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Introduction

The present paper is the third part of the series [8]. §§1-8 are contained

in Part I, §§9-17 are contained in Part II, and this part consists of §§ 18-23. We

shall use all notations and notions defined in the previous parts.

Throughout this paper, we shall always assume that the fixed prime p is greater

than 3, and not treat the 3-primary component. Our results in the previous parts

are summarized in [8-II Th. A], where we determined the group pπfc(S), the

p-primary component of the A>th stable homotopy group of spheres, for k^(p2

+ 3p + l)q — 6, q = 2(p—l), and the first unsolved problem was to determine the

composition ocίβίβp+ί. In [10] we have obtained the relations ttιβιβp+s = O,

l ^ s ^ p —3, which enable us to extend our calculations.

In this part, we shall determine the group pπk(S) for (p2 + 3p+ΐ)q — 5^k

— Λ. In this range, there appear the following new generators:

of degree (p2+(s + 2)p + s+l)q-5, 1 ^ s ^ p -

λf ={βp

i,ε',oc1} of degree (2p2 + l)q-5,

λί = {ε1,β
p

uocί} of degree (2p2 + l)q-4,

k = Uj-i, p*,^} of degree (2p2 + i)q-4, 2<>ί<.p-3,

μe{λp-.3-yβίβ2p-2,ocί,ocί} of degree (2p2+p-l)q-5,

where yeZp is the coefficient in the relation α1Ap_3 = jα1j51^2p-2 a n d t n e orders

of κs, λ\ λ( and μ are p, p, p and p 2 , respectively. These elements together with

the \-families {αΓ}, {α;p}, {α?p2} ([1], [9; §4], [14-1V]) and the β-family

{βr} ([12], [17]) form a multiplicatively generating set for pπk(S) in the cited

range of /c. Here, the orders of α,, α;p, oc'{P2 and βr are p, p2, p3 and p, respec-

tively, and d e g α r = r g - l , degα;p = r p ^ - l , deg(x'ίp2 = rp2q-l and

Our main results for pπk(S) are Theorems 19.9, 21.6, 22.2 and 22.3, which

are summarized in the following

*) This work was partially supported by the Sakkokai Foundation.
**) a= {β, γ, δ) means that a secondary composition {β, γ, δ] consists of a single element a.
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THEOREM C (p^ 5). The group pπk(S) for (p2 + 3p + \)q - 5 ̂  k ̂  (2p2

+ p)q — 4, q = 2(p—\), is the direct sum of the cyclic groups generated by the

following elements of degree k(r and s satisfy O^r<p, sφO modp and s ^ l ) :

0Lxβ\βs (2 S s<pl β\β2βp-u «iβriβ2βP-ι (r ̂  p - 2 ) ,

We shall also determine the ring structure of pπ*(S) up to degree (2p2 + p)q

— 3, in Theorem 23.3. To put it briefly, the elements α's, /Γs, ε's, φ, κ:'s, λ\ λγ

and μ form a minimal generating set and any relation is a consequence of (22.3)-

(22.9) and (23.1)-(23.10) given in §§22-23. We give hereupon some of these

as follows (x, y φ 0 mod p):

j p 1 fori+j = p-29 =0 fo

pμ = -εp_2ε' = α 1ε ίεp_ 2_ / = β\φ = -xaίβ
p

ί-
1β2βP-i,

βp-ίΨ = -IWlβlβlp-l, Mp-3 = y*lβlβlp-2> ^iβlp-l = 0.

In § 18 and § 20, we shall calculate the cohomology group of the spectrum

Kk for (p2 + 3p)q-3^k^(2p2+p-3)q-4, q = 2(p-l), as a module over the
Steenrod algebra A*. Our result is Theorem 18.2, which will be proved in §20.

This calculation is a continuation of Theorem 16.1 in Part II.

In §19, we shall determine pπk(S) for k^(2p2+p — 2)q — 6 from the results

on H*(Kk). But the group pn(2p2 + p-2)q-5(S) can not be determined from our

calculations for H*(Kk), and so we can not continue the calculations by means of

our method.

In §21, we shall compare our results with Nakamura's on ExtA*(Zp,Zp)

[5] via the Adams spectral sequence and obtain the results on pπk(S) for (2p2

+ p-2)q-5^k^(2p2+p)q-4. In Theorems 21.6 and 22.3, we shall determine

the group pπk(S) in the cited range, from Nakamura's results.

In §§22-23, the ring structure of pπ*(S) will be discussed.

The author wishes to thank Mr. O. Nakamura for his valuable comments

in preparing §21.

§ 18. ^*-module structure of H*(Kk)

We recall the spectrum Kk = {Kk(n)} of (1.1) and its cohomology group

*) T h e superscript t indicates the p o w e r : βl = βι°' -°βχ (Mimes composi t ion), βl = e.
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H*(Kk) with the coefficient Zp. (Here, we omit the coefficient Zp). The space

Kk(n) is obtained from S" by attaching cells such that the inclusion ί: Sn^Kk(n)

induces isomorphisms of π/ ) for j<n + k and that πj(Kk(n)) = 0 for j^n + k.

There is the exact sequence of modules over A*, the Steenrod algebra mod/?,

(18.1) ... JL+ H\Kk) JL^H\Kk+ι) -*UH<-k(pπk(S)) J^W^(Kk) JU - ,

where H*(pπk(S)) = H*(K(pπk(S))) and K(pπk(S)) = {K(pπk(Sl n)} is an Ei-

lenberg-MacLane spectrum (see (1.2)).

For 0<ί^/c, the group H*(Kk) vanishes (see (1.3)), and for f = /c+l, there

is the epimorphism

(18.2) φ: pπk(S) > Hk+H.Kk) ( « MS) ® Z P)>

which is essentially the projection to the quotient (see (2.1)).

For any a e H\Kk) and / > /c, we denote by a in Kt or simply by a the element

i^aeH^Kj) for the inclusion iiK^K^ and for any non-zero aEH\Kk),

t > 0, we define

h(a) = min {/1 there is a' e #'(!£,) such that a' = a in Kk}.

In [8], we have calculated the ,4*-modules H*(Kk) for k^(p2 + 3p)q — 4.

Here, we denote always q = 2(p — 1), and also we put

Wk =

The following result is a part of Theorem 16.1.

(18.3) Within the limits of degree less than (2p2+p)q-3, /

is generated over A* by the following elements (r = p2 + 3p):

•aosH°9 areH'*9 a'r

and in addition d7GH(2p2+P~2)q for p = 5. Also, the A*-module structure of

H* is given by the following relations:

( i ) Aia0 = 0 for 0<i<p3q;

(ii) Δar = 0, Aa'r = 0, / l ^ 1 ^ - ^ 1 ^ ; = 0

(iii)
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(iv) ^ ^ + 2 = 0, W2b°p+2 = 0,

( v ) ^>P-2CP

1

+2 = 0;

(vi) &HX = 0, W ^ = 0, 0>H'2 = 0, W4/'2 = 0

(vii) 0>γds-0>p^-3Άγ = 0, 0>ιAds-(\\Ί)A0>v^-^lγ = 0

(viii) (p = 5) ΔdΊ Ξ 0 mod^*fe?, ^ ^ Ξ 0

REMARK. The above relations (iii) and (v)-(vii) are slightly different from

Table B9 in Theorem 16.1. The coefficient xΊ in Table B9 (b-3) is denoted in

the above (iii) by x. Theorem 16.1 is lacking the relation (v) (and the element

c? + 2 ) (see the next corrections). In (15.4) (iii), we can take Cί=(ll2)A^>p(p-3)

and C 2 = —(l/2)«^p(p~3) by easy calculations using the Adem relations, and

so the above (vii) coincides with the relation B8(d—1) [8-II p. 142] with bj^1

= bp

1

+l = bl = V1 = b°p+1=O. In Theorem 16.1, we proved the last relation of

(vi) above in a weak form: W4Γ2 = 0 moaAa+2l1+Aa+i+2b£+i+Aab(j>+2, a = {2p

+ 2)q (Table B9(/-l)). From the relation a^Jp+l=0 [10; Cor. 1] it follows

that x φθ in (iii) above (see Lemma 18.1 in the below), and hence we can omit

the term Aa+2lx. We have Aa+q+2=Zp{A0>2P+3A} + I

+ Im(ff 4)*** ) and Aa = Zp{0>2P+2} + Im(0>1)*9 and so l

+ z0>2p+2b°+2 for some y, zeZp. Operating 0>x and W5 to this, we obtain

y = 0 and z = 0, respectively. Thus, W4l'2 = 0 as desired.

CORRECTIONS TO § 16. (i) There are lacks of the elements cp

x

+2 of H*(Kk)

and β\&' of π*(S). In Table A9, the element cp

x

+2 satisfying

=(p2 + 3p + 1 ) 0 - 8 ,

should be added. In Table B9, the relation

should be added. Also, in the table of Theorem 16.2, the element β\ε' satisfying

the following should be added:

degjβ?ε' = (p2 + 3p + l)q-9, order of β\ε' = p9 φ{β\ε') = cp+2.

In the 2nd and 9th lines of [8-II p. 146], the element c\+2 and the equality

*) We denote by A* [dl9...9 dn] the (left) ^4*-module generated by the elements dl9...9 dn, and

simply by A*dx if n=l. Also, we denote by Zp{dli...i dn} the linear space over Zp with

basis dί}..., dn.

**) For any α ε i * , a*: A*—>A* and a*: A*-^>A* denote the right and the left translations
by α, i.e., a%(β) = aβ and a*(β) = βa, respectively.
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φ(β3

1ε
f) = cp+2 should be listed.

