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Introduction

The present paper is the third part of the series [8]. §§1-8 are contained
in Part I, §§9-17 are contained in Part II, and this part consists of §§18-23. We
shall use all notations and notions defined in the previous parts.

Throughout this paper, we shall always assume that the fixed prime p is greater
than 3, and not treat the 3-primary component. Our results in the previous parts
are summarized in [8-1I; Th. A], where we determined the group ,m(S), the
p-primary component of the k-th stable homotopy group of spheres, for k<(p?
+3p+1)q—6, q=2(p—1), and the first unsolved problem was to determine the
composition o,f,f8,.;. In [10] we have obtained the relations a,8,f,.,=0,
1=<s=<p-3, which enable us to extend our calculations.

In this part, we shall determine the group ,m,(S) for (p2+3p+1)g—5=k
<(p%?+p)qg—4. In this range, there appear the following new generators:

Ks = {B1Bp+s 21,0, 3**)  of degree (p*+(s+2)p+s+1)g—5,1=s=p-3,
M o={p8,¢,a,} of degree (2p*+1)q—5,

Ay = {e, B, a,} of degree (2p2+1)q—4,

Ay = {Ai-1, pe, .} of degree (2p*+i)g—4, 2<i=<p-3,
pe{dy—3—yB1B2p-2, 41,2} of degree (2p*+p—1)q-5,

where ye Z, is the coefficient in the relation a;4,_3=ya;8,f,,-, and the orders
of k, ', 4; and u are p, p, p and p?, respectively. These elements together with
the a-families {a,}, {o;,}, {o/p2} ([1]1,[9;84],[14-IV]) and the pB-family
{B,} ([12],[17]) form a multiplicatively generating set for ,m(S) in the cited
range of k. Here, the orders of a,, a;,, «/,2 and B, are p, p%, p* and p, respec-
tively, and dega,=rq—1, dega;,=rpq—1, dega),-=rp>*q—1 and degf,=
(rp+r—1)g—2.

Our main results for ,m(S) are Theorems 19.9, 21.6, 22.2 and 22.3, which
are summarized in the following

*) This work was partially supported by the Sakkokai Foundation.
*x) a= (B, r, 0} means that a secondary composition {8, 7, d} consists of a single element «.
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THEOREM C (p=5). The group ,m(S) for (p?>+3p+1)g—5=k=(2p?
+p)g—4, q=2(p—1), is the direct sum of the cyclic groups generated by the
following elements of degree k(r and s satisfy 0<r<p, s#0 modp and s=1):

% gps Ufp2, PI(PHASES2p+1)0, BB (s 2 2),
1B 2 = s<p), BiBaBp-1s B1B2Pp-1 (r = p—2),
B (p+1=s=22p=-2), apiBap-2 Pixs(s=p-—3),
Nyds (s =p=3), ai(ssp—4), u.

We shall also determine the ring structure of ,m,(S) up to degree (2p%+ p)gq
—3, in Theorem 23.3. To put it briefly, the elements «’s, f’s, &'s, @, K’s, A, 4,
and p form a minimal generating set and any relation is a consequence of (22.3)-
(22.9) and (23.1)-(23.10) given in §§22-23. We give hereupon some of these
as follows (x, y #0 mod p):

g€j = —Aiy; (= xBi'BB,- fori+j=p=2, =0 fori+j=p-1),
pu = —Gp—zf:' = 0y88p_2—; = Blo = _xalﬂ‘;_lﬁlﬂp—l >
.Bp—l(P = —3x°‘1ﬁ1ﬁ2p—2s “Mlp—s = yalﬂlﬁlp—Z, alﬁlp-l =0.

In §18 and §20, we shall calculate the cohomology group of the spectrum
K, for (p>+3p)q—3=k=(Q2p*+p—-3)q—4, q=2(p—1), as a module over the
Steenrod algebra A*. Our result is Theorem 18.2, which will be proved in §20.
This calculation is a continuation of Theorem 16.1 in Part II.

In §19, we shall determine ,m,(S) for k<(2p?+p—2)g—6 from the results
on H*(K,). But the group ,m;,24,-2)-5(S) can not be determined from our
calculations for H*(K,), and so we can not continue the calculations by means of
our method.

In §21, we shall compare our results with Nakamura’s on Ext,(Z,,Z),)
[5] via the Adams spectral sequence and obtain the results on ,m(S) for (2p?
+p—2)q—52k=(2p*+p)g—4. In Theorems 21.6 and 22.3, we shall determine
the group ,m(S) in the cited range, from Nakamura’s results.

In §§22-23, the ring structure of ,m,(S) will be discussed.

The author wishes to thank Mr. O. Nakamura for his valuable comments
in preparing §21.

§18. A*-module structure of H*(K,)
We recall the spectrum K,={K,(n)} of (1.1) and its cohomology group

*) The superscript ¢ indicates the power: 8{=po---o 8, (t-times composition), B)=¢,
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H*(K,) with the coefficient Z,. (Here, we omit the coefficient Z,). The space
K,(n) is obtained from S by attaching cells such that the inclusion i: S"— K,(n)
induces isomorphisms of n;( ) for j<n+k and that n(K,(n))=0 for j=n+k.
There is the exact sequence of modules over A*, the Steenrod algebra mod p,

(18.1) -+ %5 HY(K,) 2 H (K, ;) 2 H*(,n(S)) L H (K)o,

where H*(,m(S))=H*(K(,m(S))) and K(,n(8))={K(,m(S),n)} is an Ei-
lenberg-MacLane spectrum (see (1.2)).

For 0<t<k, the group H'(K,) vanishes (see (1.3)), and for t=k+ 1, there
is the epimorphism

(18.2) ¢: mu(S) — H*Y(K)) (= ,m(S) ® Z,),

which is essentially the projection to the quotient (see (2.1)).

For any a € H(K,) and [ > k, we denote by a in K, or simply by a the element
i*ae HY(K,) for the inclusion i: K;,— K,, and for any non-zero ae HYK)),
t>0, we define

h(a) = min {!|there is a’ € H(K)) such that a’ = a in K;}.

In [8], we have calculated the A*-modules H*(K,) for k=<(p?+3p)q—4.
Here, we denote always g=2(p—1), and also we put

Ry = (k+1)P'A—kAP' € AT,
Wk = (k+1)91’91A_k@p+1A +(k_1)Agap+l € AP+ 1A+l
The following result is a part of Theorem 16.1.

(18.3) Within the limits of degree less than (2p? + p)q—3, H*=H*(K 24 3)4-4)
is generated over A* by the following elements (r=p?+3p):

aoeH% a, e HY, aje H""*!, bl , e H173,
bl(1)+2 eH(r+l)q—1’ c'i+2 eH(r+l)q—8, bf+3—seH(r+s+2)q+2s—9 (4 é s _S_ p),
d5 eHszll—:i, ll EH(r+1)‘1—3’ 172 eH(r+p+2)q—2 R

and in addition d,e H?r**p=2)1 for p=5, Also, the A*-module structure of
H¥* is given by the following relations:

(i) Alay=0 for 0<i< p3q;
(ii) da,=0, Ada,=0, A@lar—ﬂla"_zzo;

(i) 2'bp, =xl; (xeZ,);
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(iv) 2%, =0, W,b0.,=0, P2WBE+3-5=0;
(v) 2P 272 =0;
(vi) 21U, =0, Wi, =0, 2y =0, W, =0;
(Vi) Plds— 2P =0, 2'4d;—(1/2)42PP=D], =0;
(vii)) (p = 5) A4d, = 0 mod A*b9, 2'd, =0 mod A*{l,, b3}*.

ReMARK. The above relations (iii) and (v)—(vii) are slightly different from
Table B9 in Theorem 16.1. The coefficient x, in Table B9 (b—3) is denoted in
the above (iii) by x. Theorem 16.1 is lacking the relation (v) (and the element
ch*2) (see the next corrections). In (15.4) (iii), we can take C,=(1/2)42pP~3
and C,=—(1/2)2r(r=3) by easy calculations using the Adem relations, and
so the above (vii) coincides with the relation B8(d—1) [8-II; p. 142] with b2_,
=bi*1=bl=11=b2,;=0. In Theorem 16.1, we proved the last relation of
(vi) above in a weak form: W I, =0 mod A%*2], + A**4*2b}, |+ A°bQ,,, a=(2p
+2)g (Table B9(I—1)). From the relation «,f,f,,,=0 [10; Cor. 1] it follows
that x#0 in (iii) above (see Lemma 18.1 in the below), and hence we can omit
the term A°*2l;. We have A®t1*2=Z {AP 34} +Im(2*)*+1Im(W;21)*
+Im (W), ** and A°=Z,{227*2}+Im(21)*, and so W,l,=yAP2P*34b],,
+2z22r*2p), , for some y, zeZ, Operating 2! and W; to this, we obtain
y=0 and z=0, respectively. Thus, W,l5=0 as desired.

CoRRECTIONS TO §16. (i) There are lacks of the elements cf*2 of H*(K)
and f3e’ of n,(S). In Table A9, the element c}*?2 satisfying

degci*? = (p2+3p+1)q—8, h(ci*?) = (p>+3p—1)q—7, 6*c§*? = P2j*1bi*2
should be added. In Table B9, the relation
Pr2cht2 = ()

should be added. Also, in the table of Theorem 16.2, the element f3¢’ satisfying
the following should be added:

deg B3¢’ = (p>+3p+1)q—9, order of B3e’ = p, $(B3s’) = ci*2.

