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Introduction

In the previous paper [2], the author defined a notion of gradient measures

for functions on a self-adjoint harmonic space. In case the harmonic space

is given by solutions of a second order elliptic partial differential equation of

the form

Σ -5—(^ii-^—)~#w = 0
• •—i CJX \ (JX /

on a Euclidean domain, the mutual gradient measure δUgΛ of functions / and

g is given by

Σ <*ij ~~r—g-^- jdx (dx: the Lebesgue measure).

Thus, in this case, the equality

holds. The main purpose of this paper is to show that the equality (*) remains

valid for general self-adjoint harmonic spaces. Once this equality is established,

we can consider Royden's algebra (cf. [3, Chap. Ill]) on a self-adjoint harmonic

space. We shall also see that if the harmonic structure is considered on a Eucli-

dean domain and satisfies a certain additional condition (see Theorem 5), then

the gradient measure is expressed as

with a positive-definite system of signed measures (vί7 ); and the harmonic func-

tions are "solutions" of the second order elliptic partial differential equation

yi d ί du
i,£±i dxi\

ViJ'dxj

whose coefficients vu, π are (signed) measures.
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§ 1. Basic definitions in the previous paper [2].

The base space Ω is a connected, locally compact Hausdorff space with a
countable base. We consider a harmonic structure § = {«^(ω)}ω:open on Ω
satisfying Axioms 1, 2 and 3 of M. Brelot. A domain ω in Ω is called a P-domain
if it is non-compact and there is a positive potential on ω. We assume

Axiom 4. On any P-domain ω, the condition of proportionality is satisfied.

We furthermore assume that (Ω, §) is self-adjoint, i.e., there is a system
{Gω(x, jO}ω:p-domain °f symmetric Green functions satisfying the consistency
condition [2, §1.2, (c)]; this system will be fixed. For a P-domain ω and a
signed measure σ on ω, let Ug(x) = \ Gω(x, y)dσ(y) whenever it has a meaning.

Jω

A domain ω is called a PC-domain if it is relatively compact and its closure
is contained in a P-domain. For an open set ω0 in Ω, let

{
for any PC-domain ω such that ωc=co0, there are Ϊ

/; two non-negative bounded superharmonic func- \.
tions sί and s2 on ω such that f\ω = sι — s2 J

To each fe &ιoc(
ωo)> a signed measure σf on ω0 is associated in such a way

that/|ω=C/2/ + u with weJf(ω) for any PC-domain ω such that ω c ω 0 . We
assume

Axiom 5. The constant function 1 belongs to &]0C(Ω) and for any PC-
domain ω, l/jj*' is continuous, where π = σ1.

For any open set ω0, &ιoc(ω0) is an algebra ([2, Proposition 2.1]). We
define

δu ,9i=\ίf°'9+9°7•" σ/0 ~ / 0 π )

for /, ge@ioc(ωo) a s a signed measure on ω0. We know ([2, Theorem 4.1])
that δf = δίfj^0 for any fe ^ioc(^o)

For a PB-domain ω (i.e., a P-domain for which U^ is bounded), set

j signed measure on ω such that U^ is 1
1 ' bounded continuous and |σ|(ω)< 00 J

signed measure on ω such that
ΛtBcKW) = | σ;

and

The space ^Bc(co) is a normed space with respect to
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We define

there is a sequence {/„} in ^BC{oS) such thatf

= I J\ Λ _ / q # e β o n ω a n d | | / n - / m | | / ω - > 0 (n, m-oo) ••)'•

where "q .e . " means "except on a polar set". This space is a Hubert space

with respect to the norm

where {/„} is a sequence for / described in the definition of

For an open set ω 0 , we define

j for any PC-domain ω such that ω c ω o ,

Here,

= {ue/(ω); δu(ω)+[ u2d\π\<oo},
Jω

which is complete with respect to the norm (semi-norm, in case π = 0)

To each/G ^ l o c ( ω 0 ) , there corresponds a non-negative measure δf on ω 0 which

is determined as follows: For a PC-domain ω such that ω d ω 0 , if f\ω = g + u

with ge@0(ω) and M e / £ ( ω ) and if {gn} is a sequence in ^ β C ( ω ) such that

0*->0 q e. on ω and \\gn-gmh,ω->0 (n, m->oo), then

δf(A) = limδgn+u(Λ)
n-+co

for every Borel set A in ω (see [2, Theorems 6.2 and 7.1]). This is an extension

of the notion δf for fe @Xoc(ωQ). If/, g e ^ l o c ( ω 0 ) , then we define

δ ^ ( δ δ δ )

§2. Gradient measure of product of functions in ^ l o c ( ω 0 ) .

