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1. Introduction

This paper is a sequel to our earlier paper [1] and presents a semigroup treat-

ment of the Cauchy problem (hereafter called (CP)) for the Hamilton-Jacobi

equation

(DE) ut +f(ux) = 0, xeR", t > 0.

Here u(x, t) is a real-valued function, /: Rn-*Rι, ut = duldt, and ux denotes the

gradient (du/dxί,...9 duldxn) in the space variables x.

Multi-dimensional equations of Hamilton-Jacobi type have been treated by

several authors in several ways (for instance, see A. Douglis [8, p. 203 and Bib-

liography]). Speaking of (CP), global generalized solutions with uniformly

Lipschitz continuous initial data have been obtained when /: Rn-^R1 is strictly

convex. Uniqueness theorems have been given by A. Douglis [7] and S. N.

Kruzkov [10]. Nevertheless, it seems worthwhile to add a new method for treat-

ing (CP), to which this paper is devoted. Besides, from the viewpoint of semi-

group theory, the Hamilton-Jacobi equation (DE) provides an example of non-

linear semigroups in nonreflexive Banach spaces that are not diίferentiable.

In the present paper we shall, as before [1], choose L°°(Rn) as the Banach

space that may be associated with (CP), and construct a semigroup of contractions

on the subspace of L 0 0 ^") consisting of all bounded and uniformly continuous

functions on Rn. As we shall see, the semigroup approach enables us to treat

(CP) under the assumption that/: Rn-*R1 is merely convex and of class C 2 (Note

that we do not assume the strict convexity of/). Moreover, as an intermediate

step in the development, the existence and uniqueness of certain bounded (possibly

generalized) solutions will be established for the equation

(1) u+f(ux) = h(x\ xeR",

for given h.

We start, in Section 2, with a definition of the operator A: v-*f(υx) in L°°(Rn)

that may be associated with (CP). Section 3 concerns the existence and unique-

ness of certain bounded generalized solutions of (1). Here the solutions are
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obtained as limits of bounded solutions of the regularized elliptic equations

(2) u +f(ux) - εΔu = h(x), xeRn

9

as ε 10. Various results concerning (2) are obtained as needed. Section 4 is

devoted to the construction of a semigroup of contractions generated by A through

the generation theorem of M. G. Crandall and T. M. Liggett [5] and to the study

of its properties relating to (CP).

2. Definition of the operator A: v-^f(vx)

Throughout the present paper we shall work in the Banach space L^iR")

of all real-valued, bounded and measurable functions v on the real n-dimensional

Euclidean space Rn with norm

Halloo = essential sup{ |φc)|; xeR"}.

W™(R") denotes the subspace of L°°(RM) consisting of all measurable func-

tions whose distribution derivatives of order at most k lie in L°°(i^n). Thus, in

particular, W°?(Rn) is the subspace of all bounded and uniformly Lipschitz con-

tinuous functions on Rn. For v e Wf (Rn) we set

Halloo = ( Σ Wdv/dxtWiy/*.

We shall assume that the function / : Rn^Rι appearing in (DE) is convex.

(Note that a finite convex function on R" is necessarily continuous.) Correspond-

ing to this assumption, we need a subclass of W^(Rn):

E(Rn) denotes the subset of L°°(Rn) consisting of all bounded and uniformly

Lipschitz continuous functions v on Rn such that v satisfies the following semi-

concavity condition:

(SC) v(x + y) + v(x-y)-2υ(x) < k\y\2, x,yeRn,

for some constant k > 0.

A function v: Rn-+R1 that satisfies the semiconcavity condition (SC) is called

a semiconcave function, and we let \υ\E denote the infimum of such constants k.

Our first task is to define an operator Ao associated with (CP) in L°°(Rn).

DEFINITION 2.1. Let f: Rn-^R1 be convex. Ao is the operator in L^iR")

defined by: veD(A0), w = Aov if

(i) veE(Rn), we W°?(Rn), and w=f(υx), that is, the equality w(x)=f(vx(x))

holds at almost all points of Rn, and

(ii) there is a positive number λ0 depending upon v for which v + λowe
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E(Rn).