In the 2nd and 9th lines of [8-II; p. 146], the element c4*2 and the equality

*) We denote by 4* {d,,..., d,} the (left) A*¥*-module generated by the elements d;,..., d,, and
simply by 4*d; if n=1. Also, we denote by Z,{d,,..., d,} the linear space over Z, with
basis dy,..., d,.

xx) For any a€4¥*, ay: A¥*—A* and a*: A*—A* denote the right and the left translations
by a, i.e., @y () =af and a*(f)=Ba, respectively.
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P(B3e")=c4*2 should be listed.

(i) Recently we withdrew a statement y, =0 and proved [10] an opposite
result y; #0. So, the 3rd line in the remark at the end of Theorem 16.2 and the
foot-note to this remark [8-II; p. 147] should be cancelled.

Now we shall come back to (18.3).

Lemma 18.1. In (18.3) (iii), the coefficient x is non-zero, and hence the
module structure of the submodule A*b},, of H¥(K 24 3,)-4) is given by the
following relations:

yzb;.‘_l =0, W3glb;+1 =0.

Proor. Denote simply bl,; by b. By Theorem 16.2, we have b=
¢(B1B,+1)- Applying Theorem 3.3 to this, we see that x=0 implies a8,
#0. But we have proved «,f,8,.;=0 [10;Cor. 1], and so x#0 as desired.

By replacing I, by (1/x)2'b in (18.3), the relations in H*(K 24 3p)4-4)
*<(2p2 + p)q—3, involving b are listed by the following

(*) 92}7:0, W391b=0,
(x%)  xPldg—PP03P1p =0, xPAds—(1/2)APPP~DP1h = 0.

The A*-module structure of the submodule A*{2!, 214} of A* is determined by
the relations —R;" 21+ PV P1A=0, —AP AP+ AP AP =0 and 2P~ 1- 21
=0 (cf. Lemma 20.3 in the below). Hence we see that the relations in A*b
given from (*%) are 2R, — 21A)PPP~3IP1p=R,PPP~3I)P1p=0, AP APP(P~3)
Pb=0 and PP 1pr@-3)p=0. But we have A42'4=(1/3)4R, and
R, 21 p(0=3) 4 pp(p- D)W, pr-1pp(=3) cIm(L1)*. Therefore (%) gives no
new relations in A*b, and so the structure of A*b is given by (). q.e.d.

Now, our main results for H*(K,) are stated as follows.

THEOREM 18.2 (p=5). Let (p?2+3p)q—3=k=(2p%2+p-—3)q—4, q=2(p—
1). Then, H*(K,) is generated, over A*, by the elements a in Table A10 below
such that h(a)=k and by some elements of degree =(2p%*+p—1)q—1. The
A*-module structure of the submodule of H*(K,) generated by the elements in
Table A10 is given by the relations in Table B10 below and by some relations
of degree Z(2p%*+p—1)q.
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TABLE A 10 (p=5)
generator a deg a h(a)
a, 0 1
a, (P +3psrs rq (r—1)q
2p%2+p-2)
a;, (p+3=<s=2p)| spq+1 (sp—1q

bi*r 3=r=p)

by ((r,s)el)

bt 2<r<p-2)
¢ (rs)el, UTy)
ds

d;

e (1=si=p-3)

e(2) 1=i=p-3)

ks ((r,s)eJ)

I 25s=p-2)

Iy 2ss=p-2)

(p*+(r—1Dp—1)q {(p2+rp+1)q—2r—2 forr<p
—=2r—-3 |{2p%2+1)q—4 forr=p
(r+s—1)p+s)g—2r for(r,s)el, Ul,

(s—Dp+s—2)q—1 for(r,s)el,
(r+s—=Dp+s+1)qg—2r for(r,s)el,

((r+s)p+s—1)g
—2r—1

P2+ (@r+Dp+q| (P2+(r+Dp-1g—2r-3

—2r—4
{(r+s)p+s)q (r+s)p+s—1)g—2r—1
—2r-2
2p?q-3 (p*+p+1)g-2
(2p?+p—2)q (2p*—2p-3)q
2p2—2)q-3 ori=1
paig-a (o0 o
Qp2+i—1)q—3 fori=2
2p2—2)g-3 ori=1
Qr+ig-3 (o721 ort
Qp2+i—1)q—-3 fori=2

(P2+(r+s+2p | P>+ +s+2p+s—1)g—2r—3
+s+1)g—2r—4

(P2 +(s+2)p+95)q | (P2 +sp+5)g—2
-2

(P2+(G+2)p+s)q | (p2+(s+1)p+s—2)q-3
-3

If p27 and the coefficient y,_, in the relation (I1—3) of Table B10 is zero,
then the element d, is omitted. If z=0 (resp. y=0) in the relation (b—9) (resp.
(c—4)) of Table B10, then the following element b3,_, (resp. by) is added.
If z#0 in (b—9), the following element b’ is added.
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b3, (2p*+p-2)q—1 (2p*—3)q-1
b’ (2p*+p—-2)q-3 (2p*—-1)g—-2
b’ (2p*+p-2)q (2p*-3)q—-1

In the above, the indexing sets I, I1,,...,1, and J are defined by
I=1,ul,ul;uUl,,
I ={(r,9)NSr<p4=<sspr+s=p+3},
I, ={(0,9)lp+2 = s = 2p-2},
I3 ={(1,9)lp+2 = s =2p-2},
IL,={r9)22r<pp+1 £s<2p-3,r+s < 2p-—1},

J={(r’s)|rgo51 —_<—S§P—3sr+3§1’_2}-

TABLE B10 (p = 5)
(a-1) da, =0, Plaz=0, PPa, =0, PPa,=0.
(a-2) R,a,=0, r#0modp, da,=0, da;, =0,
A42'a,—Pla;, =0, AP'dag,_, =0.
(b-1) 22b4*r=0  for r<p-2.
(b-2) P?b3P~!' =ds, and hence P3b3P~1 =0, P34b3r1 =0,
(b-3) 2%b.=0  for (r,5)el,.
(b4) 260, =0, 2'bY%,—Wcliy—y =0modZ,{42'4],_,}
for 3<s=<p-3,
PbYp2— Wy 29,3 = 0mod Z, {42 4l,_,, PPbIP~2}.
(b-5) 2'blis=1, and hence 22b}, =0, W, ,2'bl =0,
for 2<s=<p-3.
(b"6) glb%p._2 = xlp_z, erp.
(b-7) 22%b. = for (r,s)el,.
(b—8) W2b3+2 =0, VVsbg+s_Asc2+s—1 =0 mOdA*{ap2+sp+s-—2’ bg:}
for 3Zs=<p-3.
(b—9) Wp—Zbgp—Z-Ap—Zc(Z)p—S = Zd7 mOdA*{Gsz—p—4’ b::%v b%p—Z, l;:—3}
(z = 0 if d; does not exist).
(b-10) 4b" = 0 mod A*{b5™1, a,,2_5}.
(c-1) 2r2c8r=0  for r<p-2.
(c-2) 2rict=0 for r<p-2.

(c-3) Pprick-'=1._,, and hence W PP '¢t-1 =0 for 4<s<p—1,
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and also AP3PAP A5} =0 in K, for k=(Q2p*-2p—4)q—4
if p27 and y, 4#0 in (I-3).
(c4) 2richt=yl, ,, yeZ,.
d-1) 2'ds=0, 2'4ds=0.
(d-2) Ad, =0 mod A*{b}r3,b9,.3}, 2'd, =0modA*{b27-3,b3, 3}.
(e-1) 2r3¢,(2)=0.
(e-2) 2'e;(2)—Rzei(2) =0, 2'e2)—R.ei(2)=0 for 25i<p-—4.
(e-3) 2le,_3(2)—Rep_3(2) = uyl,_,+u,bh, ueZ,
u,=0ify #0in (c—4)).
(e4) 214e,(2)—34214e1(2) =0, Plde(2)—A4P'4ei(2) =0
for 25i<p-—4
(e-5) Plde, 3(2)—AP'4e, 3(2) = v,4l,_,+v,4b5+v5l;,_,,
v,€Z, (v =v3;=0if y #0in(c4)).
(k-1) P2kt =0  for r+s=<p-3.
(I-1) 2U.=0, Wo,,l:=0 for 2<s=<p-3.
(-2 22U -2W, ko, =0 for 2<s<p-3.
(I-3)  Wesoly—yPPr =24, 5k) 1 =0, yeZ, for 2=<s<p-3.
D a,=0 in K, kzspq,
a=0 in K, kz=dega, forany a(# ay,) in TableAl0,
and hence
ds=0 in K, for k=Q2p?-2)q-3,
I'=0 in K,, 2<s=<p-3, for k=Z((p?*+(s+Dp+s+1)g—2,
;=0 in K,, 2<s<p-3, for k=({p*+(+2p+s+1)q—4,
IL.,=0 in K, for kzQp*+p—1)q—4 if y#0in (c—4),
d;, =0 in K, for k=(@2p?>-3)q—1 if z#0 in (b-9).

