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Introduction

Let W be a region in the extended z-plane containing the point co and let
{W,}=_, be a regular exhaustion of W containing the point oo, i.e., let W, be regions
such that oo e W,, W,cW,,,, UW,=W and the boundary of each W, consists
of a finite number of disjoint analytic Jordan curves. Let P, be the unique
vertical slit mapping of W, with the following expansion about c0:

P,(z) = 'z+_".12_¢+...

D. Hilbert, P. Koebe and R. Courant showed that P, converges uniformly on
compact subsets of W to a vertical slit mapping Py, i.e., every component of the
boundary of P, (W) is either a point or a line segment parallel to the imaginary
axis. Let § be the family of univalent meromorphic functions F on W with the
expansion

(*) F(z) = z+a—‘gﬂ+--- about o .

Then Py, is the unique function minimizing Re a,(F) in .

P. Koebe [4] showed that the complement (Py(W))¢ of P,(W) has vanish-
ing area. Therefore, for a region of infinite connectivity, the uniqueness of verti-
cal slit mapping with the expansion (x) does not always hold. In 1918, P. Koebe
[5] called Py(W) the minimal vertical slits region. For an arbitrary plane region
W containing oo, the univalent meromorphic mapping of W with the expansion
(*) onto a minimal vertical slits region is uniquely determined. In the present
paper we shall study the complements of minimal vertical slits regions. We call
them extremal sets of vertical slits and denote their class by &. P. Koebe [5]
.obtained the following results:

(I) Eis a set of class & if and only if E is a bounded closed set such that
S dfloy dxdy=0 for every feM(E¢) which vanishes identically on a neighbor-
Ec N

hood of oo, where M(E€) denotes the class of Royden functions on E¢ (see §2).
(i) Every set of class ¢ has vanishing area,
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(ii) If the projection into the real axis of a bounded closed set E has vanish-
ing linear measure, then E is of class &.

P. Koebe [5] conjectured that the converse of (ii) is true, but H. Grotzsch
[2] established a new characterization of extremal sets of vertical slits and con-
structed an example of extremal set of vertical slits such that the projection into
the real axis is an interval. Grotzsch’s characterization is expressed by using
extremal length as follows:

(I) E is a set of class & if and only if E is a bounded closed set such that
MI'r-g)=AMIg) for some open rectangle R> E with horizontal and vertical sides,
where 'y (resp.l'g_p) denotes the family of locally rectifiable curves joining
horizontal sides of R in R (resp. R-E).

From (II) we see (cf. L. Sario and K. Oikawa [8, Theorem IX 4A]) that

(iii) If E is a set of class &, then every two points z,, z, €E¢ with Rez, =
Re z, can be joined in E€ by a curve whose length is arbitrarily close to |z, — z,|.

Now we present the properties of the class &:

(a) If Eis a set of class &, then so is any closed subset of E.

(b) If E,,..., E, are mutually disjoint sets of class &, then so is their union.

(c) IfEisa set of class &, then so is its image under any affine transformation
x+iy—ax+iby+c with real b and Re ab#0.

All of these properties follow from (I) immediately.

L. Sario and K. Oikawa [8] posed the following question: Weaken the as-
sumptions of the properties (b) and (c).

In the present paper we shall be concerned with this problem. It is known
that

(d) E and iE={iz|zeE} are sets of class & if and only if E is of class Ny,
i.e., E is removable with respect to analytic functions with finite Dirichlet integral.

IfE, n=1, 2,... are sets of class N and if the union \UE, is bounded and closed,
then \UE, is of class N (cf. L. Sario and M. Nakai [7, pp. 371-372]). There-
fore it is plausible that the same is true for sets of class £. But, by constructing
examples, we shall show that if the assumption of finiteness or disjointness is re-
moved in (b), then the conclusion does not necessarily hold. In the last section
§ 6, we deal with the property (c) and improve the result obtained in [6].

§1. Union of a countable number of bounded closed sets

Let & be a class of bounded closed sets in the extended z-plane satisfying
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the following conditions:
(#. 1) IfEis asetof class &, then so is any closed subset of E.
(&.2) Let E be a bounded closed set and let S, and S, be open squares

with horizontal and vertical sides such that S, nS,#¢. If E n?jey’, j=1,2,
then EnS,US,e¥.

