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The notion and properties of the nuclear operators on Banach spaces, first
given by A. Grothendieck [2], have been generalized in various ways and many
investigations have been developed on these operators and on ideals consisting of
these operators ([5], [9], [1], [6], [7], [3D).

In [8] (resp. [7]) the p-nuclear (resp. (p, q)-nuclear) operators which, on
Hilbert spaces and in case of p=1 (resp. p=¢g=1), are identical with the classical
nuclear operators, were discussed. In [1], J. Cohen dealt with another kind
of p-nuclear operators which, on Hilbert spaces are also identical with the
classical nuclear operators. All these investigations were done under the as-
sumption that 1=Sp=<oo0. On the other hand, recently in [5], [6] and [3] the
p-nuclear operators and the spaces LP and /P in case of O0<p<1 have been
studied. The aim of this paper is to define the (p, g)-nuclear and (p, q)-
quasi-nuclear operators in case of O<p<1,0<g=<oo and to develop their
properties.  Thus the present paper is partly the continuation of our previous
work [7] concerning the (p, g)-nuclear operators in case of 1 <p< .

In [10] A. Pietsch defined many kinds of s-numbers of operators and dis-
cussed the interrelations among such numbers. On the other hand, in [3] C.
H. Ha investigated the properties of some of these s-numbers and clarified the
relations between the approximation numbers (resp. the Gelfand numbers) and
the quasinorm of a p-nuclear (resp. p-quasi-nuclear) operator in case of 0<p<1.
It is the second aim to extend these Ha’s results to the case of (p, g)-nuclear and
(p, q)-quasi-nuclear operators.

In Section 1 we recall the definition and some properties of the Lorentz
sequence space /74 for our later use. Among other things, the Hardy, Littlewood
and Podlya’s lemma (later Lemma 3) cited there will be frequently used for the cal-
culations of the quantities of /?-9-quasi-norm. We shall there define the (p, q)-
nuclear and (p, g)-quasi-nuclear operators in case of 0<p<1, 0<q=< o0, which
differ in form from those in case of 1<p=<oo, 1<q= 0 (cf. [7]). And we
define also the operators of type S4?2 and of type SZ¢) by making use of the
approximation and Gelfand numbers respectively. Section 2 is devoted to the
investigation of the operators defined in Section 1 and the classes of such operators
as operator ideals. In the final Section 3, following Pietsch [9] and Ha [3]
we shall show that in case of 0<p<1, p<q= o0 the operator of type S5?? (resp.
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Sgel) is (p, g)-nuclear (resp. (p, q)-quasi-nuclear).

1. Preliminaries

The concrete description of the Lorentz sequence space in literature, especially
in case of 0<p<1, seems to be very little. Therefore we first recall the notion
and some properties of the Lorentz sequence spaces /P-4 which will be frequently
used in the following.

DerFINITION 1. For 0<p< oo,0<g=<o0, the Lorentz sequence space
[7:q or I(p, q) is defined as the collection of the sequences A={A;};<i<€Co
such that

0

(. i‘l/l’—ll,lil*q)l/q if g < oo,
” {/li}”lp.q: = i=1
sup it/7|;|* if q=o0,

1]

is finite, where |4;|* denotes the j-th term in the non-increasing rearrangement of
the sequence {|4;]}. In the following, unless otherwise stated, we are supposed
o0

to replace (> i9/P=1|A;|*9)1/2 by supil/p|4,|* when g=o0.
=1
LemMA 1 ([4]). For O<p=Zoo,0<qg=o0, [?1 is a quasi-normed space
with respect to | * | ip.a-
LeMMA 2. (i) If O<p=Zo0 and 0<q,<q,< o0, then

/psd1 < [p:42

and

IAllp.a, £ CllAl1p.a, for each Ael™*1,

(i) IfO<p,<p,=o0 and 0<q,, g, < 0, then

[P1,91 < [P2:492

and

IAlipy00, = CllAll1p,.a, for each AelPr-a1,

Here C stands for a positive constant depending on the parameters p,, p,,
q, and q, and independent on A.

This is a direct consequence from the result concerning Lorentz sequence
spaces /?:7 obtained by the interpolation theory of Banach spaces (e.g. in [4]).
However, since the interpolation theoretical discussions are usually applied to
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the Lorentz spaces L?:7 of functions, we here give the proof.