In the above, W, and A, are elements of A* such that ?'W,=W,2! and
VV.SVVs—l=As‘@1'

For any generator a (#a,) in Table A10, the image of a in K, by the
homomorphism 6*: H*(Ky,)— H*(,Tu4)—1(8)) is given by the following equa-
lities:

(18.4) 0*a, = R,_(j*'a,_;) for r# 1modp,
0*agpy = AP(j* a,))— 21 (j* 7 ay,),
o*al, =42 A(j* lag,-,y),

[ PrR(j*teftm)  for r<p-1,
S*bHr =
Pr3(j*1e1(2))  for r=p,

5*bl(’)+s = s—l(j*_lbg-”-l) for s<p-1,
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b [ pr1(j*=1c=1)  for (r,s)el, U I3 U {(p, D)},

Pr2(j*1kiz2)  for (r,s)ely,
BRI = PP, Sreg = 2B,
O*ds = PP~ Pr-1(j¥-1ch-1) §¥%d, = AP3PAPIA(j* b)),
P3(j*-1p2r 1) for i=1,
P(j* e~ 1(2) for i22,
PIAG*bIP7Y)  for i=1,
PLA(j* 1e;-1(2))  for i22,

0%ej(2) = [

d%e;(2) = [

0*ky = 22(j*'bptl),
O*ly =W | PP71(j*1e83)),  0X =W 1 P (j* 'bLis-1) s

o*b' =4 Wp—z(j*_lbgp—z) .

The proof of Theorem 18.2 is delayed to § 20.
From the theorem, we have immediately the following two corollaries.

COROLLARY 18.3. Let (p2+3p+1)q—552k<(p?+p—2)q—6. Then, a
Z -basis for H**1(K,) is given by the following:

(i)

(ii)
(iii)

(iv)

(v)

(vi)

(vii)

Z{a,y,}  for k=(p*+rq—1, 3p+1<r=<p?+p-3
except r = p?>-2p,(s=2)p+s—1(5<s=p), p>+1.
Zy{arpapci?3)  for k=Qp*-2p)g—1,p 2.
Z{ays-2ypss-1-¢272  for k=(p*+(s=2)p+s—1)g—1,
5s=p.
Z{asp241, K573} for k=Q2p*+1)g—1.
Z,{bh*r} for k=((p*+(@r+Dp—-1)qg—-2r—4,3<r=<p.
Z,{b%} for k=({(r+s)p+s—1)q—2r—2,
(r,s)el except (r,s)=(1,2p-2).
Z{ci*y  for k= (p*+(r+1)p+1)q—2r->5,
3<r<p-2,r#p-3.
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(viii) Z,{ct} for k= (r+s)p+s)g—2r—=3,(r,s)el, U I, r # p—2.
(ix) Z{e)2)}y  for k=(@2p*+i}g—51=i=<p-3.
(x) Z,1{e(2)} for k=Q2p%+iq—-41ZLiZp-—4.
(xi) Z,{b},-2,e,-3(2)} for k=Q2p>+p-3)q—4.
(xii) Z,{ki}  for k= (p*+(r+s+2)p+s+1)q—2r->5,
(r,s)ed except (r,s)=(p—3,1).
(xiii) O for other k.

COROLLARY 18.4. For the same values of k as Corollary 18.3, the kernel
of 4: H**Y(K,)—»H"*%(K,) is generated by the element ag,, p+4=<s=2p.

§19. Calculations of ,7,(S)
By (1.4), we remark the following

LemMma 19.1. If A: H**Y(K,)—» H**%(K,) is monomorphic, then the
homomorphism ¢: ,m(8)— H**Y(K,) of (18.2) is isomorphic. If H**(K,)
=Z,{a} with 4a=0 (resp. Z,{a, b} with Aa=0, Ab+#0), then ,m(S) is isomor-
phic to Z, (resp. Z,®Z,) for some t=2 and the epimorphism ¢ carries the
factor Z , to Z ,{a}.

We consider the inverse-images of the elements in Corollary 18.3 by ¢.
First, by applying Theorems 3.3-3.4, we have

LemMMA 19.2. For the elements b, and c, (r,s)el, Ul,, of Corollary
18.3, the following hold up to non-zero coefficients.

(i) ¢(By) = b for (0,5)el,, where B is the element due to L. Smith
[12] and H. Toda [18] (cf. [9; § 5]).

(i) @(B1B) =bs  for (r,5)ely, s#p.

(i) @By 'B2Pp-1) = b,  for r=p-1.

() ¢ Bif)=c;  for (r,9)el, Ul s+#p.
(V) ¢BT'BaBp-1) = ¢,  for r=p-—1.

Proor. By Corollaries 18.3 (vi), 18.4 and Lemma 19.1, 7,45 1)4-2(S)
is isomorphic to Z, and is generated by ¢~!(b?) for p+2=<s<2p—2. By
[12], this group contains the element B, of order p, and hence (i) follows. By
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Theorems 3.3-3.4, we have ¢ !(c)=a,¢~ (b)) and ¢~ Y(bY)=B,¢d~ (bl Y)
(r=1). For small r and s, (ii)-(iii) hold by Theorem 16.2. These facts show
@{i)—(v). g.e.d.

Next, by Theorem 3.5 we have

LemMA 19.3. The following equalities hold up to non-zero coefficients:
(1) By = b for r=2p—1.

() ¢B7"le) =i for r=2p-2.

Proor. For small r, these are proved in Theorem 16.2. By Theorem 3.5,
¢~ (bE) =B~ 1(bET"") and  ¢7I(cAT)=P,¢7 (i !). These show the
lemma. q.e.d.

Now let 1=<s<p-—3. We proved the relation «,8,8,.,=0[10; Cor1]. So
the secondary composition {f,8,.sa;,a;} is defined. Since ,m(S), k=(p?
+(s+2)p+s)qg—4, vanishes by Corollary 18.3 (xiii)) and Lemma 19.1, the in-
determinacy of the composition is B8, 72, 1(8)=Z,{B:B,+:22} =0. Hence,
the composition consists of a single element. We then define

(19.1) ko= (BiBpsnd ), 1S5S p-3,

and obtain the following lemma, by Theorem 3.5.
LemMmA 19.4. The following equalities hold up to non-zero coefficients:
(1) (BB =by  for (r,s)elz v I,.
() ¢(Biky) = ki for (r,s)el.

Set t=(2p?+1)q—4. Then, the group ,n(8) is isomorphic to Z, by Co-
rollaries 18.3 (x), 18.4 and Lemma 19.1. Let

(19.2) A’l Epn(zpz_,_ l)q__4(S) = Zp

be a generator. By Corollary 18.3 (xiii) and Lemma 19.1, we have ,m, ;. 1(S)
=0 for 1=i=<p->35, and also p(,m,4;(S))=0 for 1<i<p—4 by Corollaries 18.3
(x)—(xi), 18.4 and Lemma 19.1. Hence we can define inductively the element

(19.3) h={h-npoa}  for 25i<p-3,

where the secondary composition in the right side consists of a single element.
By using Theorem 3.6, we see A4;#0, and by Theorem 3.3, a;4;#0 for i
<p—4. More precisely we have
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LeMMmA 19.5. The following hold up to non-zero coefficients:
(1) ¢1) =e?) for 1<i<p-3.
() @(ay4) =ef44(2) for 1=2i=p-—4.

By well known formulas [14-1V; Th.4.4] of the secondary composition
and by Theorem 6.2, we have

{ogs 0y, B} = (B, 0y, 04} = &,
{o, B an} = {B% ay, oy} +{oy, 0y, B} = 2¢,
{B, 01, 85} = 0,
and so
(B3P, 000, 00} = e = —(1/2) {B%, ay, Bi}et; = 0.

Hence the tertiary composition {f%7, a,, a,, o} is defined. By easy calculations,
this consists of a single element, and we put '

(19.4) A= {B}P, 00y, 0q, 00}
LemMMA 19.6. The following hold up to non-zero coefficients:
(i) () =e€i2).
(i) ¢(BiP*!) = bir.
The lemma is an application of the following result.

THEOREM. Let ae H**'(K,) and yem/(S) such that ¢(y)=a#0 and
23a=0. Let be H**34K,,,) be an element such that 6*b=23j*"'a. As-
sume that 2%a#0, yu, =0, {y,%;,2,}30 and b#0 in K,,3,-,. Then the
tertiary composition {y,a,,a;,0,} is defined and contains an element 6 such
that ¢(6)=xb for some x#0 mod p. Assume further that 2?7~3b=0, 2P~*b#0
inKyy35-1 and c#0in K, ,,_ 5, where c in K, 3, is defined by 6*c=2?~3j*~1b,
Then, ¢(B,y)=yc for some y#£0 mod p.

Of course, this theorem is not valid for p=3. This is an analogy of Theorem
3.5 and proved by a modification of the proof of Theorem 3.5. So, we omit the

proof.
Finally we consider the inverse-image of the element a,. The following

result is proved by J. F. Adams [1] (cf. [9; § 4]).

(19.5) There exist the elements a,€ ,m,,_(S), r21, of order p such that a,
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€{a,_, pt, o, } and that o, generates a summand if r#0 modp. There exist
the elements o, € ,n,,,—1(S), r=1, of order p? such that py,=a,, o,€
{a(r—1)p> P?¢, ap} and that a;, generates a summand if r#0 mod p. Also there

'’

exist the elements a),. € ,m,,2,_1(S), r=1, of order p® such that pa},.=ap2,
0y pz € {0{— 1)p2, P3¢, &2} and that o,: generates a summand if r# 0 mod p.

Combining the above fact and a method similar to (4.11)—(4.12) of [14-1V]
with Corollaries 18.3 (i)—(iv), 18.4 and Lemma 19.1, we get the following lemma.

LEMMA 19.7. The following equalities hold up to non-zero coefficients:
(i) ¢()=a, for p*+3p+1=r<2p?+p—3, r#O0modp.

