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1. Introduction

Carlson-Griffiths [1] and Griffiths-King [4] studied the value distribution
of holomorphic mappings from a smooth affine variety 4 into a smooth projective
variety V. Among others, they established Nevanlinna's second main theorem
and defect relation for holomorphic mappings from A into V. Recently, these
results were generalized to the case of meromorphic mappings by Shiffman [13].

In the present paper we study the value distribution of meromorphic mappings
from X into ¥, where X is the complex space of a finite analytic covering X —Z%—
C™ (see Definition 1 in section 2). The main purpose is to show Nevanlinna's
second main theorem and defect relation of Griffiths-King's type for mero-
morphic mappings from X into V (see Theorems 1 and 2 in section 6 and cf. [4]).

The next section will be devoted to the notation and terminologies. In
section 3 we shall prove two preparatory lemmas concerning positive currents
on X. In section 4 we shall generalize the ramification estimate in Selberg [12]
to the case of the finite analytic covering X —%» €™ (Lemma 4.1). This estimate
and the use of a singular volume form on Vconstructed by Carlson-Griffiths [1]
and Griffiths-King [4] will play essential roles to obtain the second main theorem
in section 6. In section 5 we shall investigate the proper domain of existence of
a meromorphic mapping f: X—V. This investigation will make the ramifica-
tion estimate, obtained in section 4, possible to apply to the proof of the second
main theorem. In the same section we shall prove that the characteristic function
T(r, L) of a meromorphic mapping f: X —V with respect to a positive line bundle
L—V (see section 3 for the definition) satisfies

T(r, L) = O(logr)

if and only if the finite analytic covering X —= C™ is algebraic (see Definition 2
in section 2) and / is rational, provided that / separates the fibres of X —%» C™
(see Definition 3 in section 2). This is a fundamental property of the growth of
the characteristic function T(r, L).

The author is very thankful to Professor H. Fujimoto for his many helpful
advices and suggestions and to Professors K. Ueno and S. litake for valuable
conversations.
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2. Notation

DEFINITION 1. We call X—=->C™ a finite analytic covering over the
m-dimensional complex affine space €™ or simply a finite analytic covering
if

i) X is an irreducible normal complex space,

ii) m: X—>C™ is an onto proper holomorphic mapping with discrete fibres.
If the covering X —%-C™ is fc-sheeted, we call it an analytic k-covering.

DEFINITION 2. A finite analytic covering X —%»C™ is said to be algebraic if
i) X is biholomorphic to an affine variety,
ii) w: X—C™is a rational mapping.

In general, we write S(Y) for the set of singularities of a complex space Y.
Let X—%,C™be a finite analytic covering. Then the analytic set

C = {zeC™; m is ramifiedat some point of n=1(z)}

is called the critical set of the finite analytic covering X —2-»Cm™. Let (z1,..., z™)
be the natural coordinate system in €™ and set

lz1? = £ 22, ) ={lzl <),

X(r) = a7 (Cn(r)),  de=—-(3-9),

¢ = dde|z||?, Y = dd°log|z||?,
n=dlog|z||> Ayt 1.
For simplicity, we abbreviate n*¢, n*y and n*n (differential forms on X) to ¢,
Y and n, respectively, if no confusion occurs.
A locally finite sum X SjDj of irreducible analytic sets Dj of codimension
Jj=1
1 in X with integer coefficients Sje Z is called a divisor on X. We denote by

00
Supp(D)the support of the divisor D. If D= 3 s;D; is a divisor with positive
=1

sj, D is said to be effective. An effective divisor on X determines a d-closed
positive current of type (1, 1) on X (for the notion of positive currents, see [7, 5]).

Let V be a projecti ve variety and L— V a holomorphic line bundle over
V. Then we denote by |L| all of the effective divisors () on V determined by

oe H(V, L).

1) ym-tstands for YA AY (m—1 times).
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Let /: X—-Vbe a meromorphic mapping with singularity N(f). Then by
Remmert [10], codim N(f)=2 and there are a proper modification t: &, N)
—(X,N(f)) and a holomorphic mapping f: X—Vsuch that the diagram

.1 1: %%
X=NGH—T

is commutative.
DEFINITION 3. We say that a meromorphic mapping /: X —V separates

the fibres of X —Z%»C™ if there exists a point ze €C™-(C U n(N(f))) such that
f(x)#f(y) for any distinct points x, y of n~1(z).

