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1. Introduction and statement of results

Let R" (n=2) be the n-dimensional Euclidean space and its points be denoted

by x, y, etc., or X=(X1, X35..., X)) =(X'; X,), =1, Vas--» Y) =", yu), €tc. For
a positive number « such that o <n, the Riesz potential of order « of a measure u
on R" is defined by

Uk(x) = Slx—yl“'"d#(y)-

If u has a density f (that is, du=fdx, where f is locally integrable), we may write
UJ instead of U%4. The Riesz capacity C,(E) of a Borel set E in R" may be
defined as follows:

C,(E) = sup u(R"),

where the supremum is taken over all positive measures u concentrated on E
such that U%(x)<1 for every xe S, (S,, is the support of u).
Our main theorem is the following:

THEOREM 1. Let o and p be numbers such that «=0 and 1+a<p<n-+a.
Let f be a function which is defined and continuous in the upper half space
Ri={x=(x, x,); x,>0}. Suppose that all partial derivatives of f of first order
exist a.e. on R% and that for any bounded open set Q in R}

)] Ssglgradf(x’, x)|Px¢dx'dx, < 0.

Then lim, o f(x', x,) exists and is finite except for (x', 0) in a Borel set E in R}
={()', 0); y'eR*"'} such that C,_,(E)=0 if p<2 and C,_,_(E)=0 for any
e>0 with p—a—e>0if p>2.

In the case p=2 this theorem was shown by H. Wallin [7]. He also showed
that his result is the best possible as to the size of the exceptional set. We shall
generalize this result in the following theorem:

THEOREM 2. Let o and p be as in Theorem 1. Let E be a set in R} such
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that C,_(E)=0if p22and C,_,, (E)=0 for some e>0 with p—a+e<n if p<2.
Then there exists a function f of class C* in R such that

SS lgrad f(x', x,)|Px2dx'dx, < o0
R}

and lim,_, o f(x’, x,)=0o0 for any (x’, 0) e E.

We see that there is a gap between Theorem 1 and Theorem 2 in the case

p#2.
The author wishes to express his deep gratitude to Professor H. Wallin for

his kind and valuable suggestions.

2. Lemmas
To prove Theorem 1, we prepare several lemmas.

LeEmMA 1. Let B and y be numbers such that
0<y<1 and y<p<n

Let n be a positive number. Then

[ x=ylriylrrdy < My
Ix=yl=n

for some constant M >0 independent of x and 1.

Proor. We may assume that x=(0, x,), x,=0. We shall show that the
integral assumes its maximum when x,=0. We set

E ={y;|lx=y| =n |yl >n},

X
Ez={y;|x—y| SNy, > "},

N

E3={y; [ x=y| S=n,y,< );}

and
E,={y;|x=y|l>n, |yl =n}.

Then we note
{, x=yerty vy < ypriylray.
E1 Ea

and
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[ tx=ypor—prmyinimray < gopor—1x= ) Iy, vdy.
2 3

Hence

{ xeypiay <§ ey ay
[x=yl=n =n

(¥
= Mnf™,
where M=S [x]F="x,|"dx < 0.
Ix|=s1

LEmMMA 2. Let f and y be nhumbers such that
B+y>0 and 0Zy< 1.

Let n be a positive number. Then

S [x=y|="y,|"rdy < Mn=F~Y
|x=ylzn .

for some constant M >0 independent of x and #.
Proor. Again we may assume that x=(0, x,), x, = 0. By change of vari-

ables z=y/n,

T T e W o W EN 2
Ix=ylzn

|x*—z|21

where x*=x/n. We can easily verify that S |x*—z|7F~"|z,|"7dz is
Ix*-z|21

bounded, dividing the domain of integration into three parts, that is, (a) [x* —z|<
%IZI (this implies |x*—z|<|z,|//3), (b) |zI<1, (c) |zI=1, |x*—2|§%IZI-
LeEmMA 3 (cf. [7; Lemma 4]). Let f and y be numbers such that 0<y<1
and y<ﬁ<%2. Then
flx—yio=riz—ypriy, vy < Mpx—zj20-rr

for some constant M independent of x and z.

Proor. Set n=|x—z|/2. Noting that |y—z|=n if |x—y|<#n, we have
L= ylerlz— iy
x=ylzn

swer{  x-sprlyddy.