ProofF. We first note that by Definition 1 the assertion (ii) in case of g, =q,
is clear and (i) was proved in [4]. These two results combined together yield
the assertion (ii) in case of 0<p, <p,=< 00, 0<q,=q,< 0. Therefore it remains
for proving (ii) to show (ii) in case of 0<p,<p, <00, 0<g,<q;<o0. In this

case, noting ¢q,/q,>1 and putting q,/p,=4q,/p; —¢ with an ¢>0, we have, by
Hoélder’s inequality,

Ziqz/pz-l | A;] *a2
i
= Z(jqz/qn-l-s)(iqz/px-qz/qn Mil*qz)
i
< (Zl/ilﬂl(l“qz/m)) l-qz/qx(zl‘hlm—l l,{d*qn)qz/qn
i i

< 400
which completes the proof.

LeMMA 3 (Hardy, Littlewood and Polya, cf. [7]). Let {c¥} and {*c;}
be the non-increasing and non-decreasing rearrangements of a finite sequence
{ci}1si<n Of positive numbers, respectively. Then for two sequences {a;},<i<n
and {b;}, <;<n of positive numbers we have

2at-*b; = Zab; = Yaf- bt

We here note that if the right hand side is convergent in these inequalities,
these hold in case of infinite sequences too.

We now need to remember the following three types of s-numbers of operators
on Banach spaces ([10]).

Let E be a normed or quasi-normed linear space, and || - || denotes its norm
or quasi-norm in E. The set of all bounded linear operators from a Banach space
E into a Banach space F is denoted by L(E, F) equipped with the usual
bounded operator norm ||T||—Isup [Tx||. We denote by L(")E, F) the sub-

space of L(E, F) of operators T of rank (T) (=dimension of the range of T)<n.

DEeFINITION 2. For each operator TeL(E, F) and for i=1, 2,..., the

approximation numbers o/T), the Gelfand numbers S,(7T) and the Kolmogorov
numbers y,(T) are defined by

o(T): = inf{|T— A|: Ae LYXE, F)},
B{T): = inf{||T|M|: M is a subspace of E, codimM < i}

and
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y(T): = inf{||QFT|: N is a subspace of F, dimN < i}

respectively, where T|M denotes the restriction of an operator T to M and Qf%
denotes the canonical map of F onto F/N.
For the general properties of these s-numbers we may refer to [5] and [10].
By making use of these s-numbers we define the following classes of operators
generalizing those in [5] and [10].

DEeriNITION 3. For 0<p, g < o0, we define

Serr(E, F): = {Te L(E, F): {o(T)} €179}

and

S8eUE, F): = {Te L(E, F): {f{T)} elr-4}
and we put

ap(T) = [{2T)}l1p.a  for TeSgrp
and

by (T) = {B(D)}1ra  for TeSge

DerINITION 4. For O<p<l1,0<g=< oo, the operator Te L(E, F) is said
to be (p, g)-nuclear, if T can be written in the form

@)) Tx = §Ai<x, X;>y; for each xekE,
i=1

with x} € E’ (the dual of E) such that |x}|g=1, y;€F such that |y;| =1 and
{A;} elpa.

The operator Te L(E, F) is said to be (p, q)-quasi-nuclear, if there exist
a sequence {i;};<i<, Of positive numbers and a sequence {x;}<E’ such that
{u;yelrq, |xi| =1, i=1, 2,... and the inequality

@ - 1Tl < 3wl <x, xi>|

holds for each x € E.
The collection of the (p, g)-nuclear (resp. (p, q)-quasi-nuclear) operators is
denoted by N, (E, F) (resp. N2 (E, F)) and we denote

vl’,q(T) = inf||{A;} | 1p.4
(resp. vgsll(T) = lnf" {”i}”lr-q)a

where the infimum is taken over all {4;} (resp. {y;}) satisfying (1) (resp. (2)).
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REMARK. The (p, g)-nuclear and (p, q)-quasi-nuclear operators for 1<
pL 0, 1£qg<0 were defined and investigated in [7]. However we can
not leave the definition untouched in case of 0<p<1, since then the Tx doesn’t
converge (cf. [7]). Therefore following [S] we define as above the (p, q)-
nuclear and (p, q)-quasi-nuclear operators in case of 0<p<1 so that the series
(1) of Tx converges. The definitions coincide with those in [5] and [3] when
p=q.