3. Preparatory lemmas and the first main theorem

LEMMA 3.1. Let £ be a plurisubharmonic function in C™ and set T—
dd<& (in the sense of currents).  Then

@G.1) 220y - e,

ocm(r) Jocm(1)
where n(t)= t2=2"T | gy (™ 1) (cf. [7]).

PROOF. When £ is smooth, it is easy to prove (3.1) by using Stokes’
theorem, Fubini's theorem and the formula

l//m—l — t2—2m¢m—l on aCm(t)

For a general &, set &,=&xu,, where u,(z) is a convolution kernel depending
only on |z||. Then &,—¢& decreasingly as e O (see [7]). Since &, is smooth,
we have

S e
dc m—1 —_ .
2S1 t2m—1 cmmd S d acm(r)és'7 acm(x)éen

Since t2'2'”$ ddc&é, A g™ 1 —n(t) uniformly with respect to te[l, ¥] and
cm(r)

¢, — ¢ decreasingly as é—0, we have (3.1). Q.E.D.

Let X—"->C™ be an analytic k-covering and D an effective divisor on X.
Then the push-forward neD is a d-closed positive current of type (1, 1) on €™
since 7 is proper.

LEMMA 3.2. For an effective divisor D on X, there is a holomorphic
Sfunction o in C™ satisfying
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neD = dd<log |«|? (in the sense of currents).

PROOF. Since €™ is a Cousin-II domain, by Poincaré’s equation (see,
e.g., [4, Proposition 1.1]) it suffices to show that m,D coincides with a current
determined by an effective divisor on €™ For ze C™— n(S(X)),set n~1(z)
={x,,..., X;}. Then we can take neighborhoods U of z and W, of x; so that
W;n W=0 if i#], nly,: W;=Uis onto proper for each i/ and there is a holomor-
phic function B; in each W, satisfying (8)=Dn W, Set

1
w2)=11 TI  PBdx).
i=1xen~ 1(z)NW;
Then by Riemann's extension theorem a(z) is holomorphic in U. It is easy to show
the current equation

D = (o) in U.

Thus there exists a divisor 2’ on C™—7(S(X)) satisfying n,D=2"in C™- n(S(X)).
Since codimn(S(X))=2, by Remmert-Stein's theorem X’ has a unique extension
Y as a divisor on €™. Since an analytic set of codimension greater than 1 is negli-
gible for the currents D and X (cf. [6, 5]), the equality n,D =2 holds in C™.

Q.E.D.

We define the counting functions for an effective divisor D on the analytic
fc-covering X (resp. C™) by

:_1_ m-'l( ___I__S m—l)
ne, D) = | gt (e ),

N(r, D) = S'I"(’—’tD)_dt.

Let ¥V be a smooth projective variety, L—V a holomorphic line bundle over
V with an hermitian metric | | whose curvature form is w, and f: X—Va mero-
morphic mapping. Then f*w may have singularities on N(f)ut it is a differen-
tial form with coefficients belonging to L} ; this fact readily follows from (2.1).
We define the characteristic function of f with respect to the line bundle L by

—_ —_ _1__ ’ dt * m—1
T, D) =T, 1) = | % Sxmf o AP
For De|L| such that Supp(D)=f(X)kaking always a section o€ H°(V, L) so
that (¢)=Dand |o| =1, we set

1

(3.2) w(rs D) = m(r, D) = — Saxu)log_f*}ﬂln'
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Since the integrand is non-negative, the integral is well defined. We shall show
that m(r, D) is finite for all r>0. Since Vis a projective variety, we may assume
that the line bundle L is positive, i.e., @ is positive definite. By Lemma 4.2
there is an entire function a on €™ such that (a)=m.(f«D). Setting

)=~ I, logf*ol*(x),
we easily deduce by using the extension theorem of Grauert-Remmert [3] that
(3.3) &,=¢&+1og |a)? is plurisubharmonic in C™,
34 ddclog £= m.(f*w)— e (f*D)in the sense of currents.