(ii) Recently we withdrew a statement yλ = 0 and proved [10] an opposite

result yί φθ. So, the 3rd line in the remark at the end of Theorem 16.2 and the

foot-note to this remark [8-II p. 147] should be cancelled.

Now we shall come back to (18.3).

LEMMA 18.1. In (18.3) (iii), the coefficient x is non-zero, and hence the

module structure of the submodule A*bj,+ ί of H*(K{p2+3p)q-^) is given by the

following relations:

PROOF. Denote simply b^+1 by b. By Theorem 16.2, we have b =

Φ(βιβp+ι)' Applying Theorem 3.3 to this, we see that x = 0 implies α1j51jSp+1

7^0. But we have proved oc1βίβp+ί=O [10; Cor. 1], and so xφO as desired.

By replacing lx by (1/x)^1*) in (18.3), the relations in H*(Kip2 + 3p)q-4),

*<(2p2 + p)q — 3, involving b are listed by the following

(**) x&Hs-^v-^^b = 0,

The ^4*-module structure of the submodule A*^1, ^>1A} of A* is determined by

the relations - J R 1 ^ > 1 + ^ ) 1 ^ 1 z l = 0 , -A^>1A-^>1+A^>1Ά^>1=0 and ^P-1-^1

= 0 (cf. Lemma 20.3 in the below). Hence we see that the relations in A*b

given from (**) are ( 2 J R 1 - ^ 1 J ) « ^ ^ - 3 > ^ 1 ί 7 = J R 2 < ^^- 3 )^ > 1 & = 0, A^A&^v-^

0*^ = 0 and 0>p-10>p(p~3>>b = O. But we have A0>xA =(\β)AR2 and

R20>i0>P(p-3) + 0>P(P-4.)ψ39 0>p-i0>p(p-*)Elm(0>ψ. Therefore (**) gives no

new relations in A*b, and so the structure of A*b is given by (*). q. e. d.

Now, our main results for H*(KΛ) are stated as follows.

THEOREM 18.2 (p^5). Let (p2 + 3p)q-3^k^(2p2 + p-3)q-4, q = 2(p-

1). Then, H*(Kk) is generated, over A*, by the elements a in Table A10 below

such that h(a)^k and by some elements of degree }?:(2p2+p—l)q — l. The

A*-module structure of the submodule of H*(Kk) generated by the elements in

Table A10 is given by the relations in Table B10 below and by some relations

of degree '§:(2p2 + p—l)q.
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generator a

ar (p 2 4-3p^r^

asp (P~^^ = S = ^P)

bf (3gr^p)

br

s ((r,s)e/)

cT' (2^p-2)

d5

dΊ

,1(2)0^-^-3)

e((2) (lg/^p-3)

K ((r,s)eJ)

/; (2^s^p-2)

/, (2gsgp-2)

TABLE A

degα

0

rq

spq + 1

(p2+(r-l)p-l)q

-2r-3

((r + φ + ^ i ^

-2r- l

-2r-4

((r + s)p + s)̂ f

- 2 r ~ 2

2^-3

(2p2 + p_2)q

(2p2 + ϊ)q-4

(2p2 + 0^ - 3

(/?2+(r + s + 2)/?

+ 5 + l)^-2r-4

- 2

(p2+(s + 2)p + s)q

- 3

10 (/7^5)

1

(r-lto

(sp-l)g

W + l)g-4

ft(β)

.r-2 forr<p

for r = p

,((r + s—l)p + s)g —2/- for(j,s)eli \J I3

U(s—l)p + s — 2)q

\(r + s—l)p + s +

( p 2 + ( r + l ) p — 1

((r + s)p + s— l)<gr

(p2 + p + 1 ) g _ 2

(2p2-2p-3)^

|(2p2-2)3-3

\(2p2 + i—])q — 3

\{2p2 — 2)q — 3

(p2+(r + s + 2)p

(p2+sp + s)q-2

(p2+(s + l)p+s

»q-2°rrM(lU
)q-2r-3

- 2 r - l

/or i=l

for />2

+ s _l) ί Z 2 r _3

-2)ί-3

If p}£l and the coefficient yp_4 in the relation (/ — 3) o/ Tαb/^ BIO is zero,

then the element dΊ is omitted. If z = 0 (resp. y = 0) in the relation (b — 9) (resp.

(c-4)) of Table BIO, then the following element b%_1 (resp. bp

p) is added.

If z^=0 in (b — 9), the following element V is added.
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K
b'

(2p2+p-2)q-l

(2p2+p-2)q-3

(2p2+p-2)q

(2p2-3)q-l

(2p2-\)q-2

(2p2-3)q-\

In the above, the indexing sets I, / ] , . . . , I4 and J are defined by

I = /, U I2 U h U h,

J = ^0,l ^ s ̂  p-3, r + s ^ p-2}.

TABLE B 10 (p ^ 5)

= §, ^a0 = 0, ^P 2 α 0 = 0.

(α-2) Λrαr = 0, r # 0 m o d p , Δasp = 0, Jα^p = 0,

(b-2)

(b-3)

(fc-4)

(b-5)

(b-6)

(b-7)

= 0 for rSp-2.
1 = d5, and hence 0>3b2p-1=O,
§ for (r,s)e/,.

= 0, <P1b°+M-W&n = 0 modZ^
for 3£s^p-3,

^ls, and hence p l

for 2<*sg:p-3.

2 = xlp-2, xeZp.

O for (r,s)el4..

W2b°p+2 = 0, W ; 6 P

0

+ S - ^ C P + S - I = 0 m o d ^ * { α p J + s p + s - 2 , bξ-+{}

for 3<>s£p-3.

(fc-9) Wp.2b°2p_2-Ap_2c%_3 = zdΊ moάA*{a2pl_p_A, V£\, b\>~2, /p_3}

(z = 0 if dη does not exist).

(b-10) ΔV s 0 mod A ibζΓ1, α2 p 2_3} .

(c-1) 0>P-2c<[+r = 0 /or r g j p - 2 .

(c-2) ^* r" 1c; = 0 /or r|p-2.

(c-3) ^ P " 1 ^ " 1 = /^_2, and hence Ws0>p~ιcp-χ = 0 /or 4 5Ξ s ^ p - 1 ,
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and also A^^A^xAcv

p~_\ = 0 in Kk for k ^ (2p2-2p-4)q-4
if p^Ί and yp-.A Φ 0 in (/-3).

0-4) &r-ic*r1 = yl'p_2, yeZp.
(d-ί) &1d5=0, 0>1Ad5 = O.
(d-2) AdΊ = 0 mod,4*{b?*-3, b°2p_3}, 0>ιdΊ = 0

0-2) ^1e1(2)-JR3eί(2) = 0, ^ i ^ ) - ^ ^ ) = 0 for 2^i^p-4.

(u2 = 0ίfyΦ0in(c-4)).
0-4) ^Me1(2)-3J«^1zlei(2) = 0, ^AeJili-A^Aeifl) = 0

0-5)
vieZp(υ2==v3 = 0ifyΦ0 in

(fc-1) ^^" 2 /c ϊ = 0 for r + s ^ p - 3 .

(/-I) ^ ί l / ί = 0, f F s + 2 / ; = O /or 2 ^ s ^ p - 3 .

s°_1 = 0 for 2 ^ s ^ p - 3 .

2 ^ s + 2 / c s

0 _ 1 = 0 , j s e Z p , for 2 g s ^ p - 3 .

(/) αί p = O in Kk9 k^spq,

a = 0 in Kfc, fc ^ degα, for any a (φ a0) in Table A10,
and hence

d5 = 0 in Kk for k ^ (2p2-2)q-3,
Z; = 0 in Kk9 2^s^p-3, for k ^
ls = 0 in Kk9 2^s^p-3, for k ^
/p_2 = 0 in Kk for k^(2p2+p-l)q-4 if yφ0in(c-4),
dΊ = 0 in Kk for k^(2p2-3)q-l if z Φ 0 in (b-9).

In the above, Ws and As are elements of A* such that £PxWs=Ws2Pγ and

For any generator a (φa0) in Table A10, the image of a in Kh^ by the
homomorphism δ*: H*(Kh(a))-+H*(pπh(a)-.λ(S)) is given by the following equa-
lities:

(18.4) δ*ar = Rr-ι(j -1ar-ι) for rφίmodp,

δ*asp+ί =

f0f. r g p _ l 5

for r = p,

for s£p-l,
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^p-i (y*-i c,-i) for (r,s)el1 u / 3 U {(p,p)},

^>p~2(j*~1kr

szρ) for ( r , s )e/ 4 )

δ#ςP+r _. 0>2( ;*- l^jP+r-l'j ^*cΓ = ^i(j*~ίbr^

δ*d5 = ^>P^~2'>^'P~1(j*~1cp

2~
1), δ*dη =

for i = 1,

/or i ^ 2 ,

/or i £ 2 ,

δ*ls=

The proof of Theorem 18.2 is delayed to § 20.

From the theorem, we have immediately the following two corollaries.

COROLLARY 18.3. Let (p2 + 3p + l)q-5^kS(2p2 + p-2)q-6. Then, a

Zp-basisfor Hk+1(Kk) is given by the following:

(i) Zp{V + r} for k = (P

2 + r)q-l, 3p+l ^ r £ p2+p-3

except r = p2-2p, (s-2)p+s-l ( 5 g s ^ p ) ,

(ii) Zp{α2p2_2p,cfP-3} for k = (2p2-2p)q-l, p ^ 7.