In this paper we deal with only the case 0<p<1 as far as the (p, g)-nuclear
and (p, q)-quasi-nuclear operators are treated.

2. Ideals of operators N, ., N¢

pogs N9, 4 S2PP and S5}

In this section we mainly investigate the properties of N,

N2 g S3Pg and
Sgeq as the ideals of operators (cf. [10]). We begin with

ProrosITION 1.  Assume O<p<l1 and 0<q=Zo. Then, for each T
€N, [(E, F), the series 3 ;<x, x;>y,; in (1) is convergent. Especially when
i=1
0<p<1 and p<gq, the inequality

(Tl = CpgvpoT)
holds for each Te N, (E, F), with a positive constant

1 if 0<p<l1, psqg=l,

(T it ma)eif 0<p<1<g,ljg+ljg =
i=1

ProoF. By the definition of Te N, (E, F) we have

0
Tx = Y A,<x, Xi>y; foreach x€E,
=1

with [xjll =yl =1 and 3 i9/7=1|3]*¢ < oo,
i=1
We first deal with the case of g<p. We here remark the fact that if {a;}

is a monotonically decreasing sequence of positive numbers and Z a;< oo, then

limia;=0. By this remark we have limi%/?|};|*?=0, whence |/1|*=0(1“/P)

i—00 i—w

with 0< p<1, and therefore we have

ITxl = X 1Al lIxl = X 14*]x] < co.

Next we assume O0<p<1 and p<q. Then we have
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I Tl < Ix1 X [A4d*
0
(X it/ x| if O<p<l,p=sqsl,
i=1

S (3 /e tpay e (3 jale=t| 1, %yt x|
i=1 i=1
if 0<p<l<g,l/qg+l/qg =1.

Accounting (1/g—1/p)q’ < — 1, this completes the proof.
By Definitions 3 and 4 and by Lemma 2, the next proposition is easily proved.

So the proof is omitted.
ProrosiTION 2. (i) IfO<p<1and 0<q,<q,=< 0, then

N, (E,F)<= N, . (E, F) (resp. N2, (E, F) = N2, (E, F))

and
Vpao T) S Cv, 0 (T)  (resp.v2,,(T) £ Cve , (T))

for each TeN, ,(E, F) (resp. Te N , (E, F)).
(ii) IfO0<p,<p,<1and 0<gq,, g, <0, then

(E, F) © Ny, 0(E, F)  (resp. N§, 4, (E, F) = N2, ,,(E, F))

Phql

and

va,qz(T) é CvPls‘Il(T) (resp va qz(T) s CvPl ql(T))

for each TeN,, , (E, F) (resp. Te N¢, , (E, F)).
(iii) IfO<p=o and 0<q,<q,< 00, then

Serp (E, F)  Sare (E, F)  (resp. Ss¢! (E, F) < Sgel (E, F))

Psq1 pP,q2
and
a,.(T)=Ca,,(T) (resp. b,,(T)<Cb,,(T))

for each TeSgr? (E, F)(resp. Te S8 (E, F)).

pP,q1
(iv) If0<p,<p,<o and 0<q,, g, <0, then

Sger, (E, F) = Sger, (E, F)  (resp. S§¢', (E, F) < Sg¢!,(E, F))

P1,491 P2,92
and

(M= Cap, q‘(T) (resp. bpz,qz(T) = Cbpin.qx(T))

Pz q2
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for each TeSgre, (E, F) (resp. Te S4¢!, (E, F)). Here C stands for the same
constant in Lemma 2.
Next, we shall show that the classes N,,, N2, Sa?? and S

pas N2 o ge! make the
linear spaces. Since it is obvious that the scalar multiples of the operator belong-

ing to each class belong to the same class, it remains to show the following

PropPosITION 3. (i) Let 0<p<l,0<g<oo. If Ty, T,eN,[(E, F)(resp.
N¢ (E, F)), then T;+T,eN, (E, F)(resp. Ng (E, F)) and

vp,q(Tl + TZ) é Cp,q{vp,q(Tl)+ vp.q(TZ)}

(resp' vg,q(Tl + TZ) é Cp,q{vg, q(T1)+v1?,q(T2)})’
where C, =max(2!/p=1, 21/a=1 21/p=1/4),
(i) Let O0<p=o0,0<q=o0. If T, T,eSePH(E, F) (resp. Si¢YE, F)), then
T, + T, € Se2(E, F) (resp. S§¢)(E, F)) and
ap,q(Tl + TZ) é C;,q{ap,q(Tl)'*'ap,q(TZ)}