~

We observe that m(r, D)=7IE\J En. It follows from (3.3) that the integral
acm(ry

is finite.
Combining Lemma 3.1 with (3.4), we get the so-called first main theorem:

(3.5) T(r, L) = N(r, f*D) + m(r, D) - m(1, D)

for divisors D € \L\ such that Supp(D)=>f(X).

Let « be a meromorphic function on X. Then o is canonically identified
with a meromorphic mapping from X into the 1-dimensional complex projective
space P! (cf. [10]). We shall freely use this identification. We denote by
() (resp. (a)g) the divisor of poles (resp. zeros) of the meromorphic function
o Set

mr, ) = 2, logtlaln®,

T(r, @) = N(r, (%)) + m(r, @).

From Poincaré’s equation dd¢log|o|? =(a)o— (@), (see [4, Proposition 1.1]) and
Lemma 3.1, it follows that

(3.6) T(r,0) = T<r, L>+LS log|a| 7.
o k Jox(1)
Let L— P! be the hyperplane bundle over P!. Then

3.7 T(r, ) = T(r, L)+ 0(1).

4. Ramification estimate

In general, let g: X— Y be a meromorphic mapping from a normal com-

1) log* s=0 for s<1 and log*s=log s for s=>1.
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plex space X into a complex manifold Ywithdim X=dim Y. Let Rjbe the divisor

determined by the Jacobian of the holomorphic mapping glx-wusay):
X—(N(g9)U S(X))— ¥f the Jacobian does not identically vanish.  Since

codim (N(g)U S(X))=2, by Remmert-Stein's extension theorem Rj has a

unique extension R, as a divisor on X, which is called the ramification divisor of

the meromorphic mapping g.

Let X—2>C™ be a finite analytic covering and B the ramification divisor
of m: X—»C™. Then we call B the ramification divisor of the finite analytic
covering X—%-Cm™. One notes that the analytic set Supp (m4B) (cf. Lemma
4.2) coincides with the critical set of X —Z»C™.

LEMMA 4.1. Let X—">C™ be an analytic k-covering with ramification
divisor B and o a meromorphic function on X which separates the fibres of
X-—Cm™. Then

“.1) N(r, B) £ 2(k—1D)T(r, x) + 0(1).
REMARK. In case m=1, this was proved by Selberg [12].
PROOF. Since T(r, &)= T(r, 1/(x—c)) + O(1) by (3.6), we may assume that

42) any irreducible component of Supp((®),)1s not
. contained in & 1(C),

where C is the critical set of X —=->C™. Represent the ramification divisor B as
B=Z(kv_ I)Bv s

where B, are irreducible components of Supp(B)and fc, are integers greater
than 1. Let A4 be the set of points we C—(S(C)U n(S(X)U Supp((®)s)))such
that
i) each point of 71~ 1(w) belongs to Supp (B) — S(Supp (B)),
ii) there is a neighborhood U of each point of 7~ X(w) such that d(|s,,psynu)
has maximal rank m — 1.
We put

4(z) = 11 (x)— a(x;)?

for ze €™, where n~Yz)= {x;,..., X;} (counting multiplicities). Then A4#O0
by the hypothesis. First we show

(4.3) B = (d)o.

Since an analytic set of codimension greater than 1 is negligible for both the
currents of (4.3), by virtue of (4.2) it suffices to prove (4.3) in a neighborhood of
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each point of A. Let wy e 4, xqe 7~ 1(wy) n B, and take local coordinate neigh-
borhoods W(wl,...w™) of wo and U(x1,....x™) of x4 sothat =|y: U—-W ioonto

proper, n~!(wo)n U= {xo},wo=(0,..., 0), xo=1(0,...,0), CnW={w!=0}, Supp
(B)n U=B,n U={x'=0} and

wh= () = (),
wl = nd(x)= xJ for j = 2.

