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Introduction

As for the enumeration problem of embeddings of manifolds, many results
have been obtained up to the present (e.g. [2], [5], [6], [7], [20] and [21]) but
they are small in number compared with those of the existence problem. In this
paper, we try one approach to the enumeration problem of embeddings of n-
dimensional differentiable manifolds into the real (2n— I)-space R2"~!, As
an application, we determine the cardinality of the set of isotopy classes of em-
beddings of the n-dimensional real projective space RP" into R?7~1,

Our plan is as follows. An embedding /: M—R™ of a space M into R™

' . . . 1 _ (¥ -—f(y)
induces a Z,-equivariant map F:MxM — A—S by F(x,y) = £ —FOI

for distinct points x, y of M, where A4 is the diagonal of M and the Z,-actions on
M x M—A and S™ ! are the interchange of the factors and the antipodal action,
respectively. Consider the correspondence which associates with an isotopy
class of an embedding /: M—R™ the equivariant homotopy class of the map F
made above. Then this correspondence is surjective if 2m>3(n+1) and bijective
if 2m>3(n+1) for any n-dimensional compact differentiable manifold M by
the theorem of A. Haefliger [5, § 1]. On the other hand, there is a one-to-one
correspondence between the set of the equivariant homotopy classes of equivariant
maps of M x M — A4 to S™! and the set of homotopy classes of cross sections of
the sphere bundle S™ !—(M x M —A4)x,S™ 1—>(M x M —A4)/Z,, where the re-
duced symmetric product M*=(M x M — 4)/Z,of M has the homotopy type of a
CW-complex X of dimension less than 2n (n=dim M). Therefore, the enumera-
tion problem of embeddings of an n-dimensional manifold M into R™ arrives at
the enumeration problem of cross sections of an S™~1-bundle £ over a C W-com-
plex X of dimension less than 2n.

Now, consider the case that m=2n—1, and let p: BO(m — 1)-BO(m)be the
universal S™ !-bundle. Then the enumeration of cross sections of an S™~!-
bundle £ over X is equivalent to the enumeration of liftings of the classifying map
& X—BO(m) of £ to BO(m—1). We construct the third stage Postnikov fac-
torization
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of p. Here p, is the twisted principal fibration, p, is the principal fibration and
g, is an (m+ 1)-equivalence. Since the dimension of X is less than m+ 1, the
enumeration of liftings of £ to BO(m— 1) is equivalent to the enumeration of lift-
ings to T bythe theorem of I. M. James and E. Thomas [11, Theorem 3.2].

From the above considerations, this paper is divided into three chapters.

In Chapter I, we study the enumeration problem of liftings of a map into the
base space of a certain fibration to the total space. In § I, the twisted principal
fibration is defined and the enumeration of liftings for this fibration is treated.
Further, we are concerned with the composition of two twisted principal fibra-
tions T—%s E—2, D under the assumption that it is stable (see §2). We describe
the set of homotopy classes of liftings of a map u: X—D to the composition pg: T
—D in Theorem A of § 2, which is a generalization of the theorem of I. M. James
and E. Thomas [12, Theorem 2.2] for principal fibrations. After preparing sever-
al propositions for the composition pg in §§3-4 without assuming the stability,
Theorem A is proved in § 5.

The purpose of Chapter II is to study the enumeration problem of cross sec-
tions of sphere bundles. In §6, we notice the cohomology H*(X; Z) with co-
efficients in the local system defined by ¢: n;(X)-Aut(Z). In §7, the third
stage Postnikov factorization (*) of p: BO(n — 1)—BO(n)is constructed, and we
show in § 8 that the composition of fibrations p, p,: T- BO(n)is stable in the sense
of § 2. From Theorem A and the fact that q,: BO(n — 1) T'is an (n + 1)-equiva-
lence, we have the following theorem in § 9.

THEOREM B. Let & be a real n-plane bundle over a CW-complexX of dimen-
sion less than n+ 1 and let n>4. IfE has a non-zero cross section, then the set
cross (€) of homotopy classes of non-zero cross sections of £ is given, as a set, by

cross(§)= H"1(X;Z) x Coker O,
where the homomorphism
0: H*(X; Zy— H"(X;Z,)
is defined by
0(a) = (p,@)w,(&)+ Sq?pa  for aeH" *(X;Z),
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P, is the mod 2 reduction, Z is the local system on X associated with & and
w,(&) is the second Stiefel-Whitney class of E.

Chapter 111 is devoted to an application of A. Haefliger’s theorem and Theo-
rem B on the enumeration problem of embeddings of n-dimensional manifolds
into R27~1, In §10, the set [M <R?2"1] of isotopy classes of embeddings of
n-dimensional closed differentiable manifolds M into R2#~! is described with
the cohomology of M*. As an application for the n-dimensional real projective
space RP", we calculate the cohomology group H2"~2((RP")*;Z) and the homo-
morphism @: H?#=3((RP")*; Z)-»H?*""1((RP*)*Z,), and we have the following
theorem in §§11-12.

THEOREM C. Let n#2"and n>6. Then the n-dimensional real projective
space RP" is embedded in the real (2n — 1)-spaceR?*"~1, and there are just four
and two isofopy classes of embeddings of RP" into R?*"~1 for n =3(4) and n#3(4),
respectively.

Chapter I. Enumeration of liftings in certain fibrations

§ 1. Twisted principal fibrations

Let Z be a given space. By a Z-space X=(X,/), we mean a space X together

with a (continuous) map f: X—Z. For two Z-spaces X =(X, f)and Y=(Y,g),
the pull back

XxzY={(x, ) |fx) =g} (=cXxY)

of fand g is a Z-space with (/, 9): Xx; Y-Z, (f, 9)(x, y)=f(xFg(y). A map
h: X—>Yis called a Z-map if gh=f, and a homotopy h,: X—Yis called a Z-
homotopy if gh,=ffor all «. In this case, we say that hy is Z-homotopic to h,
and denote by ho~ h; Further,

[X’ Y]Z

denotes the set of all Z-homotopy classes of Z-maps of X to Y.

Now, let B be a space (with base point *) and m be a discrete group, and as-
sume that ; acts on B preserving the base point by a homomorphism ¢: n—
Homeo (B, *). Then, considering the Eilenberg-MacLane space K=K(m, 1),
the universal covering K—K and the usual action of m on K, we have the fiber
bundle

(1.1) B — H»LfB) = Kx,B_4,K = K(r, 1)

with structure group m. Since K X, =K, we have the canonical cross section
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s: K—»K x, Bsuch that s(K)=K =K x .

In this paper, we consider the following situation.
(1.2) Let o act on an H-group® B by ¢ satisfyingthe following assumptions:
The multiplication u: Bx B—B and the homotopy inverse v. B—»B of B are m-
equivariant and there are m-equivariant homotopies

H(1g,c)=1p=p(c, 1p), u(uxlp)~p(lpx ) andu(v, 1p)~c=pu(ls, v),

where c: B—B is the constant map to *. Also, if B is homotopy abelian, we
assume in addition that there is a m-equivariant homotopy ut=~u, where t: Bx B
—Bx B is the map defined by t(x, y)=(y, X).

