—1¢,)" V (—¢,)7 (e m(S¥) is the class of the identity map) with
relations

A&a;j = ay;M(—ep)ioleo(—c,))).
The product S™ x S* is the mapping cone
Smx 8" = (S"V 8" Up,,ige™"
of the Whitehead product
[iy, ip]: S™n=t—8m v S"

of the inclusion maps of (2.1). By the above result and the results of [10, §2],
we have the following theorem.

THEOREM 2.6. Assume n>m=2. Then there is an exact sequence
2.7 0— H, -2 &Sm™x8S") 2 G, — 1.
The groups H,, , and G, , are given by
(2.8) Hpp = T (8™ Ltms Tt 1(S™)] + T al(S™) [t T4 1(SM]
29 G = {0 M| [tmy £1 = 0, E €M (S™), 0, j€Zy} (= &(S™V S7)),
and ¢ is given by the restriction on S™V S*.

ProOOF. By the results of [10, §2], we have the exact sequence

0— H,, 2 &Sm"xS") 2V, G, — 1,
where H,, ,=m,, (8™ x S")/Imy for the homomorphism
y=TQ@,f): [Sm1 v S, Smx S"] — @, 4 ,(S™ % S™)
(i: SmVv S"—Smx S" is the inclusion, f=[i,, i,]), and
Gh,={h¢e|he&(S™V S"),e = e (S 1), hof = for
in m,y,-(S™V S"}.

We see easily that I'(i, f), defined in [10, (2.5)], coincides by definition with the
homomorphism

K Ty 1(X) + 74 1(X) — 71 0(X)

of [3, §8, p. 70] for X=S"xS" and w=ioiy, v=i0i,. Therefore, by [3, (8.1)
(i)] we have
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y(”a é) = - [ioil’ 6] +(_1)n+l[’1, i°iz]

for nemn,, (S"x8S"), (em,,(S™x S"), and we see that H, , is given by (2.8).
On the other hand, by (2.3) and the definition of the Whitehead product, we
have

a,;MO)eof = [(— Dy, ige(— ) e+ (—1)7i;]
= (= )'[iy; iye (=)' €1+ (= DLy, 0]
By using the direct sum decomposition
Tomtn-1(8™ V 8" & Ty 1(S™) + Tyt m 1(8™) + Ty p(S™ X S, 8™ V S7),
we see easily that
ayM&)of = foe ifand only if [, ] =0 and &= (—¢)*/.

Therefore, G,,, of (2.9) is isomorphic to G,, , by corresponding a;;A(&)«>(a;;A(&),
(—¢)**J), and the homomorphism ¢ x § corresponds to the restriction ¢. q.e.d.

§3. Group extensions in (2.7)

In this section, assume that n>m=2. Let £en,(S™) satisfy [¢,, £]1=0.
Then there is a map F,: S™ x S"—S™ of type (¢,,, £) by the definition of the White-
head product, and we obtain a map

3.1 ME) = (Fg py): S"x S"— Smx S*,
where p, is the projection onto the 2nd factor. Consider the elements
3.2) bij = (=) X (—¢,) € &(S™ x S"), i,jeZ,.
Then we have easily the following lemma by the definition.
LEMMA 3.3. o(b;;A(8) = a ;M)
where ¢ is the homomorphism in (2.7).
THEOREM 3.4. Assume that A of (3.1) can be chosen so that
AEDAE) = A¢i+&2),  UEby = byA(—em)olio(—))),

for any & en,(S™) with [¢,, £1=0. Then the exact sequence (2.7) is split. Also
the action of G, on H,,, is given by

a;;AE) (2 B) = (= (= ep)oF (o, B), (—1)'P)
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for XET, +n(Sm)/[‘m’ T+ l(sm)]’ ﬂ € nm+n(Sn)/[’n’ T+ l(Sn)]

Proor. The former is obtained immediately by Theorem 2.6 and Lemma
3.3. By the definition of A(¢) of (3.1), we have the homotopy commutative
diagram