It is easy to show that if E,,..., E, are mutually disjoint sets of class &, then
\Ut-1E;e&. For any bounded closed set E in the extended z-plane we define
the closed subset k,(E) of E by

ky(E)={z€E|En S(z,r) ¢ & for every positive number r},

where S(z, ) denotes the open square with horizontal and vertical sides of length
r and center at z. Then

(k. i) E, c E, implies k,(E,) < k,(E,).

(k, i) ky(E)= ¢ if and only if E€e & .

THEOREM 1.1. The following four conditions are equivalent:
(i) ky(k,(E)=ky,(E) for any bounded closed set E.

(ii) IfE,e, n=1,2,... and if \U®E, is a bounded closed set, then
U IE”E-SP.

(iii) Let Ey be a set of class & and let {W,}2, be a regular exhaustion

of the complement E§ of E,, i.e., let W, be open sets such that W,c W, ., \UW,=
¢ and the boundary 0W, of each W, consists of a finite number of disjoint

analytic Jordan curves. If E is a bounded closed set such that EnW,e %,
n=1,2,..., then Ec %.

(iv) (1) Let E, be a set of class & and let {W,}*_, be a regular exhaustion

of E§. If E,,n=1,2,... are sets of class & such that E,cW,—W,_,, then
UL E,e&.

Furthermore,

(2) Let E, be a set of class & and let {W,}*., be a regular exhaustion
of E§. If E is a bounded closed set such that ¢ N Ey# ¢ for each component

cof E—Eyand EnW,e %, n=1,2,...,then E€ ¥.

Proor. It is trivial that (ii) implies (iii) and (iii) implies (iv). To prove
that (i) implies (ii), let E,, n=1, 2,... be sets of class & such that \U® E, is
bounded and closed. Set K=k, (\JE,) and K,=E,Nn K, Assume that K#¢.
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By the Baire category theorem there is at least one K, which contains a point
z such that K nS(z,r)=K, for a positive number r. Since K,e S, we have
z¢ k,(K), so that

ko(ky(\J E,)) = ky(K) & K = k(U E,).
Therefore (i) implies \UE, € &.

To prove that (iii) implies (i), assume that (iii) is true and there is a bounded
closed set E such that k, (k,(E)=k,(E). Letzeky,(E)—ky(ky,(E)), let S(z,7)
be a square such that k,(E) n S(z, r)e& andlet F=En S(z,r). Then Fnk,(E)=
k,(E)nS(z,r) e & and F—(F n k,(E))cF—k,(F). Therefore (iii) implies

F=(FnkyE)UuF-(F nkyE)es,
so that z¢ k(E). This is a contradiction.

To prove that (iv) implies (iii), let E, be a set of class & and let {W,} be a reg-
ular exhaustion of E§. Assume that E is a bounded closed set such that E n W,e
&, n=1,2,...and let C be the union of components ¢ of E— E, such that ¢ n E, #
¢. Then (2) of (iv) implies that the bounded closed set E,=E, U C is of class
&. Since each component ¢ of E— Ej satisfies c=¢ and ¢ N E; = ¢, there exists
a regular exhaustion {W,} of E such that(E—Ey)c\U% (W,~W,_,). Hence,
by (1) of (iv), we have E€ &.

We now give examples of classes of bounded closed sets satisfying (&. 1)
and (&. 2).

ExAaMPLE 1.2. Let u* be a Carathéodory outer measure and let & be a class
of bounded closed sets E such that u*(E)=0. Then (&. 1) and (ii) of Theorem
1.1 are satisfied. In particular, the classes of bounded closed sets of Hausdorff
h-measure zero and the classes of bounded closed sets of generalized capacity
zero satisfy (<. 1) and (ii) of Theorem 1.1 (cf. L. Carleson [1]).

ExamPpLE 1.3. The class of totally disconnected bounded closed sets satisfies
(&. 1) and (iv) of Theorem 1.1. The class of sets of vertical slits, i.e., the class
of bounded closed sets E such that each component of E is either a point or a line
segment parallel to the imaginary axis satisfies also (<. 1) and (iv) of Theorem 1.1.

