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Introduction

In the previous paper [2], the author defined a notion of gradient measures
for functions on a self-adjoint harmonic space. In case the harmonic space

is given by solutions of a second order elliptic partial differential equation of
the form

k0 Ju _
= T(”“T’)E})“q“_o

on a Euclidean domain, the mutual gradient measure 6, ,, of functions f and
g is given by

k
6”’”]=(i,jz= a;; 66){ gf )dx (dx: the Lebesgue measure) .
Thus, in this case, the equality

(*) Os9.01 = fO10.61+ 905,41

holds. The main purpose of this paper is to show that the equality (*) remains
valid for general self-adjoint harmonic spaces. Once this equality is established,
we can consider Royden’s algebra (cf. [3, Chap. III]) on a self-adjoint harmonic
space. We shall also see that if the harmonic structure is considered on a Eucli-
dean domain and satisfies a certain additional condition (see Theorem 5), then
the gradient measure is expressed as

k. of 0
Orr1= 2 S99,

,1ax 0x i

with a positive-definite system of signed measures (v;;); and the harmonic func-
tions are ‘‘solutions” of the second order elliptic partial differential equation

zk: —3%,—( ij a )—nu 0

i,j=1

whose coefficients v;;, m are (signed) measures.
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§1. Basic definitions in the previous paper [2].

The base space Q2 is a connected, locally compact Hausdorff space with a
countable base. We consider a harmonic structure $={#(®)},:0pen ON 2
satisfying Axioms 1, 2 and 3 of M. Brelot. A domain w in Q is called a P-domain
if it is non-compact and there is a positive potential on w. We assume

Axiom 4. On any P-domain o, the condition of proportionality is satisfied.

We furthermore assume that (@2, ) is self-adjoint, i.e., there is a system
{Gu(*%, ¥)}w:p-domain Of symmetric Green functions satisfying the consistency
condition [2, §1.2, (c)]; this system will be fixed. For a P-domain w and a

signed measure ¢ on w, let UZ(x)=\ G,(x, y)da(y) whenever it has a meaning.

(0]
A domain w is called a PC-domain if it is relatively compact and its closure
is contained in a P-domain. For an open set w, in €, let

for any PC-domain o such that @ cw,, there are
B o(Wo) = { f; two non-negative bounded superharmonic func-
tions s; and s, on w such that flo=s,—s,

To each fe #),.(w,), a signed measure 6, on w, is associated in such a way
that flo=U?% +u with u € 5 (w) for any PC-domain w such that cw,. We
assume

Axiom 5. The constant function 1 belongs to %,,.(22) and for any PC-
domain w, Ulr! is continuous, where n=o0;.

For any open set gy, % ,.(®w,) is an algebra ([2, Proposition 2.1]). We
define
1
Otr.1=5 (f0,+90, — 0,5 — fgm)

for f, g € #,,(wo) as a signed measure on w,. We know ([2, Theorem 4.1])

that 6 ,=0;, ;120 for any fe &, (w,).
For a PB-domain o (i.e., a P-domain for which U!z! is bounded), set

_ signed measure on  such that Ul? lis }

A 5c(®) ={ %> bounded continuous and ||(w) < oo

and
Ppc(w) = {UG; o€ Mpc(w)}.

The space 2y-(w) is a normed space with respect to
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1/2
1Ugl0 =(§ Vg do) .
We define

_ there is a sequence {f,} in 2 p(w) such that
’ fn_'f q.c. on and ”fn_fm”I,(o—)O (n’ m—*oo) }’

90(0’)={f

where ‘‘q.e.” means ‘‘except on a polar set”. This space is a Hilbert space
with respect to the norm

1l = lim [ £yl

where {f,} is a sequence for f described in the definition of 2 y(w).
For an open set w,, we define

2 (w)=1 f; for any PC-domain w such that @ < w,,
1oc\@o _{ s flwe go(w)_*_”E(w) }.