(iii) Zp{ap2+(s_2)p+s-ucξ-2} for k = (

(iv) Z p{α2 p 2 + 1 )fcr3} /or fc =

( v ) Zp{^+'} for k = (p2+

(vi) Zp{ί>;} /or k = ((r + s)p + s-ί)q-2r-2,

(r,s)el except (r,s) = (ί,2p-2).

(vii) Zp{c^'} /or /c = (p2 +
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(viii) Zp{c's} for k = ((r + s)p + s)q-2r-3, (r,s)e/, U /2, τφp-2.

( i x ) Zp{eί(2)} for k = (2p2 + i)q-5, 1 ^ i ^ p-3.

( x ) Zp{ef2)} for k = (2p2 + i)q-4, 1 ^ i ^ p-4.

( x i ) Z p {^ p _ 2 ,e p _ 3 (2)} for k = (2p2+p-3)q-4.

(xii) Zp{/c;} /or k = (p2 + (r + s + 2)p + s + l)q-2r-59

(r, s ) e J except (r, 5) = (p — 3,1).

(xiii) 0 for other k.

COROLLARY 18.4. For the same values of k as Corollary 18.3, the kernel

of A: Hk+1(Kk)->Hk+2(Kk) is generated by the element asp, p + 4^s<*2p.

% 19. Calculations of pπ*(S)

By (1.4), we remark the following

LEMMA 19.1. // A: Hk+ί(Kk)-+Hk+2(Kk) is monomorphic, then the

homomorphism φ: pπk(S)-+Hk+1(Kk) of (18.2) is isomorphic. If Hk+1(Kk)

— Zp{a] with Aa = 0 (resp. Zp{a,b} with Aa = 0,Ab=£0)9 then pπk(S) is isomor-

phic to Zpt (resp. Zpt@Zp) for some t^.2 and the epimorphism φ carries the

factor Zpt to Zp{a}.

We consider the inverse-images of the elements in Corollary 18.3 by φ.

First, by applying Theorems 3.3-3.4, we have

LEMMA 19.2. For the elements br

s and cr

s9 (r, s ) e / 1 U / 2 , of Corollary
18.3, the following hold up to non-zero coefficients.

( i ) φ(βs) — ft? for (0, s)e/ 2 , where βs is the element due to L. Smith
[12] and H. Toda [18] (cf [9; §5]).

(ii) φ(β\βs) = K for ( r , s ) e l l 9 s φ p .

(iii) φ(β'Γ1β2βP-ι) = bp for r ^ p - 1 .

(iv) φ(cLxβ\βs) = <* f o r ( r t s ) e l 1 [ ) l 2 9 s φ p .

( v ) φ(0L1βr1β2βp-1) = cp for r^p-1.

PROOF. By Corollaries 18.3 (vi), 18.4 and Lemma 19.1, p π ( s j 7 + s _ 1 ) β _ 2 (S)

is isomorphic to Zp and is generated by φ~λ(b^) for p + 2^s^2p — 2. By

[12], this group contains the element βs of order p, and hence (i) follows. By
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Theorems 3.3-3.4, we have φ~1(cr

s) = ̂ iΦ~1(br

s) and Φ~1(br

s) = βiΦ~ί(t>r

s~
ί)

( r ^ l ) . For small r and s, (ii)-(iii) hold by Theorem 16.2. These facts show

(ii)-(v). q.e.d.

Next, by Theorem 3.5 we have

LEMMA 19.3. The following equalities hold up to non-zero coefficients:

(i) φ(β\+r+1) = b\+r for r^2p-\.

(ii) φ(β\+ί ε') = cp

x

+r for r^2p-2.

PROOF. For small r, these are proved in Theorem 16.2. By Theorem 3.5,
φ-iffi+r^β^-iffi+r-i) and φ-i^P+r^β^-i^P+r-iy τ h e s e s h o w t h e

lemma. q.e.d.

Now let l ^ s ^ p - 3 . We proved the relation a1β1βp+s = 0 [10; Cor 1]. So

the secondary composition {βχβp+s, α1 ? αx} is defined. Since pnk(S\ k=(p2

+ (s + 2)/? + s)g —4, vanishes by Corollary 18.3 (xiii) and Lemma 19.1, the in-

determinacy of the composition is βiβp+sπ2q-i(S) = Zp{βίβp+saί2} = 0 . Hence,

the composition consists of a single element. We then define

(19.1) κs = { β x β p + s , α l f α j , l^s^p-3,

and obtain the following lemma, by Theorem 3.5.

LEMMA 19.4. The following equalities hold up to non-zero coefficients:

( i ) Φ(β\βs) = K for ( r , 5 ) 6 / 3 U / 4 .

(ii) φ{β\κs) = k's for (r,s)eJ.

Set t = (2p2 + l)q — 4. Then, the group pπt(S) is isomorphic to Zp by Co-

rollaries 18.3 (x), 18.4 and Lemma 19.1. Let

(19.2) λίepπ(2p2 + 1)q^(S) = Zp

be a generator. By Corollary 18.3 (xiii) and Lemma 19.1, we have p π ί + ί 9 + 1 ( S )

= 0 for l^i^p-5, and also p(pπt+iq(S)) = 0 for l ^ ΐ ^ p - 4 by Corollaries 18.3

(x)-(xi), 18.4 and Lemma 19.1. Hence we can define inductively the element

(19.3) λ | = { V i , ^ « i } for 2 ^ / ^ p - 3 ,

where the secondary composition in the right side consists of a single element.

By using Theorem 3.6, we see λ^O, and by Theorem 3.3, α ^ ^ O for i

^p — 4. More precisely we have
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LEMMA 19.5. The following hold up to non-zero coefficients:

(i) <Kλd = e&) for Uigp-3.

( i i ) <Katλύ = e'i+i(2) for l £ i £ p - 4 .

By well known formulas [14-IV Th. 4.4] of the secondary composition

and by Theorem 6.2, we have

, ^ , ^ } = 2ε',

{βpi,*uβϊ}=0,

and so

α^K = 0.

Hence the tertiary composition {β\p, α l 9 α l 5 α j is defined. By easy calculations,

this consists of a single element, and we put

(19.4) A'

LEMMA 19.6. The following hold up to non-zero coefficients:

(i) φ(λ') = el(2).

(ii) W + 1 ) = 6?*.

The lemma is an application of the following result.

THEOREM. Let aeHk+1(Kk) and yeπk(S) such that φ(γ) = a=£θ and

= O. Let beHk+34(Kk+1) be an element such that δ*b = 0>3j*~ίa. As-

sume that 0>2aφO, yα1=0, {γ, α ^ α J a O and bΦQ in Kk+Zq-±. Then the

tertiary composition {γ, α ^ α ^ α j is defined and contains an element δ such

that φ(δ) = xb for some x # 0 mod/?. Assume further that ^P~3b = 0, 0>P~*bφO

in Kk+3q^ί and cφQ in Kk+pq-2> where c in Kk+3q is defined by δ*c = 0>p~3j*~1b.

Then, φ(βιi) = ycfor some yφO mod;?.

Of course, this theorem is not valid for p = 3. This is an analogy of Theorem

3.5 and proved by a modification of the proof of Theorem 3.5. So, we omit the

proof.

Finally we consider the inverse-image of the element ar. The following

result is proved by J. F. Adams [1] (cf. [9; §4]).

(19.5) There exist the elements oίre ^n^^^S), r ^ l , of order p such that αr
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e {ar_1? pc, αx} and that αr generates a summand if rφO mod p. There exist

the elements &'rp e pπrpq_t(S), r g l, of order p2 such that pcc'rp = α rp, a'rpe

{α(Γ-i)p, p2c, a'p} and that OL'rp generates a summand if rφO mod p. Also there

exist the elements α^,2 e pκrp2q-i(S), rg l, of order p3 such that pθLyP2 = (xf

rp29

α;p2 e{α'('r_i)P2, p3c,0Lp2} and that <xr;p2 generates a summand if r φθ moάp.

Combining the above fact and a method similar to (4.11)—(4.12) of [14-IV]

with Corollaries 18.3 (i)-(iv), 18.4 and Lemma 19.1, we get the following lemma.

LEMMA 19.7. The following equalities hold up to non-zero coefficients:

( i ) φ(μr) = ar for p 2 + 3p+l g r g 2 p 2 + p - 3 , r φ 0 modp.

(ii) φ(a'sp) = asp for p + 4 ^ s g 2p-1.

(iii)

The following lemma gives representations of the element λ' by secondary

compositions.

LEMMA 19.8. The following relations hold:

PROOF. By the formula [14-IV Th. 4.4 i)], any {α, β, y} above satisfies

{α, j3, y} = {y9 β, α }. Using the formula [14-1V; Th. 4.4 ii)], we have

Applying the formula [14-1V;(4.4) ii)] for oc = δ = βp

ί and β = y = ε = α1, we have

since {jί?,α1,α1} = { α 1 , α 1 , ^ } = ε/ and {α1,j8?,α1}=2e'. From (*) and (**),

we see easily {βp

u al9 ε/} = 2{jS?,ε',α1} and {ε/,^1,α1} = 3{^1, ε\ α j . Thus,

it suffices to show the equality λ' = {βp

u ε\ α j .

Let n be a sufficiently large integer. Since oi1a1 =0, we can construct a double

mapping cone

Pn = Sn U αie
π+« U α i e

n + 2 * .