ExAaMPLE 1.4. The classes Ny and N, satisfy (&. 1) and (iv) of Theorem
1.1 (cf. L. Sario and M. Nakai [7, pp. 371-372]).

ExAMPLE 1.5. The classes Ngp and N, satisfy (£. 1) and (. 2), but do
not satisfy (iv) of Theorem 1.1 (cf. N, Suita [9] and D, A. Hejhal [3]).
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In this paper, we shall denote by % the class of bounded closed sets E such
that the projection of each E into the real axis has vanishing linear measure. This
class .Z satisfies (<. 1) and (ii) of Theorem 1.1.

§2. Extremal sets of vertical slits

Let M(W) be the class of Royden functions on a plane region W (cf. L. Sario
and M. Nakai [7, Chap. III]), i.e., let M(W) be the class of functions f on W
satisfying the following conditions:

(M. 1) fis bounded on W.
(M. 2) fis a continuous Tonelli function on W.
(M. 3) The Dirichlet integral Dy (f) of f over W is finite.

Let U be a regular region in the extended (z=x + iy)-plane, i.e., let U be a region
whose boundary dU of U consists of a finite number of analytic Jordan curves
and let E be a bounded closed set contained in U. We denote by M(U—E, y)
the class of functions f such that fe M(V;—E) for some region V,:U and f]|
oU=y. Let

dU-E)=__inf Dy k().

eM(U-E,y)

It is known that there is a unique function foeM(U —E, y) such that d(U —E)=
Dy_g(fo) and f, =0 on bounded components of E¢. The function f, is harmonic
on U—E. Wedenote it by Loy —g)(y). '

Let & be the class of extremal sets of vertical slits. From the condition
(D), the next lemma immediately follows:

LeEMMA 2.1. Let E be a bounded closed set in the extended (z=x+iy)-
plane. Then the following conditions are equivalent:

(i) E is of class &.

(ii) S caf/ay dxdy=0 for every bounded C!'-function f on E¢ with finite
Dirichlet inb;egral which vanishes identically on a neighborhood of co.

(iii) S c@f/&y dxdy=0 for every feM(E€) which vanishes identically
on a neigthorhood of .

(iv) Low-g(y)=y for some regular region U containing E.
(v) d(U—=E)=d(U) for some regular region U containing E.

The property (a) implies that & satisfies (&.1). To see that & satisfies
(&. 2), it is sufficient to show the lemmas below.
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LEMMA 2.2. Let E be a set in the (z=x+iy)-plane such that E*=En
{z|x=0}e& and EE=En{z|x<0}eé&. ThenEcé.

Proor. For any £>0, let w, be a C®-function on the space R of real
numbers such that 0<w,<1 on R, 0, (1)=0(t<0) and w,(1)=1(t=¢). Let f be
a Royden function on E¢ vanishing identically on a neighborhood of oo. Set
[(D)=f@)ox)+f(@)w-x). Then f(2)olx)eM(E*?) and f[f(Dw(—x)e
M(E~¢). Since

of: 5(f(2)we(x)) I(f(D)w,(—x))
SEC Peaxay SE Af(2)@u(x)) ;. dy+SE_c~———ay dxdy

=0

and

)S gfjd dy — S {)‘a’xdyl2

6f>2 S
= oy —_—
s SECH(-egxgg)( oy dxdy S(f)ﬂ‘_aéx&)dxdy 0 (e-0),

where S(f) denotes the support of f, we deduce
S I Laxdy =o.
EC‘

Therefore E€é&.

LEMMA 2.3. Let E be a set on the (z=x+iy)-plane suchthat E}=EnN
{zly=—a}e& and E;=En{zly<a}ed& for a positive number a. Then E€
£.

Proor. Let f be a Royden function on E° vanishing identically on a neigh-
borhood of oo and let w, be a C®-function defined in the proof of Lemma 2.2.
Then

of af(Z)wa(y) of(z) (1 —w,(y))
SEE 5L dxdy S(E .. dx dy+S(E;)c % dxdy
=0,
and hence E€&.