Here,
#(@) = (e (©); 6,@)+ | wrdlrl<oo},
which is complete with respect to the norm (semi-norm, in case 7 =0)
.0 = (6,@)+ | u2dil}*r2.

To each fe 2,,(w,), there corresponds a non-negative measure 6, on w, which
is determined as follows: For a PC-domain » such that @cw,, if flo=g+u
with g e 2(w) and u € #g(w) and if {g,} is a sequence in 2g(w) such that
g,—9 q.¢. on w and ||g,—gnl;,,—0 (n, m— 00), then

8(A) = lim4,_, (A)

for every Borel set A in  (see [2, Theorems 6.2 and 7.1]). This is an extension
of the notion d, for fe B ,.(wo). If f, g € D,,.(wy), then we define

1
Ots,01= 7(5f+a— 0;=9,)-

§2. . Gradient measure of product of functions in %, .(®,).

The purpose of this section is to establish the following results:

THEOREM 1. Let wy be an open setin Q. For any f, g, ¢ € B,,.(0o),
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017091 = SOr0.011 991,61
COROLLARY. For any f, g € #,,.(®o),
O = f20,+2f90 7,1 +9%5,
in particular,
6]'2 = 4f26f .

The proof of the above theorem will be given by a series of lemmas. First,
we consider the perturbed sheaf $~={#"(®)},:open Which was defined in
[2, §3.2]. We note that if u € #~(w,), then o,=un.

LemmA 1. If u, ve o#~(w,), then
6[“2’"] = 2u6["'v] .

ProOF. Let 6,=0,—fn for fe B (w,). If ue#~(w,), then &,=0;
a continuous function w on @, is H~-superharmonic if and only if &,=0 (see
[2, Proposition 3.7]). First we shall show that

6)) 6,0 = 3ud,

for u e #~(w,). Since u is continuous, given £¢>0, each x,€ w, has an open
neighborhood V (<= w,) such that

u(xg)—e S u £ u(xo)+e

on V. Consider the function w=u(x,)+e—u on V. Since wes#~(V)andw =0
on V, —w3 is $~-superharmonic on ¥, so that 6,:<0 on V. It follows that
G,3=3(u(x)+€)6,. on V. Noting that 6,.<0, we have

0) G0 2 3(u+26),2

on V. Since such V’s cover w,, (2) holds on w,. Since ¢ is arbitrary, we obtain
the inequality &,:=3uéd,.. Similarly, by considering w=u—u(x,)+¢ on V, we
obtain the converse inequality 6,:<3ud,.. Hence we have (1).

Next, let u, ve #~(wy). For any real t, 6,13 =3U+10)G 1) by (1).
Using (1) for u and v and taking the definition of &, into account, we deduce

34(6,2,— 2u0,,— V6,2 + 2u?vr)
= —3t%(6,,:— U0,2—2v0,,+ 2uv?n).
From the arbitrariness of ¢, it follows that

3) 0,2, = 2UG,,+06,—2uvn.



Dirichlet Integral of Product of Functions 201

On the other hand,
=1 (2 2,y 1
6[,,2_,,]—7 (u%0,+v0,2—06,2,—u vn)—T(vauz—auzu).
Hence, by (3),
Srur, o=~ (uvn—0,,,) =2ud
[uz,v]—-'—z‘— UVTL— 0 ,,) =2U [u,0]°

Now, let @ be a PC-domain and consider the spaces
Zyw) ={UJ;0e Apw)} and FHw)= 2pw)+H# p(w)

(see [2, §1.3 and §2.5] for # x(w) and +# gr(w)).

We remark that if fe 24(w) and g € Zg(w) then fg € 2yz(w) by virtue of [2,
Corollary to Proposition 2.2] and [2, Lemma 2.9]. Also, if u, v € 5 gg(w), then
Usuw e Pg(w) by [2, Lemma 2.7]. Therefore, for f, g e Zx(w), Usrs € 2 y(w).
These facts will be frequently used in what follows.