(i) ¢(u,) =a,, for p+4<s=<2p-—1.

(i) §(3p2) = tzpn.

The following lemma gives representations of the element A’ by secondary
compositions.

LemMA 19.8. The following relations hold:
{BY, ¢ 04} = {oy, €, B} = X',
(B, 2y, 8} = {&/, 0y, B3} = 207,
{e', B, a0} = {oy, B, €} = 34"

Proof. By the formula [14-1V;Th.4.41i)], any {a, §,7y} above satisfies
{o, B, 7} = {y, B, «}. Using the formula [14-1V; Th. 4.4 ii)], we have

(*) {ﬁpl,8,>al}_{8” ‘;’al}'*'{ﬁ‘i’“lae’} =0.
Applying the formula [14-1V;(4.4) ii)] for a=0=p4 and f=y=¢=0a,, we have
(%) {8” pl’al}'*'{ﬁpl’e,s 0(1}—2{ﬂ‘i,(11,8’} =0,

since {f,a,0.}={oy, a1, fi}=¢ and {oa, f5,a;}=2¢'. From (x) and (*x),
we see easily {f7,ay,¢€'}=2{p%,¢,0,} and {¢,p%, 0, }=3{B4,¢,a,}. Thus,
it suffices to show the equality A’ ={f4}, ¢, a;}.

Let n be a sufficiently large integer. Since «;a, =0, we can construct a double
mapping cone

— + +
P, = 5" U ™9 U ,emt2a,

(By using the notation (11.2), P,=C"(a,, a,)). Since {o;, o, ¢,}=0 and {f27,
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ay, a,3=0, there exist elements o: S"*t2b+3a=1,p . and B: P, ,,—S", b=(p?
—1)g—2, such that jo=o; and fi=p%?, where i: S"—>P, is the inclusion and
J: Pyyop—>S*t2b+24=Pp ., [S"+2b ) ent2b+a jg the projection. The element f
is unique because of ,m,;,,,(S)=0 and ,m,,.,,(8)=0. We put

0,=8"Ue, a=(p*+1)q-2,

a mapping cone of a representative of &' € ,m,_,(S). Since pie'=0, there exists
an extension f': Q,,,—S" of B4. Since &'={pY, oy, a,}, there exists y: P, ,,
—Q,+p such that yi=i'f4 and j'y=j, where i’: S"**—Q,,, is the inclusion and
J'Quip—>S"taeth is the projection. Then the element S’y satisfies (8'y)i=p2°,
and so f=pf'y by the uniqueness of j.

By the definition of the secondary and tertiary compositions and by (19.4),
we obtain A'={f2?, «,, a;, o, }=Pa=p(yo)={p%, ¢, «,} as desired. q.e.d.

Summarizing Corollaries 18.3-18.4, Lemmas 19.1-19.8 and (19.1)-(19.5),
we have obtained the following main result of this section.

THEOREM 19.9 (p=5). Let (p2+3p+1)q—55k=<(2p2+p—-2)q—6, q=2(p
—1). Then, the group ,my(8S) is the direct sum of the cyclic groups generated by
the following elements of degree k.

generator y degy (=k) order of y
%24, Bp+1=r=p>+p-3, | (p*+r)g—1 P
r#0 mod p)

%p24sp (4ss=p-1) | (P> +sp)g—1 p?
A3p2 2p%q—1 p
B (p+4=sr=2p+1) | rpg—2r p
B1Bs ((r,9)el) | (r+s)p+s—1)g—2r—2 p
B1B2Bp-1 2=r=p-2) | (p*+(r+2)p—1)g—2r—4 P
1B Bs (r,s)el) | (r+s)p+s)g—2r—3 p
%1 B1B2B,-1 (2=sr=p-2) | (P2 +(r+2)p)g—2r—5 p

e (4sr=p-1) | (p>+rp+1)g—2r-3 p
Bk, (r,9)ed) | (P2+(r+s+2)p+s+1)g—2r-5 p
A @p*+1)q-5 p
Ai (1=i=p-3) | 2p*+i)g—4 p
gl (1gisp-4) | @p*+i+1)g-5 p
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Here the index sets I, I' and J are given by
I={rs0=r<p 4<s<2p-2,s#p, p+3=r+s=2p—-1},
I'={rs)0=r<p,4=<s<p r+s=p+3}
U {0, 9lp+2=s=2p-2},
J={r9)r=0,1<s=<p-3,r+s=<p-2}.
The following formulas give representations of the generators:
Ks = {B1Bp+s a2y}, 1 =s=p-3,
A =B, €0y} = (1/2){BY, oy, 8"} = (1/3) {€', B, 21},
Ai={Aki-ppsa}, 2=5isp-3.

ReEMARK. In the theorem, we do not fix the element 4, of (19.2). We shall
prove in §22 the formula

Ay = {&y, B, 04},
which defines a fixed 4,.

REMARK. Combining the theorem with Theorem A of [8-11], we have
determined the group ,m,(S) for all kSN =(2p%+p—2)q—6. In Theorem 18.2,
the coefficients x, u, and u, are not known to us, and we can not determine
H*(K,), t=(2p*+p—3)qg—3, in degree 2N +2. By Theorem 3.3 and Lemmas
19.4 (1), 19.5 (1), x=0 implies a;fB,,_,#0 and u;=u,=0 implies a4, ;#0.
From these facts, we obtain a partial result:

Tne1S8) R Z,®Z,, Z,0r0, generated by a,BB,,_, and o;4,_5.

§20. Proof of Theorem 18.2

We prepare some results on A*-submodules of A*, which are staightforward
consequences of [7] and [14-1].
By Proposition 1.5 of [14-1], we have

LEmMa 20.1. Let Ry=(k+1)?'4—kdA2?'. The relations in the sub-
module A*R, of A* are generated by the relation R, 'R,=0 for 1Z<k<p-3,
andbyR,_'R,_,=0and A?'4'R,_,=0 for k=p—2. Therelationsin A*R,_,
+A*A2'A are given by AR, ;=0,4-42'4=0, AP"R,_;,— P A2'4=0.
The relations in the submodule (A*|A*A)(AP', P1) of A*¥|A*A@A*|A*A are
given by R (42!, 21)=0,
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By (1.1), (3.3) and (3.4) of [7], we have

LEmMMA 20.2. Let 1<i<p. The A*-module structure of the submodule
A*P* of A* is given by the relation PP~ P'=0.

LEmMA 20.3. Let 1<i<p. The submodule A*P'+ A*P'4 of A* is given
by the relations 2?1 2'=0, R;- P'— 21 2'4=0 and idP'A-P'— P1A-24
=0.

The following is a restatement of (4.3), (4.5) and (4.8) of [7].

LEmMA 204. Let W,=(k+1)PPPA—kPP 1A+ (k—1)A2P*1,  Then,
there exist elements W, and A, such that P'W,=W, 2! and WW,_,=AP".
The submodule A*2' + A*W,, 2<k<p—1, of A* is determined by the relations
Pr1pl=0, W -P'—PW,=0, Ay, P'—W,.'W,=0, and in addition
APPYIAPIAW,_,=0 for k=p—2. Also the structure of A*P1+A*W,_,,
in degree <(p?+p+2)q+3, is determined by #?~1-21=0, W,_, 21—
W,_ =0, AP AW,_,=0 and A, P*—W, W,_,=0.

The following two lemmas are easily obtained from Lemmas 20.2 and 20.4.

LemMA 20.5. Let W,, W, and A, be as above. Then, the A*-module
structure of A*P14+ A*W, 2% 1<i<p—1,28kZp—1, is given by 2r-i-1.
PiH1=0, (i+1)W, PH+1—2l-WP'=0, (i+1)A,,, P+ =W, WP =0,
APPHIAPYAW,_,P'=0 for k=p—-2, AP'A-W,_2'=0 for k=p—1 and
some relations of degree=(p?+p+i+2)q+3 for k=p—1.

LEMMA 20.6. The relations in A*W,2?p~1,2<k<p—1, are given by
PLW PP~ 1 =0, Wy, W PP~ 1=0, and in addition APP*'AP'AW,_ ,Pr1
=0 for k=p—2, and AP'AW,_ PP~ 1=0, a;W,_ 2P~ 1 =0 (dega; = (p>+1)q
+2) for k=p—1.

Now we shall prove Theorem 18.2.

ProoF oF THEOREM 18.2. We prove inductively the theorem by re-
peating Proposition 1.2. Let (p2+3p)q—4=<k=<(2p*+p—3)gq—5 and assume
that the theorem holds for any H*(K)), ISk. We consider the 13 cases of k
which are (i)—(xiii) of Corollary 18.3 with (xi) replaced by

(xi)’ k= (p>+3p)g—4,ie, H'(K)=Z,{by},
and we prove the theorem for H*(K, . ;) in each case of k.

Cask (xi)’. The induction starts from this case. By Lemma 18.1, the
relations in the submodule 4*b},, of H*(K,) are generated by two relations
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2%bl, =0 and W;2'bl,,=0. Applying Proposition 1.2 and Lemma 20.5,
we obtain the new generators k9 and I, of H¥*(K,, ,) and the new relations

PPk = i*w,,  —2WkQ+ P, = i*w,,
—2AK+ W,y = i*wy, (APPH1APAL = i*w, if p=5(%)),

in H*(K, ), where k¢ and [, satisfy 0¥k9=22j*"1b}, | and 6*l,=W,21j* b},
as desired in (18.4).