(By using the notation (11.2), Pn = Cn(<xu α^). Since {αl5 α l 5 a ! } = 0 and
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α l 5 α J = 0, there exist elements α: Sn+2b+3«-1->Pn+2b and β: Pn+2b->Sn, b = (p2

— l)g —2, such that jα=α 1 and βi = βlp, where i: Sn^Pn is the inclusion and
j : P ^ j ^ S ^ 2 ^ 2 ^ ^ ^ ^ 2 6 U e"+ 2 H« is the projection. The element β
is unique because of pπ2b+q(S) = 0 and pπ2b+2q(S) — §. We put

Qn = S" U
e?n+a

a mapping cone of a representative of e ' e ^ ^ S ) . Since βp

1ε
r = 0, there exists

an extension βf \ Qn+b^Sn oϊ β\. Since e'= {/??, α l f α j , there exists y: Pn+2b

-*Qn+b s u c n that yi = i'βpi and j'y=j, where /': Srt+ft-»<2/l+b is the inclusion and
/ : Qn+b^Sn+a+b is the projection. Then the element β'γ satisfies (β'γ)i = βlp,
and so β = β'y by the uniqueness of β.

By the definition of the secondary and tertiary compositions and by (19.4),
we obtain λ' = {βjp

9 ocί9 ccί, θLί}=βoc = β'(yoc) = {βp

ί, ε', α j as desired. q.e.d.

Summarizing Corollaries 18.3-18.4, Lemmas 19.1-19.8 and (19.1)-(19.5),
we have obtained the following main result of this section.

THEOREM 19.9 (p^5). Let (p2 + 3p+l)q-5<>k<>(2p2 + p-2)q-6, q = 2(ρ
— 1). Then, the group pπk(S) is the direct sum of the cyclic groups generated by
the following elements of degree k.

generator γ

ap2+r(lp+lύr^p2 + p-3i

rφO mod/?)

*'P2+Sp ( 4 ^ s ^ p - l )

<*"2p2

β\βs «r,s)ei)

βiβzβp-i (2^r^p-2)

<*iβ\βs ((r,s)ef)

Xiβ'iβiβp-i (2^r^p-2)

β\ε' (4^r^p-l)

β\κs ((r9s)eJ)

λ'

λi (lgί^p-3)

α^ (l^ί^p-4)

degγ ( = /c)

(p2 + r)q — 1

(p 2 + sp)q — 1

2 p 2 ^ f - l

r/? f̂-2r

((r + s)p + s-\)q-2r-~2

{p2+(r + 2)p-\)q-2r-4

((r + s)p + s)q — 2 r — 3

(p2 4- (r + 2)p)g — 2r — 5

(p 2 + r p + l ) ^ f - 2 r - 3

(JP2 + (r + s + 2)/? + .y + l)g — 2r~5

(2/?2 + 1 ) ^ — 5

(2p2 + 0#~4
(2p2 + i + l ) ^ - 5

order of y

P 2

P 3

P

P

P

P

P

P

P

P

P

P
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Here the index sets J, Γ and J are given by

I = {(r,s)|0 ^ r < p, 4 ^ 5 ̂  2p-2, s φ p, p + 3 ^ r + s g 2p-l},

/' = {(r,s)|0 ^ r < p, 4 ^ 5 < p, r + s ^ p + 3}

U {(0,s)|p + 2 g s ^ 2 p - 2 } ,

J = {(r,s)|r ^0, 1 g 5 ̂  p-3, r + s ^ p - 2 } .

The following formulas give representations of the generators:

κs = {βiβp+s, α1? α j , 1 ^ s ^ p - 3 ,

REMARK. In the theorem, we do not fix the element λx of (19.2). We shall
prove in § 22 the formula

which defines a fixed λγ.

REMARK. Combining the theorem with Theorem A of [8-II], we have
determined the group pπk(S) for all k^N = (2p2 + p-2)q-6. In Theorem 18.2,
the coefficients x, ui and u2 are not known to us, and we can not determine
H*(Kt\ t = (2p2+p-3)q-3, in degree ^N + 2. By Theorem 3.3 and Lemmas
19.4 (i), 19.5 (i), x = 0 implies 0Liβιβ2p-2^ and ul = u2 = 0 implies cc^p_3¥O.
From these facts, we obtain a partial result:

pπN + ί(S) « Zp ® Zp, Zp or 0, generated by ot1β1β2p-2

§ 20. Proof of Theorem 18.2

We prepare some results on y4*-submodules of 4*, which are staightforward
consequences of [7] and [14-1].

By Proposition 1.5 of [14-1], we have

LEMMA 20.1. Let Rk = (k+l)0>ίΔ-kA0>1. The relations in the sub-
module A*Rk of A* are generated by the relation Rk+ί Rk = 0 for 1^/c^p —3,
and by Rp-ί'Rp-2 = 0 and A0>1A'Rp_2 = Ofor k = p-2. The relations in A*Rp^x

+ A*A0>ίA are given by ARp.ί=0, AΆ0>1A=O, A0>uRp-1-0>ίΆ0>1A=O.
The relations in the submodule (A*jA*A){A0>l,0>1) of A*/A*A®A*/A*A are
given by
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By (1.1), (3.3) and (3.4) of [7], we have

LEMMA 20.2. Let \<Li<p. The A*-module structure of the submodule

of A* is given by the relation ^>P~i ^>i = 0.

LEMMA 20.3. Let l^ί<p. The submodule A*^>i + A*^>iA of A* is given

by the relations &P~*-&* = (), Ri &i-&1-&iA=0 and iA^>ίA'^>i-^>1A'^>iA

= 0.

The following is a restatement of (4.3), (4.5) and (4.8) of [7].

LEMMA 20.4. Let Wk = (k+l)^>P^>1A-k^P+ίA+(k-l)A^P+ί. Then,

there exist elements Wk and Ak such that 0>ίWk=Wk0
>1 and WkWk^ί=Ak^

>ί.

The submodule A*0>ί+A*Wk9 2^k<p—l, of A* is determined by the relations

^ P - I . ^ I = 0 , Wk-0>1-0>uWk = O, Ak+ί ^ί-Wk+ί'Wk = Q9 and in addition

A0>P+1A0>1A Wp-2 = O for k = p-2. Also the structure of A*^1+A*Wp_u

in degree <(p2 + p + 2)q + 39 is determined by ^ - 1 ^ 1 = 0 , Wp-1 &1-&1-

The following two lemmas are easily obtained from Lemmas 20.2 and 20.4.

LEMMA 20.5. Let Wk, Wk and Ak be as above. Then, the A*-module

structure of A*0>i+1+A*Wk0>\ l<>i<p-l, 2g>k^p-l, is given by ^P-^1-

Wp_20>i = Q for k = p-2, Δ^A-W^^^O for k = p-l and

some relations of degree^.(p2 + p + i + 2)q-\-3 for k = p—l.

LEMMA 20.6. The relations in A*Wk^
>P~ί, 2^k^p-l, are given by

0>i'Wk0>P-ί=O9Wk+1'Wk0>P-1=O9 and in addition A0>P+1A0>1A WP_20>P-1

= 0 for k = p-2, and A^>ίA'Wp.ί^
>P-ί=09 ocj'Wp..ί0>p-1=Q (degα,- ^ (p2 + l)q

+ 2)fork = p-l.

Now we shall prove Theorem 18.2.

PROOF OF THEOREM 18.2. We prove inductively the theorem by re-

peating Proposition 1.2. Let (p2 + 3p)q — 4^k^(2p2 + p — 3)q — 5 and assume

that the theorem holds for any H*(Kt), l^k. We consider the 13 cases of k

which are (i)-(xiii) of Corollary 18.3 with (xi) replaced by

(xi)' k = (p2 + 3p)q-4, i.e., Hk+\Kk) = Zp{b'p+ί}9

and we prove the theorem for H*(Kk+ί) in each case of k.

CASE (xi)'. The induction starts from this case. By Lemma 18.1, the

relations in the submodule A*bp

ί

+ί of H*(Kk) are generated by two relations
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ί=0 and W3^
>ιbp

ί

+i=0. Applying Proposition 1.2 and Lemma 20.5,

we obtain the new generators k\ and l2 of H*(Kk+ί) and the new relations

= ί*w2

= /*w3, (Δ^P+1A^1Al2 = ί*w4 if p =

in H*(JCfc+ 0, where fc? and /2 satisfy <5*fc? = ̂ 2j*" ίbj,+ x and δ* J2 = W30>ψ~ίbx

p+ x

as desired in (18.4).

The last relation is of degree ^ (2/72+p— \)q and we can omit it. In the

following, we shall put a mark (*) on the heel of the new relaitons of degree

Since i*wx e i*Hk+p«(Kk) = 0, i*w2 e i*Hk+^+3^+1(Kk) = 0 and i*w3 e

i*Hk+(2p+3)q+2(Kk) = zp{0>?+1Γ2}, we obtain the relations 9*-2k\ = 0,

-2ΪF3/c? + ̂ 1 / 2 = 0 and - 2 ^ 3 / c ? ~ j 2 ^ + 1 / 2 + ^ 4 / 2 = 0, y2eZp, as desired in

Table BIO (/c-1), (1-2) and (/-3).

Thus, the theorem holds for H*(Kk+1).

CASE (vi). For (r, s) = ( l ,p + s / )e/ 3 , s'<p — 2, we see in the same way as

the case (xi)' above that the new generators of H*(Kk+ί) are fc£ and /s<+1 and

that the new relations in H*(Kk+1) are

= i*wx = 0, - 2 ^ + 2fc? + ^ 1 / β . + 1 = ΐ*w2 = 0 ,

and in addition

A0>P+1A0>1AIP-.3 = i*w4(*) for s' = p - 4 * > ,

A0>iAlp-.2 = i*w5(*) for s/ = / ? - 3 .

Therefore the relations (A:-l), (Z-2) and (/-3) are obtained, and the theorem

holds for H*(Kk+1).