Smx St L, (§mx Snyy Smtn V@B, (gmy gn)y (Smx §) VL, Smx S"
(&) YIEINA A2(EIVIAE) &)
Smx S L, (Smx Sy Smn VA (@h) , (gm ¢ gy (Smx ST) L, §mx SP,

The composition of the maps in the upper sequence is A'(«, ) by the definition of
A’"in [10, §2], and also the composition of the lower one is A'(Fso(, B), B) by (3.1).
These show that

HE 1A (o BAUE) = X (Fye(w, B), B) -
By the same way, we have
b X (@ B)byy = X (= em) oo (=), (=) o fo(—2)*))
= V(=D (=ty)'or, (= 1)'B),
because (—¢,)of= —f mod [¢,, .+ (S¥)] by [4, Th. 6.7, 6.9]. q.e.d.
COROLLARY 3.5. Assume that n>m2=2 and [¢,, E]1#0 for any nonzero
element E e, (S™). Then we have the split exact sequence:
0—H,,— &S"xS")— Z,+Z, — 0,
and the action of Z,+Z, on H,, , are given by
;- (%, B) = (=D (=¢p) oa, (—1)'B).
Proor. It is clear, since G, ,={a;;}=Z,+Z, by the assumption. q.e.d.
EXAMPLE 3.6. Let n—1=m=2. Then, we have the exact sequence
0— H,psy — EES™"xS™) — Gppppyy — 0,
where
Hpm+ 1 = Toms 1 (S™{Lems Nltm+ 11} + Tams 1 (8™ D {Ltms 15 tme 11} 5
Z,+Z,+Z, if m=3mod4d or m=26
Z,+2Z, if m#3mod4 and m#2,6,

mm+1 =
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(ny is the generator of m, (S¥)). Moreover if m#3 mod4 and m+2, 6, then
the above exact sequence is split with the action given by a;;-(a, B)=((—1)/a,

(=1B).

Proor. By [5, p.232] and [6, Lemma 5.1], it is proved that [¢,, #,,]#0
if and only if m#3 mod4 and m#2, 6. Also (—¢,)ca=—a mod [¢,,, T+ 2(S™)]
by [4, Th. 6.7, 6.9]. These results, Theorem 3.4 and Corollary 3.5 show the
desired results. q.e.d.

§4. The group &£(S?x .S") for n>3

In this section, we assume that n=>3.

LemMma 4.1. (i) The group G, , of (2.9) is

Gy = {aij}'(é) [¢en(S?),i,jeZ,},
and the multiplication is given by
a;; M8)ay i ME)= a4 4 M(—= 1) E+E).
(ii) The group H, , of (2.8) is
Hyp =1, 2(S?)+Z;.

Proor. It is well known that [¢,, £]=0 for éen,(S2) (n=3). Therefore,
G, , is given as above by Theorem 2.6. It is known that

4.2) (=)ol =¢  for Cem(S?),
(cf. [12, p. 278]), and we have
a;; M&)ay; ME) = ayppj4 b M(—= 1) E+E)

by Theorem 2.6 and Proposition 2.4. Since =,,,(S")=Z,, (i) follows im-
mediately. g.e.d.

Now we have the next theorem by Theorem 3.2.
THEOREM 4.3. Let n=3. Then the exact sequence
0— H,,— &S?*x8") — G,,— 1

is split, where H, , and G, , are the groups in Lemma 4.1. The action of G, ,
on H,, is given by

ayM&) (@ ) = (= D™ Ja+£p, B)
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fOi‘ 667‘(,,(52), (167[,,+2(S2), BE nn+2(S") = ZZ'

Proor. Consider the Hopf map h:S3—S2? and a map F:S?2xS3->S2
of type (¢,, h), given by

h(q) = qiq™t,  F(p,q) = qpq™*,

where q € S3 is a quaternion of norm 1, pe S2 is a pure quaternion of norm 1,
and i is the imaginary unit. Then, we can construct

Fy= Fo(;;x&): §2x 8" — §2,
A& = (Fg py): S2x S" — S2x S™,

for any ¢em,(S?), where &' em,(S3) satisfies h&'=¢. It is clear that F, is of
type (¢5, ). By using the equality