The purpose of this section is to establish the following results:

THEOREM 1. Let ω0 be an open set in Ω. For any f, g, φ



200 Fumi-Yuki MAEDA

δif9.Φl =fδl9,Φl

COROLLARY. For any f, ge @loc(ω0)9

δfβ

in particular,

The proof of the above theorem will be given by a series of lemmas. First,

we consider the perturbed sheaf §~ = {^~(ω)} ω : o p e n which was defined in

[2, § 3.2]. We note that if u e «^~(ω0), then σu = wπ.

LEMMA 1. Ifu, v e 3f~(ω0), then

PROOF. Let σ / = σ / - / π for fe@loc(ω0). If « e / > 0 ) , then σ M =0;

a continuous function w on ω0 is §~-superharmonic if and only if σ w ^ 0 (see

[2, Proposition 3.7]). First we shall show that

(1) σu3 = 3uσu2

for M6/~(a)0), Since u is continuous, given ε>0, each xoeωo has an open

neighborhood V (c:ω0) such that

u(xo) — ε ^ u ^ u(xo) + ε

on V. Consider the function w = u(xo) + ε—u on V. Since w G «^"(F) and w ^ 0

on F, — w3 is δ~-superharmonic on F, so that σ w 3 ^ 0 on F. It follows that

σM3^3(M(x0) + ε)σM2 on F. Noting that σM2^0, we have

(2) σu3 ^ 3(M + 2ε)σM2

on F. Since such F's cover ω0, (2) holds on ω0. Since ε is arbitrary, we obtain

the inequality σu3^3uσu2. Similarly, by considering w = w — u(xo) + ε on V, we

obtain the converse inequality σu3^3uσu2. Hence we have (1).

Next, let w, v e 3f ~(ω0). For any real ί, σ(M+ίt;)3 = 3(M + ίt;)σ(M+fι;)2 by (1).

Using (1) for u and v and taking the definition of σf into account, we deduce

3t(σu2v - 2uσuυ - vσu2 + 2u2vπ)

= - 3t2(σuvi - uσv2 - 2vσuv + 2uv2π).

From the arbitrariness of ί, it follows that

(3) σu2v = 2uσuv+vσu2-2u2vπ.
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On the other hand,

^[M2,f]== ~y (u2σv + vσu2-σu2υ-u2vπ)==γ(vσu2-σu2v).

Hence, by (3),

Now, let ω be a PC-domain and consider the spaces

} and ajω) =

(see [2, § 1.3 and §2.5] for ΛB(ω) and

We remark that if fe ^B(ω) and g e @E{ώ) then fg e ̂ B(ω) by virtue of [2,

Corollary to Proposition 2.2] and [2, Lemma 2.9]. Also, if w, ι;G«^βE(ω), then

Uσ

ω»«e0>B(ω) by [2, Lemma 2.7]. Therefore, for /, g e @E{ω\ \Jy^e^B{ω\

These facts will be frequently used in what follows.

LEMMA 2. Let ω be a PC-domain, u, veJ^BE(ω) and ge^B(ω). If

uv E ̂ £ ( ω ) , then

\ u dσvg = \ uυ dσg- \ g dσuv.
Jω Jω Jω

PROOF. Put p = U%uv and h = uv-p. Then, pe&B(ω) and heJfBE(ω).

Hence, [2, Corollary to Proposition 2.2] and [2, Proposition 2.4] imply

= \ P9 dπ

Jω

and

σhθ(
ω) = \ h dσg+ \ hg dπ.

Jω Jω

Hence

On the other hand, since vg e ̂ B(ω)9 [2, Proposition 2.4] implies

GUVQ(P) = \ w dσvg+ \ uvg dπ.
Jω Jω

Hence
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\ u dσvg = \ hdσg = \ uvdσg—\ p dσg

Jω Jω Jω Jω

= \ uvdσg-\ gdσp=\ uvdσg - \ gdσuυ.
Jω Jω Jω Jω

LEMMA 3. Let ω be a PC-domain, fe^B(ω) and ueJfBE(ω). Then

\ udσf2 = 0 .