The next lemma will clarify our definition of the operator Ao.

LEMMA 2.1. Let feC2 and let Ao be given by Definition 2.1. If ve

W%(Rn), then veD(A0) and Aov=f(vx).

PROOF. Let/e C 2 . If υ e W^(Rn), then both v and w=f(vx) lie in W%(Rn).

It is easily shown that every function in W™(Rn) is semiconcave, and that a linear

combination of semiconcave functions with positive coefficients again is semi-

concave. Hence, by definition, υ e D(A0) and Aoυ=f(υx), which proves the lemma.

We are now in a position to define an operator A in LGO(Rn) that may be

multi-valued for general convex /.

DEFINITION 2.2. A is the closure of Ao, i.e., veD(A) and weAv if there is

a sequence {vm}aD(A0) such that vm->v, Aoυ
m-*w in Lco(Rn).

3. The equation u +f(ux) = h

Our object in this section is to establish the existence and uniqueness of cer-

tain bounded generalized solutions of the equation

(3.1) ii+/(«,) = Λ(x), xeR",

where h is a given function, under the assumption that/: Rn->R1 is convex. For

the sake of simplicity the normalization

(3.2) /(0) = 0

will be assumed throughout this section, for this can always be achieved by

introducing the new unknown w = u+/(0).

DEFINITION 3.1. Let f: Rn-+R1 be convex and let Ao be given by Defini-

tion 2.1. Let heW?(Rn). Then a function ueE(Rn) is called a bounded

generalized solution of (3A) provided ueD(A0) and u + Aou = h.

Our results concerning equation (3.1) are stated in the following three theo-

rems.

THEOREM 3.1 (Existence). Let f: Rn-^R1 be convex, and the normalization

(3.2) be assumed. Then we have R(I + A0)zDE(Rn), i.e., for each heE(Rn) there

is a bounded generalized solution u o/(3.1) such that

(3.3) ||«|L < PIL, ||«,|L < H^IL,

and, for the semiconcavity constant of u,
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(3.4) \u\E < \h\E.

THEOREM 3.2 (Uniqueness). Let f: Rn->R1 be convex and of class C2.

Then there exists at most one bounded generalized solution of(3Λ).

THEOREM 3.3. Under the assumptions of Theorem 3.2, let u,veD(A0)

satisfy the equations

(3.5) u-\-λAou = h, v + λAov = g9

respectively, where λ is an arbitrary number such that O<A<1. If both u+Aou

and v + Aov lie in E(Rn), then:

(i) Hϋ-i L^llft-fllL.

(ii) If g > /?, then v > u.

First we shall take up the problem of uniqueness of bounded generalized

solutions. The following proof has been given in our recent paper [2].

PROOF OF THEOREM 3.2. To prove the theorem by contradiction let u

and v be two bounded generalized solutions of (3.1). For u and v9 let U denote a

common absolute bound in Rn, let P be a common Lipschitz constant, and let k

be a common semiconcavity constant. We set

ι;\p\<P}

and

K2 = sup{±JPίPi(p);\p\<P}.

Since

u+f(ux) = Λ(x), ι>+/O>χ) = fr(X)>

a. e. in # w , the difference w = u — v satisfies the equation

a. e. in Rn, where

G = Gι(u, v) = \ fPi(vx + 9(ux — vx))d9, i = 1,..., n.

If we set W= wq, where q is an even integer, we have
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(3.6) ^

a.e. in Rn.

By convolving u and υ with mollifying kernels, we can find two approximating

sequences {um} and {vm} of C 2 functions, each having the same absolute bound

U, Lipschitz constant P and semiconcavity constant k as u and v, such that the se-

quences {u%} and {v™} converge a. e. in R" to ux and vx respectively. If we set

Gf = Gfum

9 vm\ i = l , . . . , n ,

then equation (3.6) can be written as

(3.7) qW+ Σ (GfW)Xi = Σ (GT-GdWxt+W± (Gψ)xι.
i = l i=ί i = 1

Let r be an arbitrary positive number, and we integrate the both sides of

(3.7) over the ball |x| < r. We thus get

(3.8) q[ Wdx + [ WΣ Gψcos(n9Xi)dS
)\x\<r J\x\ = r i=ί

Σ (G?-Gi)WXidx+\ W± (GT)Xidx,
\£r i=l J\x\£r i=l

where n is the outer normal to the sphere S: \x\ = r and dS is the surface element.