Thus =n|y: U—->Wis a fc -sheeted covering. Since a is holomorphic in U which
is chosen smaller if necessary, o can be represented by a series of the form

a=ag+ X a;w,..., wm) (kv /wl)l.
iz1
Therefore we have
IT  (a(x)—alx))? = (w)=1{(w),
si<jsky
where (nly)~'(W)= {*y,..., %, }. Applyting this argument to each point of

™1 (wy), we see thai(4.3) is valid in a neighborhood of w,. Hence (4.3) is proved.
From (4.3) it immediately follows that

N(r, B) S—-N(r, (4)o).-
According to (3.6) this yields
4.4) NG, B) <TG, )+0(1) .
Referring to (4.2), we have
4.5) SN, (4)0) = 2= DN, (@).0) -
Since logt|s,s,|<log*|s,|+log*|s,| and log*|s,+ s,| <logt|s,|+log*|s,| +log2,

L ntr, 2y =L
K K Jzeocm(r

log*| l_l:[j(ot(xi) —a(x;))|?n(z)

2(k—1) "
(4.6) = TN ogtlaln+O(1)

= 2k—1Dm(r, ) +0(1),

where n~1(z)={xy,...,X}. The inequalities (4.4), (4.5) and (4.6) imply (4.1).
Q.E.D.
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5. Meromorphic mappings into a projective variety and their rationality

As is well known, for any k-valued meromorphic function a on C, there is
a Riemann surface § which is a fc-sheeted covering over C, such that a becomes
a l-valued meromorphic function on S. Such Riemann surface S is called the
proper domain of existence of a. Let 1. S—»C denote the natural projection.
Then the meromorphic function a separates the fibres of S——C in our sense.

Let X—"-C™ be a finite analytic covering, V a projective variety and /:
X—-Va meromorphic mapping. If f separates the fibres of X —"-»C™, we may
say that X is the proper domain of existence of /. The following proposition
asserts the existence of such a domain for an arbitrary meromorphic mapping
from X into V.

PROPOSITION 1. Letf: X—V be a meromorphic mapping. Then there
are a finite analytic covering X ,—2>C™, and onto proper holomorphic mapping
A: XX, with discrete fibres and a meromorphic mapping fy,: Xo—V which
separates the fibres of Xo—>>C™ and is non-degenerate!) if so is f, such that
the diagram

o X0~ 1o
is commutative.

PROOF. We may assume that Vg PN, Let [wO,..., w¥] be a homogeneous
coordinate system in P¥. Then / can be represented in a neighborhood of each

point of X by

f=0f%... ",
where fJ are holomorphic functions in the neighborhood. Letting C denote
the critical set of X —%- C™, we set :Y=X—7r‘1(C). Then n]g: X —»C"—C
is unramified, i.e., locally biholomorphic. For zeC™— C, set n~1(z)={xy,...,

x,} and take neighborhoods U of z and W, of x; so that n|y,: W;—Uare biholo-
morphic. We write

5.1 (@) = [fPnlw) ' (2), . , fYo(nlw) " (2)],
where f=[f9,...,f¥] in W,and {f?= - =f¥=0}=N(f)n W,. Let @ denote

1) A meromorphic mapping f: X— V issaid to be non-degenerate if df hasmaximal rank in a
non-empty open set where fis holomorphic.
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the sheaf of holomorphic functions over €™, 0, its stalk at z and 0¥ the set of
invertible elements of ¢,. For each ze C™—C, f(z) (i=1,..., fc) determine ele-
ments fi(z) e (03*1)/0%F,each of which is independent of the representation

(5.1).  One should note that f(z) and fi(z) may be the same elements of 03V o*
though i#j. Set
F = fe/Xz)); zeC"—C, 1 <i £ k}.

Then in the same manner as Weyl's ‘‘AnalytischeGebilde”, we can construct
an unramified finite analytic covering X’ -%—>C™— C over €™— C associated with

& . In the natural way we get a holomorphic mapping A’: X— X’ which is onto
proper and whose fibres are discrete, and a meromorphic mapping f': X'—>V,
which satisfy the commutative diagram

X\
P/

Since C is a thin analytic set in C™, by Grauert-Remmert [3] the finite analytic
covering X'-2»>C"—C over C"— C can be uniquely extended over all C™.
Let us denote it by Xo—=—C™. It is easy to see that A’ has a unique holomorphic
extension A: X— X, which is onto proper and whose fibres are discrete. Let
I' and I'" be the graphs of the meromorphic mappings / and /. Then setting
T=Axidy,we get

r— > XxV
it
I's X'xVa Xox V.