(resp' bp,q(Tl + TZ) é C;:,q{bp,q(Tl) + bp,q(TZ)})s

where C), ,=max(2, 22/4=1, 2Up=1/a+1 21/p+1/a=1)

Proor. (i) We shall show this by making use of the same way as in

the proof of Theorem 1 in [7]. By the definition, for any ¢>0 and k=1, 2, T,
can be written in the form

0
Tx = i‘_‘,_'_:l i <Xy X i > Vi
with lxk,ill = il =1
and

o0
i;]iq/P*")Lk’i‘*q < {vp,q(T;()+8}q,
where |2, ;|* denotes the i-th term in the non-increasing rearrangement of

{IA4il}1<iso- Now, let N be any positive integer and let |4, be the n(k, i)-th

term in the non-increasing rearrangement of {|4, |, |2,,|},<i<y. Then we have

2 N
S 2 nlk, et e

k=1

2 N
S 3 Qimk+ D@l * if gz p (by Lemma 3),

lIA

2 N
DI L W if g<p,

k=1i=1
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2 N
< max(29/p-1,1) Y Y jalrm1|], >
k=1i=1 ’

< max 9771, DI, (T +8)4+(v,,(T2) +8)9} .
We here note the inequality
(E+m* = {max(2*~1, DIE+n%)

for any &, n=0 and a>0.
By making use of this inequality and considering that ¢>0 and the integer
N >0 are arbitrarily taken, we get

Vpo(T1+T3)
< max (21/7=1/9, 1)- max (21/971, 1) (v, (T + v, (T2))
= Cp(vp,(T1)+,,(T3))

2

0
with C, ,=max(2!/p~1 21/a=1 21/p=1/4), On account of (T;+ T,)x= >
k=1 i=1

A <X, Xj ;> Yy this completes the proof in case of Ty, T,eN, .
In the same way, by making use of the definition of the (p, g)-quasi-nuclear
operator we can show that if T}, T, € N2 (E, F), then T, + T, e N2 ,(E, F) and

V,?, q( Tl + TZ) é Cp,q(vp?, q(Tl) + "g, q( TZ)) .

(i) We next assume that 0<p<o0,0<q=<o0 and T,, T,€S%2(E, F). We
notice that the sequences {a(7T)} and {B(T)} are non-increasing and they are
the additive s-numbers (Theorem 9.5 in [10]), that is,

%4+ j-1(Ty+T) £ a(T)+a(T,) and B, ;_ (T, + T2) S AT+ BAT),
ij=1,2,...

Therefore we have

i 197~ 10 (T, + T,)*
=
< max (2, 29%) i 9Pty (T + T)*
=1
< max (2, 297) 3 19/7~1(a(T;) + o(Ty))8
<1

< max (2, 297)max (241, 1) 3 {47~ {o (T, +a(T3)9} .
i=1

Hence we obtain
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ap,q(Tl + Tz)
< max (2174, 21/P)max (217114, 21471 {a, (T,) +a, (Ty)}
= C;’,q{ap.q(Tl) + ap,q(TZ)}

with C), ,=max (2, 22/471, 21/p=1/a*1 21/p*1/q=1)
In the same way, we can show that if T, T, e S§¢)(E, F), then T,+ T, e
Sgei(E, F) and

bl’,q(Tl + TZ) é C;:,q{bp,q(Tl)+ bp,q(Tz)} .