§3. Examples

In this section we construct examples of bounded closed sets which are count-
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able unions of sets of class &, yet are not of class &.

ExamMpPLE 3.1. Let e=e({a,}, {n,})=Noe, be a generalized Cantor set
contained in the interval [0, 1] on the real axis which has positive length and is
a set of class & (cf. L. Sario and K. Oikawa [8, pp. 229-235]). We denote by
X, the length of e,_, —e, where k=1. Since e has positive length, we have
>Yex.<l. Let T, k=0, 1,... be the sets of end points of ¢, and let y, be numbers
such that yo,=1,0<y,=<1, k=1,2,... and y,—»0(k—o0). Set E,={z=x+iy|xe
Ty, 0=y=<1} and E,={z=x+iy|x€e T,—T,_;,0Z5y<y,}. Then E=eU UL E,
is bounded and closed. In the following we shall show that if {y,} satisfies
> (x/y) <1, then E is not of class &. Let U={z||z—(1+1i)/2|]<2} and
define a function f as follows:

[y, z=x+iye U-S((1+1)/2,1)
(**) f(Z)= y/yk’ xeek—l_elnoéyéyk,k:l’ 25"'
Il elsewhere.

Then feM(U —E, y) and Dy_g(y)—Dy_g(f)=1— X (x,/y)>0. Hence d(U—
E)<d(U),and so E ¢ &.

For every non-negative number 6, we define an open set 4; by
4; ={zllz| < 1} —{z = x+iylx = 0, |y| = 6}.
To construct Example 3.3 below we prepare the following lemma:

LEMMA 3.2. For any feM(4,) and for any positive nhumber ¢, and e,
there are a positive number 6=0(f, ¢, ¢,) and a function g e M(4;) such that
D, (f—g)<e, and g=f on 4, N {z||z| >¢,}.

PrOOF.®>  We define a Royden function w; ., on {z||z| <1} by

[01 |Z| <d
Ws,.,(2) =1 log(|z|/0)/log(e2/d), = |z|l S e,
l 1, g, <|z] < 1.

Then, for a sufficiently small number 6, g =fw; , is the required function.

ExaMpLE 3.3. Let E=eU NZoE, be the set defined in Example 3.1 satisfy-
ing 2% ,(x/y.)<1 and let f be the function defined by (x*). We may assume
that y, # 1/20, k=1,2,...,j=1,2,.... Fora sequence {6;}%, of positive numbers

*) Author’s proof was relatively long. This short proof was given by Mr, Y. Mizuta,
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we set Fy=En{z|ly21/2+46,}, F;=En{z|1/2/+6;Sy<1/2"1=6;_,}, j=2, 3,
... and define E({0,}) by E({6;})=e U \U%,F;. Then E({§;}) is a countable union
of mutually disjoint bounded sets of class . From Lemma 3.2 we know that
there are a sequence {,} and a function geM(U — E({3,}), y) such that D, _ /(g) <
Dy_g(f)+(Dy(y)—Dy_-g(f))/2. Therefore E({5;}) is not of class & for such a
sequence {4;}.

§4. Characterizations of extremal sets of vertical slits

Let E be a bounded closed set and let U be a regular region containing E.
For any he C!(dU), we denote by M(U —E, h) the class of functions f such that
feM(V,—E) for some region V,>U and f|oU=h. Let

iU~E k)= inf g (ﬁli)zdxdy.
SeM(U-E,h) JU-E 5}’

A function g e M(U —E, h) such that
dg )2 - i(U—
SU—E( 3y dxdy = i(U—E, h)

does not always exist and is not uniquely determined even if it exists. Since the
operator f-0f/dy is linear, dM(U —E, h)/dy={0f]dy| fe M(U —E, h)} is convex
in the space L2(U—E). Hence there is a unique function ¢ minimizing the L?-
norm in OM(U—E, h)/dy. We call the function ¢ extremal and denote it by
Lyy-g(h). A function ¢ € L2(U—E) is extremal if and only if $eoM(U—E,

)/dy and S $f/0y dxdy=0 for every fe M(U — E, 0).
U-E

The operator L,y_p): h—¢ has the following properties:

(L. i) Lyy-r, is a linear operator of C'(dU) into L*(U —E).
(L.ii) Let h,, h, be C!-functions on AU such that h,=h, on U naV,
where V is a component of U N {z=x+iyla<x<b}. Then

Lyw-g(h)IV—E = Lyy_g(hy)[V—E ae. onV—E.