On the other hand, we have

and

since

Σ G"lcos(n, xt)dS > -KS WdS
\x\=r i = l J\x\ = r

W±(G7)Xidx<kK2[ Wdx,
r i=l J\x\^r

Σ (GT)Xi

where (•• )=(v% + θ(u™—v%)). (Note that, by virtue of the convexity of/and the

semiconcavity condition (SC),

. tfZxjfpvJt-) = tr[(Af-fc/)FJ+ fc(i/„,(•••)
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<fcΣ/P l P (( ),
i=ί

M and F denoting the matrices (u^iXj) and (/P i P/ )) respectively.)

Substituting these inequalities into (3.8), we get

q[ Wdx-Kλ[ WdS
J\x\£r J\x\=r

Σ(GT- Gt) Wx dx + kK2 { Wax
| < r i = l ' )\x\<r

and, hence, by letting m tend to infinity and using the bounded convergence

theorem

(3.9) q[ Wdx-κS WdS < kK2[ Wax.
J\x\iLr J\x\=r J \x\£r

If we set

/(r) = [ Wdx for r > 0
J\x\<r

and choose an even integer q so large that q>kK2, then inequality (3.9) can be

written as a differential inequality for /(r)

(3.10) al(r) - dl(r)/dr < 0, r > 0,

where a = (q — kK2)IK1 is a positive constant.

Now suppose that there is a positive number r 0 for which /(r o )>0. Then

the differential inequality (3.10) gives a lower bound I(r0) exp (a(r — r0)) for the

growth order of I(r) as r tends to infinity. But this is a contradiction, since the

integral I(r) increases at most polynomially with r because of the boundedness of

W=wq. Therefore, J(r) = 0 for r > 0 and, hence, the difference w = u — v must

vanish identically on Rn. This completes the proof.

Next we shall proceed to the problem of existence of bounded generalized

solutions and their properties. As was stated in the introduction, the bounded

generalized solution of (3.1) will be obtained as a limit of bounded solutions of

the regularized elliptic equations

(3.11) u+f(ux)-εAu = h(x), xeRn,

as εjO. Consequently, in order to prove Theorems 3.1 and 3.3, it will suffice

to prove the corresponding results-for bounded solutions of (3.11). To this end,

we shall use a result of T. Kusano [11, Th. 1, p. 2] that is a variant of the maxi-

mum principle. We shall state it in a form suitable for our later use and give
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a proof for the sake of completeness.

LEMMA 3.1. Let a{\ Rn-+Rι, i = l,..., n, be bounded. If veC2(Rn) is

bounded from above and satisfies the inequality

Lv = v+Σ ai{x)vx.-εΔv < 0, xeRn,

where ε is an arbitrary positive number, then,v<0 on Rn.

PROOF. TO prove the lemma by contradiction, suppose there is a point

x° such that φc°)>0. Set

vv = (v(x°)-η) ΠcoshCfeίx, - x ? ) ] ,
i= 1

where η(0<η<v(x0)) and k are positive constants. A simple calculation shows

that we can choose a sufficiently small k in such a way that Lw > 0 on Rn. Then

we have L(v — w) < 0 and, hence, v — w can not have a positive maximum at finite

points of R". But this contradicts the fact that υ — w>0 at x° and v — w-> — oo

as |x|-»oo.

PROPOSITION 3.1. Let f:Rn^Rι be continuous and let u9veC2(Rn)

Π W™(Rn) satisfy the equations

(3.12) u+f(ux)-εΔu = ft,

respectively, where ε is an arbitrary positive number. If h, geLco(Rn), then:

( i ) l l "-»l loo< IIΛ-fllloo.