LEMMA 2. Let w be a PC-domain, u,vesgy(w) and ge Pgw). If
uv e & g(w), then

S uda,,q=g uv dag—g g do,,.

Proor. Put p=U?w and h=uv—p. Then, pe Pgxw) and he # gw).
Hence, [2, Corollary to Proposition 2.2] and [2, Proposition 2.4] imply

(@) = Swpg dn
and
01g(®) = Swh dag+Swhg dr.
Hence
O (@) = 0, (0)+ 04 (w) = Swuvg dn+ Swh do, .
On the other hand, since vg € 2 z(w), [2, Proposition 2.4] implies
Oupg(@) = Swu do,,+ Swuvg dr.

Hence
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S udo,, =S hda, =S uvdag—g pda,
w (0] (0] w

= Swuv do, — Swg do, = Swuv do, — gwg do,,.
LEMMA 3. Let w be a PC-domain, fe 2y w) and u € # gg(w). Then
Smu do;: =0.
ProoF. Applying [2, Corollary to Proposition 2.2] to f and fu, we have
0 @) = Swfzu dr.
On the other hand, [2, Proposition 2.4] implies
0 52,(®) ='Swu' do.+ S‘wfzu dr.

Hence we have the required equality.

LEMMA 4. Let o be a PC-domain, fe Pg(w) and g € B(w). Then
5[/‘2’0]((1)) = 2 Swfdé[f'g] .

PrOOF. Let v=20;s2,—4f0,;- We are to show that w(w)=0. By
the definition of d;. .;, we have

V= —f20,4+90;2—052,—2fgo,+2f0,+f2gn.

Since fg, fe 2gw), S fa da,=$ fdos, By [2, Corollary to Proposition 2.2],
o,z,(a))-—-g f2g dn. Hence °

W) = —S‘;fzda,+ Swg do .
Let g=u+g, with u € # gg(w) and gy € Py(w). Then,
Smgoda'fz =Swf2dago - gwadag.
By the above lemma, Swu do;»=0.. Hence v(w)=0.

LEMMA 5. Let w be a PC-domain, fe?g(w), u € # gg(w) and g e Bgw).
If ug € B p(w), then



Dirichlet Integral of Product of Functions 203

S1sua@ = § f a6+ | uddys.
PROOF. Put v=2(0; 7,41 —fOug—d; ) Since 6,=0,
v = (g0, —fucy)+(fo,,—ugo;)—o s, +uc,+fugm.
By [2, Proposition 2.4],
0 ruy(0) = Swu dog,+ Swfug dr.
Let g=v+g, with ve s#ge(w) and gy e Px(w). Then
Smgodaf,, = Smfu do,, = 'Swfu do, and Swfda""" = Swugodaf.

Hence

V((D)=.S de',,,+S fda,,,,—g uvdo,,

which is equal to zero by virtue of Lemma 2. (Note that uv—uge 2 gw),
and hence uv e & g(w).)

LEMMA 6. Let w be a PC-domain, ue 3# g(w) and ge Pyw). If u?e
& (W), then

@) = 2| wddpug.
PrROOF. Let v=20,2,,—4ud, ;. We have
V= g0,—u?0,—0,,+2ud,,+u’gn.

[2, Proposition 2.4] implies

0,24(0) = S u daug+g u?gdm.

On the other hand, by Lemma 2,
udo,, = S uzdag——g gdo,.

Hence v(w)=0.

LEMMA 7. Let w be a small PC“domain (see [2, §3.2] for a small domain),
u€ #g(w) and g e Bg(w). If u?, ug e Br(w), then
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@) = 2 uddy.