1x=yl
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Lemma 1 gives
Iy < Mn?b-vn

for some constant M, independent of x and z. Similarly
I, = S Ix—=ylP="|z=ylP="|y,| 77 dy < M n?f~rn.
lz=yl=n

On the other hand we have

I;= [x—ylf=n|z—y|f=|y,|""dy

Slx—ylwr, lz=yl>n,ly—x|<|y—z|

<{ eypemlydy < Moo
|x=y|>n
for some constant M, independent of x and z, because of Lemma 2. Similarly

[x=ylf=r|z—y|f=n|y,| "7 dy

1, = S
lx=yl>n,1z=y|>n, |y—x|Z|y—z]
< Myn2bvm,
Hence we obtain
flx—yipriz—yleriydmrdy = i+ L+ 1+ 1,
< 2My+My)n2b-rm,

From Lemma 3 we derive the following lemma, which will be used to show
Theorem 1 in case p<2.

LeEMMA 4 (cf. [7; Lemma 3]). Let o and p be non-negative numbers such
that

1+a<p =2

Let g be a non-negative function in LP(R"), and set

G, = {xeR"; U{(x) > 4}, A>0.
Then there is a constant M >0 independent of g and A such that

CpulG2) = M2 Ix | rg(xpdx.

Proor. Let p be a positive measure such that S,=G,, S, is compact and
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S|x— P2 mdpu(y) <1 for all xeS,. Then by using Holder’s inequality, we
have for p’=p/(p—1)

urye < [({x=yitgraytauco|”

< {Jatrarpar}” e ere{fix -y -rauco}” ay-

Set f=(p—a)/2+a/2(p—1) and note
1-n=(p—a—n)(1-2/p)+(B—n)-2/p".

By Holder’s inequality and the fact that U5_,<1 on R" (Frostman’s maximum
principle),

Hence
(A u(R)

= {{ra0reay}” " (et {{jx - ypp-rapeol " dy

p'lp
= {{ivd=aorar}” " ({aucodua) =y =riz= yp-riy-o-vay.
By Lemma 3 the integral with respect to y is majorated by
const. |x —z|P~*™n,

Therefore we have

P’
P

G-y < M1y lrgway)” uro),

and hence

p(R") < Ma-vg yal*g(y)rdy

for some constants M’ and M independent of x and A. This leads to the conclu-
sion of the lemma.

To show Theorem 1 in case p>2, we need
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LEMMA 5. Let a and p be non-negative numbers such that
2<p<n+a

Let 0<eg<p—a and R>0. Then there is a constant M >0 with the following
property: if g is a non-negative function in LP(R") whose support is contained
in the closed ball centered at the origin of R* with radius R and if G;, A>0, is
as in Lemma 4, then

Cpra-dG)) S MAP|x, g0

ProoF. Set

‘= n—(p—a—e)
p(n—1)

Then O<t<1. By Holder’s inequality we have for a positive measure p on R”
@ (e

=< {S(x——yll'ru—n)dy(x)} 1/P{Slx_ylp'(l-l)(1—,,)d#(x)} 1/p,’

where 1/p+1/p’=1. Now let u be a positive measure such that S,<=G,, S, is
compact and U},_,_(x)=<1 for every x € S,. Ina way similar to that in the proof
of Lemma 4, we see that

{Au(R")}¥

= {g [V al “g(y)”dy}p'/pg 7l """‘”’{S [x=yl “"du(x)}p'dy-

Iyl=
Noting that pt(1—n)=p—a—e¢—n and p'(1—-t)(1 —n)=(a+¢)/(p—1)—n, we have
by (2)

{Au(R™)}?

p'/p

={{1ra12900rrar}” " fsup yens{ Lx =y 17 raui |

Sdu(x)s [x—y|f=|y,|~2/®~Ddy,
ISR

|y

where B=(a+¢)/(p—1). Denote the last integral with respect to y by I. Obvi-
ously, it assumes its maximum at x=0 (cf. Lemma 1). Then

I< 3 IyIB="1y, ==/~ Ddy < 0.
|y|=R
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Since U4 _,-, is bounded on R", we obtain

WY = M|y lrg(ydy

for a suitable constant M independent of 1 and g, which implies the conclusion
of the lemma.