(ii) If g > h, then v > u.

PROOF. We shall only give a proof of the first part (i), since the second part

(ii) can be proved quite similarly.

First Step. L e t / e C 1 . Then the difference w = w — v satisfies the equation

Lw = w+f(ux)-f(vx)-εΔw

= w+ Σ fPi(vx + Θ(ux-vx))wXi-εΔw
i= 1

= w+ Σ ai(x)wx.-εΔw = h-g,
i= 1

where 0<Θ = Θ(x)<l and the α f : R
n^R1 are bounded. Hence an application of

Lemma 3.1 yields
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since

L(±w-\\h-g\\OD) = ± ( Λ - 0 ) - | | Λ - 0 | L : £ θ .

Second Step. Let fe C and let P be a common Lipschitz constant for u

and y. Convolving / with mollifying kernels, we can find a sequence {/m} of C1

functions satisfying

\fm(p)-f(p)\ < 1/m, m = l,2,...

for every p such that |p| <P. Then, since

" + / > * ) - ε ^ u = h+fjux)-f(μj9

v +fm(υj -εAv = g +fm(vx) -f(vx),

and

we have by the result of the first step

and, hence, by letting m tend to infinity, we obtain (i). Thus the proof is com-

plete.

Immediate consequences of Proposition 3.1 are:

COROLLARY 3.1. Let f: Rn-^R1 be continuous. Then for each heL™(Rn)

there exists at most one bounded solution u e C2(Rn) Π W™(Rn) o/(3.11).

COROLLARY 3.2. Under the assumption of Corollary 3.1, let ueC2(Rn)

Π Wf(Rn) satisfy (3.11). If he W^(Rn), then \\ux\\w< ||/y|oo Moreover, if the

normalization (3.2) is assumed, then ||M||OO< ||A||oo

PROPOSITION 3.2. Letf:Rn-^Ri be convex and let ueC2(Rn)Γ\ Wf(Rn)

satisfy (3.11). IfheE(R»)9 then \u\E<\h\E.

PROOF. The convexity of/implies that to each point p° in Rn there cor-

responds a real vector (α l s . . . , an) such that the inequality

(3.13) f(p)~f(p°)> Σafa-p?)

holds for all points p of Rn. We note that when p varies on a bounded subset

of Rn the set of corresponding vectors (α ί9...9 an) forms a bounded set in Rn.

Let y be a fixed vector, and we set
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v(x) = u(x + y) + u(x — y) — 2u(x).

Then, since we have

f(ux(x + y))-f(ux(x))>± ai(x)(uXi(x + y)-uXt(x))

and

f(ux(x-y))-f(ux(x))>± cn(x)(uXi(x-y)-uXi(x)),
i=ί

where the at(x) form a vector corresponding to the point p° = ux(x) for which (3.13)

holds, the function v satisfies the differential inequality

n

Lv = v+Σ a^Vx. — εΔv

< h(x + y) + h(x-y)-2h(x) < \h\E\y\2

on the whole of Rn. Here the at: Rn-^R1 are bounded, since p° = ux(x) varies

on a subset of the ball \p°\< \\hx\\^ in view of Corollary 3.2. Hence an applica-

tion of Lemma 3.1 again yields

v(x) = u(x + y) + u(x-y)-2u(x) < \h\E\y\2

for each fixed y. But this implies that ueE(Rn) and | M | £ < | / I | £ . The proof is

complete.

Existence theorems for bounded solutions on the whole space Rn of second

order elliptic equations have been given by K. Akό and T. Kusano [3] under

the assumption that there exist a bounded superfunction and a bounded sub-

function. Using their result, we can prove the

PROPOSITION 3.3. Let f:Rn-±Rι be locally Holder continuous and the

normalization (3.2) be assumed. Then for each h e W™(Rn) there is a bounded

solution ueC2(Rn)f\W^(Rn) of (3.11) such that HulL^HfclL and | | M J L <

PROOF. Let F: Rn-^Rί be a bounded and locally Holder continuous func-

tion such that F(p)=f(p) when | p | < Halloo, and consider the equation

(3.14) u+F(ux)-εΔu = h(x), xeRn.