From the construction, I"'=7t( n (;Y xV)ctl)c Xy x V. Since 1 is proper,

7(T) is an analytic set. Since the closure I" of I coincides with the analytic
set ©(I'), we obtain a meromorphic mapping f,: Xo— Vwhich is an extension
of f'. It is clear that Xo—>C™, A: X—X,and fy: X,— V satisfy our require-
ments. Q.E.D.

REMARK. Let us assume that V'is smooth. Let Tp(r, L) and Ty (¥, L)
be the characteristic functions of the meromorphic mappings / and f, in Proposi-
tion 1 with respect to a line bundle L— V. Then

Ty(r, L) = Ty (r, L),
(5.2) m(r, D) = my (r, D),
1 N(r, f*D) = N(r, f§D)
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for divisors De|L| such that Supp(D)®$f(X).Indeed, let k, k, and / be the
numbers of sheets of the coverings X —*>C™, X,-—">C™and X— %> X, res-
pectively. Then k=kyl. The equalities (5.2) immediately follow from this
fact (for the last equality, refer to the proof of Lemma 4.1).

PROPOSITION 2.  Letf: X—V be a meromorphic mapping which separates
the fibres of X—T->C™and let L—V be a positive line bundle over V.
Then X—">C™ is an algebraic covering and f is rational if and only if

T(r, L) = O(logr).
First we show

LEMMA 5.1. Let X— Z>C™ be a finite analytic covering with critical set
C. Then X—T>Cm™ is algebraic if and only ifC is an algebraic set.

PROOF. It is clear that C is algebraic if so is X—=->C™. Suppose that
C is algebraic. Then the closure C in P®(oCm=Pm—H,, where H, is a
hyperplane in P™)is an analytic set. By Grauert-Remmert [3] there is a unique
extension X —2-Pm of the finite analytic covering X —%*+Cm. Let F—P™ be
the hyperplane bundle over P™. Then F~! —Pm™is weakly negative in the sense
of Grauert [2]. Since m: X—Pm™ is proper and its fibres are discrete, it is easy
to check that the zero section of #*F~! is exceptional, that is, #*F~1 —»Xis weakly
negative. Thus for an integer v large enough, #*F*— Xis very ample. The basis
{®*a}, T*aY,..., T¥0},...} of HY(X,7*F") over C gives an embedding X PN
(N =dim H°(X,7*F*)—1), where ;€ H(P™, F), i=1,..., m such that{c,=0}=
H, and zi=g;/o, for i=1. By this embedding, we regard X as a subvariety
in PV, Since X=X— {*a%=0} and n=7|y, X is an affine variety and m is a
rational mapping. Q.E. D.

REMARK. Let X—%>C™ be an algebraic fc-covering. A meromorphic
function & on X is rational if and only if there are polynomials Py(zl,..., z™),
i=0, 1,..., k£ such that

Py(n(x))ak(x) + +++ + Pi(n(x)) = 0.
Moreover this is equivalent to T(r, o) = O(logr).

PROOF OF PROPOSITION 2. We may assume that L—V is very ample.
If X —2>C™ is algebraic and f is rational, it readily follows that T(r, L) = O(logr)
(see [4]). Suppose that T(r, L)y= O(logr). Since /separates the fibres of X —=
Cm, there is a pair of sections ¢y, 6, € HO(V,L) such that the meromorphic
function a=f*(o,/0,) separates the fibres of X — Z»C™. By definition, N(r, («),,)
< N(r, f*D,) with Dy=(0,) and
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1 1 *
) . Tgaxu) log™[aln = Tgaxu) log” ﬁ*!z;l 1

1 1 1
b logt — - __S log*F*
k SBX(r) Og f*|0'o| ’7+ k oxX(r) Og f |01]’1

IA

__1¢ Yo
Kk Joxr log / Iao"]n m(r, Do) ,

since f*|6o| <1 and f*|o,|<1. Thus we have by using (3.5)
(5.3) T(r, o) £ T(r, L)+0(1).

This yields that T(r, «)=O(logr). By Lemma 4.1, N(r, B)=0(logr). Letting
C denote the critical set of X —=-+C™, we deduce that N(r, C)=0(logr). There-
fore C is algebraic (see, e.g., [14, 4]). By Lemma 5.1 the finite analytic covering
X —"->Cmis algebraic. To conclude the rationality of f, by the remark of Lemma
5.1, it suffices to see that T(r, f*(6/6’)) = O(logr) for an arbitrary pair of sections
o, a'e H°(V, L) such that {¢'=0}3f(X) This follows from (5.3). Q.E.D.