PROOF. Applying [2, Corollary to Proposition 2.2] to / and fu, we have

tf/2tt(α>)=\ f2udπ.
Jω

On the other hand, [2, Proposition 2.4] implies

σpu(ω) — \ udσf2+ \ f2u dπ.
Jω Jω

Hence we have the required equality.

LEMMA 4. Let ω be a PC-domain, fe ^B(
ω) and Q e &E(ω). Then

= 2 ( fdδif,9i-
Jω

PROOF. Let v = 25[/2>tf]~4/δ[/>fl]. We are to show that v(ω) = 0. By
the definition of <5[.,.], we have

v = -

Since fg, fe0>B(ω), [ fg dσf=[ fdσfg. By [2, Corollary to Proposition 2.2],
C Jω Jω

σf2g(ω) = \ f2d dπ. Hence
Jω

v(ω) = - \ f2dσg+\ gdσf2.
Jω Jω

Let g = u+g0 with u e JfBE(ω) and g0 e ^B(ώ). Then,

\g0dσf2=:\f2dσgo=\pdσg.
Jω Jω Jω

By the above lemma, \ u ί/σ/2=0. Hence v(ω) = 0.
Jω

LEMMA 5. Let ω be a PC-domain, fe^B(ω), ueJfBE(ω) and ge@tE(ω).
Ifuge@E(ω), then
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udδu,βv

PROOF. Put v = 2(δίfUfgl-fδίUfg]-uδίf>g^ Since σM-0,

v = (gσfu -fuσg) + (fσug-ugσf) -σfug + uσfg Λ-fugπ.

By [2, Proposition 2.4],

<W<») = \ u dσfg+\ fug dπ.
Jω Jox

Let g = v + g0 with t; e J^BE{ω) and ^r0

 G ^β{ω)- Then

\ ^ 0 ^ / M = \ /M ί/σ 0̂ = \ fudσg and \ /ί/σWff0 = \ ugodσf.
Jω Jω Jω Jω Jω

Hence

v(ω) =.\ vdσfu+\ fdσuv-\ uυdσf9

Jω Jω Jω

which is equal to zero by virtue of Lemma 2. (Note that uv — uge&>B(ω)9

and hence uv e @tE{ω).)

LEMMA 6. Let ω be a PC-domain, u e / B £ ( ω ) and ge0>B(ω). If u2 e

, then

PROOF. Let v = 2δίU2igl-4uδίUtgy We have

[2, Proposition 2.4] implies

<Wω) = \ u dσ + \ u2gdπ.
Jω Jω

On the other hand, by Lemma 2,

u dσug = \ u2dσg- \ g dσu2.
ω Jω Jω

Hence v(α>)=0.

LEMMA 7. Let ω be a small PC~domain (see [2, § 3.2] for a small domain),

u e Jί?BE(ω) and g e &E(ω). Ifu2, ug e @E(ω), then
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δiu\gίω) = 2 \ II dδ[u>g}.Jω

PROOF. Let g = v+g0 with v e JfBE(ω) and # 0 e ^B(ω). Let M = (/—Gω)~ J M

and ί; = (/ — Gω)~ίv, where Gω is the operator defined in [2, §3.1]. Put p =

Gωύ=Uω

π and q = Gωv=Uω

π. Then u = u — p and υ = ϋ — q and p, qe&B(ω).

Now

Since ι7, D e ^ ^ ω ) by [2, Proposition 3.5], Lemma 1 shows that δίa2iC^ =

The previous lemma implies

<5[u2,ί/-0](ω) = 2 \ udδίUtg-ΰV

Jω

since g — v = go — qe^B(ω). Since uv = ug + uq and uqe^B(w)9 we see that

@E(ω). Hence, By Lemma 5,

<We]( ω )= \ Mίί(5[p,«)]+\ Pdδiuw
Jω Jω

Finally, by Lemma 4, we have

Therefore

= 2\ fiέ/δ[M] + 2\ M ^ [ M } g _ D ] - 2 \ αέZδ^β]
Jω Jω Jω

-l[ pdδluΛ-2\
Jω J

Now we are ready to prove the theorem:

PROOF OF THEOREM 1. It is enough to prove the case f=g. Let ωx be

any relatively compact small domain such that ωγaω0 and let ω be another

domain contained in ω x . Then ω is a small PC-domain. We can write f\ω =

w+/o with ueJί?BE(ω) a n d / 0 e ^ ( ω ) . Since / 2 , / ψ G ^ l o c ( ω 0 ) , we see by [2,

Lemma 2.8] that u2, u(φ\ω) e 3SE{ω). Therefore, by Lemmas 4, 5 and 7, we have

(4)
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It follows that (4) holds for any open set ω in ωί9 and hence

holds on ω1. Since such ω/s cover ω 0 , this equality holds on ω 0 .