The last relation is of degree=(2p?+p—1)q and we can omit it. In the
following, we shall put a mark (*) on the heel of the new relaitons of degree
2(2p*+p-1g.

Since i*w, e i*H*P9(K,) =0, i*w, e i*Hk++3)a+1(K)=0 and i*wye
i*Hk*r3)at2(KL) = Z,{2P*!],}, we obtain the relations 2772k =0,
—2W3k9+211,=0 and —2A43k)—y, 2?1, +W,l,=0, y,€Z,, as desired in
Table B10 (k-1), (I-2) and (I-3).

Thus, the theorem holds for H¥*(K, , ,).

CAsE (vi). For (r,8)=(1,p+s")el,, s"<p—2, we see in the same way as
the case (xi)’ above that the new generators of H*(K, ) are k0 and I,,, and
that the new relations in H*(K,, ,) are

.@p—zk‘?r = i*Wl = 0, ‘—2Wsr+2k?’+gll_"+l = i*Wz = 0,
=240 13k + Woislo sy = i*wye Z{PP o, ),

and in addition
APPYIAPIAL,_ 5 = i*wy(x) for s'=p—4%,

AP Al,_; = i*ws(x) for s'=p-3.

Therefore the relations (k-1), ([~2) and (/-3) are obtained, and the theorem
holds for H¥(K,, ;).

Let(r,s)el, Ul,. Then the relations in A*b% are given by £1b.=0 for (r, s)
€l, and 22b.=0 for (r,s)el,. So, by Proposition 1.2 and Lemma 20.2, we
obtain the new generator cj (resp. ki=!) and the new relation 2P~!ci=i*w
(resp. 272Kz L =i*w) for (r,s)e I (resp. I,). Since i*we i*H**?4(K)=Z,{I;_,}
for r=p—1, s<p, and =0 otherwise for (r,s)e I, U I,, the new relations (c-2),
(c-4) and (k-1) are obtained. Also 2P~ !cf~t1=yl,_, for some yeZ, s<p.
We have proved ¢(f;8,)=>% in Lemma 19.2 (ii). We notice that this equality
has been proved only using the results of H*(K,) for [<k, i.e., the induction
hypothesis. Hence it follows from Theorem 3.4 that £?P~1cf~1=0 implies

%) (*) indicates the new relations in H*(Ky.,,) of degree = (2p*+p—1)¢q, and we can omit
them.
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Bit1B,=0. Since p5B,=0 [18;Th.5.8], we see 2P~ !cP~13£0 and y#0. Re-
placing I;_, by (1/y)I;_,, we obtain the relation (c-3). Thus the theorem holds
for k+1.

Finally let (r,s)=(0, p+s)el,. For s'<p—2, A*b?,, has the relations
2'bY, =0 and W,b2,,=0. So the new generators c2,, and bl,.., are ob-
tained, and the new relations are

P ~1,0 — i* 140 0 — j¥

Polegie = *wy, Plb)ig iy — We iy = i¥wy,

]/]/ 0 ] — ¥
s’+1bp+s’+1_As’+1cp+s’ = 1"W3,

by Lemma 20.4. We have i*w,ei*H*r9(K,)=0, i*w, e i*Hk+@+2)a+1(K))
=Z,{42'4l,, ' Al,, PPHIOE LY (+Z,{2Pb%P72} if s'=p—3) and i*w,e
P*FHk+H2p+2)a+2 (K, ) = A(2p+2)ag, 4 A(2p+1a+1pP-1 4 Zp{AgpgnA[;,}(_,_ z, {d,,
P2Ab 32} if s'=p-—3), t=p2+(s'+1)p+s'—1. Hence we obtain the rela-
tions (b-4), (b-8) and (b-9) by replacing bl .y by by +xA4l, +yPPbE),
for some x, yeZ, For s'=p—2, A*bY,_, has the relations 2'b3, ,=0,
W,_,b9,-,=0if z=0and 2!53,_,=0, AW,_,b3,_,=0if z#0, by (b-4), (b-9),
and (d-2). So we obtain the new generators c3,_,, b%,_, (if z=0), b’ (if z#0)
and the new relations 27~ 1c9,_,=0, 2183, , —W,_,c%,_,=i*w,(*), W,_b3,_,
—A,_ 8, s =i*wy(x), APPTIAPIAbY, =i*w;y(x), Ab =i*w,e A*¥{b)7!,
a,,:-3}, and some relations of higher degree involving b'.

CAasE (viii). The discussions are divided into three parts: (r,s)el,, r
<p-—1;(r,s)el,, r=p—1;(r,s)el,. For the first part (r,s)el,,r<p-—1,
A*c? has the relation 2P~ '¢;=0 and we obtain easily the new generator bj*!
and the new relation 21p7+1=0.

Next, consider the second part (p—1,s)el,. Let s<p. If y,_,#0 in
(I-3), then aW,l,_,=0 in K, if and only if a € A*{2!, W, }(+ A*APP 1 AP 1A
for s=p—2, +A*¥*A2'4 for s=p—1), by (I-2): #!'l,_,=0 and Lemma 20.4.
So A*l,_, has the relations 2!, ,=0, WJl,_,=0, and in addition
APPHIAPI APP I, =0 for s=p—2 if y, 4#0, p27, AP 'APP*1]_,=0
for s=p—1 if y,_3#0, by the congruence W,,,2P*!=2?*1W, mod A*2!.
The only relation involving c¢f~1! is PP~ 1cf~1=[_,, and hence A*cE~! has
the relations W, 27~ 1cf~1=0, and in addition 423 AP 'Ach=}=0 if y,_,#0
(p27), 422242 521 =0(x) if y,_;#0. So the new generators are I;_,
(and d, for s=p—2). From Lemma 20.6 and the same discussion on the rela-
tions of d, for p=5 [8-II; p. 145], the new relations are 2/;_;=i*w;, W, l;_;
=i*wy, APPYYAPY AL, 5 = i*wy(x), AP AL, , = i*wy(x), dd;=i*ws, P'd,
=i*wg and Prd;— AP PH2Al,_3=i*w,(x), w,e H¥K,). These imply (I-1)
and (d-2) by easy calculations. For s=p, A*c5~! has the relation 27~ !cf~1=0
if y=0in (c-4), and no relations in our degree if y#0. So, if y=0, the new
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generator is bj and the new relation is 2!b)=i*w(x).

Finally, consider the third part (r,s)=(0,p+s)el,. A*cd., has the
relation 277 'cQ, =0, which gives the new generator bl,,,. The new relation
is 21}, =i*w by Lemma 20.2, and we can put 2'b}, . =xl, from the results
on H¥K,). Now, ¢(a;8,+s)=cPs by Lemma 19.2 (iv). (Notice that this
equality is proved only using the results for H*(K)), [<k). So, it follows from
Theorem 3.3 that #'b},,, =0 implies «;f,f,.,#0. But we have o,;8,8,.
=0 [10; Cor. 1] and so x#0 for s'<p—2. Replacing I, by (1/x)l,, we obtain
(b-5) and (b-6) as desired.

CASEs (v) AND (vii). By (c-1), A*c}** has the relation L£P~2c8+r=0,
which gives the new generator b7 +! of H¥(K,,,). The new relation is 22p5*r+1
=0 for r<p-—2, =xds for r=p—2, by Lemma 20.2 and the results on H*(K}).
By Lemma 19.3 (ii) ¢(Bi~'e')=c3?~2, and we have fB4¢ =0, which implies
P2b3r-2#£0 by Theorem 3.3. Hence we obtain the new relations (b-1) and
(b-2).

Next, A*¥b5+" has the relation £22b5*r=0 for r<p—1, #3b37~1=0 and
P34b3P~1=0 for r=p—1, and no relations in our degree for r=p. These
relations give ¢i*" for r<p-—1, and €(2) and e,(2) for r=p—1, whose relations
are given by (c-1), (e-1), (e-2) and (e-4), by using Lemmas 20.2-20.3.

CasEes (ix) AND (x). A4¥e[(2) has relation £?3¢,(2)=0 for i=1, and
no relations for i>1. So the new generator is b??, whose relation is 2?P~3H%r
=i*w(x). A*e(2) has the relations 21e(2)=0 and £!4e(2)=0, which give
the new generators e;,,(2) and e;,,(2). The new relations are 27 le;, (2)
=i*w(x), 2'e; 1 (2)—Rye; (D)= i*w, and P'de;, (2)—A42'4e;;(2)= i*w;,
by Lemma 20.3. The elements i*w, and i*w; belong to i*H**24t1(K,) and
i*H**2a+2(K), any elements of which are written as the right sides of the equalities
in (e-2), (e-3), (e—4) and (e-5).

CasE (xii). The proof of this case is easy. The new generator and relation
of H*(K, ) are b2 and (b-7), respectively.

Casks (i)-(iv). For the case (i), the proof is easy but tedious, by using
Lemma 20.1 and by straightforward calculations, and we omit the details. For
the cases (ii)—(iv), the theorem for k+1 is proved by combining the discussions
in the cases (i), (vii), (viii) and (xii).

CasE (xiii). This case is clear, since i*: H*(K,)—»H*(K,, ) is isomorphic
by (1.5).
From the above discussions, the proof is complete, g.e.d,
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§21. Adams spectral sequence

In his thesis [4], J. P. May calculated extensively the cohomology H* *(A4*)
=Ext}(Z,, Z,) of A*. Recently, O. Nakamura [5] has extended (and cor-
rected) May’s calculations and determined HS(A4*) for t—s<(3p%?+3p+4)q—2.