6. The second main theorm and defect relation

Let X—=->C™ be an analytic k-covering, F a smooth projective variety of
dimension » < m, L— Fa positive line bundle over Fand K;,— Fdenote the canoni-
cal bundle over F. Carlson-Griffiths [I] and Griffiths-King [4] showed the
following:

For divisors D;= (o)) €|L|, i=1,..., q such that XD, has simple normal cros-
sings and qc(L)+ c(Ky) >0V, there exista volumeform Q2 on Vand an hermitian
metric \ \ in L such that the singular volume form

6.1) Y=, Q
I (log | 011 %)?| 4] 2
satisfies
Ric¥ >0, (Ric¥P)=z Y, 5 (Ric P)*< 0.
V—-Supp(XD;)

In this section we assume that a meromorphic mapping /: X—Vis non-
degenerate.

Let f: X—>V be a meromorphic mapping which separates the fibres of
X—=->C™. Then f* WA ¢™"#0. Thus we may assume that

1) ¢(L) and ¢(Ky)denote the first Chern classes of the line bundles L and Ky in the de Rham
cohomology group H*(V, R).
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% _L_ v
(6.2) Y A ot (Xnmdz ArfzA #0.

Set

A A m/_i"zL;tszA dzv) = &pm.
Let R, denote the ramification divisor of
(6.3) fx(@,..., ") X— VxCm ",

Let B be the ramification divisor of X — *»C™. From Griffiths-King [4, Lemma
6.18] we obtain a current equation in X — (S(X)U N(f))

dd<logé = f*Ric¥ +R,—B— 3. f*D.
i=1
Setting {(z)= 11 )f(x), we have
xen~1(z
(6.4) dde log{ = my(f*Ric ¥)+ 1R, — 1B — 3" 1u(f*D))
i=1

in C"—n(S(X) U N(f)). By Lemma 3.2 there is an entire function « such that
q
(0)=mnyB+ _Zl nx(f*D;). Setting
£, = log{+log|al?,
we have
(6.5) dd<{, = nu(f*Ric ¥)+n.R,

in €™ — a(S(X) U N(f)).Since the right hand side is a positive current, {; is
plurisubharmonic in €™ —n(S(X) N(f)). Since codimn(S(X) U N(f))=2, by
Grauert-Remmert [3] ¢, can be uniquely extended as a plurisubharmonic function
in all €™ Therefore the current equation (6.5) is valid in all €™ and so is
(6.4). We have

(6.6) log{ = {,—{,,

where {, and {,=log|«|2are plurisubharmonic in C™. Set
THr) = LS 1 S F*Ric ¥ A ¢t
k 1 t2m—1 X(t)
= J—S;S o (f*Ric ¥) A ¢m-1
k 1 t2m—1 cm(t) * ’

1 _ L
TS(?X(r) log érl N k SﬁC'”(r)log Cn )

u(r)
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Combining (6.4), (6.6) with Lemma 3.1, we get
THr)+N(r, R)= N(r, B+ 3 N(r, f*D;)
i=1

+u(r)—pu(1).

Once this equality is shown, in the same way as in Griffiths-King [4, sections 7
and 8 (c)] we obtain

©7) aT(r, D+ T(r, Ky) S YN, f*D)+ NGr, B)

—N(r, Rp)+u(r)+0(1),
where the remainder term u(r) satisfies
(6.8) u() = O(log T(r, L))+ (6—1)O(logr)
outside an exceptional set / of r satisfyingSIdr9<oo for any 6>1; moreover if
the order of T(r, L) is finite,
(6.9) u(r) = O(logr) for all r.

In what follows, we denote by S(r)a function of r satisfying the properties
(6.8) and (6.9) with respect to T(r, L).

Since f separates the fibres of X — Z» €™ and the line bundle L—V is positive,
there is an integer / such that the following holds :

( There exists a pair of sections g, 0,€ H(V,L")
A(f,L" < such that the meromorphic function f*(o,/0,)

separates the fibres of X —— C™.