§3. Some auxiliary results on functions in ^ l o c ( ω 0 ) .

LEMMA 8. Let ω be a PB-domain. Iffe@0(ω) and μ is a non-negative

measure such that U% is bounded, then

PROOF. This is easily seen from [2, Theorem 1.2 and Lemma 1.3]. Cf.

the proof of [2, Theorem 6.3].

LEMMA 9. Let ω0 be an open set and f be an extended real valued func-

tion on ω 0 . If for each xeω0 there is an open neighborhood Vx ofx such that

f\VxeΦtjyj, then fe <2loc(ω0).

PROOF. If VxΓ\Vx*Φ09 then [2, Lemma 7.3] shows that δf\Vχ = δf\vx,

on Vx Π Vχf. It follows that there is a non-negative measure δj on ω 0 such that

δ*\Vx = δf\γx for each xeω0. Similarly, given a PC-domain ω with ω c ω 0

and g e @0(ω), there is a signed measure δffίQΛ on ω such that δffig^\Vx n ω =

δif\vxnω,g\vxnω] f° r e a c n ^ e ω 0 with VxΓ\ωφ0. We can cover ω by a finite

number of Vxs, which we write ω l 5 . . . , ωfe. Then

l

^ ^ δ/lajiωj Π

Also,

Since 5J(ω)<oo and \ f2d\π\ <oo, it follows from [2, Theorem 6.3] and the

above Lemma 8 that the mapping

g >δfft9l(ω)+\ fgdπ
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is continuous on @0(ω). Obviously, this is linear. Since the mapping (gi9 g2)-*

hgugίfs°)'^\ 9i9idn gives the inner product for the Hiblert space @0(ω) (see
Jω

[2, (6.4) in Theorem 6.3]), there is/0 e @0(ω) such that

(5) *[*/.,](ω) +[fgdπ = ί [ / 0 i f ](ω) + [ fogdπ
J J

for all ge@0(ω). For any xeω, choose a domain ω' such that xeω'czω'
Vxf]ω: 'If'φe@0(ω')9 then its extension to ω by 0 on ω — ω' belongs to @0(
by [2, Lemma 6.7]. Hence, by (5), we obtain

<W-/o)K,Ψ](ω')+\ if-fό)φdπ = 0
Jω'

for all φe&0(ωr). Using [2, Theorem 6.4] and modifying the values of f0

on a polar set, we see that/ |ω=/ 0 + w with Me/(ω). Thus f\ωe @loc(ω) and
<5/|ω = (5*lω. Then by [2, Proposition 7.2], we conclude that

). Therefore fe@h

LEMMA 10. //ω /5 a PB-domain such that sup Uω~ < 1/4,

(f+M)2d\π\}
ω

for any fe @0{ω) and u e JfE(ω), where c~ι = 1 - 2(sup U

PROOF. Put oc = supUω'~. Using [2, Theorem 6.3] and Lemma 8 above,
we have

δf+u(ω)+\ (f+u)2d\π\
Jω

= δf(ω)+\ f2d\π\+2(διftU}(ω)+\ fud\π\) + δu(ω)+\ u2d\π\
Jω Jω Jω

1/2

PROPOSITION 1. // {/„} is a sequence in @loc(ω0) such that fn->f q.e. on

oθ9 δfn-fm(K)->0 and\ (/„— fm)2d\π\-+0 as n, m->co for any compact set
J K.
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K in ω 0 , thenfe ^ i o c ( ω o) an& δ fn-/(K)~*Q a s n-> co for any compact set K in ω0.

PROOF. Let ω be a PC-domain such that ω<=ω0 and 17 J <l/4. Let

fn\ω = gn + un with gne@0(ω) and w^G^f^ω). By the previous lemma, we see

that \\gn-gm\\IiCO-+0 and \\un-um\\Et<o-+0 (n, m->oo). Then it follows from [2,

Theorems 6.1 and 5.3] (in case π | ω = 0 , [1, Theorem 3.3] instead of [2, Theorem

5.3]) t h a t / | ω = 0 + w with ge@o(ω) and M e / ^ ω ) and that \\gH-g\\l9ω-+0 and

||uΛ — w||£;iC()^0 (n-^oo). Since each point has a neighborhood F x which is a

PC-domain and for which supL^~<l/4, Lemma 9 implies that / e ^ l o c ( ω 0 ) .