Then, for the K-space (L4(B), q) of (1.1), we can define K-maps

(1.3) py: Ly(B)xx Ly(B) > Ly(B), v4: Ly(B) — > LyB)
by
ps([X, 0], [X, b']) = [% u(b, fr)], ve([X, ft]) = [X, w(b)],

and there exist the following relations:

pe(1x sq)4 =g 1 =g py(sqx 1)4: Ly(B) » Ly(B),
Bty X D) g pg(1% pig): Ly(B)X g Ly(B)x  Ly(B)

He(vex DA =gsq =g pg(1xvy)A: Ly(B) — » Ly(B),

> Ly(B),

and

if B is homotopy abelian, where A is the diagonal map and ¢ is the map defined by

1x, y)=(y, x).
Therefore we have the following

> Ly(B),

LEMMA 1.4. Let X be a K-spacewith a map u: X—K. Then the homotopy
set [X, Ly(B)]lxof K-maps is a group with unit [su] by the multiplication

[/1 [9] = [us(fxg)4]1for K-maps f, g : X > Ly(B).

If, furthermore, B is homotopy abelian, then this group [X, Ly(B)]x is abelian.

Let p: E— A be a fibration with fiber F = p~1(x), and assume that p admits a
cross section s: (4, *)—(E, *). Then, we can consider the path spaces

*) The H-group is the homotopy associative H-space with a homotopy inverse.
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» E| X(0) e s(A),pA(0) = pA(t) for all tel},
QE = {Ae P,E|X0) = A1)},
and we have the following well-known lemma.
LEMMA 1.5.  The projection
r:P,E — E, r(2) = A1),
is a fibrationwith fiber QF. Furthermore,

pr: P,E > A

» Aand pr: QE

are fibrationswith fibers PF and QF, respectively, and they admit the canonical
cross sections induced by s, where PF={A:I-F | A0)= %} and Q2F = {1 € PF|(0)
=A(1)} are the ordinary path space and loop space of F.

By applying this lemma to the fibration q: Lg(B)—Kof (1.1), we obtain the
fibration

qr: QgL4B) » K, (qr)~'(») = QB,

admitting the canonical cross section s. On the other hand, the given homomor-
phism ¢: r—Homeo (B, *) induces the homomorphism

¢':n > Homeo (2B, *), ¢'(9) (D) (1) = ¢(g) (A1)

This determines by (1.1) the fibration

q': Ly(2B) »X,

with fiber 2B admitting the canonical cross section s’, and we have the natural
homeomorphism

Y: Ly(QB) = QeLy(B), (%, A]) (1) =[S, A(1)],

which satisfies gry=q’'. Also, the loop space QB is a homotopy abelian H-
group by the join V ofloops:

2,(21) 0<2t< 1

(44 Vlz)(t)=[
LQt-1) 1<2<2,

and the action of m on QB by ¢’ satisfies (1.2). Therefore, Lemma 1.4 shows that
the homotopy set [X, L4 (2B)]xof K-maps is an abelian group by the multiplica-
tion induced by V4. Furthermore, the above natural homeomorphism ¥ com-
mutes with Vg and the K-map
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V1 QgLy(B)xg QgLy(ByY—— QyL,(B)
given by the join of loops, and we have the following

LEMMA 16. The natural K-homeomorphism : Ly(QB)—QyLy(B) in-

duces an isomorphism
Vi [X, Ly(QB)]x —=> [X, QxLy(B)]k

Jor any K-space X, where the domain is the abelian group of Lemma 1.4 and
the multiplication in the range is induced by V mentioned above.

Also, applying Lemma 1.5 to q: Lg(B)—Kof (1.1), we obtain the fibration
r: PyLy(BY—— L4(B) with fiber 2B.

Now, let §: D> Ly(B)be a given map. Then, from this fibration, 8 induces
a fibration

p: E =Dx; PyL(B}Y— D (L = Ly(B)) with fiber 2B,

which is called the twistedprincipal fibration with classifying map 6.
Let u: X—D be a given map and consider the diagram

E  PxLy(B) QgL4(B)

P

X5 D2, L,(B) s K.
We define a D-map
1.7) m: QuLy(B)xyE——E

by the relation m(4,, (x, 4,))=(x, A; V4,), where V is the join of paths, and the
domain is the pull back of K-spaces (QL4(B),qr) and (E, gfp)and is understood
as a D-space (QgL4(B)xg E, pm,) (m, is the projection to the second factor in this
paper). Hereafter, we often write 4,V (x, 4,) for m(4,, (x, 1,)) simply. By con-
sidering a D-space X — (X,u) as a K-space (X,q0u), this map m induces a function

my: [X, QgLy(B)1x X[X, Elp » [X, E]p.

PROPOSITION 1.8. The function my mentioned above is an action of the
abelian group [X, QgLy(B)]x of Lemma 1.6 on the homotopy set [X, E]p.
If u:X—D has a liftingv: X—E, that is, if there is a D-map v: (X, u)—(E, p),
then the function my( , [v]): [X, QxLy(B)]1x—[X,E]p is a bijection.

PROOF. This is a straightforward modification of the case that p: E-»D
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is a usual principal fibration (cf. [12, Lemma 3.17).

§2. The main result in Chapter 1

Let B and C be H-groups with homomorphisms ¢(B):n(B)—Homeo (B, *)
and ¢(C):n(C)-»Homeo (C, *) such that they satisfy the assumption (1.2),
and let

44> L(A) = Ly 4(A)— K(4) = K(n(4),1)  (4=B, C)

be the fiber bundle of (1.1) with the canonical cross section s,. Consider the
following situation:

T
2.1) lE-——’—'—-» L(C) 2> K(C)
pl/

X—“,D_0, [(B) 4=, K(B).

Here p is the twisted principal fibration with fiber 2B induced from P L(B)
- L(B)by 0, ¢ is the one with fiber £C induced from Pg,L(C)—L(C) by p, and
it is assumed that

gep = pp-*

For a given map u: X— D, the homotopy set [X, T], of D-maps of the D-space
(X, u) to the D-space (T, pq) is the set of homotopy classes of liftings of u to T.
The investigation of this set is our main purpose of Chapter I.

From now on, we assume that C is a topological group.**) For the sim-
plicity,

» L(C) and ~': L(C)—> L(C)

n: L(C) X gy L(C)

denote the K(C)-maps 4cy and vy, of (1.3) induced from the multiplication and
the inverse of C.
Let

(2.2) mp: Qg L(BXg@f— E

x) In our applications of the later chapters, we are concerned with the case where K(C)=x.
For this case, L(C)=Cand ¢ is a usual principal fibration and the existence of such a
map p with gcp=pp is trivial.

**) This assumption gives neat formulas but essentially the same theory carries through in the
case that C is an H-group.
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be the D-map defined in (1.7), and consider the map

P1: Ly L(BX k£ » L(C)

defined by
p1(4, y) = n(pmy(4,y), [pmp(cz0y¥)1™ 1) for Ae QgL(B).yeE,

where c, denotes the constant loop at x. Then, p; maps E =sz(K(B))Xgp) E to
K(C) =sc(K(C)),and p,; is a K(C)-map, where Qygp)[L(B) Xk Eis considered
as a K(C)-space by the composition ppr, = qcpm,(m,is the projection to the second
factor). Therefore, we have K(C)-maps p, and 1 x p in the diagram

(QkwL(BXkn) E, E) 25 (L(C), K(C))
@2.3) [
(QK(B)L(B) Xk D, D) -4 (I(C), K(C)),

where Qg L(B) Xgp)Dis also considered as a K(C)-space by the composition
P,

Now, we say that the composition of fibrations T— 2 E— 25D in (2.1) is
stable, if there exists a K(C)-map d in (2.3) such that the diagram (2.3) is K(C)-
homotopy commutative.