Let (r, s) e /j U / 4 . Then the relations in A*br

s are given by ^>ίbr

s = 0 for (r, s)

e/i and 0>2br

s = O for (r, s ) e / 4 . So, by Proposition 1.2 and Lemma 20.2, we

obtain the new generator cr

s (resp. kr

szp) and the new relation « ^ P ~ 1 C J = Ϊ * W

(resp. &p-2Kzl = ί*w) for (r, 5) e ^(resp. 74). Since i*w e i*Hk+P4(Kk) = Zp{Γs_2}

for r = p — 1, s ^ p , and = 0 otherwise for ( ^ 5 ) 6 / ! U / 4, the new relations (c-2),

(c-4) and (A - l) are obtained. Also 0>p~1cp~1=yl's_2 for some yeZp9 s<p.

We have proved φ(βrιβs) = br

s in Lemma 19.2 (ii). We notice that this equality

has been proved only using the results of H*(KZ) for l^k, i.e., the induction

hypothesis. Hence it follows from Theorem 3.4 that ^p~1cξ~ί=O implies

*) (*) indicates the new relations in H*(Kk + ί) of degree ^.(2p2jrp— l)q, and we can omit
them.
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βr+iβs = o. since βp

ίβs = O [18; Th. 5.8], we see ^ " ^ c J - ^ O and y^O. Re-

placing /j_2 by (ί/y)l's-2,
 w e obtain the relation (c-3). Thus the theorem holds

for fc+1.

Finally let (r, s) = (0, p + s ' )e/ 2 . For s'<p-2, A*b$+S> has the relations

o + s / = o a n ( j JFβ,fto+β,=0. So the new generators c£+s, and 6°+s,+ 1 are ob-

tained, and the new relations are

^"- 1cp°+ s, = i*Wi, ^ " o p

0

+ s . + 1 - i F s . + 1c«+s. = ί*w2,

by Lemma 20.4. We have i*wί e i*Hk+p«(Kk) = 0, Ϊ*W2 e ϊ*fl f c +^+ 2>β+ 1(KΛ)

^Pb2

ίP-2} if s' = p - 3 ) and ι*w3e

^ 2 P j f o 2P-2} jf 5 ' = Jp_3)? ί = p2 + (5/ + 1 ) ^ + s ' _ j Hence we obtain the rela-

tions (fc-4), (6-8) and (fe-9) by replacing b°+s,+ 1 by b$+s,+ i+xA

for some x, j / e Z p . For s' = p — 2, A*b%p-.2 has the relations

^ - 2 ^ - 2 = 0 if z = 0and ^ 1 * 8 p - 2 = 0 , AWp-2b°2p.2 = 0 if z*0, by (6-4), (6-9),

and (d-2). So we obtain the new generators c§ p _ 2 , 6^p_x (if z = 0), 6' (if

and the new relations ^ " 1 c 2 p - 2 =

α2 p2_3}, and some relations of higher degree involving V.

CASE (viii). The discussions are divided into three parts: (r, s)elί9 r

<p—l;(r,s)elί,r = p—l;(r,s)el2. For the first part (r, s)ell9 r<p— 1,

A*cr

s has the relation έPp~λcr

s = 0 and we obtain easily the new generator br

s

+1

and the new relation ^>1br

s

+ί = 0 .

Next, consider the second part (p—i,s)elί. Let s<p. If ys-2φθ in

(/-3), thenαW;/s-2 = 0 in JCfc if and only if α e ^ * ^ 1 , WS+1}( + A*A0>P+1A0>1A

for s = p - 2 , +A*A0>xA for 5 = p - l ) , by (/-2): ^ > 1 / s _ 2 = 0 and Lemma 20.4.

So A*ζ_ 2 has the relations ^ 1 / s _ 2 = 0, ^ s/s_2 = 0, and in addition

A0>P+1A0>1A0>P+Ί'S-2 = O for s = p-2 if yp_4

for s = p - l if yp_37*0, by the congruence Wt

The only relation involving cf"1 is «^p"1c^~1 = ζ_ 2 , and hence ^4*c^~1 has

the relations WS^
>P-1CP

S~
1=0, and in addition A^PA0>XAcp

pzl=0 if yp-4φθ

(p^T), A^>2PA^ίcp

pz\=0(*) if yp-3ΦO. So the new generators are Γ8_1

(and d7 for s = p — 2). From Lemma 20.6 and the same discussion on the rela-

tions of dΊ for p = 5 [8-Π; p. 145], the new relations are &ίΓs-ί = i*wί9 Ws+ίΓs^t

= i*w2, A^>P+1A^1AI/

P.3 = ί*w3(*), A0>ιAΓp__2 = i*w4(*), J d 7 = i*w5, ^ ^

= i*w6 and ^^ 7 ~2l < ^ 2 p + 2 2l/ p _3 = i*w7(*), w ^ H * ^ ) . These imply (/-I)

and (ί/-2) by easy calculations. For s = p, A*cp

p~
ι has the relation 0>p~icp~ί=O

if ^ = 0 in (c-4)? and no relations in our degree if ^ ^ 0 . So, if ^ = 0, the new
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generator is bp and the new relation is ^ b

Finally, consider the third part (r, s) = (0, p + s')el2. A*c$+S> has the

relation 0>p~ίcp

)

+s,=O, which gives the new generator b£+s>. The new relation

is &ίbp

i

+s> = i*w by Lemma 20.2, and we can put ^1bp+S'=xls> from the results

on H*(Kk). Now, φ(<*1βp+8.) = c°+a, by Lemma 19.2 (iv). (Notice that this

equality is proved only using the results for fί*(K/), l^k). So, it follows from

Theorem 3.3 that 0>ίbp~+s> = O implies oc1βίβp+s>Φθ. But we have oc1βίβp+s>

= 0 [10; Cor. 1] and so x^Ofor s'<p — 2. Replacing /s, by (l/x)ls>9 we obtain

(b-5) and (b-6) as desired.

CASES (v) AND (vii). By (c-1), A*cp

t

+r has the relation 0>p~2cp

ί

+r=O,

which gives the new generator bpfr+ ι of H*(Kk+ x). The new relation is 0>2bp

ί

+r+ *

= 0 for r<p — 2, =xd5 for r = p — 2, by Lemma 20.2 and the results on H*(Kk).

By Lemma 19.3 (ii) φ(βp

i~
1ε') = clp~2, and we have β\z' = 0, which implies

0>2b\p~2Φ§ by Theorem 3.3. Hence we obtain the new relations (b-l) and

(6-2).

Next, A*b\+r has the relation ^2bp

1

+r = 0 for r<p-ί9 0>*b\p-χ = 0 and

«^3J^?^"1 = 0 for r = p— 1, and no relations in our degree for r = p. These

relations give cp

x

+r for r<p— 1, and e\(2) and ex(2) for r — p— 1, whose relations

are given by (c-1), (e-1), (e-2) and (e-4), by using Lemmas 20.2-20.3.

CASES (ix) AND (x). A*e\(2) has relation ^ P ~ 3 ^Ί(2) = 0 for / = 1 , and

no relations for ί > l . So the new generator is b\p, whose relation is 0>p~3blp

= /*H<*). A*e£2) has the relations ^>1^ i(2) = 0 and 0>ίAei(2) = O, which give

the new generators e'i+ί(2) and β/ + 1(2). The new relations are &>p~1e'i+ί(2)

= /*w1( ), ̂ 1 e ί + 1 ( 2 ) - J R 1 e ; + 1 ( 2 ) = / * w 2 and ^ M e ί + 1 ( 2 ) - J ^ 1 z l e ; + 1 ( 2 ) = i*w3,

by Lemma 20.3. The elements i*w2 and ί*w3 belong to i*Hk+2«+l(Kk) and

i*Hk+2q+2(Kk), any elements of which are written as the right sides of the equalities

in (e-2), (e-3), (e-4) and (e-5).

CASE (xii). The proof of this case is easy. The new generator and relation

of H*(Kk+ί) are br

st
2 and (6-7), respectively.

CASES (i)-0v) For the case (i), the proof is easy but tedious, by using

Lemma 20.1 and by straightforward calculations, and we omit the details. For

the cases (ii)-(iv), the theorem for k + 1 is proved by combining the discussions

in the cases (i), (vii), (viii) and (xii).

CASE (xiii). This case is clear, since i*: H*(Kk)-*H*(Kk+1) is isomorphic

by (1.5).

From the above discussions, the proof is complete, q.e.d.
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§21. Adams spectral sequence

In his thesis [4], J. P. May calculated extensively the cohomology if *'%4*)

= Ext^*(Zp, Zp) of ^4*. Recently, O. Nakamura [5] has extended (and cor-

rected) May's calculations and determined // s > ί(^*) for t — s^(3p2 + 3p + 4)q — 2.

From now on, we shall use Nakamura's notations [5] for the elements in

E°H*'*(A*)9 the associated graded algebra of if *'%4*), but for the simplicity we

shall denote the elements bOί ( = b? in May's notation [4]), blt ( = b\ in [4]),

b02 ( = fe§ in [4]), guι ( = g[ in [4],flflf0 = Λ0), kίtl ( = kι

ί in [4]) and at of Naka-

mura [5;Th. 4.4] by b, bl9 b2, gι(g0 = h0), kt and a, respectively. Also, any

element in if*'%4*) will be denoted by the same symbol for the element in

E°H*'*(A*) corresponding to it.

Since the Adams spectral sequence (converging to pπ#(S)) has H*'*(A*)

as its E2 term, we can obtain the differentials of the Adams spectral sequence

{£*'<} in the range t-s<.(2p2+p-2)q-5 from our results on pπ*(S) ([8-Π;

Th. A] and Theorem 19.9).