Let I, be the least integer / for which A(f,L') holds. From Lemma 4.1 and
(5.3) we see that

N(r, B) £2(k—1)T(r, L')+0(1)
=2(k—1)I,T(r, L)+0(1).
From this and (6.7) it follows that

(6.10) {q—-2(k—DI,}T(r, L)+ T(r, K )

< ‘g'l N(r, f*D))— N(r, R;)+S(r).
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Now we let f: X—V bea meromorphic mapping which does not necessarily
separates the fibres of X — ™ C™. Then by Proposition 1 there are an analytic
fco-covering X ,—2>C™, where k, is a divisor offc,and a meromorphic mapping

Jo: Xo—Vwhich separates the fibres of X,—°>C™. The inequality (6.10) is
valid for the meromorphic mapping f,. By the remark of Proposition 1 we have

THEOREM 1 (The second main Theorem). Letf: X—V be a meromorphic
mapping and L—V a positive line bundle.  Then for divisors D;e|L|, i=1,..., q
such that XD; has simple normal crossings and qc(L)+ c(K,)>0,

©.11) (4= 2o~ DI} TCL)+ T(r, Ky)
< 3 N f*D)=N(r, Rp)+S(1),

where fo: Xo— Vis the meromorphic mapping given by Proposition 1, ko is the
number of sheets of Xo—2>C™ and l, is the least integer (e Z for which A(f,,
LY holds.

Let f: X—V bea meromorphic mapping. Then for a divisor D e \L\ we set

n(, f*D) = WE"_T

m=—1
9’

gsﬂpp(f*D)"X(t)

N(r, f*D) = Sl SD) gy,

D
o) = 1— @%’l .

By definition, 8(D)=< ©@(D).

THEOREM 2 (Defect Relation). Under the same assumptions as in Theo-

rem 1, we have
a -1
) < c(Ky1) ] -

(6.12) iglé(Dl) = [—_—C(L) +2(ko—1)l,,
where [c(KyV)/c(L)Y]=inf {0 e R; Oc(L)+c(Ky) > 0} and the integers ko and I,
are the same as in (6.11). Moreover iff separates the fibres of the analytic k-
covering X —"-C™, then

oD, < [ig_(l%l)—]u(k— 11, .

Ma

(6.13)

1]

i=1
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PROOF. The defect relation (6.12) readily follows from (6.11). Suppose
that f separates the fibres of X—=->C™. Let us recall the definition of R: R,
is the divisor of

fx(@rl,..., i) X Vx € (cf. (6.2), (6.3)).

The method of the proof of Sakai [11, Proposition 3] can apply to the holomor-

phic mapping (fx(@',..., 7"""))|x - scxyunry X —(SXU N(f))— Vx €™". So
we have

(6.14) S f*Di="3 Supp(f*D)=S R,
= =1
in X—(S(X)U N(f)).Since codim(S(X)U N(f))=2, (6.14) holds in all X
The defect relation (6.13) follows from (6.10) and (6.14). Q.E.D.

For a detailed argument in case dim X=dim V=1, we refer to [8].

Let X=C2. In this case, the defect relation (6.12) was proved by Shiffman
[13]. Let ¥ be a non-singular hypersurface of degree d in P’ and L the restric-
tion of the hyperplane bundle over P3 on V. Suppose that there exists a non-
degenerate meromorphic mapping of C’ into V. Then by Theorem 2, d<4.
We give an example for d=4. Let V be a Fermat quartic surface:

(WOYS+ (w1 *+ (w2)s (W34 = 0,

where [w©, wl, w2, w3] is a homogeneous coordinate system in P3. Then by
[9, Section 8] Vis a Kummer surface Km(A)associated with an abelian surface
A, that is, V'is a non-singular model (obtained by one o-process at each fixed point
of 0) of the factored space A/ <0>, where 6 denotes the involution A3 x> —x
€ A. By composing the covering mappings of €2 onto 4 and of A onto 4/<0>
and the birational mapping of 4/<0> to V, we get a non-degenerate meromor-
phic mapping f: C2—V.

Let X be an analytic 2-covering over €%, V and L as above. Then d<6.
It is hoped to find examples for d = 6.
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