Then the constant functions HftĤ  and — \\h\\n are respectively a bounded super-

function and a bounded subfunction of this equation. By a result of [3, Th. 1,

p. 30], there is a bounded solution u e C2(Rn) of the equation (3.14). For this
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solution u we have

| |u|L£||fc|L and \\ux\\^ < HhJL

by virtue of Corollary 3.2. Thus, in particular, u is also a bounded solution in

C2(Rn)f) Wf(Rn) of the original equation (3.11). Thus the proof is complete.

PROPOSITION 3.4. Let f: Rn-^Rί be convex and the normalization (3.2)

be assumed. Then for each heE(Rn) there is a bounded solution ueC2(Rn)

Π E(Rn) such that

(3.15) | | i i | | ^ ^ IIΛIL, K I L < HMoo,

and, for the semiconcavity constant of u,

(3.16) . \u\E<\h\E.

PROOF. This follows immediately from Propositions 3.2 and 3.3, since

every convex function / : Rn-^R1 is locally Lipschitz continuous.

To prove the existence theorem for bounded generalized solutions of (3.1),

we need a lemma concerning the convergence of a sequence of semiconcave

functions. The following result has been observed by A. Doughs (cf. [7], [8]).

LEMMA 3.2. Let um, m = l, 2,..., be a sequence of functions in E(Rn) such

that

(3.Π) llM-lloo < U, llitfL < P, |u«|£ < K,

m = 1, 2,...

where U, P, and K are uniform positive constants. If the sequence {um} con-

verges to a limit u uniformly on compact sets, then the limit u satisfies the three

inequalities (3.17) with um replaced by u. Moreover, the sequence {u%} converges

to ux at almost all points of Rn.

PROOF. This lemma is a version of a result stated in the work of A. Douglis

(for instance, see [7, Th. 2.3, p. 11]).

PROOF OF THEOREM 3.1. Given heE(Rn), let umeC2(Rn) n E(Rn) be the

unique bounded solution of the equation

u+f(ux)-(l/m)Au = h(x), xeR",

guaranteed by Proposition 3.4. Then the estimates (3.15) and (3.16) imply that

the sequence {um} satisfies (3.17) with U= \\h\\n, P= ||AJoo. a n d K=\h\E. Arzela's

theorem asserts that there is a subsequence {um(i)} of {um} converging uniformly

on compact sets to a limit u. By Lemma 3.2, the subsequence {u£(ί)} then
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converges to ux a.e. in Rn. We denote this convergence in Wf(Rn) by -*-»,

um^++u. Obviously, the limit u enjoys the properties (3.3) and (3.4).

We shall show that the limit u satisfies (3.1) a.e. in Rn. To see this, let φ

6 C§(Rn). Multiplying the equation satisfied by um by φ and integrating we have

< φ X i } ώ = ( hφdx.
JRn i = l JR"

Letting m tend to infinity through the subsequence {m(i)} and using the conver-

gence um(i)+>ιι, we obtain

f (u+f(ux))φdx=[ hφdx,
JRn JRn

Γ n

since \ Σ u™.φx.dx is bounded in m by (3.15). But this implies that u+f(ux)
jRn i=l

= h a. e. in Rn, since φ e C$(R") is arbitrary.
It remains to show that ueD(A0) and u + Aou = h. But this fact is clear,

since u eE(Rn),f(ux) = w = h-u e Wf(Rn) a.e. in R", and u + w = heE(Rn).
Thus the proof of Theorem 3.1 has been completed.

PROOF OF THEOREM 3.3. First we note that a linear combination of semi-

concave functions with positive coefficients again is semiconcave. Hence, the

functions

h = u + λAou = (l-λ)u

and

g = υ + λAoυ = ( 1 - λ)v + λ(v + Aov)

are semiconcave for 0<λ< 1.