Also, in the above argument, ^n_^(ω)-*0 and <5Un_M(ω)->0 (n-»oo). Hence

δfn-f(ω)->0 (n->oo), and thus the last assertion of the proposition follows.

§ 4. Locally bounded Dirichlet functions.

Let ω 0 be an open set in Ω. Besides ^\0C{ωQ), we consider

^c,ioc(ωo) = {/ e^Ίoc(ωo)j^if / l is continuous for any PC-domain ω}.

Functions in ^c,ioc(ωo) a r e continuous. We see from [2, Lemma 2.5] and the

proof of [2, Proposition 2.1] that ^c,ioc(ωo) is also an algebra. Note that

Axiom 5 states that 1 e ^ c l o c ( Ω ) .

Now, let

{ there is a sequence {/„} in ^Ί o c (ω 0 ) such

g; t h a t / n ^ ^ locally uniformly on ω 0 and

δfn_fm(K)->0 (n, m->oo) for each compact Kczωo .

We similarly define @Bc,ioc(ωo) replacing ^Ί o c (ω 0 ) by ^c,ioc(ωo) Obviously,
these are linear spaces and by Proposition 1

THEOREM 2. @B,ioc(ωo) and @Bc,ioc(ωo) a r e algebras. For any f,ge
and φ e @ιoc(ω0\

PROOF. Let /, g e &BΛθG(ω0) (resp. ^ β C > l o c (ω 0 )) and choose {/„} and {gn}

in ^i o c (ω 0 ) (resp.^ C l o c (ω 0 )) such that ./„-•/ and gn-*g locally uniformly on

ω 0 and δfn-.fm(K)^>0 and δgn_gm(K)-*0 (n, m->oo) for each compact set X

in ω 0 . By the corollary to Theorem 1, we have
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It follows that δfn9n-fmgm(K)->0 (n, m->oo) for any compact set K in ω 0 . Ob-

viously, fngn-+fg locally uniformly on ω0. Hence fg e @BΛoc(ω0) (resp. 3>BCi

ioc(ωo)) Therefore, @BλθQ{ω0) and ^BC,ioc(ωo) a r e algebras.

Next, let φe@loc(ω0). If ω is a PC-domain such that ω c ω 0 , then there

is a sequence {φn} in ^Bc(ω) + <&Έ(ω) s u c n t n a t ^ n -ψ(^)"*0 By Theorem 1,

on ω. Letting 77t->oo, we have

on ω, and hence on ω0. Let 4̂ be any relatively compact Borel set such that

i c ( ϋ 0 , Since <5/n^n-/^)->0 (Proposition 1),

On the other hand, since /„->/, ^w->^ uniformly on 4̂ and δfn_f(A)->0 and
0 (Proposition 1),

\jn dδίgn>φl

Therefore

and hence

δLfg.Φl

COROLLARY. For f,ge ^>B,\o

PROPOSITION 2. // {/„} is a sequence in ^B,ioC(ωo) (resp. @Bc,ioc(ωo))

which converges locally uniformly to f on ω0 and if <5/n_/w(K)->0 (n, ra-+oo)

for each compact set K in ω0, then f e @Bλoc(ωQ) (resp. ^βc,ioc(ωo)) and δf_fn(K)

-+0 (n-> oo) for each compact set K in ω0.

PROOF. Let {ωn} be an exhaustion of ω 0 . By definition, there is gne

^ioc(ω0) (resp. ^ C ) l o c (ω 0 )) such that \gn-fn\<l/n on ωn and ^ n _ / n ( ω M ) < l / n

for each n. Then gn-+f locally uniformly on ω0 and ^ f i_^m(X)->0 (n, m->oo)

for each compact set K in ω 0 . Hence / e ^B,ioc(ωo) (resp. @Bctioc(ωo)) a n ( i

βn.fn(K)} ^ 0 (fi -> oo)
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for each compact set X in ω 0 .

