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1. Introduction

We consider the following nth order functional differential equations with

deviating argument

(1) (r.

+(-ί)ny(g(t))F(ίy(g(t))y,t) = O,

(2) (r._1(0(r1 1-2(0(-(r2(0(r1(0/(0)')'-)')')'

+ (-ί)"+1y(g(t))F(ly(g(t))Y, t) = 0,

(3) (r.-xiiXr.-z^X-iraiOiriiO/iO)')')-')')'

+y(g(t))F(ίy(g(t))y, t) = o.

The conditions we always assume for r j( g, F are as follows:

(a) g{i) is continuous on [τ, oo) and lim g(t) = oo
ί-»OO

(4) (b) each rf(ί) is continuous and positive on [τ, oo), and

(c) F(z, t) is nonnegative on (0, oo) x [τ, oo). yF(y2, t) is continuous on

(—00, oo) x [τ, oo) and is nondecreasing in y for each t^τ.

We restrict our discussion to those solutions y(i) of the above differential

equations which exist on some ray [Ty, oo) and satisfy

sup{ |XOh t o ^ t < 00} >0

for every t0 e [Ty, 00). Such a solution is said to be oscillatory (or to oscillate)

if it has arbitrarily large zeros. Otherwise the solution is said to be nonoscil-

latory.
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The oscillatory behavior of solutions of the above equations and/or related

equations has recently been studied by Kartsatos [1], [2] and by Lovelady [4],

[5]. We mention in particular the work of Lovelady [4] who presents oscilla-

tion criteria for bounded solutions of linear ordinary differential equations of the

forms (1) and (2). Our main concern in this note is to extend Lovelady's results

[4] to the nonlinear functional differential equations with deviating argument

(1) and (2). We are also interested in providing criteria for all solutions of the

equation (3) to be oscillatory. Our results seem to be new even in the case of

ordinary differential equations, that is, in the case when #(0 = t.

2. Main results

We begin by stating the main results of this paper.

THEOREM 1. Assume that

(5) (°/ίn_ MFic2, t)dt = o o for all c> 0,

where /?„—1(0 is defined by

R0(t) = l,Rt(t) = [ Ri~}[s) ds, ι = l , . . . , / i - l .

Then, all bounded solutions 0/(1) are oscillatory.

THEOREM 2. Assume that (5) holds. Then, every bounded solution of

(2) either oscillates or tends to zero monotonically as ί->oo.

THEOREM 3. Assume that

(6) [™F(.c2, t)dt = oo for all c> 0.

Then, for n even, every solution of (3) is oscillatory, while, for n odd, every solu-

tion of (3) either oscillates or tends monotonically to zero as ί->oo.

Each of these theorems follows from an appropriate combination of the

following four lemmas which give information on the behavior of possible non-

oscillatory solutions of the differential equations under consideration.

LEMMA 1. Suppose (5) holds. If there exists a bounded nonoscίllatory

solution o/(l) or (2), then it tends to zero as f-»oo.

LEMMA 2. Suppose (6) holds. If there exists a nonoscillatory solution

of (3), then it tends to zero as ί->oo.
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The above lemmas are virtually particular cases of the theorems obtained

by the present authors in [3]. The verification is left to the reader.

LEMMA 3. Suppose (5) holds. Let y(t) be a bounded nonoscillatory solu-

tion 0/(1) or (2), and define

(7) Yo(t)

(i) If y(t) is a solution of(l), then

( - l ) i + 1 7 0 ( 0 7 j ( 0 tθ eventually, and lim 7,(0 = 0, ί = l , . . . , n - 1 .
ί-+OO

(ii) If y(t) is a solution of (2), then

^ 0 eventually, and lim Y&) = 0, ί = 1,..., n - 1 .

PROOF. It suffices to prove that the statement (i) is true. Let y(t) be a

bounded positive solution of (1). By (4)(a) there exists tt such that y(g(t))>0

for t'^t1. From (1) we have

(-i)»7;_1(0 = -y(g(t))F(ίy(g(tm\ 0 = 0 for ^ tu

so that ( — l) f I7Λ_1(0 decreases to a limit M M _ ! ^ — oo as ί-^oo. Suppose M n _ t

> 0 . Then,

(8) (- l )»7 B - 1 (0 = (- l ) " r l l - 1 (07 ' B - 2 (0 = M I l . 1 for t^tx.

Dividing (8) by rn^1(t) and integrating give

r t ΛV

hi rn_ί(s)

from which, using (4)(b), we obtain

(9)

It is a matter of easy computation to deduce from (9) with the use of (4) (b) that

l i m ( - l ) » 7 B . 3 ( 0 =•-.= l im(-l)»7 o (0 = oo.
t-*oo ί->oo

Consequently, we have l i m ( - l)ny(t) = oo. However, this contradicts the bound-
ί->oo

edness of y(t) if n is even, and contradicts the assumption that y(t) is positive

if n is odd. Suppose next that M n _ 1 < 0 . Then, there are numbers t2^tί and

M'n_ί<0 such that

(10) ( - i ) « i ; _ 1 ( θ = ( - i ) % . 1 ( θ n - 2 ( O ^ M ; _ 1 for t^t2.
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From (10) we obtain

—
Jt2

 rn-\\S)

and letting ί->oo, we see that

l im(-l)-y β . 2 ( ί)= -oo.
ί-+oo

It follows that

l im(-l)«y n _ 3 (0 =..•= l im(-l)»y o (0 = - o o ,
t-*ao ί-»oo

which yields lim(— i)ny(t)= — oo, a contradiction. Therefore, the sole pos-
ί-*oo

sibility is that Mn_ί = 0. We have thus shown that

limyw_ 1(0 = 0 and ( - l ) " ^ . ^ ) ^ 0 for t^tγ.
t-*ao

The last inequality implies that (— ϊ)n~1Yn_2(t) is nonincreasing and tends to a

limit M M _2^ —oo as ί->oo. Exactly as above it can be shown that M n _ 2 = 0.