Suppose that the composition pgq is stable by a K(C)- map d. From the fibra-
tion Qg L(B)—K(B)we obtain the fibration

fli, JXB) = Qg)(Qk@L(B)— K(B)

with the canonical cross section, by Lemma 1.5. Then, the map ¢ induces a
K(C)-map

(2.4) d': Qs LBXxD. D) — (2 L(CLK(C)
by the equation
d'(2,x) (0 = d(A(1),x) for Ae QfpL(B), xeD and te/.
For a given D-space X = (X, u), these K(C)-maps d and rf" induce two functions
0,: [X,QxmLB)]ke — [X, L(O)]kc)
> [X, QK(C)L(C)]K(C)a

given by 0,([a])=[d(a, u)] and O, ([b])=[d'(b,u)], where X is considered as
a K(B)-space (X,qg0u) and K(C)-space (X,pu). Here O, is a homomorphism
of groups by the definition of d’ and so Coker @} is defined. Set Ker ®,=6;!
([scpul). Then we have the following main theorem in this chapter, which is a

(2.5)
0,:[X, le((B)L(B)]K(B)
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generalization of [12, Theorem 2.2].
THEOREM A.  Suppose that the composition of the fibrations
T-2>E-2,D

in the diagram (2.1) is stable by the map d in (2.3). Let X be a CW-complex
and u: X—D admit a lifting X—>T. Then the set

[Xa T]D
of homotopy classes of liftings of uto T isequivalent to the product
Ker ©, x Coker 0,

where O, and O, are the functions of (2.5).

§3. Correlations

Consider the diagram (2.1) and let v: X—E be a lifting of u: X—>D. We
say that two maps ft, h’': X T are v-related if (1) gh =qgh'=v and 2) h is D-
homotopic to h’. The relation "v-related” is an equivalence relation, and if
v is D-homotopic to v’, then the set of v-relation classes is equivalent to the set
of v’-relation classes.

For n =[v]e [X, E]p, let N(n) denote the set of v-relation classes of D-maps
of Xto 7. Then

N(m) = qx'(n) and [X, Tlp = U{gx'()|ndX, Elp},
where q4: [X, T]p—[X,E]p. Thus we have the following

LEMMA 3.1 [12, Theorem 3.2]. The set [ X, T]pis equivalent to the dis-
Jjoint union of the set N(n), where n runs through the elements of [ X, E]p.

Since the set [X, E]p is equivalent to the group [X, Qg L(B)]k)by
Proposition 1.8, we study the set N(n) for each # G [X, E],, in the rest of this sec-
tion.

As is constructed in (1.7), there is a D-map

me: QK(C)L(C) X K(C)T »T.

This D-map m¢ induces an action of the group [X, Qx,L(C)Ixccon [X, T1p
by the same way as Proposition 1.8. It is easily seen that (1) if ft: X—>Tis a D-
map and if k, k': X = Qg ) L(Care K(C)-homotopic, then m(k, #) and m(k', ft)
are t-related, where v =gh, and (2) if k: X>Q,L(C)is a K(C)-mapand if ft,
ft': X—T are 1-related, then mc(k, ft) and mc(k, ft') are 1 -related. Hence, using
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Proposition 1.8, we see that the above action of /X, Q) l{C)]k(c, is transmitted

to a transitive action on N(n). We, therefore, have the following

LEMMA 3.2. Let n be the element in the image of q4: [ X, T]p—[X,E]p.
The set N(n) is equivalent to the quotient of T X,Qxc)L(C)1k(c) by the stabilizer
of an element of N(n).

Let p: E— A be a fibration with fiber F and let

QXE={A:1 » E| pA(t) = pA0) for all te I, A(0) = A(1)} ,

Q*F = {A: I— > F] (0)=A(1)} .

Then the following results are known and will be used later on.

LEMMA 3.3. Let r: QYE—E be a map defined by r(A)=A(1). Then r: QXE
—E is a fibration with fiber QF and pr: QXE—A is also a fibration with fiber
Q*F.

The map p: E-»L(C) in (2.1) induces a map
p't QpE —> QF ,)L(C),
which is given by p’(1) ()= p(A(?)), and there follows a commutative diagram
below,
QYE—r HE_ P2 ,D
A
Q% c)L(C) == L(C)— » K(C).

Therefore we have a commutative diagram

[X9 QEE]D_——N—) [Xs E]D
n

[X, QK(C)L(C)]K(C) i [X, Qz(C)L(C)]K(C) -5 [X, L(C)]K(C),

where i: Qg L(C)—=Q%,L(C)is the natural inclusion. We say that an ele-
ment 7 € [X, QkcyL(C)]k(cjs p-corr ‘elatedto n e [X, E]p if there is an element
x€ [X, QE]psuch that r.(x) =7 and p4(x) = ix(y)

LEMMA 34. Let h: X—Tbe a D-map and let v=qh. Suppose that k\h
=mc(k, h) is v-related to h for a K(C)-map k: X—>Qy,L(C). Then the class
of k in [X, QgicylC)]g(c)is p-correlated to the D-homotopy class of v: X—E.

LEMMA 3.5.  For a K(C)-mapk: X—Qy,L(C), suppose that the class of
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k in [X, Qkcyl(CO)k(c)yis p-correlated to the D homotopy class of v: X—E.
Then kN h is v-related to h for any lifting h: X—>T of v.

Combining Lemma 3.2 and Lemmas 3.4-5, we have the following

PROPOSITION 3.6. // ne[X, Elp lies in the image of qs:[X,T]1p—[X,
Elp, then the set N(n)=q3z'(n) is equivalent to the factor group of [X,
QxcyL(C)]x(c) by the subgroup of elements which are p-correlated to .

PROOF OF LEMMA 34. Let g,: X>Tbe a D-homotopy such that go=h
and g;=kVh and let g: X—>Q}E be a D-map given by g(x)(¢)=qg,(x) for any
xeX and tel. Then rg(x)=g(x)(13=qg9,(x)=v(x). Hence it is sufficient to
show that i,([k]) = p4([9]) in [X, Q) L(C)]kc) Let p: T>Pg,L(C) be the
map induced by p, which makes the following diagram commutative :

T -2, Pg,L(C)

| l

E—2 _,L(C).

Then there is a homotopy I;: X—Q§)L(C) (s e /) given by

Pg1+25-25%) (1/2) 0<2s<1
1(x) (1) ={
pg(x)(2s+t—st—1) 1<2s<2

which is a K(C)-homotopy between ik and pg. q.e. d.