From now on, we shall use Nakamura’s notations [5] for the elements in
E°H***(A*), the associated graded algebra of H*’*(A*), but for the simplicity we
shall denote the elements by, (=b9 in May’s notation [4]), b,; (=b} in [4]),
bo (=b in [4]), g1, (=g4 in [4], g1,0=ho), ki, (=K in [4]) and a, of Naka-
mura [5;Th.4.4] by b, by, by, g, (go=ho), k; and a, respectively. Also, any
element in H*'*(A4*) will be denoted by the same symbol for the element in
EO9H**(A*) corresponding to it.

Since the Adams spectral sequence (converging to ,m.(S)) has H*'*(4%*)
as its E, term, we can obtain the differentials of the Adams spectral sequence
{E*} in the range t—s=<(2p*+p—2)g—5 from our results on ,m.(S) ([8-II;
Th. A] and Theorem 19.9).

THEOREM 21.1. All non-trivial differentials of the modp, p=5, Adams
spectral sequence, in the range t—s=<(2p*+p—2)q—>5, are exhausted by the
following equalities up to non-zero coefficients (i, j, k=0 and s=0,1):

1. (i) dy(abhb*) = alrib**rl, dy(abh,b*b5) = akt1b*bst!.
(ii) dy(g2,b*b%) = gus (D*¥ 105, da(g3ib*) = g2,41b%b,.
(iii) dy(g,b*a‘u) = g,b**t1ait!,

d,(abbkaiu) = alb*+1gi*1 (J# —2modpifk=0).
(iv) d,(abb¥c) = ab*1bkhb,.
(v) dy(g,,b*a,) = bke,,,, d,(gb*alua,) = bkait'e, .
(vi) dy(ahb**thia,) = ab*1b*f, d,(ahb**'ajua,) = alb*kalt'f.
(vii) d,(abb*a‘w) = aib*alub, (j# —3modpifk=0),
d,(g,b*a’w) = g,b*a’ub,.
(viii) d,(b*h;g3,0) = b*hok by, d,(b*j)) = b*hok,, b, .
(ix) d,(ahar~3a,u) = ajl.

I (i) dsy(ah’~1=r*ih,) = abar~'b, d,(a%y~'*iaP~3a,u) = aba?r~1b.
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ML (i) d,, (b*koby) = b¥*le,, d,(b*kib,) = b¥*1hok,_ja, (121).
(i) dy,y(B*b,) = hobP**, dy,_,(b*b3) = hob?*¥b,,
dyp1(B*k;by) = hobP*rk,.
(i) dy,_ (B*h;by) = bP ko, dy(btky ) = bP*hk,, ;.

ReEMARK. Since the spectral sequence is multiplicative, I. (i) is essentially
dy(h))=ayb and d,(h,)=aeb,. The first is the main result of [14-I1]. In
general, dy(h)=aybi"1, i=1, hold. This is equivalent to the triviality of the
mod p Hopf invariant (A. Liulevicius [3], N. Shimada and T. Yamanoshita
[11], cf. H. H. Gershenson [2; Appendix]). J.P. May [4; Th.II. 7.5.] proved
the first of I. (ii), I. (iii) and the first of II. (i). Also, he pointed out the pos-
sibility of the second of 1. (ii) and the first of 1. (vii), and conjectured I. (ix) and
the second of II. (i) [4; p. II-7.6]. III. (ii) is essentially d,,_(b;)=hobP, which
is the main result of H. Toda [16]. The first of III. (iii) is equivalent to the
relation f4f,=0 in ,n,(S), which is proved by H. Toda [17]. Also, the second
of I11. (iii) is equivalent to B5p,,,=0, proved by H. Toda [18]. IIL (i) is equiva-
lent to &, f,B,+s=0 (1=s=<p-3) of [10; Cor. 1].

REMARK. O. Nakamura [6] has determined all differentials in the mod 3
Adams spectral sequence in the range t—s=<104. In particular, the differentials
corresponding to our results [8-II; Th.B] on ;7m.(S) are seen in Theorems
2.1-2.4 of [6].

We also obtain the following list of the elements surviving to E .

THEOREM 21.2. In the mod p Adams spectral sequence, p=5, the elements
surviving to E,, term (and corresponding generators of ,m.(S)) are listed, in
total degree <(2p?+p—2)q—6, by the following:

1, ag, ad,...(0);

glaj(“jp+z+1) for 0=I<p-2,j=20;

ab™2hy, ag t hy(a,);  ablalu, afaiu(a(jez),)  for j# —2modp,j20;
a%’~2hy, af*~hy, af’hy(a)2) ;

af’tr=2ar=3qa,u, af*tP-1ar=3a,u, af**Par3au(uy,:) ;

b (%) for 1=k <=<2p+1; hob*(a;p%) for 1=k<p;
hyb*k(eipsBi+2)  for s=0,1,0=k<p,0=1=<p-3;

ay e(Bpi1); er(iBpir); D (BYT1Bpi1) for 0=k=p-3;
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b*kia,(B5Bp+1+2)  for 0Sk<p, 0<I<p-4 k+I=<p-4;
hokiay(@:1B,+142)  for 015 p—4;

b*g; p-3b1(B5B2B,-1)  Sor 0=k =<p-2;

af=3bhy, af™2bhy(@); af3b*hy (e B4 2PaB,-1)  for 2=k <Sp;
hob*b (%) for 0Zk<p;

gihy(e+1)  for 0=1=p-2; gby(ae) for 1=1=<p-3;
hob*kb,(Bx,,,)  for k=0,0=<1<p—4, k+1<p-3;

hob3(2); gib1ho(Ai4y) for 0 <1< p—4;gbi(ed) for 1<1<p—4.

Since the Adams spectral sequence is multiplicative, there are many dif-

ferentials of higher degree which can be mechanically determined from Theorem
21.2. The following proposition follows from Nakamura’s results [5; Th. 4.4].

PropPosITION 21.3. In the range (2p*+p—2)q—5=t—s=(2p%+p)q—4

except for (s,t—s)=(2p, 2p%>+p—1)q—3), (p, 2p2+p—1)q—2), the following
elements give a Z,-basis for ES;':

hobk,_4a,€(2p+1, N—2q—5), br~'g,, 3b,e(3p—1,N—-2q—4),
k,-3a,€(2p—1,N-2q-2), g,-;a*?e(2p*+p—-2,N—-2q—-1),
hOkp—3b2 E(p+29 N_q_s)’ a%—3bp+lh2 e(3P, N'—q—s)’

br~2fe(3p, N—q—2), g,-,a*’€(2p*+p—1,N—q-1),

where N=(2p? + p)q and o € (a, b) means bidega=(a, a+b).

For the above two exceptions of (s,t—s), E,, term is trivial if d(x)#0,

and is generated by the following elements if d (x)=0:

hok,-3a,€(2p, N—q—3), xe(p, N—q-2).
The element h,b, € (3, N —3) survives to E .
We determine the first unsolved differential d,(x).
PrOPOSITION 21.4. d (x)=hok,_3a, up to a non-zero coefficient.

Proor. Let n=(2p*>+p—2)q—2. The group ,n,(S) is Z, by Proposi-

tion 21.3, and hence it is generated by the element f,,_; of L. Smith [12] and
H. Toda [18]. So, k,_3a, converges to B,,_;.
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Consider the element hobk,_ja,€(2p+2,n+(p+1)g—3). It converges
to the element a,fB,f,,_,, which is zero [10; Cor.1]. So, hobk,_a, is killed
by some ae(s,n+(p+1)qg—2) with s<2p. Hence, « is a linear combination of
the elements bx and g, ,4,b, by [5; Th. 4.4]. Since g,_, and h,b, are per-
manent cycles, d,(g,-2h,b,)=0 for r=2. Thus, we obtain a differential d,(bx)
= hobk,_3a,, which implies the proposition. g.e.d.

COROLLARY 21.5. a,f,,_,=0.

REMARK. The same result as Proposition 21.4 for p=3 is recently proved
by O. Nakamura [6; Prop. 3.1].

From the above discussion, we have known all differentials in the range
t—s=<(2p*+p)g—4. So, the group ,m,_(S) is determined up to extension in
the cited range. Recalling (19.5), we obtain immediately the following

THEOREM 21.6 (p=5). Let N=(2p%+p)q, q=2(p—1). Then the group
T(S), N—2q—5=5k=<N-—4, is given as follows:

MIN-24-58) = Z,, generated by o,f,B,,-5;

pIN-24-4(8) = Z,, generated by Bi7'B,f,-1;

pIN-2q-2(8) = Z,, generated by B,,_,;

in-24-108) = Z,, generated by 03,24, 5

N—g-58) =Z, or Z,®Z, inwhich o,fi"'f,8,-1#0;
Tin—g-3(8) =0, in particular o;B,,_; =0;

yn-g-28) = Z,,  generated by Bi 1B,

Tn-qg-18) = Z,, generated by 3,24, ;

i(8) =0 otherwise for N—2q—5=k < N-4.

REMARK. In the next section, we shall show that the group ,my_,_s(S)
is cyclic.

The first unknown differential after Proposition 21.4 is d,(d), 2<r < p, where
de(2,(2p?+p)q—2), and we obtain the following partial result:

p™(2p* +p)a— 3(8) #0,

since h,b, is a permanent cycle. Also, this group contains the element y, due to
E. Thomas and R. Zahler [13][19]. Concerning [13; Cor. E], it follows from
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our results on ,m,(S) that any (non-zero) element in ,7;,24 ), 3(S) is indecom-
posable. Especially, we have

PrOPOSITION 21.7. The element vy, is indecomposable.