Now the proof of (i) and (ii) can be carried out as follows: From Theorem

3.2 it follows immediately that u, veD(A0) are unique bounded generalized solu-

tions of (3.5) respectively, where h, g e E(Rn). Hence, by what was shown in

the proof of Theorem 3.1, u, v can be obtained as respective limits of bounded

solutions um, vme C2(Rn) Π E(R") of the equations

u + λf(ux)-(l/m)Au = ft, υ + λf(vx)-(l/m)Av = g

as m tends to infinity. Since um++u, vm-++v in Wf(Rn), Proposition 3.1 can be

used to prove (i) and (ii). The proof is complete.

4. The semigroup of contractions associated with (CP)

The Cauchy problem (CP) consists of (DE) and the initial condition
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(1C) κ(x, 0) = K°OG), xeRn,

where u° is a given function on #".

It is assumed throughout the section that/: RM->JR1 is of class C 2 and satisfies

the convexity condition:

The matrix (/j/p)), where fij = d2f/dpidpj (/, j = l,..., ή), is nonnegative, i.e.,

j > 0

for each p e K " and each real λί9...9 λn. In addition, the normalization (3.2) will

be assumed, for this can always be achieved by introducing the new unknown

We shall choose L°°(KM) as the Banach space associated with (CP) and regard

the unknown function u as a map: [0, oo) a t-+u(-, t) e L°°(i^"). Let A be given

by Definition 2.2. Then (CP) can be rewritten in the abstract form

(ACP) du/dt + Au3θ, κ(0) = u°

(Note that A may be multi-valued for general convex/).

In order to apply the abstract theory to (ACP), we shall state the generation

theorem of M. G. Crandall and T. M. Liggett [5] in a form suitable for our later

use. Let X be a real Banach space and A be an operator in X (that is allowed

to be multi-valued). A is said to be accretive in X if

\\(μ+λw)-(Ό + λz)\\ > ||H-!7||

for λ>0, u, veD(A), weAu, and z e Av, where || || denotes the norm in X. For

Λ>0, let Dλ = D(Jλ) = R(I + λA), Jλ = (I + λA)~\ and Aλ = λ~\l-Jλ). Set 2

= U κ>o( Π 0<λ<κDλ), and define, if Q)

D(A) = {ve®; \Av\ < oo},

where we have set for υ e 2

\Λv\ = lim \\Aλv\\.

The following generation theorem is a result of M. G. Crandall and T. M.

Liggett [5].

GENERATION THEOREM. Let A be an accretive operator in a real Banach

space X. If R(I + >L4)=>D(A) for all sufficiently small positive λ9 then

(4.1) li
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exists for u° eD(A) and t>0. Moreover, if S(t)u° is defined as the limit in (4.1),

then 5(0 is a semigroup of contractions on D(A):

( i ) We have S(t): D(A)->D(A) for t>0; S(ί)S(τ) = S(ί + τ) for t, τ > 0 ;

\\S(t)v-S(t)w\\<\\v-w\\forv, w e D(A) and t>O;S(O) = I and S(t)v is continuous

in (t, v).

(ii) If veD(A), then S(t)v is locally Lipschitz continuous in t.

(iii) For each ε>0 and each u° eD(A), the problem

ε~1{uε(t)-u£(t-ε))Λ-Auε(t)3θ, t > 0,
(4.2)

= u°9 t< 0,

has a unique solution uε(t) on [0, oo) and lim uε(t) = S(t)u° uniformly in t on
ε l O

compact sets.

We have to verify the hypotheses of the Generation Theorem for the A

of Definition 2.2.

First we shall establish the accretiveness of the operator AQ.

PROPOSITION 4.1. Ao is accretive in L 0 0 ^"), i.e., we have

(4.3) Ku + λAo^-iv + λAov)^ > \\u-v\U

for each λ>0 and each u, υeD(A0).

PROOF. Let w, veD(A0). By definition, it follows immediately that there

is a positive number λ0 for which both u + λ0AQu and υ + λQAoυ lie in E(Rn).