PrOOF. Let g=v+g, with ve # g(w) and gy e P(w). Let ii=I—-G,) lu
and §=(—-G,) 'v, where G, is the operator defined in [2, §3.1]. Put p=
G,i=U? and q=G,i=U*. Then u=ii—p and v=93—q and p, g€ Pgw).
Now

Ouz,61 = Opaz,m + Opuz,g— 51— 201up,51— O p2,01 -

Since i, # € #~(w) by [2, Proposition 3.5], Lemma 1 shows that d;3 ;=210 5.
The previous lemma implies

ung-o@) = 2| w by s,

since g—i=go—q € Pgw). Since udi=ug+uq and uqe Pgw), we see that
utbe #y(w). Hence, By Lemma 5,

brupf@) = | b+ p b
Finally, by Lemma 4, we have
@) = 2 P a6y
Therefore
Opu,g1()

=2 @b +2| udby n—2{ udéyy
- 2 Swp d&[“"}-] _2 gmp d(s[p,;,]

=2 wdsy.

Now we are ready to prove the theorem:

PrOOF OF THEOREM 1. It is enough to prove the case f=g. Let w; be
any relatively compact small domain such that @, cw, and let @ be another
domain contained in w,. Then w is a small PC-domain. We can write f|lo=
u+f, with ue #gg(w) and f,e Pg(w). Since f2, fo € B1,.(w,), We see by [2,
Lemma 2.8] that u2, u(¢|w) € Zg(w). Therefore, by Lemmas 4, 5 and 7, we have

Q) Ops2,i(@) = 2 S,w fdds 4.
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It follows that (4) holds for any open set w in w,, and hence

5[f2,¢1 = 2f 5u,¢1

holds on w;. Since such w,’s cover w,, this equality holds on w,.

§3. Some auxiliary results on functions in 2, (@) .

LeEMMA 8. Let w be a PB-domain. If fe 24(w) and pu is a non-negative
measure such that U% is bounded, then

[ f2du < GupUDIf 1.0

ProoF. This is easily seen from [2, Theorem 1.2 and Lemma 1.3]. Cf.
the proof of [2, Theorem 6.3].

LEMMA 9. Let w, be an open set and f be an extended real valued func-
tion on wqy. If for each x € wqy there is an open neighborhood V., of x such that
fl Vx € gloc(VxL then fE gloc(wo)'

Proor. If V,nV,#@, then [2, Lemma 7.3] shows that o, =d;,
on V. nV,. It follows that there is a non-negative measure 6% on w, such that
0%|V,=0sy, for each xew,. Similarly, given a PC-domain @ with @cw,
and g € 2,(w), there is a signed measure 6, ,; on w such that o, ,4|V.Nnw=
0L |VerwglVane) fOr €aCh X €wo with V. nw#@. We can cover w by a finite
number of V,’s, which we write w,,..., w,. Then

k .
Mr.n(@) = 2 ofgle;no-izjo)
=

k
< Z‘,l 010, (@; N @)'/25 (w; N w)!/2

.

< ké¥(w)'/25,(w)! /2.

Also,

o e ([ r2arm)"*({ goarml)"

Since 6%(w)< oo and S f2d|n]< o0, it follows from [2, Theorem 6.3] and the

above Lemma 8 that the mapping

g — o, gj(@)+ Swfg dn
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is continuous on Z,(w). Obviously, this is linear. Since the mapping (9, g,)—
6[g],g2](w)+gwg,gzdn gives the inner product for the Hiblert space 2(w) (see
[2, (6.4) in Theorem 6.3]), there is f, € Z,(w) such that

5) 5%, (@) + Swfg dr = 6, fo,g](w)+gwfog dn

for all ge 24(w). For any x e w, choose a domain ' such that xe w' c®’'c
Vinw. If ¢ € 2,(w), then its extension to w by 0 on w—w’ belongs to 2,(w)
by [2, Lemma 6.7]. Hence, by (5), we obtain

5[(f—fo)|w'.¢](w')+Sw,(f —fo)pdn =0

for all ¢ € Z4(w’). Using [2, Theorem 6.4] and modifying the values of f,
on a polar set, we see that flo=f,+u with u e #(w). Thus flwe 2, (w) and
0710=0%,- Then by [2, Proposition 7.2], we conclude that flwe 2Dy(w)+
# g(w). Therefore fe€ 2,,(wp).