PROOF OF LEMMA 3.5. Let g: X—Q}E be a D-map such that rg~pvand
p'9 >~k ik. Since QRE—E is a fibration by Lemma 3.3, we may assume that
rg=v. Let 7: Qg (C)-Lkc)l{C)be a K(C)-map given by t(A)(t)=Ai(1—1)
for all tel. Let fc': X— Q) L(C) be a K(C)-map defined by k'=phVp'gV
7(ph). Then ik’ is K(C)-homotopic to ly: X —Q¥ ) L(C) defined by

J Fh(x)(3t) 0<3t<1
Iox)(®) =< p'g(x)(3t—1) 1<3t<2

ph(x)(3—31) 2<3t<3.
Let I;: X—Q%c,L(C) be a K(C)-homotopy which is defined by

Io(x) (t+5s/3) 0<3t<1~-s
1L (x)(®) = ¢ lo(x)((t+5)/(1 +25)) 1-5<3t<2+s
Io(x)(t—s/3) 24+s<3t<3.
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Then 11(x) () =1lo(x) (1 +)/3)=p'g(x)(#) and so ix([k']) =pi([g]). Therefore,
there follows ik=,ik’ because in([k])=p%([g]) by the assumption. Let
fii X-Q%,L(C)be a K(C)-homotopy between k' and ik, and let /: X—
QkcyL(C)be a K(C)-map given by f(x)(t) =£(x) (0). Then it is easily seen that
KV f~cfVk ie, [KVfl=[fVEk] in [X, QkcL(C)]gc)y Because
[X, QkcyL(C)]k(c) is an abelian group by Lemma 1.6, it follows that [k]=
[k']. Therefore, we have

fc V phgcyfc'VPh =¢cy(ph VP'gV 1U(ph)) V phc)ph V p'g.

Let w: X— T be the map defined by w(x) = (v(x), (hV p’g)(x)). Then w is a lift-
ing of v and w is D-homotopic to (v, kV gh)=fcV A, i.e., w is v-related to fcv h.
On the other hand, let w,: X — T be a homotopy which is given by

wy(x) = (g(x) (1 —s), I(x)),
PRt +s)  0<2t<1+s

l(x)(1) =
plg(x)2t—1-s) 14+s<2t<2.

Then w, is a D-homotopy between w and A. Therefore, w is ¢ -related to 4 and so
kV A is 1-related to h. g.e.d.

§4. Compositions of twisted principal fibrations

Let p: E—D be the twisted principal fibration with fiber F (=QB) in the dia-
gram (2.1) and let

mpg: (QK(B) L(B) XK(B)EQK(B) L(B) xK(B)F)— »(E, F)
be the map of (2.2). Obviously, QgpL(B)xkp FFxF and mg: FXF—F
is the ordinary multiplication of F=QB. Consider the map
m: (% 5)L(B) Xk(s) E, Q% 5y L(B) Xg(8y F)— > (QBE, Q*F),
which is given by
mp(4,x) (0 = mp(A(t),x) for AieQ%pL(B), xeE and te/.

It is easily seen that QF g\ L(B)xgp, F=QF x F and my: QF x F-Q*F coincides
with the map defined in [10, Theorem 2.7]. Now, pr: Q}E—D is a fibration with
fiber 2*F by Lemma 3.3 on the one hand and on the other hand pm,: QZ,L(B)

Xk E—D (n, is the projection to the second factor) is a fibration with fiber
QF x F, and m makes the following diagram of fibrations commutative :
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QFxF < Q% L(B)Xxg E 252,

- .

Q*F = __, QXE ", D.

The map mjp: QF x F>Q*Fis a weak homotopy equivalence by [10, Theorem
2.7] and so is the map mfp: QF p,L(B) g E—Q}E,which is seen immediately
by using the homotopy exact sequences of fibrations and the five lemma. There-
fore the function

mg: [X, 'QIZ((B)L(B)]K(BYC [X,E]p

is a bijection for all CW-complex X, by [11, Theorem 3.2].
The K(C)-map p, in (2.3) induces a K(C)-map

P : ('QIZ((B)L(B)XK(B)Ea E) — » ('QK(C)L(C),K(C)) s
which is defined by

» [X, Q3E]p

P14, x) (1) = py(A(1), x).
Ifv: X—E is a D-map and a, b: X—>QZ ,L(B) are K(B)-maps, then the relation
Pi(aV b, v) = pi(a, v)V pi(b, v)
holds. Therefore the function
“.1 A(p, M): [X, Q) L(B) ]k — [X, QkicyLAO)Ik(cy
defined by
A(p, [v])([a]) = [p'i(a, v)],

is a homomorphism of groups. We consider also a K(C)-map

n": Qg cyL(C) Xg(c) L(C) > Q;(C)L(C) s
defined by the relation
n'(4, x)(t) = n(A(1), x) for A€ QkcC), xeL(C) and tel,

where n=pycy: L(C) Xgcy L(C)—L(C) is the induced multiplication of (1.3).
Because C is a topological group, the map n’is a K(C)-homeomorphism. There-
fore the induced function

ni: [X, ko AO) ko) % [X, L(O)]g(cy — > [X, Lk () IUAO) k()

is a bijection for any space X. By the direct calculations, we obtain
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n'(p'y, prmp)d = p'mp: Qf ) L(B) Xk gl —> Qf(c,)L(C),
where A is the diagonal map. This implies the following lemma.
LEMMA 4.2. There are thefollowing relations:
(1) rymp(B, n) =,
(2) p roi (B, ) = ni(4(p, 1) (B).pxn),
3) 1 [scpul) = iu(y).
Using the above lemma, we can prove the following

PROPOSITION 4.3.  Under the situation of (2.1), the conditions (i) and (ii)
are equivalent.
(i) The element n € [ X, E]p 18 contained in the image of q4: [X, T]p—[XE]lp
and y€ [X, Qgc)L{C)]k(cys p-correlated to n.
(i) The element n E[X,E]p is contained in px'([scpul) and y lies in the image
of A(p,n): [X, Q&5 L(B)lxmy~[X, Qxcyl(C)]k(c)-

From Lemma 3.1, Proposition 3.6 and Proposition 4.3, we have the follow-
ing

THEOREM 4.4.  Under the situation of (2.1), the set [X, T]p is equivalent
to the disjoint union of CokerA(p, n) of the homomorphism A(p, n) of 4.1), as n
runs through px'([scpul), where py: [X, Elp—[X, L(C)]k(c)

§5. Proof of Theorem A in § 2

Assume that the composition of fibrations T—2—- E—2 Din the diagram (2.1)
is stable by a K(C)-map d: (Qgs)L(B) xgs,D:D)—(L(C), K(C)),i.e., the follow-
ing diagram is K(C)-homotopy commutative :

(QkpL(BXxkm E, E) £ (L(C), K(C))

1xp
(g L(BXX gD, D) —% (I(C), K(C)),
where p, is the map defined in (2.3). Let
d': (Q%syL(B) xg@y D)D) —> (Qg(yL(C),K(C))

be the map induced from the map d by d'(4, x) (1)=d(A(t),x). Then the diagram
below is K(C)-homotopy commutative:
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(QIZ((B)L(B) Xk Es E) p—i> (QK(C)L(C): K(C))
1xp 1

(%@ L(B) Xk Dy D) < (2 yUC), K(C).
For any map u: X—D, there are two functions
0 : [X, Qkw L(B)Ik@) — [X, L(O)k(cy
0.: [X, Q&) LB)]k@ — [X, Lk, UO]k()»
which are defined by
O,[a]) = [d(a,w)], O [b]) = [d'(b, u)].