THEOREM 3. Let / i , . . . ,Λe^ β j l o c (ω 0 ) (resp. @Bc,ioc(a>o)) and regard f=

(fu' -ifk) a s a mapping from ω0 into Rk. If Ω' is an open set in Rk containing

\J{β]C);K: compactcω0} (resp./(ω0)) and ifΦeC\Ωf), then Φofe 0β, loc(ωo)

(resp. ^Bc,ioc(ω0)) and

( 6) 5CΦ /.»] = Σ t

for any g e ^ i o c (ω 0 ) .

PROOF. If Φ = const., then the both sides of (6) vanish. If Φ(xu..., xk) =

Xj, then both sides of (6) are reduced to δίfjtβy Now, suppose the conclusions

are true for Φl9 Φ2 e Cι{Ω') and let Φ = ΦίΦ2. By Theorem 2,

φof = (Φ1o/)(Φ2o/) e ^ β , l o c (ω 0 ) (resp.

and

It follows that the conclusion of the theorem holds for any polynomial Φ in

fc-variables. Now let Φ e Cι(Ω'). Then there is a sequence {Pn} of polynomials

in fc-variables such that Pn-*Φ and dPJdxj-^dΦ/dXj, 7 = 1,..., fc, all locally uni-

formly on Ω'. Then Pn°f-
J>Φ°f locally uniformly on ω 0 , since the image f(K)

of a compact set K in ω 0 is relatively compact in Ω'. We have seen that

d(Pn-Pm) Λ(d(Pn-PJ
δx~j O / Λ — d x Ί —

Hence, if X is a compact set in ω 0 , then

δpn°f-Pm°Aκ) -+ ° (n, m -* oo),

since [d(Pn — Pm)ldXj]of->0 (n, m-^oo) uniformly on X for each j . Hence, by
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Proposition 2, Φ°/e &Btl0C(ω0) (resp. @Bc,ioc(ωo)) and

0 (n->oo).

By an argument similar to the proof of Theorem 2, we see that (6) holds for the

given Φ.

COROLLARY 1. Let fj (j = l,..., k) and Φ be as in the above proposition.

Then

d φ \(dΦ

COROLLARY 2. (a) If fe^Btloc(ω0) and infKf>0 for each compact set

K in ω 0 , then 1/fe ^ f i fi0c(ωo) and

O) διi/f.gi= - j2δlf,9i f°rge&ioc(ωo)l δί/f = -jΐδf.

(b) Iffe &Bctioc(ωo) andf>0 on ω0 ? then 1/fe &Bc,ioc(ωo) and (7) is valid.

Next, we consider so-called Royden's algebras. For an open set ω0 in Ω9

set

^β(ωo) = {fe&B,ioc(ωo)lfis bounded and δf(ω0)<co}

and

Forfe@B(ω0), let

T H E O R E M 4. @B(ω0) and @BC(ω0) are Banach algebras with respect to

the above norm.

P R O O F . By Theorem 2, we easily see that &B(ω0) and &BC(co0) are algebras.

Obviously, || |li)β,ωo is a norm on these spaces. By the aid of the corollary to

Theorem 2, we can easily verify that

II fθ II /?J5,ω0 ^ 11/ \\-DB,ωo II9 II DB,ω0

for /, g e @B(ω0). The completeness of &B(ω0) and @Bc(ωo) follows from

Proposition 2.

R E M A R K 1. Using the algebra &BC(Ω) we may extend the classical theory

involving Royden's algebra (see, e.g., [3, Chap. I l l ] ) to self-adjoint harmonic

spaces.
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§ 5. Self-adjoint harmonic space on a Euclidean domain.

We consider the special case where Ω is a domain in the Euclidean space

THEOREM 5. Let Ω be a domain in Rk and let § be a self-adjoint harmonic

structure on Ω satisfying Axioms 1~5. Furthermore we assume that the

coordinate functions Xj (j = l,..., k) all belong to ^ B l o c (Ω) (resp.^ B C l

Then, for any open set ωoc:ί2, every /eC 1 (ω 0 ) belongs to @B,ioc(ωo)

o)) and its gradient measure is expressed as

where vfj , i, j = l,..., k, are signed measures on Ω having the following pro-

perties :

(a) vu = Vji (Uj = 1,..., k);

(b) For each ξ = (ξl9...9 ξk)eRk with

is a positive measure whose support is equal to Ω.

PROOF. Define

VV = δtχuχjl> ί , 7 = l , . . . , f c .

