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§ 1. Introduction

Let {X(t)9 ί^O} be a non-degenerate, drift free, d-dimensional stable process
having exponent α, 0<α<l, and characteristic function ψ(t, ξ) given by

(1) ^ξ) = exp{-f|ξ|«^

Here ί>0, ξeRd, 5d-1 is the unit sphere with center origin in Rd, μ(dθ) is a pro-
bability measure on Sd~ 1 and < , > is the usual inner product in Rd. Then,
X(i) has the continuous transition density :

(2) Xί, x) = (2π)-4 *-«* «><Kf, ξ)dξ, t>Q,xeRd.
JRd

The support of the transition density p(t, x) was investigated by Taylor [4]. His
result combined with Port's work [3] is that p(ί, x)>0 for all ί>0 and xeRd

if jp(l, 0)>0. In the case p(l, 0) = 0 and dΞ^2, the properties of the support of
p(t, x) seems to be unknown except Taylor's remarks (see [4, p. 1233]) about
what can be expected to hold. The purpose of this paper is to investigate the
support of p(t, x) in connection with that of μ for this case.

We denote by supp (μ) the smallest closed set with full μ-measure and put

M = {λθ'9 θ e supp(μ), λ ^ 0} ,

K± = {x; p(t, x) > 0 for some t > 0} ,

K2 = {x; p(t, x) > 0 for any t > 0} ,

Also we denote by A~, A* and A° the closure, the convex hull and the interior
of a set A9 respectively. Our theorem is stated as follows :

THEOREM. If p(l, 0) = 0, then KL=((M*)-)°. //, in addition, the dimen-
sion 7(M~) of the largest subspace contained in M* is zero, then Ki==K2 —
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§ 2. The Properties of S (t)

Making use of Kolmogorov-Chapman equation for p(t, x) and the well
known scaling relationship p(t, x) = p(rt, r1/ax)H/a, we have

(3) S(

(4) S(rt) = r1/^), r > 0.

If we set S = S(1), (3) and (4) imply that

(5) r1/«S + (l-r)1/βS = S, O ^ r ^ l .

It is not obvious whether in general (5) implies

(6) r1/βS- + (l-r)1/*S- = S~, 0 ^ r ^ 1,

or not . However, under some condition we can prove (6), as will be seen below.

LEMMA 1. If S is contained in a closed convex cone C with 1(C) = 0,
then S~ has the property (6).

PROOF. For each Λ: e 5~, we choose a sequence {xn} in S converging to x
as n->oo. Then, by (5) for each r, O^r^l, there exist two sequences {yn} and
{zn} in S such that

(7) rV<yn + (l-rV*zn = xu.

We now prove that both {yn} and {zn} are bounded. For this purpose denote
by Ln the straight line passing through yn and zπ, and let wn be the point on Ln

which is nearest to the origin. Then, with a suitable unit vector en perpendicular

to wn, yn and zn can be expressed as yn = anen + wn and zn = bnen + wn, an,bneRl.
From (7) we have [rίt* + (l-r)1/α]-1xn = cπert + wn where cn = [rlί*an + (l-
rV' &JCr^ + ίl-r)1/"]-1, and hence [r^ + ίl-r^/ Γ^eL,,. This implies
that {wn} and {cn} are bounded. The definition of cn then implies that both
{an} and {bn} are bounded or both {an} and {bn} are unbounded. Suppose
the latter case happens. Then we have an-+ao (or — oo) and fon— > — oo (or oo)
as n-»oo via some subsequence. Since {ww} is bounded, the sequence of the
line segments ynzn joining yn to zn converges to some full straight line L as n->oo
via some further subsequence. Since ynzn is in the closed set C, L is also in C,
and this contradicts 7(C) = 0. Thus we have proved that {yn} and {zj are bound-
ed. Therefore {yn} and {zrt} converge to some yeS~ and zeS~, respectively,
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as tt-»oo via some (common) subsequence, and rl/ay + (l — r)1/αz = x, which
shows r1/^S- + (l-r)1/βS-c:S-. Finally the inverse relation rl**S- + (\-r)ll*
S~aS~ is easily shown by (5). This completes the proof.

LEMMA 2 ([!]). // C is a closed convex cone, then 7(C) = 0 // and only
if there exists a unit vector e such that <β, ξ> >0/or any non-zero vector ξ in
C.

The proof of this lemma is found in Fenchel [1, pp. 10-11].

LEMMA 3. Under the hypothesis of Lemma 1 and α<l, S~ is a convex
cone.