(L. 1iii)) Let V be a component of Un {zla<x<b} such that dVn {z=x+
iylx=c,a<c<b} consists of two points whose distance is not less than d>0 for
every ¢. Then

[, 1La-n®izaxay <* 02D sup 1hOI)  (heC'@U).

teaunov

(L.iv) Given he C!(0U), define a function I, on U so that [,=h on oU
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and y—l,(c+iy) is linear on each component of U N {z|x=c} for every c¢. Let
V be a component of U N {z|a<x<b} such that Vn {z|x=c¢, a<c<b} is connected
for every ¢c and VN E=¢. Then

Lyw-n W) V=L@V = Z|V ae onV.

We shall prove (L.ii) and (L. iv); the other two properties are easily
obtained. Let f;,, j=1,2, n=1, 2,..., be functions of class MU -E, h;) such
that

afj,n 2 __,S aLy(U—E)(hj) 2
SU—E( dy > dxdy U—E< dy > dxdy  (n—c0).

Without loss of generality we may assume

SV_,;-(%”;’;’LY dxdy = SV_E< af;**) dxdy, n=1,2,- .

Set g, (2)={l—-w(a+e—X)—w(x—b+e)} fi (2)+{w(a+e—x)+w(x—b+e)}
fo(z) on V—E and g, (2)=f,,(z) on U—-V—E, n=1, 2,..., where ¢ is a number
such that 0<e<(b—a)/2 and w, is the C*-function defined in the proof of Lemma
2.2. Then g,,eM(U—E,h,) and dg,,/0y={l—wfa+e—x)—w(x—b+e)}.
Of100y+{w(a+e—x)+w(x—b+e)}df,,/0y on V—E. Hence for each n there
is a number e¢=¢(n) such that

Su—E(i%Q)z dxdy = SU—E(%%)Z dxdy +—111_ )

Therefore

1 agn e(n
Lyw-gyh)|V—E = 11nm ”7337(”)

V_ E=Ly(U—E)(h2) | V“ E a.c. on V_ E .
Thus (L. ii) is proved.

Next we shall prove (L. iv). Choose a’ and b’ so that a’<a<b<b’ and
the closure of U n {z|a’ <x < b’} is disjoint from E. Let h’ be a function of C*(0U)
which is equal to h on 0U n 0V and to 0 outside of {z|a’<x<b’}. Then, for any
g e M(U —E, 0) we have

ol,. g _( 0 3l )
S”ay 30 dxdy = SUan I Vaxdy = 0.

From the characterization of L,y _g, given above and (L. ii) we infer that

al,

' 0l
L.v(U-E)(h)lV=Ly(U-E)(h)IV—-——IV__ h

‘V a.e. onV.



508 Makoto SakAI

This proves (L. iv).
Now we are ready to show:

THEOREM 4.1. Let E be a bounded closed set and let U be a regular re-
gion containing E. Then the following conditions are equivalent:

(i) Eeé.

(ii) Lyy-g(y)=1a.e.on U—E.

(iii) (U—E, y)=i(U, y).

(iv) Lyw-g(h)=L,y(h) a.e. on U—E for every he C'(0U).
(v) i(U—E, h)=i(U, h) for every he C'(dU).

