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§1. Introduction

Let G, , be the Grassmann manifold of all m-planes through the origin of
the Euclidean n-space R". A. Neifahs [3] proved that n is a power of 2 if G, ,
is parallelizable.

In this note, we prove the following

THEOREM 1.1. G, ,, is parallelizable, i.e., the tangent bundle of G,,, is
trivial, if and only if

n=24or8; m=1orn—1.

To prove this theorem, we use the following theorem.

For a real vector bundle ¢, we denote by Span ¢ the maximum number of
linearly independent cross-sections of ¢&. Especially, we denote Span M=
SpantM, where tM is the tangent bundle of a C*-manifold M.

THEOREM 1.2. Let &, be the canonical line bundle over the real projective
k-space RP*, and n&, the Whitney sum of n-copies of it.
Then, SpanG, 2k implies Span nmé,_,,=m?+k.

The author wishes to express his hearty thanks to Professors M. Sugawara
and T. Kobayashi for their valuable suggestions and discussions.

§2. Proof of Theorem 1.2

Let y,,, be the canonical m-plane bundle over G, ,, i.e., the total space of
Yn.m e the subspace of G, ,, x R" consisting of all pairs (x, v) where x€ G, , and v
is a vector in x. Then, by [2, Problem 5-B],

2.1 TG = Hom (Y ms Vii,m) »

where 7y, denotes the orthogonal complement of y, , in the trivial bundle G, , %
R"—>G, .

Consider the Stiefel manifold V, ,, of all orthonormal m-frames in R”, which
has the involution by sending each (vy,..., v,,) to (—vy,..., —v,). By [5, Prop. 1],
we see the following fact.
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(2.2) There exists an equivariant map from S'=V,,,, to V,, if and only if
Spanné; Zm, where £, is the canonical line bundle over RP* in Theorem 1.2.

ProoF OF THEOREM 1.2. Assume that Span G, ,,= k. Then we have k linearly
independent cross-sections s,,..., s, of Hom (y, ., 71..,) by (2.1).
For each v=(vy,...,v,) €V, ,, We set

vt = (@)1, (@2, (D)) €RH™ (1 =TS k),

where ¥ is the subspace of R* spanned by v. Also, letf;: R"—(R™)™ be the
inclusion onto the i-th factor. Then, we see easily that

(2.3) filvp(1=i,j=m), v(1=I<k) are linearly independent in (R")™.
Therefore, we obtain a map ¢: V, ,,—= Vw2 +1 Where ¢(v) is obtained from (2.3)
by the orthonormalization. Also, this map ¢ is equivariant with respect to the
involutions.

It is well known that Span né,_,,=m, and so there exists an equivariant map
Y:8*m>V,, by (2.2). Hence, we obtain an equivariant map @eoy: S"™™—
Vimm2+1> and so Spannmé,_, >2m?+k by (2.2). g.e.d.

§3. Proof of Theorem 1.1

As G, ,, is diffeomorphic to G, ,_,, it is sufficient to consider G,, for 1=
m=n/2.

LemMA 3.1. For even dimensional G, ,, SpanG, ,=0.

Proor. In this case, it is well known that the i-dimensional homology group
H{(G, ; Z) for odd i of G,, with the integral coefficient Z does not contain the
free part. Hence, the Euler characteristic of G, , is positive, and so Span G, ,=0
by Hopf’s theorem. g.e.d.

Lemma 3.2. If G,, is parallelizable, then nm=0 mod 2°("~™,  where
@(n—m) is the number of integers s such that 0<s<n—m and s=0, 1, 2 or
4 mod 8.

Proor. Since Span G, ,=m(n—m) by the assumption, we see Span nmé,_,,
=nm by Theorem 1.2. Thus, we have the desired result by [1, Th. 7.4]. g.e.d.

LemMma 3.3. If G, (1=m=n/2) is parallelizable, then (n, m)=(2, 1), (4, 1),
8,1) or (8, 3).

Proor. By the above two lemmas, the assumption implies that m is odd, n
is even and n=0mod 2¢("~m, Therefore, we have the lemma by noticing that
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n<22®/2) for even n>16 and by the straightforward calculations. g.e.d.

Now, we calculate the Stiefel-Whitney class of Gg ; by using the following
result, which is an immediate consequence of [4, Th. 1].

LeMMA 34. Let oy,...,0, denote the elementary symmetric functions in
variables x,,..., x,, and set

D,(04,..., 0,) = I} ;- (1+x;+x;),

in the polynomial ring (over the integers mod?2). Then, for any r-plane bundle
1, the total Stiefel-Whitney class w(in®n) is given by

wn®n) = &;(wy(n),..., wn),
where w(n)=1+w;()+ - +w,(n).

LEMMA 3.5. w(73®7s3)=1+(Wt+wd+Wiw3+w3), where w; (i=1,2,3)
is the i-th Stiefel-Whitney class of yg 3.

ProoFr. It is easy to see that
o3, ,(14+x;4+x;) = (1+03+0,4+0,0,+03)>= 1+0t+03+0%0}+03.
Thus, the result follows from the above lemma. q.e.d.

LemMmaA 3.6. w,(Gs ;) is not zero.

PROOF. 1Gg 3 Hom (yg3,7%,3) =78, 3@ 78,32 7s,3®78,3 by (2.1), because
the dual bundle y¥, 3 of yg 5 is isomorphic to yg 3 [2, Problem 3-D]. Also, (y5,3®
7#,3)@(78,3®78,3);—'78,3®(7§.3(43)’8,3)%'8)’8,3- So, W(Gs,s)w()’s,3®)’s,3)=W(878,3)
=1+w§. Thus, we see that wy(Gg 3)=w$+w} by the above lemma, which is not
zero by [2, Problem 6-B and Th. 7.1]. g.e.d.

Proor oF THEOREM 1.1. It is well known that RP*=G, ., (n=1,3,7) is
parallelizable, and so the theorem follows immediately by Lemmas 3.3 and 3.6.
g.e.d.
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