Hence,

lim Yn-2(t) = 0 and ( - 1 ) " " 1 Yn-2(t) ^ 0 for t ^ tγ,
ί-»oo

Repeating the same argument, we arrive at the desired conclusion in case y{t)

is positive. A parallel argument holds if we assume that y(t) is a bounded negative

solution of (1). This completes the proof.

On the basis of Lemma 2 we can prove in a similar way the following lemma.

LEMMA 4. Suppose (6) holds. Let y(t) be a nonoscillatory solution of

(3) and define the functions Y£t) by (7). Then,

(-ly-ί+iY^ήY^t) ^ 0 eventually and lim y4(ί) = 0, i = 1,..., n - 1 .
r-+oo

PROOF OF THEOREM 1. Suppose to the contrary that there exists a bounded

nonoscillatory solution y(t) of (1). Lemma 3 (i) implies that y(t)y'(t) ^ 0 eventual-

ly, so that y(t) goes monotonically to a nonzero limit as ί->αo. But this is in-

consistent with the conclusion of Lemma 1.

PROOF OF THEOREM 2. Let y(t) be a bounded nonoscillatory solution

of (2). By Lemma 1 y(t) tends to zero as ί->oo. From Lemma 3(ii) it follows

that y(i)y'(t)^O eventually and lim 1 (̂0 = 0, / = ! , . . . , π —1, where the functions
ί-*OO

yf(ί) are defined by (7). Thus, y(t) approaches monotonically to zero as ί-»oo

together with Y^t), i = l , . . . , n - l .
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PROOF OF THEOREM 3. Let n be even. If y(t) is a nonoscillatory solution

of (3), then y(t)yf(t)^O eventually by Lemma 4, so y(t) tends monotonically to

a nonzero limit as ί->oo. This, however, contradicts the conclusion of Lemma 2.

It follows that all solutions of (3) are oscillatory if n is even. Now, let n be odd

and let y(t) be a nonoscillatory solution of (3). According to Lemma 2 y(t)

tends to zero as ί->oo. Since, by Lemma 4, y(t)y'(t)^O for all large t, y(t) is

monotonic. Again by Lemma 4 the functions Yfa), i=l,...,n — l, defined by

(7) also tend monotonically to zero as ί->oo.

Consider the functional differential equations

(11) [K0/"-m )(0] ( wH(-i)»^to(0)F([>(flf(ί))] 2, 0 = o,

(12) [ K 0 / n - w ) ( 0 ] < m ) + ( - ί)n+ιy(g(t))F(ly(g(t))Y, t) = 0,

(13) Lr(t)y^-mKt)l^ + y(g(t))F(ly(g(tm\ t) = 0,

where 0<m<n, g(t) and F{z, t) are as in the equations (1), (2), (3), and r(t) is

a positive continuous function such that

It is easy to see that (11), (12) and (13) are the special cases of (1), (2) and (3),

respectively.

COROLLARY 1. Suppose (5) holds. Then, all bounded solutions of (11)

are oscillatory.

COROLLARY 2. Suppose (5) holds. Then, every bounded solution of (12)

either oscillates or tends monotonically to zero as ί->oo.

COROLLARY 3. Suppose (6) holds. Then, if n is even, every solution of

(13) is oscillatory, and if n is odd, every solution of (13) either oscillates or

tends monotonically to zero as t-+co.

REMARK 1. Of practical importance are the particular cases of the equations

(1), (2), (3) in which yF(y2, t) has the form

yF(y2,t) = p(t)\y\«sgny, α > 0,

where ρ(t) is a positive continuous function on [τ, oo). For these cases the

integral conditions (5) and (6) read

J = oo and ^p(t)dt = oo ,

respectively.
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REMARK 2. Theorems 1 and 2 are extensions of recent results of Lovelady

[4, Theorems 1 and 2] regarding linear ordinary differential equations of the

forms (1) and (2). Since (5) and (6) do not involve the functional argument

g(t), our criteria are applicable not only to equations with a delayed argument

but also to equations with an advanced argument.

REMARK 3. Corollary 3 improves a result of Terry [6, Corollary 2.7]

who examines the particular case of (13) in which n = 2m, r(t) is bounded both

from above and below by positive constants, g(t) is a delayed argument with

bounded delay, and F(z, t) is nondecreasing in z.

REMARK 4. Consider the even order equation (3). According to Theorem

1 all bounded solutions of (3) are oscillatory if the condition (5) is satisfied.

This condition, however, is not sufficient in order that all solutions of (3) be

oscillatory, as the following examples show. Consider the second order equa-

tions

( r Y ( 0 ) ' + 2 r 4 ( j < ί 1 / 3 ) ) 3 = 0 ,

(r2^'(ί))'+2r4(Kί3))1/3 = 0.

All of these equations have y(i) = t as a nonoscillatory solution, though the con-

dition (5) is satisfied. This is why we have demanded a much more stringent

condition (6) for the oscillation of all solutions of (3). It might be a question of

interest to study the gap between (5) and (6) in connection with the nonlinearity

of the equations and the growth of the deviating arguments involved.
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