Ifu: X—>D has a lifting to E, then the homomorphism @/ is equal to the homo-
morphism 4(p, n) of (4.1) for any # e [X, E]p by the definition of 4(p, 1) and the
above commutative diagram. Therefore

Coker O, = Coker4(p, n) for any #n E[X,E]p.
Let n=[v]e [X, E]p. Then
@u([a]) = [d(a’ u)] = [pl(a9 v)] = [n(me(a’ U)9 me(ca(O)’ D)— 1)]

by definition. If v: X—E has a lifting to T, then [pmpg(c,), v)] is equal to the
unit [scpu]. Thus the function

pxmp( , n): [X, QK(B)L(B)]K(B) — [X, E], — [X, L(C)]K(C)

is equal to @,,ifu has a liftingto T. Since mg.( , n) is a bijection by Proposition
1.8, we see that pz!([scpu]) is equivalent to Ker ©,= @, 1([scpul).
The above argument and Theorem 4.4 complete the proof of Theorem A.

REMARK. We see easily that the function @, is also a homomorphism.

Chapter II. Enumeration of cross sections of sphere bundles

§ 6. Some remarks on the cohomology with local coefficients

The non-trivial homomorphism ¢: Z,—Aut(Z), where Aut(Z) is the group
of automorphisms of the infinite cyclic group Z, induces a homomorphism ¢: Z,
—Homeo (K(Z, n)) (n>1). As indicated in (1.1), there is a fibration

K(Zs n) - L¢(Za n) 45K :K(ZZ’ 1)’ L¢(Z, n) = L¢(K(Z’n)) s

with a canonical cross section s. A map u: X— K determines a local system on
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X which is given by ¢uy: n(X)->n(KFZ,—»Aut(Z). We denote the coho-
mology with coefficients in the above local system by H*(X; Z,.) or H*(X; Z)
simply. Notice that the following results.

PROPOSITION 6.1 [13, §1 and §3]. There is a unique element Ae HY(LyZ,
n), K; Z,4) such that i*i=,€ H(K(Z,n); Z), thefundamental class of K(Z, n),
where i: K(Z,n)—(Ly(Z,n), K) is the natural inclusion, and there is a natural
isomorphism

@: [X, A;Ly(Z, n), Klx—=> HY(X, A; Z,v)

for any pair of regular cell complex (X, A) and for any map u: X—K which is
defined by

&([a]) = a*(D).
If A is empty, this is the isomorphism

¢: [X, L¢(25 n)]K

> Hn(X Zu‘¢)5 ‘p([a]) = a*j*’L
wherej: Ly(Z, n)—>(Ly(Z, n), K) is the natural inclusion.

We say that the elements A and j*Jare the fundamental classes ofthe fibration
q: Ly(Z, n)»Kand we denote 4, j*1 and their mod 2 reductions by the same sym-
bol A, whenever no confusion can arise.

For a map u: X—K, consider the pull back of g: Lg(Z, n)— K by u,

K(Z,n) —5 Ly(Z, n)xg X ZL4(Z, n)

lnz lq

X u > K,

(m;is the projection to the z-th factor). Then i*n¥A =, follows immediately from
the relation i*A=¢,. Therefore, we see easily the following

LEMMA 6.2. Let vi H¥K(Z,n); Z,)-»H*(Ly(Z, ri)* X\ Z,) be the homo-
morphism of Z,-algebrasgiven by v(Sqlc,)=Sq'ly, where ¢, is the image of the
mod 2 reduction of the fundamental class ¢, of K(Z,n) and Ay =mn%le H'(Ly(Z,
n)Xg X; Z,). Then

v n3: HY(K(Z,n); Z,) @ H*(X;Z,)

» H¥(Ly(Z,n) xx X ;Z5)

is an isomorphism of Z,-algebrasind so any element x in H*(Ly(Z, n)xgx X;Z,)
is described uniquely in the form

x = 3 8Sq'Axn}a, a;eH (X;Z,).
13
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§ 7. The third stage Postnikov factorization of BO(n —1)—-BO(n)

Let p: BO(n—1)—BO(n)pe the universal S*~!-bundle (n>4). Our purpose
in this section is the construction of the third stage Postnikov factorization of
this bundle using the methods of J. F. McClendon [13] and E. Thomas [19].

Let ¢: n,(BO(n))=Z,—Aut(n,_,(S*"1))=Aut(Z) be the local system on
BO(n) associated with p: BO(n—1)-BO(n), and let s5,_; be the generator of
H»1(S"1; ZY=7. Then, by [13, Theorem 4.1 and §§2-3], there is a map
W:BO(n)—»Ly(Z,n) such that [W]e[BO(n),LyZ,n)]x=H"(BO(n);Z) is the
transgression image of s,-,, and we have a commutative diagram

St BO(n—1)

s"_ll i«u

QK(Z, ny—> E—— PyLy(Z,n)
n

1

BO(n) Y Ly(Z, n) -2 K,

where p;q;=p and p, is the twisted principal fibration induced by W. By using
the homotopy exact sequences of fibrations, we see easily that both maps s,
and ¢, are homotopically equivalent to the fibrations F—<»S*~1 *=-* y QK(Zn)
and F -5 BO(n—1)-2, E (cf. [19, § 1])and

0] for i<n-—1
7fi(F)=4
[ m(S* 1) for i> n.

Therefore q,: BO(n — 1)—Eis an n-equivalence.®  Since the generator of H*(F;
Z,) =Z, is transgressive for the fibrationq, : BO(n —1)—E, its transgression image
is a non-zero element p in H**(E; Z,) and there is a commutative diagram

F—» BO(n—1)
"
K(ZJ;, n)_> 11

P2

v
E "> K(Z,, n+1).

Here p,q,=q4, p, is the principal fibration with the classifying map p and it is
easily seen that g, is an (n + 1)-equivalence and q,|F represents the generator of

*) Amap g: X—>Y (X, Yare connected) is called an n-equivalence if g,: 7, (X)—r,(Y) is
isomorphic for i<n and epimorphic for i=n,
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H"F; Z,).

In the rest of this section, we concentrate ourselves on the characterization
ofthe map p: E-»K(Z,,n+ 1). Let

m:QKL¢(Z,n)XKE »F
be the action defined in (1.7) and set
(7.1) u = m(l x q,): QxL4Z, n)xxBO(n—1) — » E.

The map u# makes the following diagram commutative :

QxLy(Z,n) xx BO(n—1) £ E
b
BO(n—1) —2— BO(n).

The projection m, to the second factor admits a cross section s defined by s(x)
=(Cawpx)X)» Where ¢, is the constant loop aty, and the relation

(7-2). HS=Bom) 41

holds obviously. The local system =n,;(BO(n))=Z,—Aut(H{(K(Z, n—1); Z,))
on BO(n), which is associated with p,: E—BO(n), is trivial for /=n— 1 and hence
so for all i. Also H(K(Z, n—1); Z,)=0 for 0<i<n—1 and H!BO(n),BO(n
—1); Z,) =0 for i<n. Therefore, by the similar proof to [19, Property 4], we
see that the sequence

vvo— HY(QLJZ, n)xxBO(n-1); Z;) —°» H*1(BO(n), BO(n—1); Z,)

>

pUi*, Hi*I(E; Z,) 25 Hi*{(Q4Ly(Zn) xx BO(n—1); Z,)
- » H*%E;Z,)

is exact, wherej: BO(n)—(BO(n),BO(n — 1)) is the natural inclusion, and 7, is the
relative transgression. On the other hand, p*: H¥BO(n);Z,)—H!(BO(n—1);
Z,) is epimorphic for all 1. Also Ker p* is the ideal generated by the universal
n-th Stiefel- Whitney class w,. Since w, is the transgression image of s,_; of
p: BO(n — 1)-»BO(n),we have w,=1(c,_,) € Kerp¥, where T is the transgression
of K(Z,n—1)—<->E-2+,B0O(n). Thus we see that Ker p* = Ker p*. Therefore,
the same argument as in [19, Property 5] provides the exact sequence

(7.3) 0 — HY(E; Z,) 25 H(QgLy(Z,n) xx BO(n—1);Z,)

L, H*1(BO(n); Zs)
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for t<2n-2, where 7,=j*75. (7.2) and (7.3) imply that
(7.4 u* . Ker g¢ — » Ker s* n Ker 7,

is isomorphic in dimension less than 2n — 2.