3. Proof of Theorem 1

Let f be a function as in Theorem 1. Choose a number r such that 1<r
<p/(e+1). Then, by (1) and Holder’s inequality we see that for any bounded
open set Q in Ri,g |grad f|"dx<oo. Hence by [5; Theorem 5.6] there exists
an extension f of f fo R" so that f is locally r-precise in R" and symmetric with
respect to R} (see [5] for the definition of locally r-precise functions). Let us

show that fis locally L? on R". Let I,. be the line through (x’, 0) which is parallel
to the x,-axis. Since f is absolutely continuous along I, for a.e. x’,

R
fx', x,) = —S aayf (x', y)dy,+f(x', R), 0 < x, < R, for a.e. x'.

n

Noting that g |f(x’, R)|Pdx'< oo because f is continuous in R”, we have
Ix"|<R

by (1) and Holder’s inequality that
SS [f(X', x)|Pdx'dx, < oo forany R >0,
|x"|<R, 0<xn<R

which implies that fe L?,.(R"). Hence we may suppose that supp/ is compact.
By [4] we have the following integral representation of f:

=y xi=y; Of
3 jo =Fafizre gy ae,

where g; are constants. Let f; ;, i=1, 2,..., n; j=1, 2,..., be continuous functions
on R" with compact supports and set

St =L

n
gj()’)=§1|ai| ,.VER",j=1,2,---

We can choose the functions f;; so that SI al®g;(y)Pdy <272ps.  We define the
continuous function v; in R,, j=1, 2,..., by

0,(0) = % alHEL £ ()dy.



68 Yoshihiro Mizuta

Set w;={xeR"; U%(x)>2"7}. First we consider the case p<2. From Lemma
4 it follows that C,_(w)=M27Pi, If we set E,=\U%,w;, then we see that
C,-E)—0 as k— oo and that v; is uniformly convergent to v on R"—E,, k=1,
2,..., where v is defined by the right-hand side of (3). In general, denote by E*
the projection of a set E in R” to the hyperplane R%. Setting

we have C,_,(E,)=0, by the fact that the Riesz capacity does not increase with
respect to a transformation which does not increase the distance. Setting E°
={xeR%; f(x)#v(x)}*, we note C,_,(E®)=0. Let E=E,UE°. Then C,_(E)
=0. If (x', 0) ¢ E, then f is equal to v on I, N R% and v is continuous on I,..
Consequently

limxnl Of(x" xn)

exists and is finite for (x’, 0) ¢ E. Thus the case p<2 is proved.

Next we consider the case p>2. In this case we may assume that the sup-
ports of functions g; are all included in a fixed closed ball. Then note that
C,—s—(E)=0 for any &, 0<e¢<p—a, on account of Lemma 5. In the same way
as above we can show Theorem 1 in case p>2. Thus our theorem is proved.

ReEMARK. The above proof shows that Theorem 1 is valid if f is a locally
p-precise function on R% and (1) is satisfied for any bounded open set Q in R%.

4. Proof of Theorem 2

To prove Theorem 2, we need the following lemma.

LEMMA 6. Let g be a non-negative function in L?(R") and set

169 = (b=t =1y, g (1),

where «20 and 1+a<p<n+oa. Then

{{Ixllgradsirax} " < Mgl

for some constant M >0 independent of g, where the derivatives are considered
in the sense of distribution.

Proor. Noting that (1+|y|)!~"|y,|~*/P e LP'(R"), p’=p/(p—1), we have

@) [+ =lyal=rg()dy < oo,
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We set x,(x)=(|x|?2 +&2)(1-®/2 £>0, and define
FAx) = k(o= 1rg()dy.

From (4) we see that F,e C*(R") and

OF, 0 - .
2 () = [ G =yl g )y, =120 .

We set xa*g(x)=grc€(x— »g(y)dy for ¢>0. In the proof of [4; Lemma 3.2],

it is shown that ||D(x*g)l,<M,||g|l, for any i, where D;=0/dx; and M, is a con-
stant independent of g. On the other hand,

(5) I lxn'a/pDiFs(x)—Di(Ke*g)l

= My x— 1= (b Plg0)dy

B AT P o
=Mg| n n ; A Xn n y)dy'dy,
2 [X5=Yaul {Ix'—y |2+(xn_.y”)2}u/2g(y yody'dy

We set

’. — xn_ ’ ’
GO's x 72) = | T, v dy.

Then we note that for some constant M ;>0 (independent of x, and y,)
SG(X’; X Ya)Pdx' S Msgg(y’, ynPdy’

(see [6; Theorem 1, (a) in Chap. III and Theorem 1, (c) in Chap. I]). Hence
by using Minkowski’s inequality ([6; Appendix A.1]), we have

SS{S ! _(}fc:lllyi'il)ml G(x'; Xy, yn)dy,,}pdx’dx,,

< Msg\gl1—(|xn|/ly,.l)“"’l{gg(y:, y”)pdy'}”pdyn

|xn_yn|

14
dx,.