The same argument as in the proof of Theorem 3.3 then shows that (4.3) holds

for 0<λ<λo. Using a result of T. Kato [9, Lemma 1.1, p. 509] that, in a real

Banach space X, \\x\\ < ||x + αy|| for every α>0 if and only if there isfeFx such

that/O0>O (F being the duality map from X to its dual space X*), we can con-

clude that (4.3) holds for every λ>0. The proof is complete.

From Theorem 3.3 and Proposition 4.1 we easily have:

PROPOSITION 4.2. If u, veD(A), weAu, and zeAv satisfy the equations

(4.4) u + λw = h, v + λz = Q,

where λ>0, then:

(i) A is accretive in L°°(J^n), i.e., we have for (4.4)

(ii) If g>h, then v>u.

In what follows, BU(Rn) denotes the closed linear subspace of L°°(Rn) con-

sisting of all bounded and uniformly continuous functions on Rn.
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Now we shall give another definition of bounded generalized solutions of
(3.1).

D E F I N I T I O N 4.1. Let heBU(Rn). Then a function ueBU(Rn) is a

bounded generalized solution of (3.1) provided ueD(Λ) and heu + Au.

It follows from Theorem 3.1 that R(I + λA) = BU(Rn) for λ>0, since R(I
+ λA0)=>E(Rn) is dense in BU(Rn) and A is the closure of Ao (Note that R(I + λA)
is closed for λ>0 when A is closed and accretive). By Lemma 2.1 we have
D(A) = BU(Rn). Therefore we have proved the

THEOREM 4.1. Let/: Rn->Rι be convex and of class C2. Then the opera-
tor A of Definition 2.2 satisfies the assumptions of the Generation Theorem with
D(A) = BU(Rn). In particular, u = (I-\-A)~ίh is the unique bounded generalized
solution of (3.1) for heBU(Rn).

According to Theorem 4.1 and the Generation Theorem, a semigroup of
contractions S(t) on BU(Rn) is determined by the operator A. Concerning the
properties of this semigroup we have first the

THEOREM 4.2. Let f: Rn-+Rι be convex and of class C2, and let S(t) be
the semigroup of contractions on BU(Rn) obtained from A through the Gener-
ation Theorem. Let u, veBU(Rn) and t>0. Then:

(i) If yeRn, then

sup \S(t)v(x + y)-S(t)v(x)\ < sup \v(x + y) - v(x)\.
xεRn xεRn

Moreover, ifveE(Rn), then S(t)veE(Rn) and

Joo < M*, \S(t)v\E < \v\E

(Note that the normalization (3.2) is assumed).
(ii) Ifv>u, then S(t)v>S(t)u.

PROOF. The solution uε(t) of (4.2) is given by MΓ(0
where [ί/ε] is the greatest integer in t/ε. Since lim uε(t) = S(t)u° uniformly in t

on compact sets, the proofs of (i) and (ii) follow immediately from Proposition
4.2, (i), (ii), and Theorem 3.1.

When /: Rn^Rι is convex, a Lipschitz continuous function u(x, t) defined
on Rn x [0, oo) is called a generalized solution of (CP) if: i) u satisfies (DE) a. e.
as well as (IC); ii) for each level t>0, u satisfies a semiconcavity condition

u(x + y, t) + u(x-y, t)-2u(x, t) < k(t)\y\2

9 x, yeR\

where k(t)<kδ for t>δ>0. Below we shall show that the semigroup S(t) ob-
tained above provides a bounded generalized solution S(t)u° of (CP) if u° lies
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in E(R").

THEOREM 4.3. Let f: Rn-+Rι be convex and of class C2, and let S(t) be

the semigroup of contractions on BU(Rn) obtained from A through the Gener-

ation Theorem. If u° e E(Rn), then:

(i) ||S(0«0llco^ll«0lloo9|l(S(i)M0),llao^NilL, and, for the semiconcaυity
constant of S(t)u°, \S(t)u°\E<\u°\E.