This finishes the proof.
For completing the proof that the classes N,, N2, SsP? and Sg°} make
the ideals of operators in L it is sufficient to show the following

_ProrosiTION 4. Let E, F, G and H be Banach spaces and let Re L(E,
F), SeN, (F, G) (resp. N2 ,(F, G), Sgre(F, G), S§ei(F, G)) and TeL(G, H).
Then we have

TSRe N, (E, H) (resp. N¢ (E, H), S3X(E, H), Sg¢{(E, H))
and
Vol TSR) Z 1T - v,,4(S)- IR
(resp. v8 (TSR)S|T| - v8 (S)- IR,
ap(TSR) = T -a,S)-Rl,
by (TSR)ZIT| " b, q(S)- [R]).

Proor. We shall prove that if Re L(E, F), Se N, (F, G) and Te L(G, H),
then TSRe N, (E, H). By the definition for any ¢>0 TSRx can be written in
the form

TSRx = i A <Rx, y;>Tz; for each xeE,
i=1
with 1ille =1, lzille =1 and [[{A}llipe < v, (S)+e
Therefore, denoting by R’ the adjoint of R and putting
t = ARyl Tz,
x; = R'yi/IIR"yil

and u;=Tz)/|| Tz, i=1, 2,..., we obtain
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Q©
TSRx = Y w;<x,x;j>u; foreach xe€E,
i=1

with
Ixille =1, lullg =1
and
Hutlira  UT1 - {43 15,0~ IR]]
< Tl (S)+9IRI .
This shows TSRe N, (E, H) and
Voo TSR) = | T| - v, 4(S)- IR] .

Since the rest of the proof can be proceeded in the same way, only pay the attention
to the inequality due to [10]

%(TSR) = | T|a(S)IR|
and
B(TSR) = |TIB(S)IRI, i=1,2,...
By Definition 4, the inclusion relation
N, (E, F) = N2 (E, F)
and
V2 (T) £ v, (T) for each TeN, (E, F)

are obvious.. We note that this fact was proved for the case of 1< p< o0, 1£g<
oo in [7, Proposition 14]. On the other hand, by making use of the inequality
B(T)<a(T) for each TeL(E, F), i=1, 2,..., shown in Theorem 3.2 in [10],
we get SgPA(E, F)=S§e)(E, F). Summalizing these results we obtain the fol-
lowing

ProposiTiIoON 5. Let 0<p=0,0<g=c. Then we have N, (E, F)
cN¢ (E, F),

v (T)=v,(T)  foreach TeN,[(E,F)
and

SgP(E, F) = Sgey(E, F),
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b, (T) = a, (T)  for each TeS¢PE(E, F).

We now show some examples of the (p, ¢g)-nuclear operator and the operator
belonging to the class Sgel.

ExampPLE 1. Let {J;}el»9, O<p<l and p<qg=£o0. We define the
multiplication operator D by {§,} from /® into /?-4 by

D({¢3) = {6;¢;3 for each {¢{;}el~.
Then, defining x;e(/®),i=1,2,., by <{¢}, xj>=¢ and putting e¢;=
{0,0,...,0,1,0,...} we have
D({¢;}) = i216i<{£j}a Xi>e;.
Hence
DeN, (I®, I?-9)
and
Vol D) = {8} 1p.a.
On the other hand, we see
D(e) = {0} for e=1{1,1,...}
and
{0}l 1p.a = ID(€)ll15.a < DIl < Cp4v,,(D),
where the last inequality is obtained by Proposition 1. Thus
Cp,all{8:}l1p.a = v, (D) < 1{0:}I1p.6
with
Cpa=1/Cp,.

ExAMPLE 2. Let O0<p, g<o0 and let {6;} be a monotonically decreasing
sequence of positive numbers such that {§;} el/?P-9. We define the operator
Dy e L(I?79, [P-9) by

Do({&;}) = {6;¢;}  foreach {&;}elra.

Then we shall show D, e Sg¢i(/P-4, IP+9). To show this, it is sufficient to prove
BDo)<6y, i=1,2,....
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Let M;={{{;}elr4: ;=0 for 15j<i} and N;=I[f;}, i-dimensional /P-4
space. Furthermore, we define the operator Te L(N,, /?:9) by
T{¢h<jsd) = {15056, 0,0,... 3.
Then M; is a subspace of /7:9 of codimension <i, and
[DoIM;|| = 6, i = 1, 2,..., thus (D) < §;.