§22. Some relations concerning the elements 1;

We consider the ring &, (M)=2ZX,o, (M) and the homomorphism m,i*:
L (M)— ,m,_(S). Let M,=S"U ,em*!, n=1, and i: S"»>M, and n: M,—»S"*!
be the inclusion and the projection, respectively. Denote the stable track group
Dirlim[M, 4, M,] by &, (M) and the direct sum X/, (M) by o ,(M), which is
an algebra over Z, and has a differential D of degree +1 such that D(&n)=D(E)n
+(—1)4¢9¢¢D(n) and Ker D is a commutative subalgebra, cf. [9;§1]. Also,
the homomorphism =,i*: o (M)-7,_,(S) is defined by the composition:
nyi*(§)=né&i. The image of m,i* is the subgroup m,_,(8)*Z, of ,m_,(S), and
for any e o/ (M) there is ne o/ (M)n KerD such that n.i*¢=mn,i*n [9;§3].

In [9], we determined the algebra o/ .(M), in degree <(p?+3p+1)q—6.
There exists the indecomposable element ee ./, ,_ (M), s=p?q, such that

(22.1) ngi*e = ¢, D(e) =0, ee{a, B) 6a(6By)P" '},

where d=ine o/ _ (M) with D(0)=1, a=(m,i*)"'a; € o (M) with D(a)=0 and
By € (myi*) 1B oy, (M) with D(B(;))=0 ([9; Prop. 5.2]). Since ¢ is of odd
degree, we have

(22.2) e2=0
from the commutativity of Ker D. For the element &d¢, we have the following

LEmMMA 22.1. There exists uniquely an element A€ sf g, ,-3(M), s=p3q,
such that ebe= —oal=—Aa, D(A)=0 and A={B), 6a(6P,)P~*, de} (mod zero).
The homomorphism myi*: of 5., 3(M)— Tys1,-4(S) is isomorphic.

Proor. The secondary composition A={f;), 6a(df,)P~!,de} is well
defined by (ii), (v), (ix) of [9;Th.0.1] and (5.8) of [9]. The indeterminacy of
Ais Py M)+ (M)de, b=(2p?—p+1)q—2. Since ,m,.,(S)=Z,, gen-
erated by 03,2 p41, ,7(S)=0 and ,m,_;(S)=0 by Theorem 19.9, it follows
from the discussions in [9; §4] that o/, (M)=Z,, generated by a??*~Pdud. Also
we have o7, (M)=Z,{aP*5, 0>~ 10, (0B 1))P~20P2)0} by [9;Th.0.1]. By (i)-
(i) of [9;Th.0.1], B, (M)=0, and by (i), (vi) and (ix) of [9;Th.0.1],
o_(M)ed=0. So, the composition A consists of a single element, and we denote
it by the same symbol 4. Then, the relation ede= —al follows from (22.1) and
the formula [14-1V;(4.4) )] (cf. [9; p. 645]). Since ,my.s,-3(S)= M54 4-2(S)
=0, the last assertion follows from [9;Prop.2.3]. The last assertion implies



The Stable Homotopy Groups of Spheres IIT 431

D(2)=0, and hence la=aA. g.e.d.
We can set uniquely the elements 4; of Theorem 19.9 by the following

THEOREM 22.2. The generator A; of ,M(p24jy-4(S) can be chosen such as
Ay =myi*A={e;, B, a,} for j=1 and X;=mn,i*lai~! for j=2. These elements
satisfy Ap—p={Ap_3, pt, 01} =xPp5"1B,B,_1 and A;=0 for jZp—1, where the
coefficient x (¥0 mod p) is the same one as in the relation B¢p=—xo,f,B,-1
in (14.2).

Proor. By (14.2), (7.5) and (6.2), we have
—x, B B2Bp-1 = Blo = 0B
= {8p—2’ Oy, “l}ﬁ,i = —sp-ZBI'

By [9;Prop.5.2], there is an element &€ ./ (,241),-2(M) such that m,i*é=¢'
and D()=0. So, from [9; Cor. 6.6]

eoP~30¢ = e(ésocp‘jé—&sal’"“éa)
= — AP~ 25+ AaP~ 360,
and hence
(*) X0 B AT BaBp—1 = 6,- 28" = Myi*eaP 308 = o myi*AaP™3.

This implies A0 by Theorem 21.6. So we have n,i*A#0 by Lemma 22.1, and
we can take A; =m,i*1, which is equal to m,i*{B), 6a(0f;))?~ !, de} = —{nf ),
i fi1, &4} = —{ay, B, &1} =1{es, B, 2;}. Then, the element 1;=m,i*Aa/"?! sat-
isfies A;={4;_1, pe, a0} for j =2, as defined in (19.3). Since o;4: ,M(2p2+ p-2)-4(S)
= pM(2p24p-1)g-5(8) is monomorphic by Theorem 21.6, (x) implies A,_,=
Tyi*AaP~3 =xp5~18,B,-1. The following result can be proved in a similar man-
ner to [9; §§5-6], from Theorem 21.6:

A 2p24p-2)q-3(M) = Z,{& = {B1)0)*" ' B2)0Bp-1)» OB(2p-1)0} -

Then, AaP~3=x¢ moddf,,-1)0 and so AaP~2=0moddf;,- )00, Aai=0 for
j=2p—1by(5.8) of [9]. Hence ;=0 for j=2p—1. qg.e.d.

We consider the element a;4,_3. This lies in the group ,m;,2+,-2)—5(S)
=Z,, generated by a,5,8,,_,. Hence we have a relation

(22.3) 0dp-3 = ya Bi1Barp-2 for some yeZ,.

We can prove y#0. But the proof needs the results on Ext,«(Z, Z))
higher than Theorems 21.1-21.2.  We notice only the facts 73,24 2,-2)5-6(S)=0
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and Bi7;p24 - 1)4-5(8)#0 which imply y#0, and we omit the details.
The next result determines the group ,m,24,-1)4-5(S). The relation
(22.3) is used in the proof, but the result is independent of the claim y#0.

THEOREM 22.3. Consider the element
HEe {'11;—3 _yﬁlﬁZp—Za Oy, “1} .

Then, p is of order p* and generates the group ,m(zpz4+p-1y4-5(8). There is a
relation

(22.4) pu = —051)-,;—2 = _xalﬁl;_lﬂlﬂp—l .

Proor. By Theorems 21.6 and 22.2, it suffices to show pu=—o;4, 5.
We have

pi={Ap-3—YB1B2p-2, 01, 01} (P2)

= —(Ap-3—YB1B2p-2) {1, 0y, pe}
—(1/2)(Ap-3—=YB1B2p-2)22
—(1)2)0z0, -3 = —(1/2)myi* AP~ 4502

= %1 0p=3 5y —
= —Myi* AP 300 = —ay A, 5,

by [14-1V; Th. 4.14 ii)] and [9; (4.4) (i)]. g.e.d.
THEOREM 22.4. In o (M), the following relations hold:
(i) ZAoP~46a—2AaP~36—06AaP~3 = yadf(1y0P(2p-2)>
(i) 2?3 = x(B(1)0)"~ ' B(2)0B(p-1)>
(ii)) AaP~360d = dAaP~3da,
@iv) AoP~2 =

where the coefficients y in (i) and x in (ii) are the same ones as in (22.3) and
(22.4), respectively.

PrOOF. As is seen in the proof of Theorem 22.2, we can write la?~3=x¢&
+Xx'0B2p-1y0> E=(B(1)0)""*B(2y0Bp—1)» for some x’. From DA=Da=D{=0
and D(6f2p- 1y0) =B(2p-1)0 +6B2p- 1) #0, it follows that x"=0, and (ii) is proved.
Since ¢a=0, (iv) follows from (ii). Put n=AaP~36a. Then, Dn=0 and =yi is
divisible by p by Theorem 22.3. So, 676=0 and nd—dn=D(6n5)=0. Thus
(iii) is proved.
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By (22.3) and Theorem 21.6, we can write
AaP~46a = alaP~36+ bdAaP~3 + yad P 1)0B2p-2) -

Then, —AaP~3=D(AaP~*da)=(b—a)laP~3 and 2AaP~3da=AaP~ 4602 =alaP~3u.
Hence a=2 and b=1, as desired in (i). g.e.d.

ProPOSITION 22.5. The following relations hold:
(22.5) 08y = T Eys—1s Oppbs =0, 7,26, =0 for r=1.
(22.6) Ay = 1A g1, Ophs =0, a4, =0  for r=1.
(22.7) e, = —Ays for r,s=1.
(22.8) g'e, = ay A for s=1, ¢¢ =0.
Here, we interpret ;=0 for s2p, A,_,=xB 57 'B,f,-, and A,=0 for s=p—1.

ReEMARK. Concerning the first of (22.5), we have obtained in §7 the fol-
lowing relations similar to (22.3)-(22.4):

(22.9) alep—Z = 0, alap—l = p(p'

PrROOF OF PROPOSITION 22.5. By (12.5), [9; Cor. 6.6], (22.2) and Lemma
22.1, we have

o0& = Myi*eas 10" = rr i*ea™ s~ 100 = ro,6, . ._

r¢s * * 1% +s—1>

oAy = Tei*Aas™ 100" = rm,i*lor+s~ 10 = rogA o _
r’ts * * 1%r+s—1>

= . i¥eqr—1 -1 — ; +s—1 —
g8, = Myi*ea" 1060~ = —qui*larts™l = — ], .,

g'eg = myi*easT 108 = —myi*edeas™ 200 = Ao, = oy,

where ¢ is the generator of &7, (M) introduced in [9; Prop. 5.2]. By the (graded)
commutativity of ,m.(S), &’¢’=0.