LemMA 10. If o is a PB-domain such that sup U%™ <1/4, then
1ot 14120 < caldse@)+ | (Fu2dial)

for any fe 2o(w) and u € 5 g(w), where c;1=1-2(sup U™ )1/2,

Proofr. Put a=supUZ%". Using [2, Theorem 6.3] and Lemma 8  above,
we have

57 +i@)+ | (f+uydinl
= 0(w)+ Swfzdlnl +2(0; 5, u3(w) + Smfu d|n|)+d,(w)+ Swuzdlnl

2 VWt ul2o+ 4 fudn

1/2

2 110+ .o —4( s2an)" (( uran-)
2 1 1ot Il o =40 21 f Ll

2 (1=272)(I f 1,0+ lullZ,o) -

ProrosiTION 1. If {f,} is a sequence in 2 (wy) such that f,—f q.e. on
wq, 65, -, (K)>0 and SK(f,,—f,,,)zdlnI—»O as n, m—oo for any compact set



Dirichlet Integral of Product of Functions 207

K in wy, then f€ D,,(wo) and d,,_ (K)—0 as n— oo for any compact set K in w,.

Proor. Let w be a PC-domain such that @cw, and UZ <1/4. Let
flo=g,+u, with g, € 2y(w) and u,e #(w). By the previous lemma, we see
that [|g,—9gml1o,—0 and |lu,—u,lg,—0 (n,m—o0). Then it follows from [2,
Theorems 6.1 and 5.3] (in case | w =0, [1, Theorem 3.3] instead of [2, Theorem
5.3]) that flo=g+u with g e 9,(w) and u € # (w) and that ||g,—gll,,—0 and
lu,—ullg,,—0 (n—0). Since each point has a neighborhood V, which is a
PC-domain and for which supUj_<1/4, Lemma 9 implies that fe 2, (w,).
Also, in the above argument, J, _,(w)-0 and §, _, (0)—0 (n—>c0). Hence
0y, - s(@)—0 (n—00), and thus the last assertion of the proposition follows.

§4. Locally bounded Dirichlet functions.
Let w, be an open set in Q. Besides %&,,.(w,), we consider
B 10(0)={f€ Broe(wo);Ulss! is continuous for any PC-domain w}.

Functions in % .(wo) are continuous. We see from [2, Lemma 2.5] and the
proof of [2, Proposition 2.1] that % (w,) is also an algebra. Note that
Axiom 5 states that 1e % ,.(Q).

Now, let

there is a sequence {f,} in %,,.(w,) such
D B1o(W) = 1 g; that f,—g locally uniformly on w, and
05— (K)—0 (n, m— o) for each compact K <wo

We similarly define 2 pc,0(wo) replacing #,.(wo) by Zc,o(wo). Obviously,
these are linear spaces and by Proposition 1

QBC,loc(wO) < QB,loc(wO) < ’@loc(wO) .
THEOREM 2. Dp,,(0g) and Dpcy(wo) are algebras. For any f,ge
gB,loc(wO) and ¢ € glcc(wo)a
Otr0.61 = SOrg,61+ 905,61

PROOF. Let f, g € D 0(@o) (r€Sp. D pc1oc(wo)) and choose {f,} and {g,}
in & wy) (resp. Bco{wp)) such that f,—f and g,—g locally uniformly on
wo and 6, _ (K)-0 and 9§, _, (K)-0 (n,m—o) for each compact set K
in@,. By the corollary to Theorem 1, we have

6fngn_fm9m é 2(6(fn"fm)gn+6fm(9n_gm))
= 2{(fn_fm)25g,.+z(fn—fm)gné[fn—fm,g,.]+gr%6f,.~fm

+ fr%lagn—gm'l_zfm(gn—gm)a[fm,g..—gm] +(gn_gm)25fm} .
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It follows that d,,, _ s, ,.(K)=0 (n, mn—>c0) for any compact set K in w,. Ob-
viously, f,g,—fg locally uniformly on w, Hence fge @ ,.(w,) (resp. Dpc,
10e(®@o)). Therefore, Dy ,,.(wo) and D e 1,.(w) are algebras.