By considering QgLy(Z,n) =L4Z, n— 1) by the natural K-homeomorphism
¥ of Lemma 1.6, there is an element Ago(,— ;) in H"1(QxL,(Zn)xx BO(n—1);
Z,) by Lemma 6.2 for the fibration QgL4(Z, n)xx BO(n - 1)=BO(n— 1) such that

i*ABo@-1)= tn—1, the mod 2 reduction of the fundamental class of K(Z, n—1).
Here the diagram

QK(Z,n) —is QuL4(Z,n)xx BO(n— 1) =2, BO(n—1)

| l I

QK(Z, n) ~E L2 BO(n)

implies that 7,(Agowm-1))=J*To(Aso(n-1)) =Ti*(Apon- 1)) = T(¢ Any ele-
ment x in H"* Y (QgLy(Z,n) xx BO(n—1);Z,) is described in the form

X = 3b+&;Apom-1)T3WT +82Ap0(m- 1yT3W2 +€359% Apon—1)»

where g;=0 or 1 for i=1, 2, 3 by Lemma 6.2. IfxeKers* n Kert,, then 0=s*x
=b. Because t, is an H*(BO(n);Z,)-homomorphism and t,Sq*=Sq't; by
[19, §3], it follows that

71(Aso(n- 1)”’5W%) = w,wi, ‘51(150(”— 1)“‘5“’2): w,W,
2 _ _
7,(Sq /150(n—1)) = Sq*w, = w,w,.

Hence Kers* n Kert, =Z, generated by Agg,-1,73w,+ Sq?Agou-1) and so the
map p: E—-K(Z,, n+ 1) is characterized by the relation

(7.5) U*p = Apom-1yT3W2+84%Ago—1) -
Summing up the above arguments, we have

THEOREM 7.6. The third stage Postnikov factorization of p: BO(n — 1)
—BO(n) is given as follows:

BO(n—1) 42, T

K |-
(1.7) v “E 2, K(Z,, n+1)
lpl

"BO(n) ¥ Ly(Z, n),
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where ¢: n(K(Z,,1)) =Z,—Aut(Z) is the non-trivial local system on K(Z,, 1),
p1 : E—>BO(n) is the twisted principal fibration induced by the map W,p,: T—E
is the principal fibration with classifying map p, q,: BO(n—1)—E is an n-
equivalence, q,: BO(n — 1) T isan (n + 1)-equivalenceand the map p is charac-
terized by the relation (7.5).

§8. The stability of the third stage Postnikov factorization of p:
BO(n—1)-BO(n)

There is a map
(8.1) d: (QkL4(Z, n)xg BO(n), BO(n)) — > (K(Z3, n+1), *),

which represents the element Ago( 3w, + Sq%Agoemyin H**1(QgL4(Z,n)xx BO(n),
BO(n);Z,), i.e., d*()=Agomn3w, + Sq2Apowm, Where ¢ is the fundamental class
of K(Z,, n +1). The relation

(8.2) (1 x py)*d*(e) = Agniptw, +Sq?ig e H* Y(QgLy(Zn) %k E, E; Z,)
follows easily. Let

p1:(QgLy(Zn) Xk E, E) » (K(Zyn + 1), %)

be the map given by the relation p,(k, y) =pm(k, y)- [pm(cioy ¥)17* (cf. (2.3)).
Then the following relation holds :

(8.3) p1() = m*p*()—n3p*() e H 1 (QxLy(mm) Xk E, E; Z5).

To see that the composition of fibrations T-22+ E-2t, BO(n) in the diagram
(7.7) is stable by the map d in the sense of § 2, it is sufficient to show that

(8.4) (m*-7n$)p*() = puapima E>
by (8.2) and (8.3). Now, consider the map # of (7.1). Then the diagram
H"™\(E; Z;) Z2, Hv\(QuLy(Zn) X E; Z5)
u J(lqu)*
Kerg¥ — & » H't Y (QgLy(Z, n) Xk BO(n—1Z,)

is commutative because (1 x g )*(m*—n%)(x)= (1 x q)*m*(x) — (1 x q,)*n%¥(x)
=u*(x)for any x in Kerg¥%. Therefore we have

(1 x g )¥(m* n%)p*(c) = p*p*(c) by p*()e Ker g%

= A’BO(n— HTsp*w, + qu)'BO(n—l) by (7.5)
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= (1xq)*(Agnipiw,+Sq%p).
Consider the following commutative diagram:
H"™ W (QuLy(Z,m) % E; Z;) <22 T2 HH(K(Zn—1); Z;)Q@HY(E;Z,)
(1xa0)" ll®'li
H"™ 1 (QgLy(Z, 1) xx BO(n—1);Z,) < FL ¥2 (H" (K(Z,n—1); Z,)®
HY(BO(n—1); Z,).

The horizontal maps are monomorphisms by Lemma 6.2.  Further g%: H(E;
Z,)-HY(BO(n-l1); Z,) is monomorphic for i <2 because ¢, is an n-equivalence,
and so the vertical map in the right hand side is a monomorphism. This result
and the above equality imply (8.4), and we have the following

PROPOSITION 8.5.  The composition of the fibrations T-22»E-2,BO0O(n)
in the diagram (7.7) is stable by the map d in (8.1).

§9. Enumeration of cross sections of sphere bundles

Let £ be a real n-plane bundle over a CW -complex X. If £ has a non-zero
cross section, cross (£) denotes the set of (free) homotopy classes of non-zero cross
sections of £ The space X is a BO(n)-space with the classifying map &: X —BO(n)
of £ Then the relation

cross (E) = [X,BO(n—1)]gowm

follows from [11, Lemma 2.2]. Ifthe dimension of X is less than n +1 and n >4,
then

[X, BO(n— 1)]30(;;) = [X, T]BO(n)

follows from [11, Theorem 3.2], because q,: BO(n—1)—Tis an (n + 1)-equiva-
lence. On the other hand, it follows from Theorem A of § 2 that

[X, Tlpom) = Ker O x Coker O%.