Furthermore, in case of 0<g<p=< o0, we have B(Dy)=9; i=1,2,.... In
fact | T|=1 and

IDoT({E;}1 <=l

= (j;qu/r' 1 |5j§j|*q)1/ll

> 53 jar1)E,*ay /s,
=1

where the last inequality is obtained by accounting §, 2, = --- = J; and by making
use of Lemma 3 considering p=q. Thus we have

B(D)IT| = B(DoT)
= inf”DOT({éj}lgjgi)"
g 6;"

where the infimum is taken over all {{;},<;<;€N,; such that [|{{;},<;<ill=1.
Hence B(Dg)=9;, i=1, 2,....

Utilizing Example 1, in a similar way as in [7], we can state the factorization
theorem of (p, gq)-nuclear operators as follows.

PROPOSITION 6. Let O0<p<1 and p=<q=<o. Then TeL(E, F) is
(p, q@)-nuclear if and only if T can be factorized in the form T=QDP, where
PeL(E, I®), Qe L(I?:4, F) and D is the multiplication operator by a {4}
€ 1?9 mentioned in Example 1.

Proor. The sufficiency is evident by Proposition 4. The necessity is
proved by virtue of the definition of Te N, (E, F):

00
Tx = 3 6;<x, x;>y;
i=1

with ||xi|=|y:l=1 and {6;} €/P>9. By making use of these sequences we
define the operators P, D and Q by
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Px = {<x, x{>}el® for each xekE,
D({&}) = {6:£;} e lpa for each {{;} el

and

o) = 3 nyeF  foreach {n)elr.
i=1
Then we can write in the form
Tx = QDPx

with [|[P| <1 and [Q]|=C
completes the proof.

»e Where C,  is the constant in Proposition 1. This

3. Relations between N, , and S5P? and between N¢ , and S5°!

In this section we shall investigate the relationships between N, (E, F) and
Sarp(E, F) and between N (E, F) and Sg¢(E, F) to obtain the inequalities
concerning v, , and a, , and concerning v¢ , and b, ,. These are the (p, g)-version
extending Theorem 3 in [9] and Theorem 3.6 in [3], and the proofs might
be done as in those in [9] and in [3]. These results might be successful in case
of 0<p<1 and p=<gq, but those in case of g<p<1 are yet unknown to us.

To begin with we recall the well-known Auerbach’s lemma:

Let M be an n-dimensional normed linear space. Then there exists a basis
{X1, X35...s X,} for M and a subset {u', u5,..., u,} of M’ such that

n
X =) <X, uj>x; foreach xeM,
i=1

=
with |Juill=|x;l=1and <x; u};>=0,; i, j=1, 2,..., n.

THEOREM 1. Let E and F be Banach spaces and let 0<p<]1, p<q= 0.
Then we have

Serr(E, F) = N, (E, F)
and
V,(T) < 24/p-11a*2q (T)  for each TeSgPI(E, F).

Proor. By Definition 2, for i=1, 2,... there exists an A4;e L2'~1)(E, F)
such that

I T—A4;|| < 20 4(T).
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We now put
By = Apy,— A,
dim #(B,) = d; (2(B;) denotes the range of B)),
ip=0, i = ig'ld,,

and

I, = {the integers in [i,_,+1, i,]}, r=1,2,....
Then, since the sequence {o;(T)} is decreasing, we have
IBill < 4azi—4(T).
And, since d;<2*1 —1+42/—1<2i*2 we have
i, <23(2r—1) < 23+ r=1,2,...

By Auerbach’s lemma, there exist {ui};,;, =F' and {y;}i;;,=#(B,) such that
fuill=1, [|y:l=1 and

Bx = z <B.x, u;>y, r=1,2,..,

iel,
for each xe E. Putting
x; = Bui/| Buil
Ji= Bl S |B,l, for iel, r=12,..,
we have

Bx =Y h<x,x;>y, r=12...

iel,

By making use of these {xi};s, {Vi}ier,» ¥=1, 2,..., We can write
Tx =1limA4,,;x = Y B,x
r—o r=1

0
=3 ¥ L<x, Xi>y; for each x€E,

r=1 iel,

with ||xi||z=1, |¥:illp,=1, i=1, 2,.... Therefore, on account of p<q, by Lemma
3 we get

(v, (T} < 3 jalr=1)%a
i=1
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0

< 3 i
i=1

= i S jalr=1,9

r=1 iel,

0
=X X8,

r=1 iel,

< ¥ 2002200 D (du e (T))"
r=1

- 23+4(q/p—l)+2q io: 2r—l(2r-—1)q/p—1(azr_l(T))q
r=1

2r—1
< 244/pt24-1 i > n/p-ig, (T)4.
- r=1n=2r"1

Hence

vp(T) S 24/p=1a*2g, (T),

which finishes the proof.