Proor. By using the characterization of L,y_gy(y) given after its defini-
tion we see that (iii) of Lemma 2.1 and the present (ii) are equivalent. Hence
(i) and (ii) are equivalent. That (ii) and (iii) are equivalent and that (iv) and (v)
are equivalent are trivial. The theorem will be proved if we show that (ii) implies
(iv). Suppose that (ii) is valid. Let h be a C!-function on dU and let V' be a com-
ponent of Un{zla<x<b} such that dVn {z|x=c,a<c<b} consists of two
points whose distance is not less than d>0 for every ¢. For any ¢>0, let h,
be a C!-function on 6U which satisfies |h,—h| <& on dU ndV and is equal to
a;y+p; on dUNAVn{zla;<x<b;}, j=1,2,..., n, where a; and b; are numbers
such that a=a,<b;<--<a,<b,=b and 3} %-}(a;,;—b;)<e. Then, using
(L. i) to (L. iv), we have

S I )’(U—E)(he) Ly(U—E)(h) | Zd dy é MSZ ,
V-E X ;
S |Lyy(h)—L v(B)|?dxdy < Mgl ,

V-E i z 7

X(V—E)nwlLyU(h*’)_L.V(U—E)(hg) [2dxdy =0

and

16¢ 2
_ 2 _10e
S(V_E)nwclLyu(ha) L,y-gy(h)|*dxdy < d <alsj'~r‘1gv|h| +3) >

where W=\U{z|laj<x<b;}. Letting e-0, we have
Lyy-g(WIV=E = L,y(h)[V—-E a.e. on V—E.

This together with (L. iv) gives (iv).
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§5. Union of a countable number of extremal sets

We now show the following theorem:

THEOREM 5.1. Let E, be a set of class % and let {W,}2., be a regular

exhaustion of E§. If E is a bounded closed set such that En W,e &, n=1, 2,...,
then E€é&.

Proor. Let C be the union of components ¢ of E—E, such that ¢n E,#
¢. Then Ep=E,UC is of class . Let {W,}2, be a regular exhaustion of

Ey such that (E—Ep)c\U=,,(W,—W,_,) and En W, =¢. The theorem will
be proved if we show

of -
SEC 'dedy =0

for every bounded C!-function f on E€ with finite Dirichlet integral which vanishes

identically on a neighborhood of oo. Let U,=W,—W:_,, n=2, 3,.... Then
E,=(E—E,)nU,eé&. By virtue of Theorem 4.1, there are Royden functions
f, on U, such that f,|0U,=f and

(Y onar <, (5o

Let

fn(z)’ Z€E (T,,, n='2, 3,

9(2) = {
f(2), ze W,

and
f(Z) —fn(z)1 Z€ Un_En
9n(2) = [
0, ze U¢.

Then f=g+ 3% ,4,, g, M(T,—E,,0), n=2, 3,... and SE (89/0y)? dxdy < + .
Since E,e & and Ej € &, we have

O gxdy = S 9 gxdy =
Sav 3y dxdy s 3y dxdy =0.

COROLLARY 5.2. Let E; and E, be sets of class &. If E,NnE,e %,
then E; UE,€¢&.

LEmMMA 5.3. Let E be a set of class & contained in {z=x+iy|l0<x<a,
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h,<y<h,+1} where a, hy and | are positive numbers. For any function
feM(R—E), where R={z=x+iyl0<x<a,0<y<h,+1+h,} and h,>0, such
that f(iy) and f(a+iy) and linear functions in y, there is a function g e M(R)
such that g=f on OR and

hi+1+h
Dg(g) = (1 +'m—iﬁTm7z)‘>DR-E(f) .

ProoF. Let f,, n=1,2,... be bounded C!-functions on R—E with finite
Dirichlet integral such that supg _ g| f,—f|—=0 (n—o0) and Dg_ g(f,,—f)—0 (n— ).
Then h; —h; (n—00) and Dg(h;)<limDg(h,,), where h, (resp. h,) denotes the
function continuous on R and harmonic on R such that h,=f on dR (resp. h;, =
f,on dR). Since Dg(h;)<Dg(g,) for every g,e M(R) such that g,=f, on dR,
to show the lemma we may assume that f is a C!-function on R—E. Let y, be
a number such that 0=y, <h, and

({(ZLerivn) +(Fex+ivn) Jax
- i (e o (e Ve

Then
(((Lx+ivn) ax < Do, (N 1hy,

where R,={z=x+iy|0<x<a,0<y<h,}. Let y, be a number such that
hy+1<y,<h;+1+h, and

S"(ﬁfi(xw )>2dx<D (f)/h

° ax ) = R> 2
where R,={z=x+iyl0<x<a, h;+I<y<h;+1+h,}. Set
f(2), O<y<y, or y,<y<h;+Il+h,