AP, x) = C(x)p¢'(x)",x)  for peS?, xes,
we can show that 1 satisfies the assumptions of Theorem 3.4 as follows.
AEDAE)(p, x) = (E1(x)E5(x)pE(x)1E1(x) 7!, x)
= A&, +&)p, x),
AObi(p, x) = WM W1y (= (=) ()
= b;M(¢e(—en)) (P, %)
= b A(—¢2)o&o(—e,)))p, x) by (4.2).
Also, it is easy to see that
Fo(hx ¢3) = homoT,

where m: S3 x S3— 83 is the multiplication of S3 and T: S3x S3—S53 x S3 is the
switching map. Therefore, for any a=ho' € 7, ,(S?) and f e, ,(S?), we have

Fya, p) = Fo(hxe3)o(a’, &'B)
= hEB+a) = a+Ep.
These show the desired results by Theorem 3.4. q.e.d.

§5. The group £(S3x S”) for n=>4

In this section, we study the case m=3.
For any £ e 7,(S3), we have [¢3, £]=0 and we can define maps
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E;:S3xS"— §3, A(6): S3x 8" — S3x 8"

by Edx, y)=x&(»), A&)(x,y)=(x&(y),y). By Theorem 2.6, we have the exact
sequence

5.1 0— 7,1 3(S3)+7,,3(S") 25 &(S3xS") 256G, — 1,
where
Gs,n = {a;A() | £ em(S?), i, j € Z,} .
Since A(¢) is of type (¢35, £), we have
(5.2) @by AQ) = ai&)  for Lem(S?),
where b;; are the elements of (3.2).
THEOREM 5.3. Let n=24. Then we have
&(53 x 8" = {b,; AN (o, B) | € m, 1 5(53), BE M1 5(S"), E€m(S?),
i,jeZ,}.
The group structure of &(S3 x S*) is given as follows.
(1) (i, BN (2, B2) = Aoy +t3, By +B2)
(i)  AEDMUEL) = ¢ +22),
(iii) bybij = biirjujn boo = 1;
(iv) Abos = bo1 A—9),
(V) AObio = byoM—EA (@353¢,0);
(i) 4@ Bboy = borA'(—a, —(—z,)0B),
(vii) A(a, Bbyo = byoA' (@, — ),
(vii))  A'(a, B)AE) = U (@—&B, B).

Here, S3:n,(S3)—>mn,.5(S®) is the suspension homomorphism. Also w; is a
generator of ng(S3)=Z,, given by

(54 *(w3) = ¢,

where ¢: S3 x S3—S3 is the commutator map: ¢(p, q)=pqp~1q~', and n: S3 x
S3-(S3x83)/(S3 Vv S3)=S° is the collapsing map, (cf. e.g. [2, p. 173]).
To prove the theorem, we use the next two lemmas.
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LEMMA 5.5. Let p,: S?xS"—>S3 and p,: S3xS"—S" be the projections.
Then we have

P1-¢p2 = m*(@3538)-£py- p1 = &Py - pr- 1M (@3S3E),
where m: S3 x S"—(S3 x S")/(S3 Vv S")=S"*3 is the collapsing map.
Proor. It is easy to see that
P1-€p2-p1'-Ep3t = Po(e3x &)
= wzomo(e3 X &) = wy083&om,

by (5.4), and we have the first equality. Therefore we have the desired results,
since ¢ is homotopic to the map S3 x S3—S3 given by (p, 9)— p~1q !pq.

q.e.d.
LEMMA 5.6. For the monomorphism A’ in (5.1), we have
(e, 0)f = ((pf)- (@nf), pof)
for any aem,,5(S?) and f: S3 x S"—>S3 x S*,
Proor. The desired equality follows from
1A (@,0) = pyran,  pA(x,0) = p,,
which are seen by the definition: A’(a, 0)=F o(1V (o, 0))< . q.e.d.

REMARK. If n=5, we see easily by definition that
A'(a, B) = (py-am, p,+ Bm)

where + is the sum in the cohomotopy group [S3 x S*, S*].
Now we are ready to prove Theorem 5.3.