Next, let ¢ € D (w,). If w is a PC-domain such that @<w,, then there
is a sequence {¢,} in 2 pc(w)+ # x(w) such that o, _4(w)—0. By Theorem 1,

O frgntml = SuOtgmbm1 T InOLs 1]

on . Letting m— oo, we have

Ot fugnt1 = SuOtgnd1 T 901101

on w, and hence on w,. Let A be any relatively compact Borel set such that
Acw,. Since d;,,, — ;,(A)—0 (Proposition 1),

Ot fugmsi(A) = Orrg,61(A) -
On the other hand, since f,—f, g,—g uniformly on 4 and J,, _(4)—0 and
0,,-4(4)—0 (Proposition 1),

ds S S S .
S Afn [gn9] Af ddp,4; and Agndélfmd’] - Agd Lf.9]

Therefore
Orsg,6(A) = S Af dbgg,41+ S Ki ddpy,41

and hence
059,61 = SOrg,81+ 901,61
CoROLLARY. For f, g € Dy ,(wo),
5fg = f259+2fg5[f,g]+925f .

ProrosiTiON 2. If {f,} is a sequence in Dp (o) (resp. 2 pc0:(®o))
which converges locally uniformly to f on w, and if 6, _; (K)—0 (n, m—c0)
for each compact set K in wg, then f€ D g o.(wo) (1€5P. D p,10(00)) and 6,_ s, (K)
—0 (n—> o) for each compact set K in w,.

Proofr. Let {w,} be an exhaustion of w,. By definition, there is g,€
Br0i(wo) (resp. B io(®wo)) such that |g,—f,|<1/n on @, and J, _; (w,)<1/n
for each n. Then g,—f locally uniformly on w, and 4, _, (K)—0 (n, m— )
for each compact set K in w,. Hence fe Dp ,(0p) (reSP. D pc,100(w0o)) and

Os,-f(K) = 2{6,_,(K)+0,,-;(K)} >0 (n > )
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for each compact set K in w,.

THEOREM 3. Let fi,..., fi € Dp 1o (wo) (r€5P. Dpc10.(wo)) and regard f=
(f15-.-» fi) as a mapping from w, into R*. If Q' is an open set in R* containing
U{f(K); K: compact=wy} (resp. f(wo)) and if ¢ € CH(Q'), then Dof € D g, (o)
(resp. D pc,100(W0)) and

k
(6) Otoes,01= 2 <

Jor any g € D,(w0)-

Proor. If @=const., then the both sides of (6) vanish. If &(x,,..., x,)=
xj, then both sides of (6) are reduced to 6y, ;. Now, suppose the conclusions
are true for @,, ¢, CY(Q') and let d=P,P,. By Theorem 2,

Dof = (P1of (P2of ) e D B,1oc(@Wo) (r€SP. D pc 10.(®o))
and
5[¢°f 291

= 6[(01°f)(¢z°f),9]
= (2160100 5,1 (P29 Vot 0,0 5,01

{<q> f)(”z of )+ @2) (G2of s,

< )5m,a1 .