——ylf(xHyzHuf(xHyl), YViSYy=y,.

g(Z)={
Yi1—)2 Ya2a—r1

Then g e M(R), g=f on &R,

((Gersmn)ar)”

y=y V2, ya=y 1z
S 222Dy (D)1 )+ 222V Dy (£ I )

<(Da-s(Nmin (i, 1)),y Sy,
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and

a_g)z , < h1+l+h2
SR0< ax) U= Gk PR

where Ro={z=x+iy|l0<x<a, y;<y<y,}. Since Eeé&, by Theorem 4.1,
we have i(Ry, g)=i(Ro—E,f). Hence (L. iv) implies that

(A <S O\ <
SRO ay) dxdy = Ro—E(ay> dxdy = DRo—E(f) .

Therefore

D(0) S Drs(f) + ot F 42 Da_s( f)

The following theorem will be used to construct Example 5.5.

THEOREM 5.4. Let {a,} be a monotone decreasing sequence of positive
numbers such that ap=3/2, a,=1, a,—0 as n—o0 and

lim min(@,,—d2u+1,32n-2—"@2n-1) >0.
o Azp-2—"A42n+1

If E,, n=0, 1, 2,... are sets of class & satisfying Eqc{z=x+iy|0<x=<1, y=0}
and E,c{z=x+iy|0=x=Z1,a,,Sy=<a,,—}, n=1,2,..., and if E=\UE, is
bounded and closed, then E€ &.

Proor. It is sufficient to show that

of -
gEchxdy = O

for every bounded C!-function f on E° with finite Dirichlet integral which
vanishes identically on the complement of the square So={z|—-1<x<2, —1<y
<2}. Let

R, ={z]—1 <x <2,(a2,+ 02,412 < y <(24-2+0a3,-1)[2} .

Then, by Lemma 5.3, there are functions f, e M(R,) such that f,=f on R, and

2ay,—p—a ) )
D " é <1 + 2n—2 2n+1 Do _ .
x,(f) min (ay,—Azpe1,G2n-2—A20-1)/ " £.(f)

Set
fn(z)a ZGR,,, n=1,2,..

9(z) = [
f(2, z¢UR,
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and

f(Z) _fn(z)’ Z€ Rn - En
9.(2) = {

zeRg.

b

Then f=g+ 32,9, 9.€M(R,—E,,0), n=1, 2,... and g e M(S,—E,,0). Since
E,e&, n=0,1,2,..., we have

9 - S 99 S g -
SEC Laxay = Soaray+x( naxay =o0.

ExAmPLE 5.5. Let Fj, j=1,2,... be the sets defined in Example 3.3. Set
E,=eU\UZoF+,and E;=eU\UPFy. Then E; N E,=e and, from Theorem
5.4, we know that E, and E, are sets of class #. But we have shown in Example
3.3 that E, U E,=E({9,}) is not always of class &.

Finally, we give another sufficient condition for a countable union of sets
of class & to be again of class &.

LEMMA 5.6. Let E be a closed set contained in {z||z|<r,r<1} and let
A be the unit disc {z||z|<1}. Then for any fe M(4—E) there is a function
g € M(A) such that g=f on {z||z|=1} and
D,(9) = (142 )Das( ).

ProOOF. As in the proof of Lemma 5.3, we assume that f is a C!-function
on A—E. Let p, be a number such that r<p,<1 and

{ & T (poet)) + = G (poe) }podt

= min | {(Foen) +(5-Foen) foae.
Then
Szn( af(p ew)) do < DA E(f)
and
| 7poe)~fpoe)1? < ([ | L (poe) | a0)’

é |9—9'| DAl—f(rf) .
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Hence

| f(poe'®) —a|? < Z Dy (f)

T 1—r

for every 0, where a= (moin f(poe'®)+max f(pye?))/2. Set
2]

P i0 ( _L) <<
g(pei0)= { Po f(poe )+ 1 Po a, 0=p=p0
f(pe'®), po<p=1.