Proor oF THEOREM 5.3. By (5.1) and (5.2), it is sufficient to prove the re-
lations (i)—(viii). (i)-(iii) are seen easily.

(iv)  Abor = (P1-¢p2, P2)es X (— )
= (P1-(=£p2) (—en)oP2) = boy A(=9).
(viii) AN (@, A—&) = X (A(&)(x, B))
= A((p1'EP2; P2)o (@, B)) = A'(x+EB, B).
(V) AObio = (P1-EP2s PN —t3 % t,)
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= ((=P1)-€p2, P2) = b1o((—&p2)- Py, P2)
= b1o(p1 -(—&p2) m*(w353%¢), p,) by Lemma 5.5
= b oA (0353, 0)A(—=¢) by Lemma 5.6 and ni(—¢&)=n
= by A(— OV (03S3¢,0) by (viii).
(Vi) bor X (@ B)bos = A'(bos (2, B)(—0)) = A(—a, —=(—en)P).
(vii) is similar. q.e.d.

COROLLARY 5.8. If 03.S3: 7, (S3)—>n,,3(S3) is O-map, then the exact se-
quence (5.1) is split, where the multiplication of G5, is given in Theorem 3.4.

COROLLARY 5.9. Assume that there is an element & e n,(S3) such that
20+¢B+w3S3E #0  for any aem,,3(S?), fem,3(S™).
Then the sequence (5.1) is not split.

Proor. It follows from Proposition 2.4 that (a;oA(£))2=1. On the other
hand, using the relations in Theorem 5.3, we have

(B1o OV (@, B))? = b1 oAby o (2, — BAEA (2, B) by (vii)
= A=V (0383, 0)A' (o, — P)A'(x+EB, BA(E) by (v), (viii)
= NQu+EB+w,S3¢,0) by (i), (viii), (ii).

The last element is not zero by the assumption, and we have the corollary. q.e.d.
EXAMPLE 5.10. The next exact sequence is not split.
0— Zyy+Z, — &(S3%x8% — Z,+Z,+Z, — 0.
Proor. For the element #3 € n5(S3), we have
200+n3B+ w3833 # 0 for any aemng(S3), peng(S9),

by [14, Prop. 5.3, 5.6, 5.9], and so the desired results by the above corollary.
q.e.d.

§6. The group &(S"x S")

Let GL(2, Z) be the group of integral 2 x 2 matrices having integral inverse
matrices, with the usual multiplication. Then, it is easy to see that there is an
isomorphism
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(6.1) 1: GL(2, Z) —> &(S", V S")

given by
x(‘j Z) = P((i,a+isb) V (iyc+iyd),

where i;: S"—S"V S" is the inclusion to the j-th factor, F is the folding map, and
k € Z means the map of degree k.
The following theorem is proved essentially by P. J. Kahn [8, §2.3].1

THEOREM 6.2. The following sequence is exact:
0— H,, %5 (8"x8") — G,, —> 1,
where
H, = 73S Ltns ead} +72a(S™)/{Lens ¢al}s
GL(2,Z) if n=1,3,7,

6.~ {(65)e6L. 2 ab = ca=0mod2} ifmis odd and #1,3,7,

{i(Ol ’i<10>’ i( 0 1>a i’(_l(l)} if n is even.

Proor. By the same way as Theorem 2.6, it is sufficient to show that the
group G, , in the proof of Theorem 2.6 is isomorphic to the group G,, in
the theorem.

It follows immediately that

5!

1(8 ) lin i) = ha+izb, e +id]
= ac[il, i1]+(ad+(— l)an)[il, i2]+bd[i2, i2] .

On the other hand, it is well-known that [¢,,¢,]=0 if n=1, 3, 7, and the order
of [¢,,¢,] is 2 if n is odd and n#1, 3, 7, and is infinite if n is even (cf. e.g. [7,
p- 336]). Therefore, we have the desired results by studying the conditions that
the last element is equal to [iy, i,]°¢. q.e.d.