It follows that the conclusion of the theorem holds for any polynomial & in
k-variables. Now let ® € C1(Q'). Then there is a sequence {P,} of polynomials
in k-variables such that P,—® and 0P,/0x;—09[0x;, j=1,..., k, all locally uni-
formly on Q'. Then P,of —®of locally uniformly on w,, since the image f(K)
of a compact set K in @, is relatively compact in Q. We have seen that

>
Jj=1

5Pnof—P"|uf

(6(P Pn) f) (76(1’J Fn) °f>5[fj-fl]'

Hence, if K is a compact set in w,, then

J,l 1

5P,.ef—Pmof(K) -0 (n,m - ),

since [0(P,— P,)/0x;]1of—0 (n, m—c0) uniformly on K for each j. Hence, by
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Proposition 2, @of € D p,.(wp) (resp. D pc 10.(®o)) and
Opog-0op(K) =0 (n — ).

By an argument similar to the proof of Theorem 2, we see that (6) holds for the
given ®.

CorROLLARY 1. Let f; (j=1,..., k) and ® be as in the above proposition.
Then

O.p = i (g—;bj °f)<'g% °f>5[f,-.m-

Jjsl=1

CoROLLARY 2. (a) If fe Dp (o) and infxf>0 for each compact set
K in wq, then 1/fe D (o) and

1 1
(7 Ott/f01= — 7f5[f,g] Jor ge D, (wo); 64,5 = Faf'

(b) If fe Dpc0d(wo) and f>0 on wy, then 1/f€ D pc 10(wo) and (7) is valid.

Next, we consider so-called Royden’s algebras. For an open set wg in Q,
set

D g(0o) = {f€ Dp,10(wo); f is bounded and J (wy) < 0}
and
Dpc(wo) = 2D 5(Wo) N D pe,1o(@o) -
For fe 24 w,), let
1/ 1 pBjwo = 8,(wo)!/>+ sup If1.
THEQREM 4. 94wy and Zg(w,) are Banach algebras with respect to
the above norm.

Proor. By Theorem 2, we easily see that 2g(w,) and 2 g(w,) are algebras.
Obviously, |‘llps,«, iS @ norm on these spaces. By the aid of the corollary to
Theorem 2, we can easily verify that

1/91lp8,00 = Il 108,00/l DB,

for f, ge D24(wy). The completeness of Zg(w,) and Zgc(w,) follows from
Proposition 2.

RemARK 1. Using the algebra 25,(Q) we may extend the classical theory
involving Royden’s algebra (see, e.g., [3, Chap. III]) to self-adjoint harmonic
spaces.



Dirichlet Integral of Product of Functions 211

§5. Self-adjoint harmonic space on a Euclidean domain.

We consider the special case where Q is a domain in the Euclidean space
R¥ (k=1).

THEOREM 5. Let Q be a domain in R* and let § be a self-adjoint harmonic
structure on Q satisfying Axioms 1~5. Furthermore we assume that the
coordinate functions x; (j=1,..., k) all belong to Dp,,.(2) (resp. D pc 10(L2)).
Then, for any open set w,<=Q, every fe C'(wy) belongs to Dg,(wy) (resp.
D pc10(W0)) and its gradient measure is expressed as

6= & U

i‘j=1 axi axl

vij,

where v;;, i, j=1,..., k, are signed measures on Q having the following pro-
perties:

(@) Vij = Vji (i,j=1,.,k);

(b) For each & = (&,,..., &) e R* with £+#£0,

M=

&é jVij

1

#¢=i

is a positive measure whose support is equal to Q.

Proor. Define
‘vl'j = 5[,“',”], l,j = 1,..., k.

By our assumption, these are well-defined ‘signed measures on Q. Property (a)
is obvious. For & e R¥, if A is a Borel set in Q, then

Ng(A) = 'ZE &¢ ja[xi,xj](A) = 5:5,::;(14) =0.