The equalities involving «;, and «;,. are easy consequences of the following
lemma. qg.e.d.

LEMMA 22.6. Let y be an element of ,m(S) of order p. Assume that
there exists & € ), (M) such that n,i*é=y and «*£=0 for some t=1. Then,
a,y=0 for r>t, a,,y=0 for rp>t and a;,2y=0 for rp?>1.

Proor. In the algebra o/ (M), there is a relation aré=((t+1)a""!6—
tar~"1oa)at [9;(4.4)]. Hence, o,y =nardfi=0 by a*é=0.
Next we consider the algebra /(M) studied in [9]. We use the same
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notations i,, 7,, 6,=i,7, and A as in [9;§§3,4,7]. There is an element o
€ o ,(M,:) which defines the elements o,, by the rule «;,=m,a""i,. Then,
there is a relation a'"6,A= —riada?~1 by [9;Prop.4.2 and (C) on p.650].
Hence, o],y=m,0'"6,A¢i=0. The last relation «;,.y=0 follows from a similar
discussion in &7 (M ,3). g.e.d.

§23. The ring structure

It is well known [1] that the elements o,, «;, and «;,2 of (19.5) lie in the
image of the J-homomorphism. By [15-I] «, is constructed on S3, i.e., «, belongs
to the image of S®: n;,,(S3)>m(S), k=dega,. From similar discussions using
the results on the unstable groups ,m,,.4(S%)[15-1] and ,7,2,.6(S7) [15-111],
we see that of, and « ;,. are constructed on S5 and S7 respectively. Then, the
equalities J(&a,=J(la,) for J(&)=a,, of,, ayp2, J(Eas,=J(Eas,) for J(&)=0a;,,
ayp2, and J(&ag,2=J(Cay,2) for J(&)=ay,. hold. Since J is mod p trivial on
even degrees, we obtain
(23.1) oo =0, a0, =0, o0, =0,

oppte, =0, oo =0, o,205:=0 for r,s=1.
PrROPOSITION 23.1. The following relations hold:

(23.2) 4B, =0(r=22), f-1 =0, o,f;=0(rz1),
arp2f=0(r 2 1).

(23.3) ok, =0, oKk =0, ap.k,=0 for r=1.

(23.4) oe =0, a,e =0, a8 =0,
ol =0, a A =0, a;.A'=0 for r=1.

(23.5) o =0, a,0=0, a7,20=0, au=0 for r=1.

ProoF. There exist elements B, €.o/4(M) such that nfi=p; and af,
=0 [18], cf. [9;§5]. Then (23.2) follows from Lemma 22.6 for t=1 and
Corollary 21.5. Let x(, be an element of /(M) such that nxi=x, By
dimensional reason, any x, satisfies adx,=0 and ax =0, which imply (23.3).
By dimensional reason and by easy calculations, «,&'=0 for r=p, a,e’'=0 and
a,A'=0 for r<p. The element £ such that néi=¢' satisfies éa? =0, and we can
take an element e o/ (M) so that nili=1’ and 1e?~1=0. Then, (23.4) fol
lows from Lemma 22.6.

Let =@ Aly el (M) [9;(6.8)]. This element satisfies ap=0 [9;(6.14)].
Hence a,¢= —na'@i=0. By [9;§7], there exists an element ¢’ € (M ) such
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that m,0’i,=¢, a’0,0'=0 and o'@’=0. Then, a’"d,¢0’=0 for any r=1 by [9;
Prop.4.2], and so «,p=ma"0,0'i,=0. Also «;,.¢=0 is proved similarly
to the proof of «;,y=0 in Lemma 22.6. Finally, let f=uA 1, € o/ «(M). Then
O €  (2p24 p)g-5(M)=0, and hence «,u=0. q.e.d.

The following relations are proved by H. Toda [18; (5.7)].
(23.6) BBy = (rs/(r+s—1)B:B,+s-1  for r+s# 1modp,
BeBsp—r+1 = (r(r—=1)[2)B2Bsp- 1 .
By these relations and (19.1), we have immediately
(23.7) B = (rs/(r+s— 1)K, 5-1 for r+s=<p-2.
ProrosiTiON 23.2. The following relations hold:
(23.8) pe =0 for 2<sr=p—-1, Be=0 for 1=<r,s<p-—1.
(23.9) Bip = —xalﬂZBp—l’ ﬂp—lﬁo = ‘3x°‘1ﬂxﬁ2p-z,
=0 for 2=<r<p-2.
Proof. The first of (23.9) is the second of (14.2). For the same x, the
relation @f(;y= —xadf;)0B -1y in (M) holds [9;(6.20)]. Then we have
FBip-1) € PBeiy @ Bo-2} < —{@Bay o Bip-2)
=x{00B2)0B(p- 1) % Bp-2)}
D —xa0B2y0{B(p- 1) % Bp-2)} 2 —XP2y0B2p-3)

and SO 7y i*@P,-1)= — XN4i*%0B2)0B2p-3). Hence B, 0= —xa;B,B,,-3=
—3x181B2p-2-

Since ¢,_, is a non-zero multiple of B,, f,e,_; =0 follows for any r=1 from
[18;Th.5.3]. We can put B, e=x,_,, x;€Z, for 3<s<p—2. Then
0=Pp-18p-1=—X{As— 2. Pt, %p_y s} = —XA,_3 and so x,=0. Hence f,_&,=0.

The other compositions are clearly trivial, since the groups ,m,(S) containing
them are zero. qg.e.d.

By the relations (22.3)-(22.9) and (23.1)~(23.9), we can see that any element
of ,m(8), k<(2p?+p)q—3, is a linear combination of the following monomials:

O Ofpy  Oyp2 for r#0modp,
a‘iﬂ'ié fO?‘ a=0,1,r20,¢ =, ﬂs (S = 2)? ﬁZﬂp—l

exceptfor “lﬂ’i—lﬁzﬁp—l:
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pi&  for rz20,{=¢,x,,

agé for a=0,1,8=¢; 4,68 (= —4)(Sp-9)
except for oy&,_,, 016, and o8&, 4,

O s Bap-1-

These elements form an additive basis for ,m,(S) by Theorems A and C, if we
omit the elements o,f7 (r2p), pie’ (r2p), a§piBs (rzp,s22) and afyp;
(rz1,p+1=5=2p-3), which are zero by the relations ([10], [16], [17], [18]):

(23.10) upi =0, pie=0 Bif;,=0 (s22),
affs =0 (p+1=s=2p-3).
Thus, we have obtained the following

THEOREM 23.3. Within the limits of degree less than (2p*+p)q—3, g
=2(p—1), p=5, the ring ,m.(S) is generated by the following elements (r
satisfies r=1 and r#0 mod p):

o (r=2p2+p—1), o, (r=2p-1), o o,
B.(r=2p-1), ¢, 5(1=isp-1), o,
k,(I1=s=p-3), 4, 4,

and the ring structure is given by the relations (22.3)-(22.9), (23.1)-(23.10).

We can also obtain several null compositions of degree higher than Theorem
23.3.

ProrPosITION 23.4. The following relations hold:

(i) BA,=0 for 1=s=p—-1,0=0,04=0.

(ii) ¢€p=0, ek, =0, ¢u=0, ok, =0, ou=0,
Kk, =0, ru=0.

(iii) &4 =0 if p=z7, 0l =0.

(iv) ¢?*=0, A2=0, u?2=0.

Proor. (i) By (22.7) and (23.8), BA;= —B.€,6-1=0 for i=2. By Theo-
rems 19.9, 21.6 and 22.3, we have {,, ¢, B}, =0, and hence BA;=—{B, &;,
By, fi~1=0. For i22, o= —myi*eai"1¢=0 and o= —m,i*2ai"1p=0 by
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[9; Prop. 6.8].

Since ,my_5(8)=,1y_4(8)=0, N=(2p%+p)g, we have {f,a,,0}=0 and
{e1,8p-2,21}=0. Hence ol;=—¢{f],a;.¢0}=0 and &,0=—{e;,&,-5, a1}
=0.

(ii) Let & and 5 be two of ¢, ¢, k’s and pu. Then, £a, =0 by Proposition
23.1 and {¢, oy, 0} =, m(S)=0, k=degl+2q—1, if {#u. Also, nef{oy, x,n'}
for some n’, and hence &ne + {&, a,, o}y’ =0 if E#p.

(iii) &'A'={e, 0, &}B1 S pM2p243)-6(8)P71=0 (p=7), and also pi'=—1'¢
=—(1/3)e'{B4, 2, ¢} =0.

(iv) This follows immediately from the commutativity of the ring m,(S).

q.e.d.

At the end of this section, we give some relations for p=>5.

PrOPOSITION 23.5. If p=S5, then {),a,a,}=B11 and A'¢=p}° up to
non-zero coefficients, and hence 31 =0.

REMARK. This is a slight improvement of the result f36=0 of H. Toda

[17].

PrOOF OF ProOPOsITION 23.5. Applying Theorem 3.5 for y=21" and using
Lemma 19.6, we have the first relation. Then, A’e’=xB1°, x#£0 modS5, and
p31=0 by pie’'=0. qg.e.d.
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