CoROLLARY 6.3. (P.J. Kahn [8, Th. 4]) If n is even, then the sequence
in Theorem 6.2 is split. Also the action of G, , on H,, is given by

1) It seems to the author that the consideration for the case n=3,7 is neglected and that

((l) i) of [8, p. 34] should be ((l) %) .
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10) e =@t (] 70) Cné)=(-Enty.

In the rest of this section, assume that n=3, 7.
For any N=(n;;) € GL(2, Z), we define the element A(N) € £(S" x S") by

AN)(p, q) = (p"t1q™ 2, pr21q22)  for p,qeS",

where the multiplication is the one of quaternions or Cayley numbers. Then
we have the following theorem.

THEOREM 6.4. Let n=3,7. Then
&(S"x S") = {A'(a, B)AN) |, B € 7,,(S™), N e GL(2, Z)},
and the multiplication is given as follows:
(i) X P, p) = V(a+o, +p),
(ii) AN, B) = X(INI(ny 10+ 1y 2B), IN|(nz50+n52B) AN),
(iii)) A(N)AM) = V(a,0,, a,0,)(NM),
a;=—|NM|(n; n;zm,,m,, +< n2“ )mumlz +( n2‘2 ) my1My,)(i=1,2), where N=
(n;j), M=(my;), and |N| means the determinant of N, and w, is a generator of
Ton(S")=Zy; or Z,.
Before we prove this theorem, we show the next two lemmas.
LEMMA 6.5. amp,=pron  for aeng(S3), i=1, 2.
Proor. By the commutative diagram
S3x§3 (mPD, §6x g3 X1, 935 g3 ¢, 93
I o

S9 S3a S6 3 S

3
we have an.p;an~t.p;~1=(an, p;)*¢=0. q.e.d.
LeMMA 6.6. r(mp,.np,)=rmp,.rnp,- (—(5 )mnwsn) .

Proor. This lemma follows from p,.p,=p;-p,-(—w;7) (Lemma 5.5) and
Lemma 6.5. q.e.d.

Proor oF THEOREM 6.4. We prove the theorem for n=3, and the theorem
for n=7 is proved by the same way.
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By Theorem 6.2, we have the exact sequence
0 — me(S3)+7(S3) 25 £(S3%xS3) 2 GLQ2,Z) — 1.

We notice that A'(a, B)=(py-ax, p,-Br) for a, f e ng(S3), and we have the desired
results by Lemmas 6.5, 6.6. g.e.d.

§7. The group &(S*' xS™) for n=3

In the rest of this paper, we consider the groups &(S'xS") (n=2). For
these groups, we cannot use the methods in §2 since S!V S” is not simply con-
nected.

By attaching i-cells (i=n+2) to a given CW-complex X, we obtain a CW-
complex X, which kills r~th homotopy groups of X for r>n:

(X)) =0 (r>n), i (X)) 2 n(X,) (rZn),
(i,: X— X, is the inclusion).

LemmA 7.1. If X is an n-dimensional CW-complex. Then we have iso
morphisms

¢(X) ~ &(X,), S xX) = S xXp41)-
Proor. It is easy to see that the‘ induced maps
in: [ Xp X,] — [X,X,],  ip: [X, X]— [X, X,]
are bijective by the elementary homotopy theory. Therefore
iyt [X,, X,] — [X, X]

is bijective, and we have the first isomorphism.

It is obvious that S!x X,,, is obtained from S'x X by attaching i-cells
(i=n+3) and kills the r-th homotopy groups of S! x X for r>n+1. Therefore,
we have the second isomorphism from the above result. q.e.d.

REMARK. The first isomorphism in the above lemma is shown in [1, Lemma
5.1] under the additional assumption that X is 1-connected.

Now, consider the case X=S" for n=3. Then, it is well known that X,
and X,,, are embeddable in the sequence of the induced fiberings

’

> K(Z,n) —L > 4

l\

K(ZZ3 n+1) Xn+1 Xn K(Z29 n+2)

Q4 g,
(1.2) n
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of the generator f' of H**2(Z,n;Z,)=Z, (cf. e.g. [9, p. 140]). Therefore, we
have the sequence of the induced fiberings

(7.3) QA5 S'%x X, (=E)2->S'xX, L4
of f=f'op, such that p=¢, x p’, i=(x, i’).
LeEmMMA 7.4. The two induced maps
iy:[Q4,04] — [QA,E[], p*:[S'xX,, S'xX,] — [E;S'xX,]
are both bijective.
Proor. Since i’=p, i, we have
i = ppiy: [QA, QA] - [QA,E[] 22, [QA, X4 4].