THEOREM 21.1. All non-trivial differentials of the moάp, p ^ 5 , Adams

spectral sequence, in the range t — s^(2p2+p — 2)q — 5, are exhausted by the

following equalities up to non-zero coefficients (i9j,k^O and 5 = 0,1):

I. ( i ) d2(ai

0hίb
k) =

(ii) d2(g2)lb
kb\) =

(iii) d2(gιb
kaJu) =

d2{a^bka^u) = al

ob
k+1aJ+1 (j ψ - 2 modp ifk =

(iv) d2(ai

ob
kc) = ai

Ό

+ίbkhιb2.

( v ) d2(g2tlb
ka2) = bkeι+29 d2(gιb

kaJua2) =

(vi) ί/2(αι

ofe
fc+1/21α2

(vii) d2{a\bkaiw) = ai

0b
kaJ'ub2 (j φ - 3 modp if k = 0),

d2(gιbkajw) = gιb
kaJub2.

(viii) d2(bkhig3t0) = bkhok,bu d2(b"jd = b'hok^.b,.

( i x ) d2(ai

0aP~3a2u) = aί

0L

II. ( i ) d3(ap

0

2'i'P+ih2) = a^aP-'b, d3(ap

0

2-ί+iaP-3a2u) = aι

oa
2P-ιb.
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III. ( i ) dp+ι(bkk0b2)=bk+1eu

(ii) d2p_ί(bkb1) =

(iii) d^.^h.b,) = bP+kk09 d2p(bkk2il) = bP+kkι+ί.

REMARK. Since the spectral sequence is multiplicative, I. (i) is essentially
d2(h1) = a0b and d2(h2) = a0bi. The first is the main result of [14-11]. In
general, d2(hi) = aob

i{'19 i^ l , hold. This is equivalent to the triviality of the
modp Hopf invariant (A. Liulevicius [3], N. Shimada and T. Yamanoshita
[11], cf. H. H. Gershenson [2 Appendix]). J. P. May [4;Th.Π. 7.5.] proved
the first of I. (ii), I. (iii) and the first of II. (i). Also, he pointed out the pos-
sibility of the second of I. (ii) and the first of I. (vii), and conjectured I. (ix) and
the second of II. (i) [4; p. II-7.6]. III. (ii) is essentially d2p_1(bί) = h0b

p, which
is the main result of H. Toda [16]. The first of III. (iii) is equivalent to the
relation βp

γβ2=0 in pπ*(S), which is proved by H. Toda [17]. Also, the second
of III. (iii) is equivalent to βpβι+2 = 0, proved by H. Toda [18]. III. (i) is equiva-
lent to o^iβiβp+s = O ( l g s ^ p - 3 ) of [10; Cor. 1].

REMARK. O. Nakamura [6] has determined all differentials in the mod 3
Adams spectral sequence in the range t — S^104. In particular, the differentials
corresponding to our results [8-II Th. B] on 3π*(S) are seen in Theorems
2.1-2.4 of [6].

We also obtain the following list of the elements surviving to E^.

THEOREM 21.2. In the moάp Adams spectral sequence, p^.5, the elements
surviving to E^ term (and corresponding generators of pπ*(S)) are listed, in
total degree ^(2p2+p — 2)q — 6, by the following:

1, a0, al,...(c)

^^(α J > + / + 1) for 0g/^p-2,j^0;

ap

0-
2hu α Γ ^ i O p ) ; ap

0-
ιa*u, ap

0aJu(a[j+2)p) for j φ - 2 m o d p , j ^ 0 ;

apo2~2h2, ap

0

2-^h2,a
p

0

2h2(^2)',

ap

0

2+P~2aP-3a2u, ap

0

2+P-1aP~3a2u, ap

o

2+PaP-3a2u(θL2pi)

bk(βϊ) for 1 ̂  k ̂  2p+1 hob
k(ocjk) for 1 g k < p

for s = 0, 1, 0 S k < p, 0 g / ̂  p-3

βp+1) for 0^ fc^p-3;
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bkkfi2(β\βp+ι+2) for 0 £ f c < p , 0 £ J £ p -

h0kιa2(ot1βp+ι+2) for 0 ^ / g p - 4

bkg2p-3bί(β1ίβ2βP-i) for 0 ^ k g p-2

ap

0-*bh29 ap

0-
2bh2(φ); ap

0-^bkh2(a1β\-2β2βp.1) for 2^k^p;

Λ o b k f t i ( j 5 k i ε ' ) f o r O ^ k < p ;

θihifa+t) for O^l^p-2; 0 , ^ ( 0 ^ ) for 1 ^ / ^ p - 3

h0b
kkιb2(β\κι+ί) for k^O,O^l^ p - 4 , fe+/ g p - 3

^ i A i ί ^ + i ) /or 0 ^ / ^ p - 4 ; ^ ^ α ^ ) /or l g / g p - 4 .

Since the Adams spectral sequence is multiplicative, there are many dif-
ferentials of higher degree which can be mechanically determined from Theorem
21.2. The following proposition follows from Nakamura's results [5;Th. 4.4],

PROPOSITION 21.3. In the range (2p2 + p-2)q-5<^t-s^(2p2

except for (s, t — s) = (2p, 2p2-\-p— \)q — 3), (p9 (2p2 + p— l)q — 2), the following
elements give a Zp-basis for E^*:

p N-2q-5)9 bP-ιg2tP.3bίe(3p-l, N-2q-4),

kp.3a2e(2p-ί,N-2q-2)9 gp_3a
2? e(2p2 + p-2, N-2q-l),

b*>-2fe(3p,N-q-2), gp-2a
2* e(2p2 + p-l,N-q-l),

where N = (2p2 + p)q and α e (α, b) means bideg α = (α, a + b).
For the above two exceptions of (s9t — s), E^ term is trivial if dp(x)^0,

and is generated by the following elements if dp(x) = 0:

hokp-3a2e(2p,N-q-3), xe(p9N-q-2).

The element h2b2 e(3, N — 3) survives to E^.

We determine the first unsolved differential dp(x).

PROPOSITION 21.4. dp(x) = hokp-3a2 up to a non-zero coefficient.

PROOF. Let n = (2p2 + p-2)q-2. The group pπn(S) is Zp by Proposi-
tion 21.3, and hence it is generated by the element β2p-1 of L. Smith [12] and
H. Toda [18]. So, kp-3a2 converges to β2p-1.
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Consider the element hobkp-3a2e(2p + 2, n + (p+l)q — 3). It converges

to the element &\β\β2p-\, which is zero [10; Cor. 1]. So, hobkp-3a2 is killed

by some αe(s, n + (p+l)q — 2) with s^2p. Hence, α is a linear combination of

the elements bx and gp-2h2b2 by [5; Th. 4.4]. Since gp-2 and h2b2 are per-

manent cycles, dr(gp-2h2b2) = O for r^2 . Thus, we obtain a differential dp{bx)

= hobkp-3a2, which implies the proposition. q. e. d.

COROLLARY 21.5. α1j32 p_1=0.

REMARK. The same result as Proposition 21.4 for p = 3 is recently proved

by O. Nakamura [6; Prop. 3.1].

From the above discussion, we have known all differentials in the range

t — s^(2p2 + p)q — 4. So, the group pnt_s(S) is determined up to extension in

the cited range. Recalling (19.5), we obtain immediately the following

THEOREM 21.6 (p^Z5). Let N = (2p2 + p)q, q = 2(p-\). Then the group

pπk(S)9 N — 2q — 5^k^N — 4, is given as follows:

p π J V _ 2 ^ _ 5 ( S ) = Z p , generated by ccJJ2p-2

pπN.2q.4(S) = Zp, generated by βPΓιβ2βp-ι;

pπN-2q-2(S) = Zp, generated by β2p.ι

p π i V _ 2 ί _ 1 ( S ) = Zp, generated by oc2p2+p-2

pKN-q-

p^N-q-

p^N-q-

πN_q_

s(S)

3(S)

i(S)

= 2p,

= 0,

= Zp,

= zp,

or Zp@Zp,

in particular

generated by

generated by

in

a2

which α tβ'

β2p-i=0;

[ Pp+15

p 2 + p— 1 ?

Γ1^20p-!#O;

pπfc(S) = 0 otherwise for N-2q-5 <. k ^ N-4.

REMARK. In the next section, we shall show that the group pπN-.q_5(S)

is cyclic.

The first unknown differential after Proposition 21.4 is dr(d), 2^r^p, where

de(2,(2p2+p)q — 2)9 and we obtain the following partial result:

Φ 0,

since h2b2 is a permanent cycle. Also, this group contains the element γ2 due to

E. Thomas and R. Zahler [13] [19]. Concerning [13; Cor. E], it follows from
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our results on pπ*(S) that any (non-zero) element in pπ(2p2+p)q-3(S) is indecom-

posable. Especially, we have

PROPOSITION 21.7. The element y2 is indecomposable.

§22. Some relations concerning the elements λt

We consider the ring s/^(M) = Σkj?/k(M) and the homomorphism π*ϊ*:

j/ k(M)->pπ f c_!(S). Let Mn = Sn U pe
n+\ nΞ>l, and ί: Sn^Mn and π: Mn-+Sn+ί

be the inclusion and the projection, respectively. Denote the stable track group

Dirlim[Mn + f c, M J by s#k{M) and the direct sum Σs/k(M) by s/*(M)9 which is

an algebra over Zp and has a differential D of degree + 1 such that D(ξη) = D(ξ)η

+ (-l)de9ξξD(η) and KerD is a commutative subalgebra, cf. [9;§1]. Also,

the homomorphism π^i*: s/k(M)-*πk-ι(S) is defined by the composition:

π#ί*(ξ) = πξi. The image of π*/* is the subgroup π fc_1(S)*Z |, of pπΛ_;i(S), and

for any ξes/k{M) there is η e j / k (M) Π Ker D such that π*i*ξ = π*i*η [9; §3].