(ii) S(t)u°(x) is Lipschitz continuous on R" x [0, oo) and satisfies (DE)

a.e..

PROOF. It suffices to prove (ii). For u°eE(Rn\ let uε{t) satisfy

ε"1 (uε(t) - uε(t - ε)) + Aou
ε(t) = 0, t > 0,

(4.5)

uε(t) = u°, t < 0.

Then wε(0 = (/ + εΛ)" [ ί / ε ] " 1 w o for t>0 and, by Theorem 3.1, we have

(4.6) IIM-COIICO < M o o , ll(ttβ(0),llαo < II«2IL, Mt)\E < \u°\E

for t>0. Next we note that E(Rn)czD(A). Indeed, if veE(Rn)9 then u = Jλv

satisfies u + λAou = v and so Aλv = λ~1(I — Jλ)v = Aou=f(ux) for λ>0 (cf. Defini-

tion 2.1). Hence we have

H^^IU < sup{|/(p)|; |p | < I^JU}

for λ>0, which implies veD(A). Therefore, according to the Generation Theo-

rem, (ii), S(t)u° is locally Lipschitz continuous in t.

By Definition 2.1, uε(t) satisfies the equation

(4.7) ε" i (uε(t) - uε(t - ε)) +f((uε(t))x) = 0

a.e. in Rn for each />0. Let T>0. Since S(t)u° is Lipschitz continuous for

0 < f < Γ a n d S(t)u° ε Wf(Rn) for each f>0, S(t)u°(x) is Lipschitz continuous in

(x, t) and, hence, (totally) diίferentiable a. e. in Rn x [0, T] . Moreover, by Lemma

3.2, the sequence {{uε(t))x} converges a. e. in Rn x [0, Γ] to (S(t)u°)x as ε | 0.

Multiply (4.7) by φ e C§)(JRΠ X (0, T)) and integrate over Rn x [0, T] . Integrating

by parts and letting ε J, 0 yield

Γf {-(S(t)u°)φt+MS(t)u°)x)φ}dxdt = 0,

which can be rewritten as

JIL- { ( S ( t ) u 0 ) t +Ms(t>°)x)}<Pdxdt = 0.
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But this implies that S(t)u°(x) satisfies (DE)a.e. on Rnx(0, T), which in turn
shows that S(t)u°(x) is uniformly Lipschitz continuous on Rn x [0, oo) by Theorem
4.2, (i). Thus the proof is complete.

References

[ 1 ] S. Aizawa, A semigroup treatment of the Hamilton-Jacobi equation in one space
variable, Hiroshima Math. J., 3 (1973), 367-386.

[ 2 ] , On the uniqueness of global generalized solutions for the equation F(x, u,
grad u)=0, Proc. Japan Acad., 51 (1975), 147-150.

[ 3 ] K. Akδ and T. Kusano, On bounded solutions of second order elliptic differential
equations, J. Fac. Sci. Univ. Tokyo Sect. I, 11, Part 1 (1964), 29-37.

[ 4 ] M. G. Crandall, The semigroup approach to first order quasilinear equations in several
space variables, Israel J. Math., 12 (1972), 108-132.

[ 5 ] M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transfor-
mations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.

[ 6 ] M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel
J. Math., 11 (1972), 57-94.

[ 7 ] A. Douglis, Solutions in the large for multi-dimensional, non-linear partial differential
equations of first order, Ann. Inst. Fourier, Grenoble, 15, 2 (1965), 1-35.

[ 8 ] , Layering methods for nonlinear partial differential equations of first order,
Ann. Inst. Fourier, Grenoble, 22, 3 (1972), 141-227.

[ 9 ] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19
(1967), 508-520.

[10] S. N. Kruzkov, Generalized solutions of non-linear equations of first order with sev-
eral variables I, Mat. Sb., 70 (112) (1966), 394-415 (in Russian).

[11] T. Kusano, On bounded solutions of elliptic partial differential equations of the
second order, Funkcial. Ekvac, 7 (1965), 1-13.

Department of Mathematics,
Faculty of Science,

Kobe University