Using the homotopy exact sequence of the fibering (X,,, p’, X,) in (7.2), we
see easily that iy is bijective. Also p,. is bijective since E;=S' x X,,,,. There-
fore i, is bijective.

It is easy to see that p* is equal to

H'(S")+H"(K(Z, n)) ~=22 H'(S)+H"(X,+1)
which is isomorphic. q.e.d.
By applying [10, Prop. 5.6] for fin (7.3),
LeEmMMA 7.5. We have the exact sequence
i*71(0) 2 S(ST X X,4q) 22¥ s £(S1 x X,) X £(QA)

of homomorphisms, where i*: [S' x X, . {, QA]->[QA, QA] and i*~1(0) is a group
with an unusual multiplication @.
On this sequence, we have the following three lemmas.

LeEMMA 7.6. Im(pxy)=&8'xX,)=2,+2Z,.

Proor. It is clear that £(4)=¢&(QA)=1, since A=K(Z,,n+2). There-
fore fol ~ f for any & e £(S! x X,), and there is h € &(S* x X, ,) such that poh~
Eop, ie., (pxyY)(h)=(& 1). This shows the first equality. Since X,=K(Z, n)
we see that &£(X,)=Z, and [S!' A X,, X,]=0, and so the second equality by
[10, Example 5.10]. q.e.d.

LemMmA 7.7. i*~10)=Z,.

Proor. By using the Serre cohomology sequence, we have
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H"(X,41;2Z;) = Z,, H™Y(X,,1;Z,) =0.

Therefore, we see that [S!x X, ., QAI=H"(X,41;Z,)+H""'(X,41;Z,)=2Z,,
and i*=(x, i’)* is equal to 0. g.e.d.

LemMA 7.8. « is monomorphic.

Proor. By the results of J. W. Rutter [11, Cor. 1.3.2], Kerk is equal to
the image of the homomorphism 4: [S! x X, ., Q(S! x X,)]>[S! x X+, RA4].
The left hand side is equal to HY(S* A(S!x X,;))+H"(S* A(S' %X X,+))=0,
and so we have the lemma. g.e.d.

By the above results, we obtain the following

THEOREM 71.9. &(S'xS")=Z,+Z,+Z, for n=3.

Proor. By Lemmas 7.1, 7.5-7.8, we have the exact sequence
0—Z,— &S xS")—Z,+Z,—0.

Consider the elements b;;=(—¢;)* x(—¢,)! € £(S! x S*). Then, by the definition
of the isomorphism &(S!x S")~&(S!x X,,,) in Lemma 7.1 and the epimor-
phism ¢: &(S' x X, ,,)» (S x X,)=Z,+Z,, it is easy to see that the subgroup
{bjli,j€Z,} =&(S* x S*) is mapped isomorphically onto Z,+Z,. q.e.d.

§8. The groups £(S* x S?) and £(S! x CP")

By the similar way in §7, we consider the groups &(S! x S2) and &(S! x
CP") (n=1) more generally, where CP”" is the complex n-dimensional projective
space.

Let Y,,,,; be the CW-complex obtained from CP" by attaching i-cells (i=
2n+3) so that Y,,,, kills the r-th homotopy group of CP” for r>2n+1. Then
we have the following lemma by Lemma 7.1.

LemMma 8.1. E(S1XCP") ~ &(S1x Yyp41)-

It is well known that Y,,., is embeddable in the sequence of the induced
fiberings

QB Y ,Y, ., 25 K(Z,2) L K(Z, 2n+2)
8.2) I I I
Y K B

of the generator f’ of H2"+2(K). Therefore, we have the sequence of the induced
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fiberings
8.3) QB-i,S'xY 2,S'xK-L,B

of f=f'op, such that p=¢, xp’, i=(*,i"). Then, Lemma 7.4 holds similarly
for (8.3) and we have the following lemma by the similar way as Lemma 7.5.