Corresponding to this theorem the analogous relations will be shown for
N¢ . and Sg¢/ or for v¢ (-) and b, (‘). Before proving these we here note
the following facts due to Ha [3].

Let E and F be Banach spaces. We first recall the: Kolmogorov’s i-th dia-
meter d,(D) of a bounded subset D in E defined by

- d(D)=inf{d>0: DcdV+G, G is a subspace of E, dimG<i}, i=1,2,...,
where Vis the closed unit ball in E.
Fact . Then B(T)=y(T')=d{(T'(U?)), for each Te L(E, F), i=1, 2,..., where
T’ e L(F', E') is the adjoint of Tand U denotes the closed unit ball in F (Theorem
2.7 in [3]).
Fact. II. Let M be a bounded subset which is contained in an n-dimensional
subspace of E. Then there exist n elements x,, x,,..., X, in E with' ||x;|| =d (M)
such that

Me{Sux: sl €1, i=1,2..n
=1

(Corollary of Auberbach’s lemma).

Fact III. Let M be a precompact subset of E. Then there exists a sequence
{D;}1 <i< Of subsets of E such that:

(@) dy(D)=4ddyi_(M).

(b) D, is contained in a subspace of dimension <2i+2.

(c) Theset Dy+D,+ - is dense in M



570 Ken-ichi Mi1YAzAK1

(Lemma 3.5 in [3]).
By making use of these facts we can show the following

THEOREM 2. Let E, F be Banach spaces and let 0<p<1, p<q =< 0.
Then we have

Sgea(E, F) = N2 ((E, F)
and
ve (T) < 24/p=1/a*2p (T)
for each Te S4¢i(E, F).

Proor. Let TeSgei(E, F) and let M=T'(U°), where U stands for the
closed unit ball in F. Then M is a precompact subset of E’ and by Fact 1

BAT) = d(M), i=1,2,...
Putting
ip=0, i, =232"—1) <23
and
I, = {the integers in [i,_;+1, i.]}, r=1,2,...

Then, by Facts III and II, there exist a sequence {D;}, <;< ., of subsets of E’ satisfy-
ing (a), (b) and (c) in Fact III and finite elements {u;} in E’ with ||u}|| < 4d,-_ (M)
such that

D, c {iEZI: puic |l £ 1,iel,}, r=1,2,....
Therefore each element x'€ D;+D,+---<M can be written in the form

,_oo I_m /_wli
x'=3 - ui“i_iglﬂiui—izl iX i

r=1 iel,
with A;=u;||u}|l and x;=uj/|luil, i=1, 2,.... Hence for each xe E
[Tx]| = sup [<Tx, y'>]|
lIy'list

=< sup |<x, x'>|
x'eM

= sup |<x, x">| (by (c) of Fact III)

x'eDy+Dy+-
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Ms

=

13

k1<, xi>]

with || xj]l=1and |4|=Z|ujl, i=1, 2,....
In view of these preparations, in account of the condition g=p, we can
calculate as follows:

{(v8,(T)}e

00
= WILSIVAEL
i=1

S jar-1|j,[1  (by Lemma 3)

IIA

=5 ¥ty

r=1 iel,

S 3 i8-1(4d,,_ (M))*

r=1 iel,

IA

IA

io: 2r+2(23+rya/r=1(4d,,_(M))1?

r=1

= 23+4(g/p—-1)+2q i 2r-t2r-yale=1(d,,._ (M))?
r=1

2ear+2a-1 3PS pan-1g ()

r=1n=2r"1

IIA

= D244/pt2q-1 § ni/P=18 (T)4.

n=1

Hence
V2 (T) = 24/P‘1/‘1+2b,,,q(T).

Thus the proof is completed.
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