Furthermore, if £#0, then the function f,(x)=XZ¢;x; is non-constant on any open
set w in Q. Hence 6, (w)>0 by virtue of [2, Theorem 7.3]. Hence the support
of p, is the whole space Q. If fe C'(w,), then Theorem 3 implies that fe 25
10e{(@0) (1€SP. D pc 10(wp)) and Corollary 1 to Theorem 3 shows that

- V;j.
1 axi 5x1 J

ReEMARK 2. Under the assumptions of Theorem 5, if w is a PB-domain,
then C{(w) < 24(w), where C(w)={f € C}(w); suppf is compact in w}. Hence,
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it follows from [2, Theorem 6.3] that every u € #(w,) (w,: any open set in Q)
satisfies

S (@0) +S whdn =0
[O0]

for all Y € Cy(wy). In particular, if ue s (wy) N C'(w,), then by the above
theorem, it satisfies

> o, Swoul//dn=0

,J 1 moax a

for all y € C{(w,). In this sense, we may say that every u € #(w,) is a ‘‘solution”
of the formal differential equation

Fan (g ).

§6. An application of Theorem 1.

Now, we return to the general case and let h be a positive continuous func-
tion on Q. Then H$™=9H/h is a self-adjoint harmonic structure on Q with a con-
sistent system of Green functions {G{”(X, ¥)}u:p-domain®

G, ) = el

Obviously, for any open set w, in Q,
#300) = {1 fe Broe(@0)}

and for fe B,,.(w,),

where the index (h) means that the notion is considered with respect to $#.

PROPOSITION 3. If he %,(Q) is positive continuous, then RB{¥(wy)=
B\.(wo) for any open set wy; in particular 1€ Z{#(Q) and 1/h e B,,(Q).

Proor. If fe %, (w,), then f=(fh)/h and fhe B, (w,). Hence fe
BP(wo). In particular, since 1€ %B,,(Q) (Axiom 5), 1€ 2" (Q). It follows
that Z{*)(w,) is also an algebra (cf. the proof of [2, Proposition 2.1]; it requires
only the assumption 1€ %,,.(Q)). Since 1/he Z{¥(Q), 1/h? € Z{¥(Q), and hence

1/he B1,(Q). If fe Bt wo), then fhe Bi(wo). Hence f=(fh)/he B oc(o).
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CoROLLARY. For any open set wy in Q, if fe &,,.(wy) is continuous and
does not vanish on w,, then 1/fe &,,.(wy).

LEMMA 11. If he B¢ 1,(RQ) is positive, then H™ satisfies Axiom 5.

Proor. By Proposition 3, 1 € #{%)(Q). Since ¢'”=ha,, we have

[ 6w, »na1e®10) = { 6PC, HI0L ) = Ul

Hence, S GW(-, y)d|e'M|(y) is continuous on w for any PC-domain w.
(0]

Thus, if & is a function as in this lemma, then we can consider the gradient
measure 6% for fe Bk (wo) = B\,(wo) With respect to the self-adjoint harmonic
structure H®. Then we have

LeMMA 12, If he Bc,1,(R) is positive then for fe %\, (wo)
oW = h25,.

Proor. Noting that 6\’ =hg,, for g € B,,.(w,), we have

5& = (zfa(h)_o- hz) __f20-(1h))

Siia

}'N‘

(thahf—hahfz—f hO'h)

_(zfahf Uhfz—f Gp) .

N

Now, by Theorem 1, &2 ;=20 4;, Which may be written as
f20h+ ha'fz—ahjz—fzhn = 2f(f0'h+ hO'f—O'hf—thC) N
or

2foy;—04p2—f 20, = 2fho,—ho ;2 —f2hn = 2hd,.
Hence

h
P = S2h6; = K5, .

We can also consider the spaces 2{¥(wo), 2%\ c(wo) and 22 ,.(w,)
with respect to $(*. By Proposition 3 and Lemma 12, we can easily show

THEOREM 6. Let h be a function as in Lemma 12. Then 2, (wo)=
gﬁ,loc(wo) and g(nhc),loc(wo)=93c,mc(wo) for any open set wq; for fe 95,1oc(wo),
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8P = h25,.
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