Here

O0,:[X. QL Zn)]x

» [X,K(Z;, n +1)] = H"" (X Z,) =0,

O}4:[X, Q2LAZ, Mg — > [X, QK(Zy, n + 1)] = fl(X; Z3),

and Ox[a])=1[d'(a,8)], where d': (QELyZ, n)xx BO(n),BO(n))—(QK(Z,, n
+ 1), %) is the map given by d'(a, x) (t) =d(a(t), x) (cf. (2.4)). Also,
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[X, QxLy(Z,rij], = H"'(X;Z),  [X, QRL(Z,n)]x= H""*(X; Z)

by Proposition 6.1, where Z is the local system on X associated with £ given by
the composition

(X))o n,(BO(n)) 2%~ 1 (K) = Z, —% Aut (Z), (K= K(Z,, 1)).
Now, we show that the homomorphism @}: H""%(X . Z)-»>H"(X; Z,)is
given by
.1 O:(a) = (p2a)w(&)+ Sq*pra,  for any, aeH" *(X;Z),

where p, is the mod 2 reduction and w,(&) is the second Stiefel-Whitney class of

¢
Let o/ € H(K(Z,n); Z,) be the fundamental class of K(Z,, n). Then

9.2) O([a]) = (a, O*d™()

for any K-map a: X—Q%Ly(Z,n). Consider the two commutative diagrams of
the mod 2 cohomology groups

Hi(K', *) — Z— » HI(PK', QK') < ' HI"Y(QK', %)
a* ~ ld,* ~ a*

H (Q'xyB, B) > H'(PyQ'x B, QxQ'xx B) > H"1(Q4Q'% B, B),

H™U(Q, K) 2 H™1(PyQ', Q@) > H™2(Q4Q', K)

i* i* i*

H"'(K") —Z— H"!(PK", QK") «—— H""2(QK"),

where K'=K(Z,, n+ 1), ' =QyLyZ,n), B=BO(n), K"=QK(Z,n) and d"
PyQ' x B—PK'is the map defined by the same equation d'(b, x)(¢)=d(b(?), x)
as (2.4). Since 6~ 'r*(¢,— 1) =¢,_,, We have

SUFA =2, ity =,

where Ae H*1(Q', K) and A’ e H"2(QxQ',K) are the fundamental classes of
the fibrations Q'—»K and QxQ'—K of Proposition 6.1 and Az=n¥ie H*1(Q’
Xg B, B), Ag=nfA" e H"2(QxQ' X B, B). Therefore, by the equation d*(c)
=Agn3w, +Sq%2p by (8.1) and 0 'r*()=¢, we have d'*(/)=0"1r¥d*(9)=
BEW, + Sq2 A= (ntA) (n¥w,)+ Sq2n$i’. This equality and (9.2) yield

O([a]) = (a, O*(711) " (nw,) + Sq>ntA’)
= (a*X)(&*w))+Sq2a*X'.
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Therefore, the homomorphism O%: H"?(X;Z)-»H"(X;Z,) is given by

xa) = (p2a)w,(8)+Sq?p,a

by Proposition 6.1, where w,(£)is the second Stiefel-Whitney class of £ and p,
is the mod 2 reduction.

From the consideration made above, we obtain the following

THEOREM B. Let & be a real n-plane bundle over a CW-complexX of dimen-
sion less than n+ 1 and let n>4. IfE admits a non-zero cross section, then the
set cross (&) of homotopy classes of non-zero cross sections of € is, as a set, given
by

cross (§) = H* 1 (X Z) x Coker 0,
where ©: H"2(X;Z)-»H"(X; Z,) is defined by
0(a) = (p2a)w(&)+ Sq?p,a, for aeH"%(X;Z),

P, is the mod 2 reduction and Z is the local system on X associated with E.

Chapter III.  Enumeration of embeddings

§ 10. Enumeration of embeddings of manifolds

Let M be an n-dimensional differentiable closed manifold. Let M* be the
reduced symmetric product of M obtained from M x M — A (A is the diagonal of
M) by identifying (x, y) and (y,x) and let 5 be the real line bundle over M*
associated with the double covering M x M—A—M*. Then the set [M < R2r1]
of isotopy classes of embeddings of M into the real (2n — 1)-space R?"~1 for n>6
is equivalent to the set of homotopy classes of cross sections of the S2"~2-bundle
(M xM—4)x;,S?""2>M* by the theorem of A. Haefliger [5, §1]. Because
this bundle is the associated S2"~2-bundle of (2n — 1)y, we have

[McR?"1] = cross (2n—1)n).

Since M* is an open 2n-dimensional manifold, there is a proper Morse function
on M* with no critical point of index 2n by [15, Lemma 1.1], and so M* has the
homotopy type of a CW-complex of dimension less than 2n by [14, Theorem
3.5]. Therefore we have the following proposition from Theorem B of §9 and
the fact

wa@n=1m = (251 w2
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PROPOSITION 10.1. Let n>6and let M be an n-dimensional differentiable
closed manifold which is embedded in R?*"~1, Then the set [McR?*"1] of
isotopy classes of embeddingsof M info R2"~1 is, as a set, given by

[McR2"1]= H2""2(M*; Z)x Coker O,
where the homomorphism

> HH(M*; 2))

©:H?"3(M*; Z)
is given by
_(2n-1 2 2
Oa)=( ", " )wi(m)?p,a+Sq*p,a,

wi(n) is the first Stiejel- Whitney class of the double covering M x M— A— M*
and Z is the local system on M* defined from this double covering.

COROLLARY 10.2. In addition to the conditions of the above proposition,
we assume that H (M ; Z,)=0. Then we have

[MCR2n—1] —_ H2n—2(M*; Z)

PROOF. Because H,(M; Z,50, we have H,(MxM, 4; Z,)=0 by the
exact sequence of the pair (M x M, 4). The Thom-Gysin exact sequence

— SH2"" Y (M xM—A4Z,) »H2= Y (M*;Z5) »H2"(M*; Z5) (=0)

and the Poincaré duality H2"" (M xM—A4;Z,)=H,(M xM, A; Z,) (=0) yield
H?2"Y(M*;Z,)=0, which implies that Coker @=0.
REMARK. There is a description in [6, 1.3, ¢, Théoréme] that
H"2(M; Z) ifn—1 is odd
[M cR2"1]=H2"-2(M*; Z) =

. H""?(M; Z,) ifn—1 iseven,

under the assumption H{(M; Z)=0.

§ 11. Enumeration of embeddings of real projective spaces RP"

Our purpose in this section is to prove the following

THEOREM C. Let n#2" and let n>6. Then the n-dimensional real pro-
Jective space RP" is embedded into the real (2n—1)-spaceR?"~1.  Furthermore,
the cardinality #[RP*<R?"~1] of the set [RP*<R?"1] of isotopy classes of
embeddings of RP" into R?"~1! is given by
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4 nZE34)
#[RPn c R2n- 1] —_
2 otherwise.

The first half of this theorem is shown in [I, Theorem 1] for even » and in
[9, Theorem 1.1] for odd n. Thus we concentrate ourselves on the study of the
set [RP"<R2"~1], Let # be the real line bundle associated with the double cover-
ing RP"x RP"—A—(RP")*. Then the set [RP"<R?"~1]is equivalent to the
set cross (2n—1n)(cf. § 10).

In [8, (2.5-6)],

(11.1)  there is a commutative diagram of the double coverings

Vas1,21(Z2+ Z3) = Zy1y,, L5 RP"X RP"— 4

| 1

Var1,2/Ds — SZ,yq 5 L (RP)*,

where V, ., ,is the Stiefel manifold of 2-framesn R™*!, D, is the dihedral group
of order 8, both mapsfandf’ are homotopy equivalences and both spaces Z,. , ,
and SZ,+, 5 are (2n — 1)-dimensional manifolds.