PROOF. We first note that (6) and α<l imply that λS~^S~ for OgU^l.
Next we put S0 = {xeS~; λxeS~ for any λ^O}. Then, from this definition
and (6), it follows that S0 is a closed convex cone. We show by contradiction
S~~ = S0. Suppose that there exists a point x0€S~\S0 and denote by y0 the
point on S0 which is nearest to x0. Noting that 50 is a closed convex cone,
we can choose a supporting hyperplane P0 of 50 at yQ. Obviously P0 passes the
origin. Since 7(C) = 0, there exists a unit vector e such that <e, ξ> >0 for any
non-zero vector ξ in C by Lemma 2. Let us set /f = {x; <x, e> =0}, denote by

P the hyperplane determined by H n P0

 and -j xo + "yJo and by P+ the closed half

space bounded by P and not containing the interior of S0. We now claim that
there exists a supporting hyperplane β of S~ which is parallel to P. For the proof
it is enough to see that P+ n S~ is bounded. If it is unbounded, then there exists
a sequence {xn} in P+ n S~ such that |XΛ|.-> OO as n-+oo. The sequence of rays
LJ = {AxM; A>0} has a convergent subsequence; let L+ be the limiting ray. Since
AS~cιS~ for O^λgl, L+ is contained in S~ and lies outside S0. This contradicts
the definition of S0, and so P+ n S~ is bounded.

Choose a point x in S~ n β. By (6) there exist y, zeS~ such that
-1 J-_ 1

21/αx. Since x^O and 2α > 1, the point 2« x lies in Q+ (the region bounded
by Q and not containing the origin) and hence so does (y + z)/2. But then,
one of y and z must lie in β+, which is a contradiction since y, zeS~. We thus
finally proved that S~ = SQ. Since S0 is a convex cone, the lemma is proved.

§ 3. Proof of the theorem

First we note that α<l and supp(μ) is contained in some hemisphere by
the assumption p(l, 0) = 0 (see [4]). Thus MΛ is a convex cone which is not
the whole space Rd, and hence (M^)~ is equal to the intersection of all closed
half spaces which contain MΛ, and for each closed half space which contains MΛ

there is a unit vector e such that {x; <e, x> ^0} is equal to this half space.
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Now we set Xe(t) = <X(t\ e>. Then Xe(t) is a one-dimensional stable process
with the exponent α and characteristic function

(8) exp { - λt\η\*[l - ίsgn (ly) tan (πα/2)] ,

where λ=\\<e, θ>\aμ(dθ). Thus, by the result in the case n = l (see for a

summary [4]), the transition density pe(t, y) of X*(i) is zero on the interval (—00,
0] for all t>Q. Since pe(t, y) can be obtained by

(9)
J{<z,β> =

where v is the volume element on the hyperplane {z; <z, e> = 0}, we have p(t,
x) = 0 in {x; <x9 e> ^0} for all t>Q. Noting once more that (MΛ)~~ is equal to
the intersection of all closed half spaces which contain M Λ, it follows that p(t, x)
= 0 in the complement of (MA)~ for all ί>0, and hence Kί<^(M^)~. Next we
prove that Kί = ((M~)~)°. For this we will use the following facts (i), (ii) and(iii) :

( i ) l imί f ( x ) P ( t , x ) / t d x = ( f(x)r--*drμ(dβ)9tirO JRd jRd

where r=|x|, θ = x/r and C0CRd\{0}) is the space of cotinuous functions with
compact supports in

(ii) p(t + s, x) = \ p(t, x-y)p(s, y)dy.
JRd

(iiϊ) Kί is an open convex set (see Taylor [4]) .

In fact, (i) implies K~[ =3 M, (ii) implies KΊ + KΊ c £7 and hence

Because M is a cone, M~ = \jnMn and so KJ:D(M~)~. Since Kγc:(MΛ)"" is
already known, we have Xγ = (M/s)~. On the other hand (iii) implies that K^
= (XT)° (see P]) and so ̂ ^((M")-)0 as was to be proved.

We now proceed to the proof of the latter half of the theorem. For xe S and
(l-rV/^S-x) is an open neighborhood of 0. Therefore, by (5)

(1 — r)1'**, and hence r1/α5'~ + (l-r)1/α5c=Sί. From this result we can prove
that (S~)°cS. Hence S=(S~)°. As a consequence of Lemma 3, we see that
5 is an open convex cone. From this fact and (4) it follows that S = S(f) for
all ί>0, that is, Kί = K2. Finally K1 = (MΛ)° follows from the fact: If C is
a closed cone and 7(CΓ)=0, then (CΓ)~ = CΛ (see [1]). The proof of our
theorem is completed.
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