In [9], we determined the algebra s/^{M), in degree <(p2 + 3p+\)q — 6.

There exists the indecomposable element εe j2/ s + ί_ 1(M), s = p2q, such that

(22.1) ^ * £ = e1? D(e) = 0, εe {α, /ί(1

where <5 = / π e J / _ , ( M ) with D((5) = l, α = (π ί l c/*)-1α1 esfq(M) with D(α) = 0 and

^ ( D e ^ / ^ - ^ i C i ^ . ^ i l / ) with D(β(l)) = 0 ([9; Prop. 5.2]). Since ε is of odd

degree, we have

(22.2) ε 2 = 0

from the commutativity of KerD. For the element ε^ε, we have the following

LEMMA 22.1. There exists uniquely an element λe£/2s+q-3(M), s = p2q9

such that εδε= —od= — λα, D(λ) = 0 and λ={β(ί), δ<x(δβ(1))
p~ι,δε} (mod zero).

The homomorphism π%i*: ^2S+q-3(^-)~^pπ2s+q-4(^) is isomorphic.

PROOF. The secondary composition λ = {βiί),δaί(δβiί))
p~1

9δε} is well

defined by (ii), (v), (ix) of [9;Th.0.1] and (5.8) of [9]. The indeterminacy of

λ is β{1)s/b{M) + s/s^ι(M)δε, b = (2p2-p+l)q-2. Since pπb+ί(S) = Zp, gen-
erated by α 2 p 2 _ p + 1 , pπb(S) = 0 and p%_i(S) = 0 by Theorem 19.9, it follows

from the discussions in [9; §4] that s/b(M) = Zp, generated by oc2p2~pδocδ. Also

we have ^s.ί(M) = Zp{(χP2δ9oiP2-1δoί9(δβ(ί))P-2δβ(2)δ} by [9;Th.0.1]. By (i)-

(ii) of [9;Th.0.1], βa)sfb(M) = 09 and by (i), (vi) and (ix) of [9;Th.0.1],

s/s_ t(M)εδ = 0. So, the composition λ consists of a single element, and we denote

it by the same symbol λ. Then, the relation ε<5ε= — ccλ follows from (22.1) and

the formula [14-IV;(4.4) i)] (cf. [9; p. 645]). Since , π 2 , + β - 3 ( S ) = p π 2 f + β _ 2 ( S )

= 0, the last assertion follows from [9; Prop. 2.3]. The last assertion implies
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D(λ) — 0, and hence λcc = <xλ. q. e. d.

We can set uniquely the elements λj of Theorem 19.9 by the following

THEOREM 22.2. The generator λj of pn{2p2+j)q-^(S) can be chosen such as

λ1=π*i*λ={eι,β
p

uaί1} for j=\ and λj = π*i*λ(xj~1 for j^2. These elements

satisfy λp_2 = {λp.3,pc, <*1} = xβPΓ1 β2βP-i and λj = O for j^p-l9 where the

coefficient x (φθ moάp) is the same one as in the relation βiφ=—xocίβ2βp-i

in (14.2).

PROOF. By (14.2), (7.5) and (6.2), we have

By [9; Prop. 5.2], there is an element ses/ip2+ί)q-2(M) such that πs|cΐ*έ = ε/

and D(έ) = 0. So, from [9 Cor. 6.6]

and hence

This implies λΦO by Theorem 21.6. So we have π*i*λΦQ by Lemma 22.1, and

we can take λ1 = π*i*λ9 which is equal to π#ΐ*{)5(1), δα(δβ ( 1 ))^" 1,δε}= — {πj?(1),

i<x1β
pi~1

9e1}=-{aιl9β
p

l9ε1} = {εl9β
p

l9aL1}. Then, the element A</ = π#i*Aα ' " 1 sat-

isfies λ~{λj_l9 pc, α j for j ' ^ 2 , as defined in (19.3). Since α l J | s : pπ(2p2+p-2)q-4.(S)

-*pK(2p2+p-i)q-5(S) is monomorphic by Theorem 21.6, (*) implies λp^2 —

π*i*λotP~3=xβp{~1β2βp-ί. The following result can be proved in a similar man-

ner to [9; §§5-6], from Theorem 21.6:

= Zp{ξ = {fiwSp-%2)Sflip-1)9 δβ{2p_X)δ}.

Then, λocp~3=xξ moάδβ^p-^δ and so λocp~2=O modδj5 ( 2 p-i)^α, λccj = O for

j^p-1 by (5.8) of [9]. Hence ^ = 0 for ^ p - 1 . q.e.d.

We consider the element otιλp-3. This lies in the group pπi2p2+p-2)q-5(S)

= ZP, generated by &ιβiβ2p-2- Hence we have a relation

(22.3) Mp-3 = yxiβiβip-2 for some yeZp.

We can prove yφO. But the proof needs the results on ExtΛ*(Zp,Zp)

higher than Theorems 21.1-21.2. We notice only the facts pπ(2p2+2p-2)q-6(S) = Q
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and βi7t^2p2+p-i)q-5(S)φ0 which imply yφO, and we omit the details.

The next result determines the group pπ ( 2 p2+ p_ 1 ) ( Z_5(S). The relation

(22.3) is used in the proof, but the result is independent of the claim

THEOREM 22.3. Consider the element

μ 6 U p _ 3

Then, μ is of order p2 and generates the group pK(2p2+p-i)q-5(S). There is a

relation

(22.4) pμ = - 0 ^ - 2 = -™1β
PΓ1β2βP-i

PROOF. By Theorems 21.6 and 22.2, it suffices to show pμ—— α1/lp_2.

We have

pμ = {λP-3-yβiβ2p-2>*i>*i}(pd

by [14-IV; Th. 4.14 ii)] and [9; (4.4) (i)]. q. e. d.

THEOREM 22.4. In j/*(M), the following relations hold:

( i ) λθLP-*δac-2λaP-3δ-δλocP-3 = y<xδβ(ί)δβ(2p-2),

(ii) λa*~* =xφwδ)?-iβmδβip-»,

(iii) λ<χP-*δ(xδ = δλaP~3δ<x9

(iv) λ(χP~2=0,

where the coefficients y in (i) and x in (ii) are the same ones as in (22.3) and

(22.4), respectively.

PROOF. AS is seen in the proof of Theorem 22.2, we can write λccp~3=xξ

+ x'δβ(2p.i)δ9ξ^(βil)δ)p-1βmδβip.1)9 for some x*. From Dλ = Doc = Dξ = O

and D(δβi2p-i)δ) = β(2p-i)δ + δβi2p-i)¥=0, itfollows that x' = 0, and (ii) is proved.

Since ξα = 0, (iv) follows from (ii). Put η = λθLp~3δ(x. Then, Dη = 0 and πηi is

divisible by p by Theorem 22.3. So, δηδ = O and ηδ-δη = D(δηδ) = O. Thus

(iii) is proved.
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By (22.3) and Theorem 21.6, we can write

Then, -λ<χP-3=D(λocP-*δoc) = (b-a)λ(χP-3 and
Hence a —2 and b = 1, as desired in (i). q. e. d.

PROPOSITION 22.5. The following relations hold:

(22.5) α rε s = miεr+s_u ct'rpεs = 0, oc;p2εs = 0 for r ^ 1.

(22.6) arλs = m1λr+s_u arpλs = 0, <*;p2λs = 0 for r ^ 1.

(22.7) εrεs = -Λ r + S /or r, s ^ 1.

(22.8) ε/εs = α1/ls /or s ^ 1, εV = 0.

^, we interpret εs = 0 for s^p, λp_2 = xβ ?~1^2j8p-i flwd 2 s = 0/or s ^ p — 1 .

REMARK. Concerning the first of (22.5), we have obtained in §7 the fol-

lowing relations similar to (22.3)-(22.4):

(22.9) a ^ p _ 2 = 0, ccιεp.1 = pφ.

PROOF OF PROPOSITION 22.5. By (12.5), [9; Cor. 6.6], (22.2) and Lemma

22.1, we have

αrεs = π^i*εots~1δθLr = rπ*ΐ*eα r + s~1δα = r α 1 e r + s _ 1

εrεs =

where έ is the generator of sf*(M) introduced in [9; Prop. 5.2]. By the (graded)

commutativity of pπ*(S), ε'ε' — 0.

The equalities involving ct'rp and α;p2 are easy consequences of the following

lemma. q.e.d.

LEMMA 22.6. Let y be an element of pπk(S) of order p. Assume that

there exists ξes/k+1(M) such that π*i*ξ = γ and αfξ = 0/or some ί ^ l . Then,

ocrγ = Ofor r>t, oc'rpγ = Ofor rp>t and α;p2y = 0/or rp2>t.

PROOF. In the algebra s/*(M)9 there is a relation αr<5 =

'-'Lδφ' [9 (4.4)]. Hence, ocrγ = πatTδξi = 0 by afξ = 0.

Next we consider the algebra s/%(Mp2) studied in [9]. We use the same
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notations Ϊ 2, π 2, δ2 = * 2π 2 and λ as in [9; §§3,4,7]. There is an element α'

es/pq(Mp2) which defines the elements arp by the rule α;p = π2oc'ri2. Then,

there is a relation oc'rδ2λ= -rXoLόoL^'1 by [9; Prop. 4.2 and (C) on p. 650].