The mod 2 cohomology of (RP")*(and so SZ, ) is calculated by S. Feder
[2], [3] and D. Handel [§] and is given as follows:

(11.2) Let G,y be the Grassmann manifold of 2-planes in the real (n+ 1)-
space R"*1.  Then the mod 2 cohomology of G, 1, isgiven by

H*(G,, 1,25 Z,) = Z,[x, y1/(ay, ap+1),

where degx=1, degy=2 and a,=Z\ r,_ /x"‘z"y" (r=n, n+ 1),and there is a

relation

x2iyn=i=1£ 0 jfand only if 1=2t—1 for some t.

H*((RP™)*; Z,) has {1, v} as a basis of an H¥(G,+14; Z,)-module, where ve
HY((RP™)*; Z,)is the first Stiefel-Whitney class of the double covering RP"
X RP"— A—(RP™* and there are the relations

Vv =wvx,Sqly=xy and x*"'"1=0 for n=2"+s,0< s <2".
By the Poincaré duality and (11.1-2),

(11.3) HY((RPM*;Z,) (n=2"+5,0<s<2") for 2n—-3<t<2n—1 are given
as follows [20], [21]:
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! H'((RPM*; Z,) basis
2n—-1)| Z, px2"t -2y
2n=-2 | Z,+Z, Ux2”+"‘3ys’ x2"”—2ys
2m=3| Zy+Z,+Z, | ox Iy, x2Sy, px2rtis2yee

To apply Proposition 10.1, we must study the cohomology groups H((RP")*
Z) (i=2n-2, 2n—3) with coefficients in the local system associated with the
double covering RP”x RP"—A—(RP™)*,

Let p,: H{(RP")*; Z)—~ H(RP")*;Z,) be the mod 2 reduction.

LEMMA 11.4. Let n=0(2). Then H?*"~2((RP")*;Z)=Z, and p,H?n"3
((RPM*; Z2)=2, + Z, generated by {vx? "'~4ys,px2""'-2ys=1},

LEMMA 11.5. Let n=1(2). Then H?*""2((RP"*;Z)=2Z, and p,H?*"3
((RP™Y*; Z)=2Z,+ Z, generated by {vx?""'~4ys4x2""'=3ys px2"*1-2ps=1},

The proofs of Lemmas 11.4-5 will be made in the next section and we go on
proving Theorem C. By Proposition 10.1,

[RP*<=R?m=1] = H2"=2((RP")*; Z) x Coker O,
where
0: HA3((RP")*; Z)— H*"(RP"*; Z2), 0(@) = Sa*paa+(>"y Do2psa.
Now, there are relations

Sq*(ox2"" "2yl = (s—1)ox2"" 12y,
Sq2(vx2 " 1-4ys)= (s +( 5 ))vxz” 1=2ys
Sq*(x*""'"2y$) =0,

which are easily seen by using (11.2) and the fact Sq2(y")= ty'“+(§)x2y'.
Therefore we have )

(qu+<2n2—1 >vz>(vx2'”“2ys‘1) —
.0 n=1(2),

vx2" - 2ys n=0(2)

_ vx2 -2y n=1(4)
(qu"‘(znz 1)"2>(l’xz'”“‘y‘+x2”"3)")= o 3@
n= .
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From Lemmas 11.4-5 and (11.3), these relations show that
(Z, n = 34
Coker O =
[0 elsewhere.

Since H?"~2((RP")*;Z)=2Z, by Lemmas 11.4-5, we have Theorem C.

§ 12. Proofs of Lemmas 11.4-5

There are two exact sequences of cohomology groups associated with the
double covering RP" x RP"—A—(RP")* (cf. [17, pp. 282-283]), which is called
the Thom-Gysin exact sequence :

(12.1) .- »H"Y(M*; Z)>H(M*; Z)>H M x M —A; Z)->H{(M*; Z)->---,
<« HI=Y(M*; Z)->H'(M*; Z)->HMxM—4; Z)-»H'M*; Z)>---,
where M=RP". Moreover, there is the Bockstein exact sequence [18]
(122) -—- > tf-KM*; Z,) -£2, Hi(M*; 7) =2, H(M*; Z)
22, Hi(M*;Z,) £2,.... (M =RP"),

associated with the short exact sequence 0 — »Z-X2,Z-22,7, — »0. The
homomorphism f, is called the twisted Bockstein operator, and by [4] and [16],
the homomorphism p,f,: Hi=1((RP")*; Z,)—H!(RP")*; Z,) is given by

(12.3) p2Bs(@) = Sqla+va  for aeH"'(RP")*;Z,),

where v is the first Stiefel-Whitneyclass of the double covering RP"x RP"— A
—(RP")*, .
From nowon, setn=2"+s, 0<s<2".

PROOF OF LEMMA 11.4. Since n is even, the space SZ,. , is an orientable
(2n — 1)-dimensional manifold by [2, § 3] and so it follows that

H2"Y(S8Z,41,2;Z) =2,
H2"2%(8Zy 41,25 2Z) =H\(SZ,11,,Z) = D4/[Dy, D] = Z,+ Z,.

Since the total space Z,;,, is also orientable and ©4(Z,+; ,) =Z, + Z,, the follow-
ing relations hold:

H*YZy112:2)=2, H?*2%(Z,,,2;2)=2,+2Z,.

Hence (11.1) and the Thom-Gysin exact sequence (12.1) give rise to the two exact
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sequences
Z,+Z,»H*Y(RP")*; Z)-»Z—~Z-0,
Z,+Z,~>H*""*(RP")*; Z)>Z—~Z~H?*""'((RP")*; Z)-0.
A simple calculation yields
(12.4) H2"2(RP"*;Z) =2, or Z,+Z, or O.
On the other hand, there are relations
p2Ba(x¥7 1 72y) = vx¥ 12y,
Pzﬁz(x2'+ 1—3ys) = x2r+1—2ys+ vx2t 1—3ys’
P2Ba(x¥ Iy = xS, By (xR = ox 2Ty,
by (11.2) and (12.3) since n is even. Consider the Bockstein exact sequence (12.2)

—--- »H?"3((RP")*;Z) 22 H?"3((RPM*;Z,) L2, H"2((RP")*;Z)

> oo

X2, {2n-2((RP")*;Z) -2, H2"~2((RP")*Z,)

The last three relations of the above and (11.3) show the last half of Lemma 11.4.
Also, the first two relations of the above show that the image p,H?2?"~2((RP")*;
Z)=2Z, generated by x2""'~3ys+ px2"*'-3ys. Therefore we have the first half
of Lemma 11.4 by the above Bockstein exact sequence, (11.3) and (12.4).

PROOF OF LEMMA 11.5. Consider the Bockstein exact sequence (12.2)
H?"3((RPM*;Z) 225 H?"3((RP")*;Z,) 22 H"2((RPM)* Z)
X2, H2n=2((RP™* Z) -2z, H?""2((RP"* Z,) .
Since » is odd, there are relations

p2Ba(x?172y%) = vx27T 2y,
P22 (x?77173ys) = X273y,
pzﬁz(vxzrﬂ—ays—l) = px2"* 1—2ys—l’
PaBa(x?77174ys) = px 2T IT4ys 4 x 273y,

by (11.2) and (12.3). Therefore, the lemma can be proved in the same way as
the proof of Lemma 114, by using the Bockstein exact sequence (12.2) and
(11.3).
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