LemMA 8.4. We have the exact sequence
i*71(0) £ £(S1 x Y) —2X¥, &(S! x K) x £(QB)
of homomorphisms, where i*:[S! x Y, QB]—-[2B, QB] and i*~1(0) is a group

with a multiplication @.
In this lemma, we have the following three lemmas.

LeEmMMA 8.5. By the natural projection &(S!x K)x &(QB)— &(St x K),
Im (¢ x ) is isomorphic to

Imp = &S xK)=2,+2,.

ProoF. By the definition of ¢ xy in [10, p. 26], Im (¢ x ¢) is the set of
(h,e)e &(St x K) x £(2B) such that the following diagram is homotopy com-
mutative for some h, € £(S* x Y):

QB 1, SI1xY - 2,81xK
%) £ [ J#
QB -1, S1xY-2,S8'xK
Then, we have the right commutative square in the following diagram:
H2m+2(B) (_;_1 H2?"1(QB) _;’:_, H2m2(S1x K)

(8 o . l,,*

H2n+2(B) JT;“ H2"+1(QB) ;_) H2n+2(S1 x K)

where 7 and 7, are the transgressions. Since the left square in (%) is clearly
commutative and f*=1ot7!, we see that h*f*=f*g*. These show that

Im (¢ x ) = {(h, &) € &S x K)x &(B) | foh = eof}.

Furthermore, for any h e £(S! x K), there is a unique element ¢ e &(B) such that
h*f*=f*g*  Therefore we have Im (¢ X)) is isomorphic to Im ¢=¢&(S?! x K),
which is Z, + Z, by the second equality of Lemma 7.6. q.e.d.

LeMMA 8.6. *1(0)=[S'xY,QB]=Z.

Proor. In the cohomology exact sequence
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[S!x K, QB] -2 [S! x Y, QB] < [QB, QB]

of the fibering (8.3), we see that i* =0 by the same way as Lemma 7.7. Also, the
multiplication @ of *7!(0)=Imp* in Lemma 8.4 coincides with the usual
multiplication +, by [10, Lemma 5.4 (ii)]. q.e.d.

LeEmMA 8.7. « in Lemma 8.4 is monomorphic.

Proor. By the results of J. W. Rutter [11, Cor. 1.3.2, Th. 1.4.3], Kerk
is equal to the image of

(Qf)5: [St x Y, Q(S! x K)] — [S! x Y, QB].

Since B=K(Z,2n+?2), Qf is homotopic to the constant map, and we have the
lemma. q.e.d.

THEOREM 8.8. Let n=1. Then we have the split exact sequence
0—>Z %, &S xCPYY——Z,+Z, —> 0,
where the action of Z,+Z, on Z is given by
(=D, (=D))ym=(-D*m, for meZ, i jeZ,.

Proor. By Lemmas 8.1-8.7, we have the above exact sequence. Consider
the elements b;;=(—¢;)'x(—¢)/ € &S x CP")=¢&(S' xY), where —¢ is the
generator of &(CP")=Z,. It is easy to see that the subgroup Z,+Z,={b;l|
i,jeZ,} =&(S! x CP") is mapped isomorphically onto Z,+Z, of the right hand
side. Therefore the above sequence is split.

To study the action, we consider the diagram

SIXY 4, SIxYxSIxYy -1xm , SIxYxK(Z,2n+1) £ SIxY

lbu 1biijgj lbuxe 11)”

SIXY 4,81 xYxSxYy 1xm' , St xYxK(Z,2n+1) £ S1xY,

where 4 is the diagonal map, k is the multiplication, and the compositions of the
maps in the horizontal sequences are equal to x(m) and k(m’) respectively by
the definition of « (cf. [10, (5.2)]). It is easy to see that the above diagram is
commutative for e=(—1)/"=1 and m'=(—1)*/m and we have the desired
results. q.e.d.
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