By our assumption, these are well-defined signed measures on Ω. Property (a)

is obvious. For ξ e Rk, if A is a Borel set in Ω, then

μξ(Λ) = Σ ξiξjδίxuxΔ(A) = δΣξiXi(A) ^ 0.

Furthermore, if ξφθ, then the function fξ{x) = Σξixi is non-constant on any open

set ω in Ω. Hence δfξ(ω)>0 by virtue of [2, Theorem 7.3]. Hence the support

of μξ is the whole space Ω. If feC1(ω0), then Theorem 3 implies that fe@B%

ioc(ωo) (resp. ^βc,ioc(ωo)) a n d Corollary 1 to Theorem 3 shows that

* ^ df δf * A df df

REMARK 2. Under the assumptions of Theorem 5, if ω is a PB-domain,

then Co(ω)c= ̂ 0 ( ω ) , where CJ(ω) = {/ e C x (ω); supp/ is compact in ω}. Hence,
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it follows from [2, Theorem 6.3] that every u e3f(ω0) ( ω 0 : any open set in Ω)

satisfies

\ uψdπ =
J(OQ

0

for all \l/eCk(ω0). In particular, if u eJf(ω0) Π C1(ω0), then by the above

theorem, it satisfies

for all φ e C£(ω0). In this sense, we may say that every u e Jf(ω0) is a "solution"

of the formal differential equation

§ 6. An application of Theorem 1.

Now, we return to the general case and let ft be a positive continuous func-

tion on Ω. Then δ ( Λ ) = §//i is a self-adjoint harmonic structure on Ω with a con-

sistent system of Green functions {G!LΛ)(^3;)}ω:p-domain:

ω κ ' y ) h(x)h(y) "

Obviously, for any open set ω0 in Ω,

and

where the index (ft) means that the notion is considered with respect to

PROPOSITION3. // he@l0C(Ω) is positive continuous, then @[ϊl(ωo) =

@ιoc(ω0) for any open set ωo; in particular le&\*l(Ω) and I/ft e@l0C(Ω).

PROOF. If / e ^ l o c ( ω 0 ) , then /=(/ft)/ft and fhe@loc(ω0). Hence fe

@\*\{ωQ). In particular, since 1 e ^ l o c(ί2) (Axiom 5), 1 e ^(iS£(&). It follows

that ^ίSc(ωo) i s a l s o a n algebra (cf. the proof of [2, Proposition 2.1]; it requires

only the assumption 1 e ^ l o c (Ω)). Since I/ft e @[*l(Ω\ 1/h2 e @[!il(Ω), and hence

I/ft e ^ l o c ( β ) . If fe a\*\(ωQ)9 then /ft e @loc(ω0). Hence / = (/ft)/ft e ^ I
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COROLLARY. For any open set ω0 in Ω, if fε@t\0C(ωQ) is continuous and

does not vanish on ω0, then l//e &loc(ω0).

LEMMA 11. Ifhe@CΛoc(Ω) is positive, then § ( Λ ) satisfies Axiom 5.

PROOF. By Proposition 3, le@[*l(Ω). Since σψ = hσh, we have

Hence, \ G^Λ)( , y)d\σψ\{y) is continuous on ω for any PC-domain ω.
Jω

Thus, if h is a function as in this lemma, then we can consider the gradient

measure δ^ for/e^ ( (

1 ^(ω 0 ) = ^ l o c ( ω 0 ) with respect to the self-adjoint harmonic

structure § ( A ) . Then we have

LEMMA 12. // he@CΛoc(Ω) is positive then for fe @ίoc(ω0)

sγ = h2δf.

PROOF. Noting that σ(

g

ft) = hσhg for g e ^ l o c ( ω 0 ) , we have

= ±(2fhσhf-hσhf2-f2hσh)

Now, by Theorem 1, δίf2thl = 2fδίfthl, which may be written as

f2σh + hσf2-σhf2-f2hπ = 2f(fσh + hσf-σhf-fhπ)9

or

2fσhf-σhf2-f2σh = 2fhσf-hσf2-f2hπ = 2hδf.
Hence

= -j2hδf = h2δf .

We can also consider the spaces @\il(co0), ^B^IOC^O) and ^βc,i

with respect to §(Λ>. By Proposition 3 and Lemma 12, we can easily show

THEOREM 6. Let h be a function as in Lemma 12. Then @(B\OC(COO) =

@<Bhc,\oc(a>o)=®Bc,\oc(a>o) for any open set ωo; for f e @B$lQC(ω0)9
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