Applying Appendix A.3 in [6] with K(x,, y)=I1—=(x,l/ly.)*?|/|X,— yul, we see
that the above integral is not greater than M;A%lg|5, where AK=SDo K, y,)

|¥al~1/Pdy,<oco. This shows that (5) belongs to LP(R") and its LP norm is not
greater than M,||gll,, My=M,M3'/?Ay. Hence for M=M,+M,

” Ixn|a/pDiFa" P
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(6) = || 1%al*"DyF, — Di(x.x9) | ,+ | Dik x| »
< Migll,.

Let r be any number such that 1 <r<p/(a-+1) and let ¢ € CR(R"). Then by (6)
and Hoélder’s inequality we see that {¢D,F,; ¢>0} is bounded in L"(R*). We
shall show that D;fe L},.(R") (in the sense of distribution). For any ¢ and
¥ € C3(R™) we have

<oDif, w> = <Dif, oy > = - | D LpWIX)dx.

Since F,(x) increases to f(x) as ¢ | O for any x € R* and fe L},.(R"), the right-hand
side is equal to —lim, 1(,SFe(x)D,-((plﬁ)(x)a’x=limS “,S(p(x)D,- [ (x)dx. From
the boundedness of {@D,F,; e>0} in L"(R") we see that there is a constant A4
such that |<@D,f, y>|<A|Y|,, where 1/r+1/r'=1. It follows that ¢D;fe
Lr(R"), and hence D;f is a function (as distribution). Let {¢;} be a sequence in
C¥(R™) such that ¢;(x)=0 for any x € R" and ¢(x) increases to |x,|*/? as j— 0.
Then as seen in the above,

<oDf, w> = lim (o LODF L)

holds for any yy € C§(R"). The absolute value of the right-hand side is not greater
than

. 1/p
timsup { {ix,1DFIrax} I, < Mlgl ¥l

where p'=p/(p—1). Hence |¢;D;f|,=Ml|gl, Since ¢;|D;f| increases to
|x,1*/?|D,f] as j— o0, we have by Lebesgue’s monotone convergence theorem

Fxa*®Difll, = Mligl,,  i=12,..,n,

which imply the required inequality for f.

We shall introduce the capacity C, , (0<f<n, 1<p<o0), which is a special
case of the capacity Cy,,;, studied by N. G. Meyers [3], and which is defined as
follows:

Cp(E) =inf| f|7, Ec<=R",

where the infimum is taken over all non-negative functions f in LP(R") such that
Uf(x)=1 for all xe E.

Theorem 2 is a consequence of the following theorem in view of a result of
B. Fuglede [1; Theorem A] (see also [2]).

THEOREM 2'. Let o and p be as in Theorem 1. Let E be a set in R} such
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that Cy_,, (E)=0. Then there exists a function f as in Theorem 2.

Proor. By our assumption that C,_,,, (E)=0, we can construct a non-
negative function g in LP(R") such that Uj_, (x)=oo for all xe E. We set

f(x)=S|x——y| 1=nly |7*/Pg(y)dy. Then Lemma 6 implies that\|x,|*|grad f|Pdx < co.

Noting that |x—y|=|y,| for all ye R* and all xe R¥, we have f(x)=o0 for all
xeE. We consider a mollified function as given by M. Ohtsuka [5]. He has
shown that there exists a function fe C®(R%) having the following properties
([5; Lemma 2.10]):

i) 0<fB<, ii) [grad fl<1/2, iii) 2f(x)<x,,

iv) w(x)Z2w(y) for any pair (x, y) such that xe R% and |x—y|<p(x),
where w(x)=x?%, x € R%.
Choosing a non-negative function y in CF(R") such that y(x)=0 if |x|>1 and
Slﬂ(x)dx:l, we define the mollified function F of f as follows:

F(x) = 5f(x+ﬁ(x)y>x//(y)dy, xeR.

Then FeC®(R%) and S x%|grad FlPdx<oo ([5; Theorem 4.4]). Since f is
R%

lower semi-continuous, f(x)—o as x—(x’, 0)e E. Hence we easily see that
lim, , o F(x’, x,)=o0 for (x’, 0)e E. Thus F is the required function.

Added in proof. After submitting this paper for publication, 1 found
that A.A. Bagarshakyan (Sibirsk. Mat. Z. 15 (1974), 1011-1020) had obtained

a result similar to our Theorem 1, in which he characterizes the exceptional set
for u in Theorem 1 by using a capacity different from the Riesz capacity.
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