Then geM(4) and
Disea@) = 5\ pdp {7 (oe) a2 +(ZLtpoe ) }at

1
T(z“

3

IIA

)DA -£(f)

D, £(f).
Therefore
D,(@) < (142 )Du ().

Let R be a doubly connected plane region. If R is conformally equivalent
to an annulus {z|1 <|z|<u} we call u the modulus of R and denote it by u(R).

THEOREM 5.7. Let E,, n=0, 1,... be mutually disjoint sets of class &
such that N2\ U= E,<E,. If there are two sequences {U,}2, and {V,}2,
of simply connected regions such that U,,n U,=¢p(m#n), E,cV,cU,, n=1, 2,...
and hTrn wU,=V,)>1, then E=\U2(E,€é&.

Proor. For every n=1, let F, be a conformal mapping of U, onto {w||w|<

1} such that {w|r<|w|<1}cF,(U,—-7V,), where r>0 is independent of n (cf.
L. Sario and K. Oikawa [8, pp. 201-204]). We denote by F,! the continuous
extension of the inverse function of F, onto {w||w|<1}. Let f be a bounded C!-
function on E¢ with finite Dirichlet integral vanishing identically on a neighbor-
hood of oo. Then, by Lemma 5.6, there are functions f, e M({w||w|<1}) such
that f,=foF;! on {w|lw|=1} and

D(|w|< l)(fn) = <l +%>DFn(Un—En)(f°F;l)
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Set
(fnan)(z); ze U,,, n = 1, 2,...
9(z) =
f(2), zeE§—\U=,U,
and
f(z)_(fnan)(z)’ A Un—En
gu(z) =
0, ze Ug.

Then f=g+ X% 9, 9.€ M(U,—E,,0), n=1, 2,... and g is a Royden function
on Eg§ which vanishes identically on a neighborhood of co. Since E, €&, n=
0,1, 2,..., we have

o = S 99 S g -
Sp Laxdy = Laxay+3( Hraxay=o.

Hence E€&.

§6. Subboundaries of the image regions under quasiconformal mappings
In this section, we shall be concerned with the property (c) of extremal sets

of vertical slits and improve the result obtained in [6]. From Lemma 2.1 the
next lemma immediately follows:

LEMMA 6.1. A bounded closed set E is of class & if and only if
of
——dxdy =0
SE“ dy 4

for every bounded Tonelli function f on E¢ with finite Dirichlet integral which
vanishes a.e. on the complement of an arbitrary fixed bounded region contain-

ing E.

THEOREM 6.2. Let E be a set of class & in the (z=x+iy)-plane and let
U be a region containing E. Let ¢=u+iv be a quasiconformal mapping of
U —E into the (w=u+ iv)-plane such that

(q. i) Ou/0oy=0 a.e. on U—E,
(q.1i) Ou/dx and dv/dy are bounded Tonelli functions on U—E with finite

Dirichlet integral,
(q.iii)) Ox/0u and 0y|/0v are bounded Tonmelli functions on ¢(U—E) with

finite Dirichlet integral.
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Then XP(V—E))—¢p(0V)e &, where V is a subregion of U such that E
cVceVeaU.

Proor. It is sufficient to show

S U dudv =0
s(v-£) OV

for every bounded C!-function f on ¢(V— E) with finite Dirichlet integral which
vanishes on ¢(0V). From the assumption we know that 0x/0v=0 a.e. on
(U —E), 0{((0y/dv)-¢)(0u/0x)(v/0y)}/0y=0 a.e. on U—E and (fo¢) ((0y/0v)-9)
(0u/dx)(dv/dy) is a bounded Tonelli function on V—E with finite Dirichlet inte-
gral (cf. L. Sario and M. Nakai [7], Chap. III, §3). We may assume D(u, v)/
D(x, y)>0a.e.on U—E. By virtue of Lemma 6.1 we have

sy B o = GG )+ 55550 iy e

= ol Gio) o oy s
0.

This completes the proof.

COROLLARY 6.3 ([6]). Let E be a set of class & in the (z=x+iy)-plane
and let U be a region containing E. If ¢ is a diffeomorphism of class C* of
U into the (w=u+ iv)-plane such that ou/0y=0 on U, then the image ¢(E) of
E is of class &.
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