Hence, (xr

rpγ = π2θLfrδ2λξi==0. The last relation α;p2y = 0 follows from a similar

discussion in s/^(Mp3). q. e. d.

§ 23. The ring structure

It is well known [1] that the elements αr, a'rp and α;p2 of (19.5) lie in the

image of the J-homomorphism. By [15-1] αr is constructed on S3, i.e., αr belongs

to the image of S00: π3+Jk(S3)->πit(S), /c = degαr. From similar discussions using

the results on the unstable groups pπM + 4(S f 5)[15-I] and pnp2q+6(SΊ) [15-IΠ],

we see that cc'rp and α f;p2 are constructed on S5 and SΊ respectively. Then, the

equalities J(ξ)(xs = J(ξ<xs) for J(ξ) = <xr, <x'rp, α ; > , J(ξ)a'sp = J(ξa'sp) for J ( 0 = α;p,

α;p2, and J(ξ)oίsP2 = J(ξθL;p2) for J(ξ) = α;p2 hold. Since J is modp trivial on

even degrees, we obtain

(23.1) αrαs = 0, α χ p = 0, αroςp2 = 0,

z'rpZ'sp = 0, α;pα^p2 = 0, OL;P2(X;P2= 0 / o r r, s ^ 1.

PROPOSITION 23.1. The following relations hold:

(23.2) cgSs = 0 (r ^ 2), α ^ . ^ O , α;piSs = 0 (r ^ 1),

(23.3) oirκs = 0, α;pfcs = 0, cc;p2κs = 0 /or r ^ 1.

(23.4) αΓε' = 0, α^ε' = 0, α;p2ε' = 0,

M ' = 0, a'rpλ' = 0, α;:p 2Γ = 0 for r ^ 1.

(23.5) αrφ = 0, a'rpφ = 0, a;p2φ = 0, αrμ = 0 /or r ^ 1.

PROOF. There exist elements βiέ)es/^{M) such that τrj?(s)z = ̂ s and αjS(s)

= 0 [18], cf. [9; §5]. Then (23.2) follows from Lemma 22.6 for ί = l and

Corollary 21.5. Let κ(s) be an element of sf*(M) such that πκ(s)i = κs. By

dimensional reason, any κ(s) satisfies α<5κ(s) = 0 and ακ ( s ) = 0, which imply (23.3).

By dimensional reason and by easy calculations, αrε' = 0 for r^p, αpε' = 0 and

αrA' = 0 for r<p. The element έ such that πέί = ε' satisfies εαp = 0, and we can

take an element les/*(M) so that πli = λ' and I α p " 1 = 0 . Then, (23.4) fol

lows from Lemma 22.6.

Let φ = φMMes/*(M) [9; (6.8)]. This element satisfies αφ = 0 [9; (6.14)].

Hence α r φ= -παr<pi = 0. By [9; §7], there exists an element φ' e s/*(Mp2) such
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that π2φ'i2 = φ, a'δ2φ' = 0 and (x'φ' = 0. Then, <x'rδ2φ' = 0 for any r ^ l by [9;

Prop. 4.2], and so oc'rpφ = π2oί'rδ2φ'i2 = 0. Also oc;p2φ = O is proved similarly

to the proof of α;py = 0 in Lemma 22.6. Finally, let μ = μA lM es/^M). Then

α/ϊe j/ ( 2 p2+ p k_ 5(Λf) = 0, and hence αrμ = 0. q.e.d.

The following relations are proved by H. Toda [18; (5.7)].

(23.6) βrβs = (rs/ίr + s - l ) ) ^ ^ - ! for r + s ψ 1 modp,

By these relations and (19.1), we have immediately

(23.7) i»Λ = ("/(' + 5-l))i»iicr+.-1 for

PROPOSITION 23.2. The following relations hold:

(23.8) βrε' = 0 for 2 ^ r ^ p - 1 , j?Γεs = 0 /or 1 ^ r, s ^ p - 1 .

(23.9) /»iφ = -x*vβ2βp-u βp-,φ = -3xα1i81i92 p_2,

βΓφ = 0 /or 2 ^ r^p-2.

PROOF. The first of (23.9) is the second of (14.2). For the same x, the

relation φβ(ί)= — xocδβ^δβ^^^ in j?/#(M) holds [9;(6.20)]. Then we have

), α, β(p-2)} c ~ {9i8(i), α, βip-2)}

•=> -xocδβi2)δ{β(p_ί)9(x,β(p_2)}3 -xocδβi2)δβ(2p_3)

and so π H c ί*φj5 ( / 7 _ 1 ) = -xπ*i*<xδβi2)δβi2p-zy Hence βp-i(p=-x<xίβ2β2p-3:=

Since βp_x is a non-zero multiple of βp, βrep-x = 0 follows for any r^ 1 from

[18;Th.5.3]. We can put jβp_iε5 = xΛ-25 x 5 eZ p , for 3^5gi?-2. Then

0 = ̂ _ 1 ε p _ 1 = - x s U s _ 2 , ^ , α p _ 1 _ s } = - x s / l i , _ 3 and so xs = 0. Hence i»l,-1ββ = 0.

The other compositions are clearly trivial, since the groups pπk(S) containing

them are zero. q. e. d.

By the relations (22.3)-(22.9) and (23.1)-(23.9), we can see that any element

of pπfc(S), k<(2p2 + p)q — 3, is a linear combination of the following monomials:

αr, α;p, α;'p2 for rφOmoάp,

a\Piξ for a = 0, 1, r ^ 0, ξ = ,, /ϊ, (s ^ 2), β2βp.t

except for *iβ
p

ι-
ιβ2βP-ι,
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β\ζ for r ^ O , ξ = ε\ κB9

cκ.\ξ for a = 0, 1, ξ = εj9 λί9 ε^ ( = -λi+ί) (i ̂  p-4)

except for ct1εp__2, α^p-i and α1ε1β J >_4,

These elements form an additive basis for pnk(S) by Theorems A and C, if we

omit the elements ocίβ
r

ί (r^p), β\ε' (r^p\ a\β\βs (r^p, sΞ>2) and viιβ\βs

^s^2p-3)9 which are zero by the relations ([10], [16], [17], [18]):

(23.10) αi/»Ί=O, j8'lβ' = 0, βp

ίβs = O (s ^ 2),

Thus, we have obtained the following

THEOREM 23.3. Within the limits of degree less than (2p2+p)q — 3, q

= 2(p— 1), p^5, the ring pπ*(S) is generated by the following elements (r

satisfies r ^ l and rφO mod/?):

αr (r ^ 2p2 + p-\), 0L'rp (r ̂  2jp-l), α;2, α'2P2,

/fΓ(r^2p-l), ε\ ε, ( l ^ ^ - l ) , φ,

M U ^ P - 3 ) , A', Alf μ,

αncί ί/ie rinfif structure is given by the relations (22.3)-(22.9), (23.1)-(23.10).

We can also obtain several null compositions of degree higher than Theorem

23.3.

PROPOSITION 23.4. The following relations hold:

( i ) βsλι = 0 for 1 ^ 5 ^ / 7 - 1 , ^ = 0, φλf = 0 .

(ii) ε'φ = 0, ε'κs = 0, ε'μ = 0, φκ s = 0, φμ = 0,

κsκt = 0, κsμ = 0.

(iii) β'A' = 0 i/ p = 7, φλ' = 0.

(iv) φ2=0, A/2 = 0, μ 2 = 0 .

PROOF, (i) By (22.7) and (23.8), & ^ = - j5 s ε 1 ε ί _ 1 =0 for i ^ 2 . By Theo-

rems 19.9, 21.6 and 22.3, we have {βs, ε 1 ,^ 1 }α 1 =0, and hence βsλι = -{βs9εu

βϊ}θίίβ
p

χ-
1=Ot For i ^ 2 , ε ί φ = - π H t i * ε α i - 1 φ = 0 and λiφ= - π ψ ί * A α i - 1 φ = 0 by
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[9; Prop. 6.8].
Since pπN_5(S) = pπN.4(S) = 0, N = (2p2 + p)q, we have {βp

u α l 5 φ}=0 and
{ε l5εp_2,α1} = 0. Hence φλ{ =-εί{βp

ί,ccuφ} = 0 and ελφ = -{εu εp_2, ocΐ}ccί

= 0.
(ii) Let ξ and η be two of ε', φ, K 'S and μ. Then, ξonx =0 by Proposition

23.1 and {£, α l 5 α1}cpπk(S) = 0, /c = degξ + 2g-l , if ξΦμ. Also, f/e {αl5 α l s η'}
for some ^', and hence ξf/e +{ξ, α^αJf/^O if ξΦμ.

(iii) ε ' A ^ ί ε ' ^ ^ ε ' ^ C p π ^ ^ + a ^ . e ί S ^ ^ O (p^7), and also φλ'=-λ'φ

(iv) This follows immediately from the commutativity of the ring π*(S).
q.e.d.

At the end of this section, we give some relations for p = 5.

PROPOSITION 23.5. // p = 5, then {A/,α1,α1} = j5}1 and λ'ε' = β{6 up to
non-zero coefficients, and hence β\J =0.

REMARK. This is a slight improvement of the result βl6=0 of H. Toda
[17].

PROOF OF PROPOSITION 23.5. Applying Theorem 3.5 for y — λ' and using
Lemma 19.6, we have the first relation. Then, λ'ε' = xβ\6, xφO mod5, and
βj1 =0 by βlε'= 0. q.e.d.
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